Moretto, Michele; Rossini, Gianpaolo

Working Paper
On the opportunity cost of nontradable stock options

Nota di Lavoro, No. 96.2001

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Moretto, Michele; Rossini, Gianpaolo (2001) : On the opportunity cost of nontradable stock options, Nota di Lavoro, No. 96.2001, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/155259

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
On the Opportunity Cost of Nontradable Stock Options

Michele Moretto* and Gianpaolo Rossini**

NOTA DI LAVORO 96.2001

DECEMBER 2001

ETA – Economic Theory and Applications

*Department of Economics, University of Padua
**Department of Economics, University of Bologna

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/web/activ/_activ.html

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract=XXXXXX

Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano, tel. +39/02/52036934 – fax +39/02/52036946
E-mail: letter@feem.it
C.F. 97080600154
SUMMARY

Firms grant to their employees non-tradable stock options as an incentive device. Is the opportunity cost of issuing these options equal to the amount the company would receive if it sold the same options to outside investors? No, it is not, since the options granted to employees are non-tradable, due to the incentive scheme to which they are related, and their value, i.e. the opportunity cost, may be lower or larger than the value of the corresponding tradable option.

Keywords: Employees stock options, opportunity cost, nontradable options

JEL: J33, G13
CONTENTS

1. Introduction 2

2. The shareholders’ opportunity cost in a simple binomial model 3
 2.1 Shareholders and outside investors 4
 2.2 Shareholders and employees 5

3. The value of the stock option as an incentive device 6
 3.1 An example where the compensation mechanism does not change the distribution of \(S \) 7
 3.2 An example where the compensation mechanism changes the distribution of \(S \) 11

4. Conclusions 14

References 15
1 Introduction

A recent paper (Hall and Murphy, 2000) concentrates on the value and the opportunity cost of options granted to employees. The question arises since it has become widely common for employees, mostly executives, to receive options which are not tradable up to a certain date and for which no action can be taken to hedge against risk, such as short selling the underlying stock. The rationale of these limitations hinges upon the incentive to work that the options are meant to provide as long as they are held by employees. Non tradability implies that the risk contained in the underlying asset and, consequently, in the option, cannot be diversified away.

It is maintained that firms granting non tradable options face an opportunity cost that is larger than the benefit, i.e. the value, employees get. If this gap really existed a deadweight loss should result and inefficiency in the incentive mechanism based on stock options would appear. The gap, supposedly, arises since “the opportunity cost of granting an option to employees is the amount the company could have received if it were to sell the option to an outside investor... who is generally free to trade the option or take action such as short selling” (Hall and Murphy, 2000, p.210). Since employees cannot diversify away the risk, they place on the stock options less value than outside investors. However, through their effort they increase the market price of the stock by an amount that may be larger or smaller than the gap due to the risk premium arising from forbidden trade.

As a matter of fact, tradable options are never given to employees, since firms grant nontradable options whose value may be lower or higher than the value of corresponding tradable options according to the effort stock options are able to stimulate. As a result the incentive mechanism may lead either to a Pareto superior outcome or give rise to a deadweight loss whenever the valuation of granted options differs between employees and shareholders.

We concentrate on a rational employee who provides the effort that increases the value of the stock, without affecting the idiosyncratic risk of the firm, i.e. the risk he is not allowed to diversify away once he has been granted the stock option with limited tradability1. We then go through the opportunity cost of stock options according to the effectiveness of the incentive mechanism.

1 We assume away moral hazard that may arise in the relationship between shareholders and executives.
In the next section we use a binomial model to evaluate the opportunity cost of nontradable options granted to employees. In section 3 we derive some results concerning the incentive scheme embodied in the stock option. In section 4 we consider an example of a non neutral effort. In section 5 conclusions are drawn.

2 The shareholders’ opportunity cost in a simple binomial model

Suppose, for instance, that, on January 1, 2001, a company grants its employees, as an incentive device, an option that is tradable only in one year, i.e. from January 1, 2002. This option is the basis of a compensation mechanism to induce “profit-performance”\(^2\). Therefore, its market value (and the opportunity cost for the writer) is not equal to the value of the corresponding wholly tradable option issued at the same date.

To see why, let us define the value of the wholly tradable option at time zero, when it is issued and sold in the market, as \(F_0\). In a simple two-period framework, the value of the corresponding nontradable option for the writer is given by the “profit-performance” he gets. While for the holder, assuming away for simplicity non option wealth and risk aversion, it is equal to the “expectation” on January 1, 2001 of the value that will take the corresponding tradable option on January 1, 2002, minus the “cost of his effort”. In other words, there need to be no coincidence of the return on granted options with respect to the equilibrium return required by outside investors on an equivalent-risk traded stock\(^3\).

The above assertion can be made more precise in a two-period binomial model. To this purpose, let us consider a non dividend-paying asset whose returns, at time one, are:

\[
\begin{align*}
S_0 & \quad S_1^+ = uS_0 \quad \text{with probability } q \\
& \quad S_1^- = dS_0 \quad \text{with probability } 1 - q
\end{align*}
\]

\(^2\)Using the terminology of Murphy (2001).

\(^3\)According to Johnson and Tian (2000, footnote 2, p.6), when the option doesn’t expire before the employees leave the firm, the value of the option is reduced for both the employees and the shareholders “below the costs calculated from the valuation models”.

