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Abstract

We consider two ascending auctions and show that many of the
(unwanted) collusive or signaling equilibria studied in the literature
in the framework of the SEAMO (simultaneous English auction for
multiple objects) don’t have a counterpart in the JAMO (Japanese
auction for multiple objects). We show however that certain retal-
iatory equilibria do exist in both auctions. JEL Classification: C72,
D44. Keywords: Multi-unit auctions, Ascending auctions, FCC auc-
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1 Introduction

Since the first series of FCC spectrum auctions held in the US, academics and
policymakers alike have recognized almost unanimously at least three main
advantages of the openness and simultaneity of the FCC auction rules: They
ensure a fully transparent bidding process, that enables extensive information
revelation of bidders’ valuations, and at the same time allows bidders to build
efficient aggregations of licenses.1 Yet the openness and simultaneity of the
FCC auctions also facilitate tacit collusion. Bidders can observe each other’s
behavior and can thus coordinate on collusive agreements. Cramton and
Schwartz (1999, 2000) report on bidding phases of the FCC which illustrate
many of the communication and coordination devices tacitly used in practice
by bidders; Klemperer (2001) provides further evidence and discussion, also
relating to the recent European UMTS auctions.

In this paper we consider two auction mechanisms which are simplified
versions of the FCC and of some European UMTS auctions: The SEAMO (si-
multaneous English auction for multiple objects), which is the version closer
to the actual FCC auctions, and the JAMO (Japanese auction for multiple
objects), which differs in at least two basic respects. Both auctions are si-
multaneous ascending auctions. However, unlike the SEAMO and the FCC
auctions, in the JAMO, prices are raised directly by the auctioneer, and clos-
ing is not simultaneous but rather license-by-license. We show that these two
differences are already sufficient to eliminate many (unwanted) collusive or
signaling equilibria that are equilibria of the SEAMO.2 In particular, jump
equilibria constructed in Gunderson and Wang (1998) and collusive equilib-
ria constructed in Engelbrecht-Wiggans and Kahn (1998) and Brusco and
Lopomo (2000) are not equilibria of the JAMO. Nonetheless, we show that
equilibria involving retaliatory strategies do exist in both the JAMO and the
SEAMO. These equilibria share some features with bidding behavior reported
by Cramton and Schwartz (1999, 2000) in the actual FCC auctions.

More generally, our results are inspired by the following questions: Can
we establish a link between some well identified auction rules in the FCC auc-

1See e.g., McAfee and McMillan (1996), Cramton (1997, 1998), Milgrom (1998), Cram-
ton and Schwartz (1999, 2000), Klemperer (2001).

2Albano et al. (2001) and Branco (2001) provide evidence that the JAMO may per-
form rather well in terms of both efficiency and revenue in certain environments with
complementarities.
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tions and the emergence of a particular type of collusive equilibria? To what
extent are signaling, collusive or retaliatory strategies sensitive to certain
modifications of the auction rules? These questions are more than theoretic
preoccupations. Economists and market designers weigh off the pros and
cons of different auction mechanisms in order to maximize revenue and/or
efficiency in the allocation of scarce resources. However, the pursuit of those
objectives would be hampered by choosing an auction mechanism which is
deemed to facilitate collusion or retaliation. Our analysis suggests that the
SEAMO does facilitate (tacitly) collusive relative to the JAMO.

The paper is organized as follows. Section 2 contains a description of the
framework and of the actual auction rules. In Section 3, which is the main
section, we consider a series of signaling equilibria and show that many of
the equilibria of the SEAMO have no counterpart in the JAMO. Section 4
indicates some directions for future research. The main proofs are contained
in the final section.

2 Two Ascending Auctions

2.1 Framework

To keep the analysis as simple as possible, we work throughout with the
following version of the framework of Krishna and Rosenthal (1996). Two
objects are auctioned to a set of participants of two types: M global bidders
who are interested in both objects and Nk local bidders who are interested
in only one of the two objects, k = 1, 2. Both global and local bidders draw
their values independently from a uniform distribution over [0, 1]. Let vk

and uk denote the value of object k = 1, 2 to a global and to a local bidder
respectively. The value of the bundle vB to a global bidder is greater or equal
to the sum of stand-alone values, that is,

vB = v1 + v2 + α,

where α ≥ 0 is publicly known and coincides across all global bidders.

2.2 Auction Rules

Both auction mechanisms we consider are more or less simplified versions of
the simultaneous ascending auction used by the FCC for the sale of spectrum
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licenses in the US. We briefly describe the rules.