3
where \(u > 1, \ d < 1 \), and, to eliminate arbitrage opportunities, \(u > 1 + r > d \), with \(r \) as the riskless rate.

Moreover, let us consider an European call option written on (1). Its value over the period is equal to:

\[
\begin{align*}
V_1^+ &= \max(S_1^+ - K, 0) = S_1^+ - K, \quad \text{with probability } q \\
V_1^- &= \max(S_1^- - K, 0) = 0 \quad \text{with probability } 1 - q
\end{align*}
\]

(2)

where \(V_1^+ \) and \(V_1^- \) are the values of the call option at time one according to whether the asset price has gone up or down, and \(K \in [S_1^-, S_1^+] \) is the exercise price.

2.1 Shareholders and outside investors

Consider a shareholder who holds the asset (1), writes the European call (2) with the exercise price \(K \) and sells it to an outside investor. His wealth at time zero is:

\[
V_0 = S_0 + F_0. \tag{3}
\]

where \(F_0 \) is the price of the call (2) sold to the outside investor. After one period the shareholder’s wealth becomes:

\[
\begin{align*}
V_1^+ &= S_1^+ - (S_1^+ - K) + (1 + r)F_0 = K + (1 + r)F_0 \\
V_1^- &= S_1^- + 0 + (1 + r)F_0 = S_1^- + (1 + r)F_0
\end{align*}
\]

with probability \(q \) and \(1 - q \) respectively.

(4)

In words: with probability \(q \) the asset goes up to \(S_1^+ = uS_0 \). The option is exercised by the investor and the writer loses \((S_1^+ - K) \). With probability \(1 - q \) the asset falls to \(S_1^- = dS_0 \) and the call option is not exercised. Yet, the shareholder gets \((1 + r)F_0 \) if he has invested in a riskless asset the amount \(F_0 \) cashed at time zero. If we assume that the asset \(S_0 \) does not pay any dividend, the expected gain from holding \(V_0 \) is equal to \(\Delta^* \equiv E_0(V_1) - V_0 \), or, by substitution,

\[
\Delta^* = qK + (1 - q)dS_0 + rF_0 - S_0 \tag{5}
\]

4
2.2 Shareholders and employees

So far we have neglected that shareholders give the stock option to employees as an incentive device. This is why the option must be nontradable for a certain time. While there would be no reason to do so if the option were just an ex post compensation.

In our two-period framework, nontradability implies that employees have no right to sell or exercise before time one. Let’s assume, for the sake of simplicity, that the employees’ effort increases profits between zero and one, while leaving unchanged the probability distribution of the asset returns at time one\(^4\). Then, the incentive device can be represented rewriting the shareholders’ wealth (4) as:

\[
\begin{align*}
W_0 &= S_0 + I_0 \\
W_1^+ &= S_1^+ - (S_1^+ - K) + I_1 = K + I_1 \\
W_1^- &= S_1^- + 0 + I_1 = S_1^- + I_1
\end{align*}
\] (6)

As the employee gets the option for free the shareholders’ wealth at zero is given by the value of the stock plus the “cost of the effort”, i.e. the discounted “profit-performance” induced by the incentive \(I_0 = \rho I_1\), with \(\rho = \frac{1}{1+r}\).

At time one the shareholders receive the increment of profit \(I_1\) plus the realization of \(S\), i.e. with probability \(q\) the stock goes up to \(S_1^+\) and the option is exercised, while with probability \(1-q\) the stock falls to \(S_1^-\) and the option goes underwater\(^5\). Then, the shareholders’ expected gain is:

\[
\Delta^{**} = qK + (1-q)dS_0 + rI_0 - S_0
\] (7)

Rational shareholders grant the stock option only if \(\Delta^{**} \geq 0\). The opportunity cost of this decision is the value of the best foregone alternative, i.e. \(\Delta^*\).

Shareholders may gain or lose by granting a nontradable stock option to employees rather than selling a corresponding tradable option to outside investors, i.e.:

\(^4\)Again, this implies absence of moral hazard.

\(^5\)It is worth noting that in (6), the “profit-performance” \(I_1\) looks like a dividend paid on the stock at time one to shareholders. This “dividend-like” increment resulting from the employees’ effort adds to the value of the stock.
\[\Delta^{**} - \Delta^* = r(I_0 - F_0) \] (8)

may be zero, negative or positive.

3 The value of the stock option as an incentive device

Now we go through the sign of the difference \(\Delta^{**} - \Delta^* \), by evaluating the European call \(F_0 \) vis à vis the “profit-performance” value \(I_0 \).

Consider first the European call \(F_0 \). The shareholder and the outside investor would agree to use the standard methodology (Ingersoll, 1987, ch. 14) for pricing it, by setting up a portfolio composed by the call and short sales of \(N \) shares of the asset at the current price \(S_0 \), i.e.:

\[\Phi_0 = F_0 - NS_0. \] (9)

After one period the value of the portfolio is:

\[\Phi_0 = F_0 - NS_0 \]
\[\begin{cases} \Phi_1^+ = F_1^+ - NS_1^+ & \text{with probability } q \\ \Phi_1^- = F_1^- - NS_1^- & \text{with probability } 1 - q \end{cases} \] (10)

For the portfolio to provide the same return, regardless of the state, we choose \(N \) to satisfy \(\Phi_1^+ = \Phi_1^- \). Since this portfolio at time 1 is risk free and the asset does not pay out any dividend, the return from holding it equals the capital gain \(\Phi_1 - \Phi_0 \), and, to avoid arbitrage, \(\Phi_1 - \Phi_0 = r\Phi_0 \). Solving for the two unknowns, \(N \) and \(F_0 \), we obtain:

\[F_0 = \rho p F_1^+ \] (11)

with:

\[p = \frac{(1 + r) - d}{u - d} > 0 \] (12)

where \(p \) is the “risk-neutralized probability”, that would prevail in a risk-neutral environment in which the actual return rate \(qu + (1 - q)d \) is replaced by a certainty-equivalent or risk-neutral rate \(pu + (1 - p)d \).
3.1 An example where the compensation mechanism does not change the distribution of S.

If shareholders grant the stock option to employees as an incentive device, the option becomes a compensation to induce employees “profit-performance”. In this case a different pricing rule is needed to take into account the trade-off between the stock option received by workers and the related “profit-performance”. Recalling that we have assumed away non option wealth and risk aversion, the employees value their opportunity to optimally decide selling (or exercising) the stock option by comparing the intrinsic value of the option with that of the European call, net of the “profit-performance”, i.e.:

$$f_0 = \max [S_0 - K, F_0 - I_0]$$

(13)

where, from (2), $F_0 - I$ is given by:

$$F_0 - I_0 = \max (S_1^+ - K, 0) - I_1 = S_1^+ - K - I_1,$$

with probability q

$$F_0 - I_0 = \max (S_1^- - K, 0) - I_1 = -I_1$$

with probability $1 - q$

(14)

In words: if at time one the stock option is exercised the employee pays the strike price plus the “cost of the effort” i.e. $K + I_1$. If the stock option goes unexercised, the employee pays only I_1. With early exercise allowed, equation (14) gives the price of the stock option only if it is larger than $S_0 - K$. Otherwise, the price f_0 is given by the intrinsic value of the option, $S_0 - K$.

Nontradability implies that the employees have no right to sell their option before time one and, therefore, rules out the exercise of (13) at time zero. The employees are constrained to hold the option up to time one and pay $K + I_1$ to exercise it or I_1 to leave it. If employees are to accept this “conditionality”, introduced by shareholders to get I_1, it must be:

$$F_0 - I_0 \geq S_0 - K$$

(18)

Option nontradability implies nontradable stocks for employees. With simple adaptations of (9) we evaluate nontradability for outside investors. If the company stock cannot be traded, the short position in the above portfolio (9) requires an extra payment. Otherwise no rational investor holds the long position. To go long in the company asset a
or, after substituting (9), we can rewrite (18) in term of I_1 as a function of the strike price K:

$$I_1 \leq p(uS_0 - K) - (1 + r)(S_0 - K) \equiv -(1 + r - pu)S_0 + (1 + r - p)K$$ \hspace{1em} (19)

This is no end of the story. To induce employees to perform I_1 we need a further participation condition, i.e.: $f_0 \geq 0$. Within the admissible interval for the nontradable option expressed by (18), this constraint requires:

$$F_0 - I_0 \equiv \rho[p(S_1^+ - K) - I_1] \geq 0$$ \hspace{1em} (20)

or rearranging terms8:

$$I_1 \leq p(S_1^+ - K) \equiv puS_0 - pK.$$ \hspace{1em} (21)

7Since $p = \frac{1 + r - d}{u - d}$ it is easy to show that $1 + r - pu > 0$

8If the risk-free probability p is known, the value of stock option $F_0 = p(S_1^+ - K)$ defines a linear compensation scheme where the exercise price K may be seen as an index of performance which allows the firm to meet the employees’ “reservation wage” at the “profit-performance” value I_1 (See Murphy, 2001).
Inequalities (19) and (21) give rise to an admissible region (portrayed in Figure 1 by the area \(ABC\)) for \((K, I_1)\) wherein the employees participate and accept a nontradable option. Notice that, as long as \(S_0 - K > 0\) (i.e. the stock option is issued in the money), the biting constraint is (19) and the maximum value of the “profit-performance”, the shareholders can obtain, is \(I_1 < p(uS_0 - K)\) or, valued at time zero, \(I_0 < F_0\). While, if \(S_0 - K \leq 0\) (i.e. the stock option is issued out of the money or just at the current price), the biting constraint is (21) and the maximum benefit for shareholders is \(I_1 = p(uS_0 - K)\) or, valued at time zero, \(I_0 = F_0\).
We sum up the above statements in two results. In the first we go through the opportunity cost while in the second we provide a simple rational explanation of why usually stock options are granted either out of money or at the current price.

Result 1 If we rule out risk aversion and non option wealth, the maximum value of the effort-incentive shareholders may get from employees is equal to the value of the European call option sold to outside investors.
In other words, for all $K \in [S_0, uS_0]$ the opportunity cost for shareholders of the stock option is always equal to the best foregone alternative, i.e.: selling to outside investors, or $\Delta^{**} - \Delta^* = 0$.

Result 2 If the stock option is granted in the money, the employees’ participation constraint requires a lower value of the incentive-effort that goes to shareholders. For all $K \in [dS_0, S_0]$ there is a difference between the opportunity cost and what shareholders get. This difference is negative, i.e. $\Delta^{**} - \Delta^* < 0$ (as Hall and Murphy, 2000 maintain).

Finally an additional observation can be added. If we assume employees’ risk aversion, the area ABC, where Result 1 holds, shrinks. On the contrary, if we introduce non option wealth the effect of risk aversion is smaller and the area ABC, in which Result 1 holds, gets larger.