JAMO: Prices start from zero for all objects and are simultaneously and
continuously increased on all objects until only one agent is left on a given
object, in which case prices on that auction stop and continue to rise on
the remaining auctions. Once an agent has dropped from a given auction
the exit is irrevocable. The last agent receives the object at the price at
which the auction stopped. The number and the identity of agents active on
any auction is publicly known at any given time. The overall auction ends
when all agents but one have dropped out from all auctions. We refer to this
mechanism as the Japanese auction for multiple objects (JAMO).

SEAMO: The auction proceeds in rounds. At each round, t = 1, 2, .., each
bidder submits a vector of bids where bids for single objects are taken from
the set {∅}⋃

(bk(t− 1), +∞), where ∅ denotes “no bid”, and bk(t− 1) is the
“current outstanding bid”, that is, the highest submitted bid for object k up
to round t − 1. Thus for each object k a bidder can either remain silent or
raise the high bid of the previous round. All licenses close simultaneously.
The auction ends if all bidders remain silent on all objects, and the winners
are the “standing high bidders” determined at round t−1 and who pay their
last bid. Given the simultaneity of closing, we refer to this mechanism as the
simultaneous English auction for multiple objects (SEAMO).

Two basic differences distinguish the two mechanisms. First, the JAMO
does not allow for rounds of bidding; bidders press buttons corresponding
to the objects on which they wish to bid; by releasing a button, a bidder
quits that auction irrevocably; thus, bidders have no influence on the pace
at which prices rise. Second, closing is not simultaneous in the JAMO but
rather license-by-license. We shall highlight the role of these distinguishing
features in the emergence of collusive and signaling equilibria.

2.3 Two Basic Results

Agents’ strategies in the JAMO are fairly easy to describe. They simply
consist of certain conditional exiting times that depend on the bidders’ own
valuations as well as the number of bidders currently active on any given
object. (As we will briefly mention below, with more than two objects they
may also depend on the actual times at which bidders have exited from
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some object, but this does not concern us here.) Our first result derives
a natural Perfect Bayesian Equilibrium (PBE) in undominated strategies,
which is obtained as the solution to certain equations defining the optimal
exiting times. Fix a bidder who is active on one or two of two objects and let
π0(t) denote the expected payoff to the bidder, conditional on information up
to t, of exiting from the given object at time t, without buying that object,
and (if applicable) continuing optimally on the other object; let also π1(t)
denote the expected payoff to the bidder, conditional on information up to
t, of exiting from the given object at time t, buying that object at price t,
and (again if applicable) continuing optimally on the other auction. Then
an optimal (conditional) exiting time from the given object for that bidder
is when these two expected payoffs are equal, i.e., a time t such that:

π0(t) = π1(t). (1)

The condition can be used for any bidder and any object. It is easy to
verify that if a bidder is a local bidder on object k, the condition reduces to
0 = uk − t and hence t = uk, the standard condition for English or second
price auctions, where uk is the local bidder’s value for object k. We can state:

Proposition 1 The exiting times for both local and global bidders condi-
tional on information until time t, {t∗(Ht)}, which are obtained as the small-
est solutions to the equations (1) constitute the (essentially unique) PBE of
the JAMO, where bidders bid only on objects they value.

Proof. First we show that the equations (1) are sufficient conditions for
locally optimal exiting times. Then we show that they are also globally
optimal. Finally, uniqueness (in undominated strategies) follows from the
fact that the exiting times obtained through (1) are (weakly) dominant for
bidders currently bidding on just one object and induce weakly dominant
best responses for bidders bidding on more than one object. See Section 5
for a more explicit proof. 2

Proposition 2 Every PBE of the JAMO induces a PBE of the SEAMO.

Proof. Let {t∗(Ht)} be the exiting times constituting a PBE for the JAMO.
Then all bidders bidding the standing high bid plus an arbitrarily small bid
increment in each round and stopping to bid according to these exiting times
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(also along out of equilibrium paths) constitutes an (arbitrarily close) PBE
of the SEAMO. Because winning bidders pay their own last high bid and
because of the simultaneity of the closing, there are no profitable deviations
from the above strategies. 2

This also implies that the set of outcomes induced by PBE of the JAMO
is contained in the set of outcomes induced by PBE of the SEAMO. The
converse of this as well as of Proposition 2 is not true; the SEAMO has many
more equilibria. In what follows, we will see examples of equilibria that are
PBE of the SEAMO but not otherwise.