3.2 An example where the compensation mechanansim changes the distribution of S.

So far we have described an incentive scheme that is neutral for the employees: the value of “profit-performance” I_1 shifts to the left the shareholders’ wealth without altering the shape of S. This effect is only partially appriopriable by the employees through the incentive and partecipation constraints. Actual stock option schemes are often designed to let the employees change the distribution of profits and get the additional value as a compensation. In a very simple model we show what happens when the employees are able to change the distribution of S in (1) in the following way:

\[
\begin{align*}
S_0 & \quad S_{1+}^+ = u'S_0 \quad \text{with probability } q \\
S_0 & \quad S_{1-}^- = dS_0 \quad \text{with probability } 1 - q
\end{align*}
\]

(22)

where $u' \equiv \alpha u > u > 1$, with $\alpha > 1$. Moreover, to simplify the example, we add $d = \frac{1}{u}$ and $r = 0$. Notice that (22) shows that the employees boost the positive value of the asset, i.e. with probability q the asset may go up to $S_{1+}^+ = u'S_0$. Yet in the downturn the asset value is the same as before\(^9\).

\(^9\)If employees affect $u' > u$ they alter the trend of the asset value, without changing probabilities. A similar result may be obtained if we assume that employees are able to influence probability $q' > q$, while leaving unchanged the trend u.

11
In (22) the downside value of the asset does not change. Then the shareholders’ portfolio (6) and (7) do not change. The two constraints for employees, (19) and (21), become:

$$I_1 \leq -(1 - p'u')S_0 + (1 - p')K$$

and:

$$I_1 \leq p'u'S_0 - p'K.$$ (24)

By substituting\(^{10}\) for \(p\), \(1 - pu = p, p' = p - \Psi(\alpha), 1 - p'u' = p + d\Psi(\alpha), \) where

\[
\Psi(\alpha) :\equiv \frac{u^2(\alpha - 1)}{(\alpha u^2 - 1)(u + 1)} \in [0, 1],
\]

we get:

$$I_1 \leq -(1 - p'u')S_0 + (1 - p')K \equiv$$

$$\equiv -pS_0 + (1 - p)K + (K - dS_0)\Psi(\alpha)$$ (25)

and:

$$I_1 \leq p'u'S_0 - p'K \equiv$$

$$\equiv (1 - p)S_0 - pK + (K - dS_0)\Psi(\alpha)$$ (26)

\(^{10}\)It is easy to show that:

1. \(p = \frac{1-d}{u-a} = \frac{1}{u-a} - \frac{d}{u-a} = \frac{u-a}{u^2-1} = \frac{u-1}{u^2-1} = \frac{1}{u+1}\)

2. \(p' = \frac{1-d}{u-a} = \frac{1}{\alpha u-1} - \frac{d}{\alpha u-1} = \frac{u-1}{\alpha u^2-1} = \frac{1}{\alpha u^2-1} - \frac{u^2(\alpha - 1)}{(\alpha u^2 - 1)(u+1)} = p - \Psi(\alpha)\) where

\[
\Psi(\alpha) :\equiv \frac{u^2(\alpha - 1)}{(\alpha u^2 - 1)(u+1)} \in [0, 1],
\]

3. \(1 - pu = 1 - \frac{1-d}{u-a}u = \frac{(u-d) - uu + ud}{u-d} = \frac{d(u-1)}{u-d} = \frac{d(u-1)}{u^2-1} = \frac{u-1}{u^2-1} = \frac{u-1}{(u-1)(u+1)} = \frac{1}{u+1} = p\)

4. \(1 - p'u' = \frac{d(u'-1)}{u-d} = \frac{\frac{1}{\alpha u^2-1} - \frac{d}{\alpha u^2-1}}{u-d} = \frac{\frac{1}{\alpha u^2-1} - \frac{d}{\alpha u^2-1}}{u^2-1} = \frac{1}{u+1} + \frac{u(u-1)}{(\alpha u^2 - 1)(u+1)} = (1 - pu) + \frac{\Psi(\alpha)}{u} = p + d\Psi(\alpha)\)
As long as the term \((K - dS_0)\Psi(\alpha)\) is positive we are able to substitute the new inequalities (25) and (26) to the old ones. This is done in Figure 2 below.

Figure 2: Admissible Set: Changes in the Distribution of S

Direct inspection of figure 2 shows that the admissible region where employees *participate* and *accept* the nontradable option is now given by the
area $AB' C' C$ which is greater than ABC. Therefore, considering the first-order approximation of the differential $d(\Delta^{**} - \Delta^*)$ around $r = 0$, we get\(^{11}\):

Result 3 In both inequalities (25 and 26) the term $(K - dS_0) \Psi(\alpha) > 0$, goes to zero as $\alpha \to 1$. Therefore:

- if the stock option is granted out of the money or at the current price $K \in [S_0, u'S_0]$, the maximum value of the effort shareholders may obtain from employees is larger than the value of the European call sold to outside investors. In other words, for $dr > 0$, the opportunity cost of granting the option (the value of the best alternative) is lower than the benefit shareholders get, i.e.: $d(\Delta^{**} - \Delta^*) > 0$.

- if the stock option is granted in the money, there exists an interval of $K \in (S'_0, S_0)$ where shareholders obtain from employees an effort whose value is larger than the price of the European call sold on the market and then $d(\Delta^{**} - \Delta^*) > 0$. While in the remaining part of the interval $K \in [dS, S'_0)$, the opportunity cost is larger than the benefit, i.e.: $d(\Delta^{**} - \Delta^*) < 0$ (as Hall and Murphy, 2000 maintain).

- Finally, if $K = S'_0$, we have $d(\Delta^{**} - \Delta^*) = 0$

4 Conclusions

We have shown that the opportunity cost of granting non tradable options is not equal to the price of a corresponding tradable option. Non tradability puts a wedge between the option granted to employees and the corresponding option sold to outside investors.

Non tradability of stock option granted to employees finds its rationale in the incentive that options are meant to provide. If we consider the employees’ effort we may have that the opportunity cost of non tradable stock options is

\(^{11}\)Having assumed $r = 0$, we consider the first-order approximation of the differential of $\Delta^{**} - \Delta^*$ around zero, i.e.:

$$d(\Delta^{**} - \Delta^*) \bigg|_{r=0} = (I_0 - F_0)dr - r \frac{\partial F_0}{\partial r} dr = (I_0 - F_0)dr.$$
either larger or smaller than the price of the corresponding tradable option. This adds a rationale to the different exercise prices adopted by firms granting stock options. In particular it explains why options are mostly granted either out of the money or at the current price.