In particular, Proposition 2 implies that the equilibrium of Proposition 1
has a counterpart in the SEAMO. Albano et al. (2001), within an example
with 2 objects and 4 bidders, argue that the JAMO obtains close to ex-
post efficiency with higher revenues than the revenue-maximizing ex-post
efficient mechanism, and that it dominates both the sequential and the one-
shot simultaneous auctions in terms of ex-ante efficiency. Branco (2001)
obtains similar results in a somewhat different framework. Given the above
proposition, these results immediately extend to corresponding equilibria of
the SEAMO.

3 Collusive and Signaling Equilibria

In this section, we consider certain collusive and signaling devices and equi-
libria that have been studied in the literature, typically in the framework of
the SEAMO, and show that they are not viable in the JAMO, due to the
more restrictive nature of the strategy spaces. We also construct equilibria
involving retaliatory strategies for both the JAMO and the SEAMO.

3.1 Some Signaling Devices

Bidders in the FCC auctions attempted to communicate in a variety of ways.
Since there is no way of proving any private exchange of information among
bidders, we are bound to analyze communication arising through the ex-
ploitation of the auction rules themselves. This section analyzes some com-
mon communication devices also apparently used in the actual FCC auctions,
namely code and jump bidding, and withdrawal bids, from the viewpoint of
the JAMO.
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Code Bidding: Code bidding is one of the more obvious forms of signaling.
Since bids are expressed in dollars and since, at least in the FCC auctions,
most licenses displayed six-digit prices, bidders could use the last three digits
to encode messages. Code bids had different natures. Some bidders used the
last three digits to “disclose” their identities. For example, in the AB auction
(Auction 4), GTE frequently used “483” as the last three digits; this number
corresponds to “GTE” on the telephone keypad. In other circumstances code
bidding had a reflexive nature. The last three digits were used by a bidder
both to signal a license of special interest to her and the license on which the
same bidder was punishing competitors for not bumping the first market.3

In the JAMO mechanism, bidders are obliged to use code bidding in very
specific way: to stop bidding on a given license as soon as the price encodes
“meaningful” digits. However, this strategy would irrevocably exclude that
bidder from competing for that license, and with two objects, would there-
fore also exclude her from bidding for the bundle; moreover it would also
exclude her from performing any retaliation, since she should presumably be
interested in purchasing the only remaining object. It follows that:

Proposition 3 Code bidding is ineffective in any PBE of the JAMO (with
two objects).

While this excludes signaling equilibria that rely on code bidding when two
objects are auctioned, the result may not extend to more than two objects.
For example, suppose three licenses are being auctioned, suppose a bidder is
interested in purchasing license, say 1, and that she is active on all licenses at
an early stage of the auction. Then she can stop bidding on, say, license 3 at
a price whose digits encode a message similar to the one used by GTE, while
remaining active on the other two licenses. This allows her to use license
2 as a potential threat for retaliation. The extent to which retaliation will
be successful or credible so as to eventually constitute a PBE of the corre-
sponding game, is something that is explored further below (in the context of
two objects). But in principle, a higher number of licenses for sale (without
restrictions on the number of licenses bidders are allowed to bid on) makes
for more possibilities of sending messages or code bids even in the JAMO

3See Cramton (1997) and Cramton and Schwartz (1999, 2000) for detailed accounts of
collusive behavior in the actual FCC auctions.
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auction. Clearly, such a signaling device becomes more difficult and costly to
use if prices are raised not continuously but in predetermined finite amounts.

Jump Bidding: It need not always be in the interest of the bidders to
increase prices at the minimum pace required by the auction rules. In fact,
Gunderson and Wang (1998) show how a bidder in a SEAMO can benefit
by using jump bids as a signal of a high valuation, possibly causing other
bidders to drop out earlier; this may lead to lower revenues for the seller.4

While jump bids are possible in the SEAMO they are obviously not in the
JAMO. The FCC’s recent decision to limit the amount by which bids can be
raised e.g., in the LMDS auction (Auction 17), may suggest a change in this
direction, see also Cramton and Schwartz (2000).

Bid Withdrawals: While the FCC had originally allowed unlimited number
of bid withdrawals in order to allow bidders to make more efficient aggre-
gations of licenses, it was soon noticed that they could be used as signaling
devices. As Cramton and Schwartz (2000) report, withdrawal bids were ap-
parently used in FCC auctions as part of a warning or of retaliatory strategies,
as well as part of cooperative strategies, where bidders attempted to split
licenses among themselves. Neither the JAMO nor the SEAMO versions de-
scribed above allow for withdrawal bids. Again, the FCC’s recent decision to
limit their number to two, e.g., in the LMDS auction (Auction 17), suggests
another change in this direction.