References

<table>
<thead>
<tr>
<th>Volume</th>
<th>Date</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>1.2000</td>
<td>Claudia Kemfert</td>
<td>The Impacts of Emissions Trading on World Economies. Contemplation of baseline emissions paths and a ceiling on emissions trading</td>
</tr>
<tr>
<td>CLIM</td>
<td>2.2000</td>
<td>Pascal Favard</td>
<td>Does Productive Capital Affect the Order of Resource Exploitation?</td>
</tr>
<tr>
<td>SUST</td>
<td>4.2000</td>
<td>Piet Rietveld and Roberto Roson</td>
<td>Joint Costs in Network Services: the Two-way Problem in the Case of Unbalanced Transport Markets</td>
</tr>
<tr>
<td>CLIM</td>
<td>5.2000</td>
<td>Robert S. Pindyck</td>
<td>Irreversibilities and the Timing of Environmental Policy</td>
</tr>
<tr>
<td>MGMT</td>
<td>6.2000</td>
<td>Domenico Siniscalco, Stefania Borghini, Marcella Fantini and Federica Ranghieri</td>
<td>The Response of Companies to Information-Based Environmental Policies</td>
</tr>
<tr>
<td>CLIM</td>
<td>8.2000</td>
<td>Zhongxiang Zhang</td>
<td>Estimating the Size of the Potential Market for the Kyoto Flexibility Mechanisms</td>
</tr>
<tr>
<td>VOL</td>
<td>9.2000</td>
<td>Jean-Christophe PerEAU and Tarik TAZDAIT</td>
<td>Partial and Global Cooperation with Unilateral Commitment in the Presence of Global Environmental Problems</td>
</tr>
<tr>
<td>KNOW</td>
<td>10.2000</td>
<td>Giacomo Calzolari and Giovanni Immordino</td>
<td>Hormone Beefs, Chloridric Chicken and International Trade: Can Scientific Uncertainty be an Informational Barrier to Trade?</td>
</tr>
<tr>
<td>KNOW</td>
<td>12.2000</td>
<td>Patrizia BuSSoli</td>
<td>An Empirical Analysis of Technological Convergence Process and RIVs in Europe at the Firm Level</td>
</tr>
<tr>
<td>KNOW</td>
<td>13.2000</td>
<td>Luigi Benfrettello and Alessandro Sembenelli</td>
<td>Research Joint Ventures and Firm Level Performance</td>
</tr>
<tr>
<td>ETA</td>
<td>15.2000</td>
<td>Y.H. Farzin</td>
<td>The Effects of Emissions Standards on Industry in the Short Run and Long Run</td>
</tr>
<tr>
<td>ETA</td>
<td>16.2000</td>
<td>Francis Bloch and Stéphane Rottier</td>
<td>Agenda Control in Coalition Formation</td>
</tr>
<tr>
<td>CLIM</td>
<td>18.2000</td>
<td>Hans W. Gottinger</td>
<td>Negotiation and Optimality in an Economic Model of Global Climate Change</td>
</tr>
<tr>
<td>VOL</td>
<td>19.2000</td>
<td>Paola Milizia and Mariátaisa Tamberolla</td>
<td>Juridical Framework of Voluntary Agreements in Italy and Policy Relevance at the Local Level</td>
</tr>
<tr>
<td>CLIM</td>
<td>21.2000</td>
<td>Pietro Teatin and Giuseppe Gambolati</td>
<td>The Impact of Climate Change, Sea-Storm Events and Land Subsidence in the Adriatic</td>
</tr>
<tr>
<td>CLIM</td>
<td>22.2000</td>
<td>Emilian Ramieri</td>
<td>An Overview of the Vulnerability of Venice to the Impacts of Climate Change and Sea Level Rise</td>
</tr>
<tr>
<td>PRIV</td>
<td>23.2000</td>
<td>Bernardo Bortoli, Marcella Fantini and Carlo Scarpa</td>
<td>Why do Governments Sell Privatised Companies Abroad?</td>
</tr>
<tr>
<td>ETA</td>
<td>24.2000</td>
<td>Carlo Carraro and Gilbert E. Metcalfe</td>
<td>Behavioral and Distributional Effects of Environmental Policy: Introduction</td>
</tr>
<tr>
<td>ETA</td>
<td>25.2000</td>
<td>Santiago J. Rubio and Juana Aznar</td>
<td>Sustainable Growth and Environmental Policies</td>
</tr>
<tr>
<td>KNOW</td>
<td>26.2000</td>
<td>Francesca Recanatini and Randi Ryterman</td>
<td>Disorganisation or Self-Organisation?</td>
</tr>
<tr>
<td>KNOW</td>
<td>29.2000</td>
<td>Giorgio Brunello and Simona Comi</td>
<td>Education and Earnings Growth. Evidence from 11 European Countries</td>
</tr>
<tr>
<td>CLIM</td>
<td>31.2000</td>
<td>Gérard MondeIllo and Mabel Tidball</td>
<td>Environmental Liability and Technology Choice: A Duopolistic Analysis</td>
</tr>
</tbody>
</table>
Na Li DAWSON and Kathleen SEGerson (xliii): Voluntary Agreements with Industries: Participation Incentives with Industry-wide Targets
Patricia M. BAILEY (xliii): The Application of Competition Law and Policy to Environmental Agreements in an Oligopolistic Market
Joanna POYAGO-THEOTOKY (xliii): Voluntary Approaches and the Organisation of Environmental R&D
Scott C. MATULICH, Murat SEVER and Fred INABA (xliii): Cooperative Bargaining to Internalise Open Access Externalities: Implications of the American Fisheries Act
Allen BLACKMAN and James BOYD (xliii): Tailored Regulation: Will Voluntary Site-Specific Environmental Performance Standards Improve Welfare?
Vincenzo DENICOLO’ (xliii): A Signaling Model of Environmental Overcompliance
Markus A. LEHMANN (xliii): Voluntary Environmental Agreements and Competition Policy. The Case of Germany’s Private System for Packaging Waste Recycling
Paola MANZINI and Marco MARIOTTI (xliii): A Bargaining Model of Voluntary Environmental Agreements
Alain NADAI and Benoit MOREL (xliii): Product Ecolabelling, Competition and the Environment
Simone BORGHESI: Income Inequality and the Environmental Kuznets Curve
Giorgio BRUNELLO and Massimo GIANNINI: Stratified or Comprehensive? The Economic Efficiency of School Design
Thomas P. LYON and John W. MAXWELL (xliii): Self-Regulation, Taxation and Public Voluntary Environmental Agreements
Paola MANZINI and Marco MARIOTTI (xliii): A Bargaining Model of Voluntary Environmental Agreements
Alain NADAI and Benoit MOREL (xliii): Product Ecolabelling, Competition and the Environment
Michael FINUS: Game Theory and International Environmental Co-operation: A Survey with an Application to the Kyoto-Protocol
Simone BORGHESI: Income Inequality and the Environmental Kuznets Curve
Giorgio BRUNELLO and Massimo GIANNINI: Stratified or Comprehensive? The Economic Efficiency of School Design
Mark DE HAAN and Steven J. KEUNING (xliv): The NAMEA as Validation Instrument for Environmental Macroeconomics
Jochen JESINGHAUS (xliv): On the Art of Aggregating Apples & Oranges
Jan KOLAR (xliv): Land Cover Accounting in the Czech Republic
Anil MARKANDYA, Alistair HUNT and Pamela MASON (xliv): Valuing Damages for Green Accounting Purposes: The GARPII Approach
Anil MARKANDYA, Pamela MASON and Mariussia TAMBORRA (xliv): Green National Accounting: Synthesising and Extending the Welfare Based and Sustainability-standard Based Approaches
Martin O’CONNOR (xliv): Towards a Typology of “Environmentally-Adjusted” National Sustainability Indicators: Key Concepts and Policy Application
Anton STEUER (xliv): Towards an Environmental Accounting Framework for the EU
Cesare COSTANTINO, Federico FALCETELLI and Angelica TUDINI (xliv): New Developments in Environmental Accounting at Istat
Steijn BAYER and Claudia KEMFERT: Reaching National Kyoto-Targets in Germany by Maintaining a Sustainable Development
ZhongXiang ZHANG: An Assessment of the EU Proposal for Ceilings on the Use of Kyoto Flexibility Mechanisms
Maria Rosa BATTAGGION and Patrizia BUSSOLI: Italian Policy towards Cooperation in R&D
Giorgio BARBA NAVARETTI, Patrizia BUSSOLI, Georg VON GRAEVENITZ and David ULPH: Information Sharing, Research Coordination and Membership of Research Joint Ventures
Cesare DOSI and Naomi ZEITOUNI: Controlling Groundwater Pollution from Agricultural Nonpoint Sources: An Overview of Policy Instruments
Alberto PETRUCCI: On Debt Neutrality in the Savers-Spenders Theory of Fiscal Policy
Roberto ROSON and Stefano SORIANI: Intermodality and the Changing Role of Nodes in Transport Networks
Alain BOUSQUET and Pascal FAVARD: Does S. Kuznets’ Belief Question the Environmental Kuznets Curves?
Ottaio JANNI: EU Biodiversity Conservation in Tropical Countries
Carlo GIUPPONI: The Substitution of Hazardous Molecules in Production Processes: The Atrazine Case Study in Italian Agriculture

Raffaele PACI and Francesco PIGLIARI: Technological Diffusion, Spatial Spillovers and Regional Convergence in Europe