3.2 Closing Rules

Milgrom (2000) contains a description of the tâtonnement logic that inspired
most of the FCC auction rules. In particular, the rules specified that bidding
would remain open on all licenses until there were no new bids on any license.
This simultaneous closing rule allows each losing bidder to switch at any time
from the lost license to a substitute or to stop bidding on a complement.
However, as Milgrom points out, it is also vulnerable to collusion.

4A crucial assumption for the existence of these equilibria is that the bidder making
the jump bids have discontinuous support for valuations. See also Avery (1998) for further
equilibria involving jump bids in the context of one-object English auctions with affiliated
values.
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Milgrom’s Example: Consider the following example from Milgrom (2000).
Two bidders bid for two objects 1 and 2, which are each worth 1 to both
bidders. Milgrom shows that there exists a sequential equilibrium of the
SEAMO (with complete information) such that the selling price for both ob-
jects is ν, i.e., the smallest possible bid, and the bidders realize the highest
collusive payoff of 2 · (1− ν), (see Theorem 8, p. 264).

The logic of the equilibrium is that both players buy one object each at
the lowest possible price by using a simple threatening strategy: Bidder 1
bids ν on auction 1 if bidder 2 has never bid on 1; otherwise he does not bid.
If bidder 2 has bid on 1, then bidder 1 reverts to a “competitive” bidding
strategy, that is to keep bidding on each object until a price of 1 is reached;
bidder 2 plays symmetrically.

As Milgrom suggests, such a low revenue equilibrium is avoided if closing
is not simultaneous but rather license-by-license. According to such closing
rule, bidding would stop on a license if at any round there is no new bid on
that license. The JAMO provides an example of license-by-license closing.
Indeed, once all bidders but one drop from one license and remain active on
the other licenses, the first license closes irrevocably. The result of Theo-
rem 9 in Milgrom (2000), which states that at each (trembling-hand) perfect
equilibrium with license-by-license closing the price of each license is at least
1 − ν carries over to the JAMO (also with complete information), where in
fact the price of each license is exactly 1. By applying Proposition 1 to the
example described above where as in our usual framework the bidders’ values
are private information, the following result immediately follows:

Corollary 1 Suppose that bidders 1 and 2 have (private) values of 1 for both
objects, and α = 0, then, in the PBE of the JAMO, the selling price is 1 for
each object.

Such a selling price of 1 (or 1−ν) is also not guaranteed in the SEAMO with
incomplete information as the equilibria constructed in Engelbrecht-Wiggans
and Kahn (1998) and Brusco and Lopomo (2000) show.

The Collusive Equilibria of Brusco and Lopomo: Brusco and Lopomo
(2000) construct several kinds of PBE in undominated strategies of the
SEAMO (in our usual framework), some of which are very similar to the ones
constructed by Milgrom under complete information. However, we shall see
that none of their equilibria are possible in the JAMO.
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The logic of their collusive equilibria is as follows: Consider two global
bidders and, for simplicity, take α = 0. The bidders use the first round
to signal to each other which of the two objects they value the most. If
they rank the objects differently, bidders confirm their initial bids in all
subsequent rounds and obtain their most preferred object at the minimum
price; otherwise they revert to the “competitive” strategy of raising prices
on both objects up to their private values. Brusco and Lopomo then go on
to refine this type of collusive equilibrium by allowing bidders to signal more
than just the identity of the higher valued object. This allows them to obtain
collusive equilibria even more favorable to the bidders. In particular, they
show that a collusive equilibrium may also arise when bidders have the same
ranking for the objects, also if there are more than two bidders as well as
if there are positive complementarities (α >> 0); they also show, however,
that the scope for collusion diminishes as the either the number of bidders
or the magnitude of the complementarities increase.

Again, the rule driving the presence of such equilibria is the simultaneous
closing. The JAMO mechanism instead is built around the irrevocable exit
and induces license-by-license closing, which makes the rounds of signaling
necessary in the above equilibria impossible. In these examples bidders al-
ways have an incentive to bid for any object for which they have positive
value. In particular, it follows:

Corollary 2 The collusive equilibria constructed as PBE of the SEAMO in
Brusco and Lopomo (2000) are never PBE of the JAMO.

Note also that these collusive equilibria are not PBE of the JAMO even if
one allows for rounds of cheap talk between the bidders prior to the auction.

As has often been pointed out, simultaneous closing has the advantage
of being more flexible in allowing bidders to revise and update their bidding
behavior in forming aggregates, (see e.g., Cramton (1997, 1998), Milgrom
(1998, 2000), Cramton and Schwartz (1999, 2000)). Moreover, Kagel and
Levin (2000) point out that, especially for intermediate values of the com-
plementarities, ascending auctions may suffer from the exposure problem by
which global bidders may drop out too early from individual licenses thus
reducing efficiency. Although their comparison is with one-shot sealed bid
auctions, it seems plausible the exposure problem would be even more pro-
nounced in auctions with license-by-license closing than in ones with simul-
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taneous closing. This is something that needs to be further investigated, also
in connection with the rules for withdrawing bids.

3.3 Retaliatory Equilibria and Withdrawal Rules

We have seen examples of collusive equilibria that are equilibria of the SEAMO
but are ruled out as equilibria of the JAMO. In this section, we show that
equilibria involving certain retaliatory strategies may nonetheless exist in
both the SEAMO and the JAMO.

Retaliatory Equilibria: The logic of these retaliatory equilibria is fairly
simple. Suppose that two objects are put for sale to two bidders, one global
bidder who is interested in both objects, and one local bidder who wishes
to buy only object 1. Assume all this to be common knowledge. The two
bidders have overlapping interests on object 1, and the local bidder wants
the global bidder to exit early from object 1. In order to achieve this, the
local bidder actively bids on object 2, although the object has no value to
him. Such a strategy is potentially costly to both the local and the global
bidder; we refer to it as a retaliatory strategy. The extent to which the
local bidder is successful in inducing the local bidder to drop out early from
object 1 depends on whether he succeeds in making his threat credible. We
show that the JAMO is not immune to equilibria that effectively involve such
strategies.

Proposition 4 There exist PBE of both the JAMO and the SEAMO where
bidders use retaliatory strategies effectively.

Proof. In Example 2 below, we construct a family of such equilibria in
the context of the JAMO and the usual framework of Section 2.1; for the
SEAMO there will be corresponding equilibria as in Proposition 2. 2

Before presenting the mentioned family of retaliatory equilibria, we first con-
sider a simpler and more intuitive type of retaliatory equilibrium within a
slightly more special framework.

Example 1. Consider our usual framework with two objects and two bid-
ders; one local bidder interested in object 1 and one global bidder interested
in both objects 1 and 2, but who now extracts the same value v = v1 = v2
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for the two objects, and α = 0. It is easy to see that the following is a PBE
of the JAMO:

— all types of the local bidder bid on both objects and stay on object 1 until
u1 and on object 2 until min(u1, t

2
1+ν), where t21 is the global bidder’s exiting

time from object 1, and ν > 0 arbitrarily small;

— all types of the global bidder exit from object 1 at t + ν if at t the local
bidder is on object 2; otherwise all types of the global bidder stay on both
objects until v1, v2 respectively.

In equilibrium, the global bidder immediately drops out of object 1 inducing
the local bidder to also immediately drop out of object 2. As is often typical
in such retaliatory equilibria, the retaliating bidder (here the local bidder)
obtains a higher ex ante payoff than in the standard equilibrium of Propo-
sition 1, while the other agents (here the global bidder and the auctioneer)
are both worse off. 2

The above example relies on the fact that the local bidder has some
extra information about the global bidder’s valuation of object 1 relative to
object 2. Without this information he needs to resort to a more refined form
of signaling.

Example 2. Consider our usual framework of Section 2.1 with two objects
and two bidders; one local bidder interested in object 1 and one global bidder
interested in both objects 1 and 2, and suppose for simplicity α = 0. Then,
for any l ∈ (0, 1], the following is a PBE of the JAMO:

— all types of local bidder with u1 ≤ l bid only on object 1 and stay until u1;
all types of local bidder with u1 > l bid on both objects and stay on object 1
until u1 and on object 2 until c = l(

√
2− 1) < l;

— all types of global bidder with v1 < l bid on both objects and stay on
object 1 until c and on object 2 until v2 whenever the local bidder is active
on both objects, staying until v1, v2 respectively otherwise; all types of global
bidder with v1 ≥ l bid on both objects always staying until v1, v2 respectively.