Bernardo BORTOLOTTI: Privatisation, Large Shareholders, and Sequential Auctions of Shares

Giacomo CALZOLARI and Carlo SCARPA: Regulation at Home, Competition Abroad: A Theoretical Framework

Giorgio BRUNELLO: On the Complementarity between Education and Training in Europe

Alain DESDOIGTS and Fabien MOIZEAU: Multiple Politico-Economic Regimes, Inequality and Growth

Wietze LISE and Richard S.J. TOL and Bob van der ZWAAN: Negotiating Climate Change as a Social Situation

Mohammad R. KHAWLIE: The Impacts of Climate Change on Water Resources of Lebanon-Eastern Mediterranean

Mutasem EL-FADEL and E. BOU-ZEID: Climate Change and Water Resources in the Middle East: Vulnerability, Socio-Economic Impacts and Adaptation

Eva IGLESIAS, Alberto GARRIDO and Abudena GOMEZ: An Economic Drought Management Index to Evaluate Water Institutions’ Performance Under Uncertainty and Climate Change

Wietze LISE and Richard S.J. TOL: Impact of Climate on Tourist Demand

Francesco BOSELLO, Barbara BUCHNER, Carlo CARRARO and Davide RAGGI: Can Equity Enhance Efficiency? Lessons from the Kyoto Protocol

Roberto ROSON: Carbon Leakage in a Small Open Economy with Capital Mobility

Edwin WOERDMAN: Developing a European Carbon Trading Market: Will Permit Allocation Distort Competition and Lead to State Aid?

Richard N. COOPER: The Kyoto Protocol: A Flawed Concept

Kari KANGAS: Trade Liberalisation, Changing Forest Management and Roundwood Trade in Europe

Xueqin ZHU and Ekko VAN IERLAND: Effects of the Enlargement of EU on Trade and the Environment

M. Ozgur KAYALICA and Sajal LAHIRI: Strategic Environmental Policies in the Presence of Foreign Direct Investment

Seras ALPAY: Can Environmental Regulations be Compatible with Higher International Competitiveness? Some New Theoretical Insights

Roldan MURADIAN, Martin O’CONNOR, Joan MARTINEZ-ALER: Embodied Pollution in Trade: Estimating the “Environmental Load Displacement” of Industrialised Countries

Matthew R. AUER and Rafael REUVENY: Foreign Aid and Direct Investment: Key Players in the Environmental Restoration of Central and Eastern Europe

Onno J. KUIK and Frans H. OOSTERHUIS: Lessons from the Southern Enlargement of the EU for the Environmental Dimensions of Eastern Enlargement, in particular for Poland

Carlo CARRARO, Alessandra POME and Domenico SINISCALCO: Science vs. Profit in Research: Lessons from the Human Genome Project

Efrem CASTELNUOVO, Michele MORETTO and Sergio VERGALLI: Global Warming, Uncertainty and Endogenous Technical Change: Implications for Kyoto

Gian Luigi ALBANO, Fabrizio GERMANO and Stefano LOVO: On Some Collusive and Signaling Equilibria in Ascending Auctions for Multiple Objects

Elbert DIJKGRAAF and Herman R.J. VOLLEBERGH: A Note on Testing for Environmental Kuznets Curves with Panel Data

Paolo BUONANNO, Carlo CARRARO and Marzio GALEOTTI: Endogenous Induced Technical Change and the Costs of Kyoto

Guido CAZZAVILLAN and Ignazio MUSLI: Transitional Dynamics and Uniqueness of the Balanced-Growth Path in a Simple Model of Endogenous Growth with an Environmental Asset

Giovanni BAIOCCHI and Salvatore DI FALCO: Investigating the Shape of the EKC: A Nonparametric Approach
(xxxvi) This paper was presented at the Second EFIEA Policy Workshop on “Integrating Climate Policies in the European Environment. Costs and Opportunities”, organised by the Fondazione Eni Enrico Mattei on behalf of the European Forum on Integrated Environmental Assessment, Milan, March 4-6, 1999

(xxxvii) This paper was presented at the Fourth Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei, CORE of Louvain-la-Neuve and GREQAM of Marseille, Aix-en-Provence, January 8-9, 1999

(xxxviii) This paper was presented at the International Conference on “Trade and Competition in the WTO and Beyond” organised by the Fondazione Eni Enrico Mattei and the Department of International Studies of the University of Padua, Venice, December 4-5, 1998

(xxxix) This paper was presented at the 3rd Toulouse Conference on Environment and Resource Economics, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE on “Environment, Energy Uses and Climate Change”, Toulouse, June 14-16, 1999

(xl) This paper was presented at the conference on “Distributional and Behavioral Effects of Environmental Policy” jointly organised by the National Bureau of Economic Research and Fondazione Eni Enrico Mattei, Milan, June 11-12, 1999

(xli) This paper was presented at the Fifth Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CODE, Universitat Autonoma de Barcelona, Barcelona January 21-22, 2000

(xlii) This paper was presented at the International Workshop on "Climate Change and Mediterranean Coastal Systems: Regional Scenarios and Vulnerability Assessment" organised by the Fondazione Eni Enrico Mattei in co-operation with the Istituto Veneto di Scienze, Lettere ed Arti, Venice, December 9-10, 1999.