This characterizes a family of retaliatory equilibria indexed by the parame-
ter l that are PBE of the JAMO, (see Section 5 for a proof; note that the
equilibria are not in undominated strategies, since the local bidder always
has a (weakly) dominant strategy to drop from object 2 whenever it is the
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only object he is bidding on). If the local bidder is active on both auctions
this signals that his valuation is above the threshold l, i.e., u1 > l; if he bids
only on object 1, then u1 ≤ l, and both bidders bid up to their valuations
and only on the objects they value.

When l = 1 we get the standard, non–retaliatory equilibrium of Propo-
sition 1, since with probability one the local bidder will not be active on
object 1. When l → 0 we almost get the standard equilibrium, since c → 0,
i.e., the local bidder enters both auctions but almost immediately exits at
time zero.

Unlike the equilibrium of Example 1, here to ensure incentive compatibil-
ity for the local bidder, the bidding threshold c is such that he only weakly
prefers the retaliatory equilibrium, his ex ante payoff is the same as in the
standard equilibrium, i.e., 1/6; the global bidder continues to be worse off
than in the standard equilibrium, her ex ante expected payoff being:

2

3
+

l

2
−
√

2l +
3l2

2
− 13l3

6
+
√

2l3 +
l4

6
≤ 2/3 ∀l,

while due to the extra bidding on object 2, the auctioneer actually earns
higher ex ante revenues than in the previous example and in the standard
equilibrium:

1

3
− l +

√
2l − 2l2 +

√
2l2 + 3l3 − 2

√
2l3 ≥ 1/3 ∀l. 2

It is interesting to see what happens to the equilibria constructed in
Examples 1 and 2 if one allows for withdrawal rules.

Withdrawal Rules: Withdrawal rules in the FCC auctions were originally
designed to allow for a more efficient aggregation of licenses, and, until Auc-
tion 16, the FCC allowed an unlimited number of withdrawals. If a bidder
decides to withdraw her bid from a license, the FCC becomes the standing
high bidder, and the withdrawing bidder is charged a penalty equal to the
difference between the withdrawn bid and the selling price after the with-
drawal. However, if the penalty is sufficiently low, bidders might use bid
withdrawals as a signaling device (as mentioned above) but also as part of a
retaliatory strategy.

Consider first the equilibrium of Example 1. If bidders are allowed one
bid withdrawal, then as long as the local bidder does not withdraw his bid for
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object 2 with probability greater than 1/2, this still leads to a PBE without
really affecting the equilibrium outcome. It will still be optimal for the global
bidder to immediately exit from object 1, and both objects are sold at zero
prices in equilibrium. The only difference is that the out-of-equilibrium belief
that the local will continue to bid on object 2 if the global continues bidding
on object 1 is slightly more credible since the penalty to the local bidder is
reduced.

While the possibility of withdrawing bids makes for cheaper retaliatory
strategies, thus increasing the credibility that a bidder will continue to bid
on an object he does not value, at the same time, it also takes away the
commitment value that the retaliating bidder will buy the object he does not
value. It is easy to see that introducing the possibility of one bid withdrawal
destroys the equilibrium of Example 2, since on one hand, given the global
bidder’s strategy, the local bidder now has a strictly dominant (continuation)
strategy to withdraw all bids where he ends up having to buy the object he
does not value; unlike Example 1, this happens with positive probability in
equilibrium. On the other hand, if the global bidder assumes that the local
bidder will always withdraw his bid for an unwanted object, then she has a
best response to exit from the local bidder’s unwanted object, object 2, at
any ν > 0 and the standard equilibrium follows.

4 Conclusion

Recent research on multi-unit ascending auctions has highlighted the exis-
tence of two potentially conflicting features of the auction rules adopted by
the FCC and subsequently in some of the European UMTS auctions. On one
hand, the transparency and flexibility of the bidding process eases an efficient
aggregation of licenses; on the other, the amount of information available to
bidders together with the strategic possibilities allowed by the rules may be
used to implement tacitly collusive agreements, see Cramton and Schwartz
(1999, 2000) and Klemperer (2001).

By not allowing bidders to set the pace at which prices rise on individual
licenses, the auctioneer can make bidders’ signaling devices blunt without
losing the information revelation feature of the ascending mechanism. In
this sense we have maintained that the SEAMO facilitates tacit collusion
relative to the JAMO and have shown that several collusive equilibria, which
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appear in the SEAMO, do not have a counterpart in the JAMO.
We have also shown that certain retaliatory equilibria are possible in both

the JAMO and the SEAMO. Again, it is evident from the construction of
such equilibria that they are “harder” to implement in a JAMO than in a
SEAMO. A more complete assessment of the relative performance of the
two auctions certainly requires further study. We outline some directions for
future research.