(xliii) This paper was presented at the International Workshop on “Voluntary Approaches, Competition and Competitiveness” organised by the Fondazione Eni Enrico Mattei within the research activities of the CAVA Network, Milan, May 25-26, 2000.

(xlvi) This paper was presented at the International Workshop on "Green National Accounting in Europe: Comparison of Methods and Experiences" organised by the Fondazione Eni Enrico Mattei within the Concerted Action of Environmental Valuation in Europe (EVE), Milan, March 4-7, 2000

(xlv) This paper was presented at the International Workshop on “New Ports and Urban and Regional Development. The Dynamics of Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, May 5-6, 2000.

(xlvi) This paper was presented at the Sixth Meeting of the Coalition Theory Network organised by the Fondazione Eni Enrico Mattei and the CORE, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, January 26-27, 2001

(xlvii) This paper was presented at the RICAMARE Workshop “Socioeconomic Assessments of Climate Change in the Mediterranean: Impact, Adaptation and Mitigation Co-benefits”, organised by the Fondazione Eni Enrico Mattei, Milan, February 9-10, 2001

(xlviii) This paper was presented at the International Workshop “Trade and the Environment in the Perspective of the EU Enlargement”, organised by the Fondazione Eni Enrico Mattei, Milan, May 17-18, 2001

(xlix) This paper was presented at the International Conference “Knowledge as an Economic Good”, organised by Fondazione Eni Enrico Mattei and The Beijer International Institute of Environmental Economics, Palermo, April 20-21, 2001

(l) This paper was presented at the Workshop “Growth, Environmental Policies and Sustainability” organised by the Fondazione Eni Enrico Mattei, Venice, June 1, 2001

(li) This paper was presented at the Fourth Toulouse Conference on Environment and Resource Economics on “Property Rights, Institutions and Management of Environmental and Natural Resources”, organised by Fondazione Eni Enrico Mattei, IDEI and INRA and sponsored by MATE, Toulouse, May 3-4, 2001

(lii) This paper was presented at the International Conference on “Economic Valuation of Environmental Goods”, organised by Fondazione Eni Enrico Mattei in cooperation with CORILA, Venice, May 11, 2001

(liii) This paper was circulated at the International Conference on “Climate Policy – Do We Need a New Approach?”, jointly organised by Fondazione Eni Enrico Mattei, Stanford University and Venice International University, Isola di San Servolo, Venice, September 6-8, 2001
2000 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Antitrust, Regulation</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>WAT</td>
<td>Water and Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Impact Assessment</td>
<td>Marialuisa Tamborra</td>
</tr>
<tr>
<td>VOL</td>
<td>Task Force on Voluntary Agreements</td>
<td>Rinaldo Brau</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2001 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT</td>
<td>Corporate Sustainable Management</td>
<td>Andrea Marsanich</td>
</tr>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Antitrust, Regulation</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Dino Pinelli</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>SUST</td>
<td>Sustainability Indicators and Environmental Evaluation</td>
<td>Marialuisa Tamborra</td>
</tr>
<tr>
<td>VOL</td>
<td>Voluntary and International Agreements</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>
SUBSCRIPTION TO “NOTE DI LAVORO”

Starting from January 1998 Fondazione Eni Enrico Mattei issues a Periodic E-mail "Note di Lavoro" Bulletin listing the titles and the abstracts of its most recent Working Papers. All the "Note di Lavoro" listed in the Bulletin are available on the Internet and are downloadable from Feem’s web site “www.feem.it”.

If you wish to receive hard copies you may choose from the payment options listed in the following table (minimum order: 10 papers)*.

*Orders for individual papers should clearly indicate the “Nota di Lavoro” number and can therefore be issued for published papers only.

All orders must be sent by fax to:
“Publications Office” - Fondazione Eni Enrico Mattei: Fax +39+2+52036946

<table>
<thead>
<tr>
<th>PAYMENT OPTIONS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>How many papers?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 or more*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual subscription</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(approx. 100 papers/year)</td>
<td>US$ 250.00</td>
<td>ITL 425,000</td>
</tr>
<tr>
<td></td>
<td>US$ 4.00 each</td>
<td>ITL 7,000 each</td>
</tr>
</tbody>
</table>

Please fill out the Working Paper Subscription Form indicating your preferences (Periodic E-mail “Note di Lavoro” Bulletin, Annual subscription, Order for individual papers - minimum 10)!

WORKING PAPER SUBSCRIPTION FORM

Name:__
Affiliation(if applicable):___
Address: __
__
__
Phone: _____________________ Fax: ________________________ E-mail: ______________________

I wish to: Amount due:

☐ receive the Periodic E-mail Working Papers Bulletin

☐ place a full annual subscription for 2001 (US$ 250.00/ITL 425,000) _____________________________

☐ order no……individual papers (minimum 10 papers at US$ 4.00/ITL 7,000 each)* _______________________

Total _______________________

I will pay by:

☐ VISA ☐ American Express Card No. ___________________ Expiration Date: ___________________

Signature: _______________________

Bank transfer in US$ (or Italian Lire in Italy) to Fondazione Eni Enrico Mattei - account no. 39341-56 - SWIFT ARTIITM2 - ABI 03512 - CAB 01614 - Credito Artigiano - Corso Magenta 59, 20123 Milano, Italy.

Copy of the bank transfer should be faxed along with the order.

Please return this duly completed form to:
“Publications Office” - Fondazione Eni Enrico Mattei - Corso Magenta, 63 - 20123 Milano, Italy