First, the framework is admittedly restrictive. For example, if the number
of licenses is greater than two, the set of equilibria is likely to depend on the
composition of the bundles that global bidders are interested in acquiring.
That is, with more than two objects there are several ways preferences over
bundles can overlap. It is also possible that code-bidding may reappear even
in the JAMO.

Second, an issue that has not been addressed is the rationale of having
prices rise simultaneously (i.e., at the same “speed”) in the JAMO. We have
imposed the same “speed” on both objects, being aware that there is no
theoretical or empirical justification for this assumption.

Third, other aspects of the FCC auctions such as activity rules, the num-
ber of allowable bid withdrawals, and the simultaneity of closing deserve
further investigation. Although some modifications of the standard SEAMO
undertaken by the FCC may be seen as changes in direction of the JAMO,
there seems to be no general agreement on e.g., whether closing should be si-
multaneous or not. Albano et al. (2001) and Branco (2001) show that under
certain conditions, license-by-license closing may perform rather well theo-
retically. Kagel and Levin (2000) on the other hand provide experimental
evidence indicating that, at least within certain ranges of bidders’ valua-
tions, inefficiencies may arise due to what they call the “exposure problem”.
Clearly, more needs to be done to better assess the theoretical and empirical
performance of simultaneous versus license-by-license closing as well as of
other rules mentioned.

Finally, motivated by considerations of market structure and bidder asym-
metries, Klemperer (1998, 2001) suggests an auction format he calls “Anglo-
Dutch” that combines an ascending or “English” auction with a first-price
sealed-bid or “Dutch” auction. This auction format proved rather successful
in a recent British UMTS auction, see Klemperer (2001). Our results suggest
that an alternative that may be worth considering in such environments is a
combination of a “Japanese” with a first-price sealed-bid auction.
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5 Proofs

Proof of Proposition 1: If agents can only bid on objects they value, then
the exiting times obtained from (1) are clearly (weakly) dominant strategies
for the local bidders, and they are also (weakly) dominant (continuation)
strategies for global bidders that are currently bidding on only one object.
Given these exiting times, we need to show that equation (1) also yields
(unique) globally optimal exiting times for global bidders bidding on two
objects. Fix a global bidder i. The proof follows from the following lemmas.

Lemma 1 Equation (1) is a necessary and sufficient condition for a locally
optimal exiting time. whenever there is one further local bidder besides i
active on the given object, for any number of bidders active on the other
object.

Let Jk ⊂ M ∪ Nk denote an arbitrary subset of bidders active on object k,
k = 1, 2, and define:

πi
0,k(s, t; J1, J2) = expected payoff at t of global bidder i if, when agents Jk′

are active on auctions k′ = 1, 2, i exits auction k at s ≥ t

and does not buy object k;

πi
1,k(s, t; J1, J2) = expected payoff at t of global bidder i if, when agents Jk′

are active on auctions k′ = 1, 2, i buys object k at s ≥ t.

When s = t, these become the expressions in equations (1) defined above.
Fix now object k = 1 and suppose J1 = {i, j}, where j ∈ N1 is a local bidder
active on object 1 at t. Let Πi

1(s, t; J1, J2) denote the expected payoff at t of
global bidder i from the entire auction if Jk′ are active on auctions k′ = 1, 2,
and i remains active on object k until s ≥ t, then we can write:

Πi
1(s, t; J1, J2) =

∫ s

t
πi

1,1(p, t; J1, J2)dF1(p, Ht)dp+πi
0,1(s, t; J1, J2)(1−F1(s, Ht))

where F1(·, Ht) denotes the distribution function of the highest exiting time
from object 1 for j ∈ J1\{i} given history Ht. To simplify notation, we will
drop the arguments J1, J2. The first and second order conditions are:

FOC:
∂Πi

1(s, t)

∂s
|s=t = 0, SOC:

∂2Πi
1(s, t)

∂s2
|s=t < 0,
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where:

∂Πi
1(s, t)

∂s
=

(
πi

1,1(s, t)− πi
0,1(s, t)

)
dF1(s, Ht) +

∂πi
0,1(s, t)

∂s
.

The last term vanishes and hence the FOC reduce to the corresponding
equation (1), which shows necessity. For sufficiency, the SOC reduce to:

∂(πi
1,1(s, t)− πi

0,1(s, t))

∂s
|s=t < 0,

which can be verified directly from:

πi
1,1(s, t)− πi

0,1(s, t) = vi
1 − s +

∫ vi
2+α

t
(vi

2 + α− p)dF2,1(p, Ht)dp

−
∫ vi

2

t
(vi

2 − p)dF2,0(p, Ht)dp (2)

= vi
1 − s +

∫ vi
2+α

t
F2,1(p, Ht)dp −

∫ vi
2

t
F2,0(p, Ht)dp,

where F2,1(·, Ht) and F2,0(·, Ht) are the relevant distribution functions of the
price on object 2 conditional on Ht.

Lemma 2 There exists a unique solution to equation (1) in the relevant
range [vi

1, 1+α], and hence the obtained exiting time is globally optimal under
conditions of Lemma 1.

Here it suffices to show:

∂(πi
1,1(t, t)− πi

0,1(t, t))

∂t
< 0.

Again, this can be verified directly from (2).

Lemma 3 Suppose the number of bidders on the two objects is arbitrary,
then the exiting times satisfying equation (1) constitute globally optimal ex-
iting times and are also uniquely determined.

If #J1 > 2, J1 ⊂ M ∪ N1, i.e., if there are more than one bidders besides
i on object 1, some of which may be global bidders, then, depending on
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the number of extra bidders, the expressions d(n)F1(s, Ht; J1, J2) may also
vanish. However, it can be checked that, as long as πi

1,1(t, t)− πi
0,1(t, t) > 0,

the corresponding exiting times solving the FOC are not optimal since they
do not satisfy the second or higher order conditions for local optimality. On
the other hand, exiting times satisfying πi

1,1(t, t)− πi
0,1(t, t) < 0 while locally

optimal are not globally optimal, since total expected payoffs decrease due
to icreasing prices. Finally, it can be checked as above that exiting times
satisfying (1) are both locally and globally optimal, and moreover, that they
are uniquely determined as in Lemma 2. 2

Proof of Example 2: We first check optimality for the global bidder, then
we check it for the local bidder. Given the local bidder’s strategy, exiting
from object 2 at v2 is always a (weakly) dominant strategy for the global
bidder. If the local bidder is active on both objects, the global bidder infers
that u1 > l, hence, if v1 ≤ l, the global bidder will not win object 1 even if
she stays until v1, and exiting object 1 at time c is a (weak) best reply for
the global bidder. If v1 > l, then the global bidder is better off remaining
on object 1 until v1. This proves that the global bidder’s strategy is a best
reply to the local bidder’s strategy.

To prove optimality for the local bidder, we need to show (i) that the
local bidder’s strategy is a best reply and (ii) that it is profitable for the local
bidder to bid on both objects if and only if u1 > l, i.e., that the equilibrium
is incentive compatible, so that being active on both objects gives a credible
signal that u1 > l.

Suppose that u1 ≤ l. If the local bidder decides to implement the retal-
iatory strategy, his expected payoff is:∫ l

0
(u1 − c)dv1 −

∫ c

0
v2 dv2 = l(u1 − c)− c2

2
.

Hence, if v1 < l, the local bidder will win object 1 at price c, and if v2 < c,
he will have to buy object 2 at price v2, which explains the second integral.
If, however, at time 0 the local bidder decides to bid only on object 1 his

expected payoff is
u2
1

2
. At equilibrium we want the local bidder to bid only

on object 1 when u1 ≤ l, i.e., the following needs to be satisfied:

l(u1 − c)− c2

2
≤ u2

1

2
,
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which is satisfied for c = l(
√

2 − 1). Suppose now that u1 > l. Then, at
any time t < c, the local bidder’s expected payoff by adopting the retaliatory
strategy must be greater or equal than the payoff of exiting object 2 and
continuing on object 1, i.e.,∫ l

0
(u1−c)dv1+

∫ u1

l
(u1−v1)dv1 −

∫ c

t
v2

dv2

1− t
≥

∫ t

0
(u1−t)dv1+

∫ u1

t
(u1−v1)dv1.

Note that the local bidder does not deduce any information about v1 by
observing the global bidder bidding on object 1 before c. Moreover, in writing
the local bidder’s expected payoff from a deviation, we use the fact that the
global bidder will remain active on object 1 until v1. It is easy to check that
the above inequality is satisfied for any t < c and for any l ∈ (0, 1]. 2
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