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This paper elaborates on  the recent race to sequence the human genome. Starting from the debate on public

vs. private research arising from the genome case, the paper shows that in some fundamental research

areas, where knowledge externalities play an important role, market and non-market allocation mechanisms

do coexist and should coexist in order to ensure socially desirable achievements. A game-theoretic model

makes it possible to demonstrate the above results and to characterise some  features of an optimal research

policy.
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SCIENCE vs. PROFIT IN RESEARCH

 Lessons from the human genome project

1. Introduction

This paper deals with Science and Technology in research policy, trying to draw some

lessons from a recent and “hot” case, the race to sequence the human genome. Following some

recent literature on the economics of knowledge (i.e. Dasgupta-David, 1987; Barba-Dasgupta-

Maler-Siniscalco, 1996, 1998), Science and Technology are not defined according to the types of

knowledge they produce, nor on the methods of inquiry they adopt; rather, they are defined as

distinct institutional arrangements, broadly corresponding to non-market and market allocation

mechanisms. The aim of the paper is to show that in some crucial research areas where demand and

knowledge externalities are important, Science and Technology do coexist and must coexist, even

in the same research segment.

The paper is divided into six sections. Following the Introduction, Section 2 recalls the race

between public and private researchers to sequence the human genome. Section 3 introduces the

main definitions and concepts, discussing Science and Technology as distinct resource-allocation

institutional mechanisms. Section 4 presents a formal framework that shows why (even identical)

researchers may divide themselves into two groups, corresponding to Science and Technology as

described above. Section 5 discusses the social desirability of the coexistence of Science and

Technology. The concluding section summarises the main argument and mentions some scope for

further work.

With reference to the standard economic literature on research policy, R&D, and intellectual

property rights, the paper innovates in several areas. Firstly, it shows the importance of a unified

framework where Science and Technology (as distinct resource allocation mechanisms) are

discussed together, on positive and normative grounds, even with reference to individual research

fields. Secondly, it provides a model to formally characterise the issues under review, highlighting

the key variables which influence researchers’ behaviour as well as social welfare. The proposed

model makes it possible to discuss a welfare maximising research policy where Science and

Technology interact. Finally, the paper shows that the proposed framework  may capture many

features of modern research.
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2. Public vs. Private Research: The Race to Sequence the Human Genome

If one drives on Interstate 270 in Maryland, from Bethesda to Gaithersburgh near Washington

D.C., one enters the world’s largest collection of genomic firms and research centres, the so-called

“DNA-Alley”. In the early days, this 24 km stretch hosted the Food and Drug Administration

(FDA), as well as the National Institute of Health (NIH)1, the Institute for Genomic Research, and

the Johns Hopkins University, leaders in research on the genome. But Interstate 270 now hosts

some of the hottest and most brilliant biotech private companies such as Celera Genomics, founded

in 1998 by Craig Venter;  Gene Logic founded in 1994 and led by Mark Gessler; Human Genome

Sciences, a company that patents genes and gene-based drugs; and some promising start-ups all

founded in the year 2000. On the same highway you can find Genomics fund.com and Fbr

Emerging Tech Partners, two venture capital funds that went public in 2000 and invest exclusively

in genomics. Therefore, in a sort of DNA-district, public research centres, universities, laboratories,

and private corporations now live in the same area and interact in one of the world’s hottest

industries (Buia, 2001).

The DNA-Alley developed in stages. When the publicly funded Human Genome Project

(HGP) was first launched in 1986 it implied an effort so complex and so broad in scope that only

governments had the financial and bureaucratic resources to pull it off. The US$3 billion project

was originally designed to be international and supported by all major countries of the developed

world (Watson, 2001). Indeed the HGP introduced, for the first time in biological science, a new

research method which required large-scale facilities for genome-wide analysis, including DNA

sequencing, gene expression measurements, and proteomics. As it generates data on scales of

complexity and volume unprecedented in biological sciences, the project depends on the integration

of computational tools to store, model and disseminate such huge cascades of information.

In 1986, at the time of HGP’s kick-off meetings, federally funded genome-project scientists

figured they could move at their own pace and finish up in 2005 or thereabouts. But they figured

wrong. A new force quickly emerged to accelerate their pace: the profit motive. The private sector

quickly discovered it could make billions of dollars by turning genome research into new drugs and

treatments for a large number of diseases. And the companies that manage to get the information

                                                
1 Founded in 1887, the NIH or National Institute of Health, presently with 16,000 employees, conducts and funds
medical research for the U.S. government. It consists of 26 institutes and centres, including the Genome Institute led by
Francis Collins.



4

first - and lock up what they find with appropriate patents - will profit most (Lemonick-Thompson,

1999).

It is no surprise, therefore, that private firms have plunged into human-genome projects of

their own. Nor is it surprising, given the potential payoff, that their researchers have found ways to

speed up the decoding process. The most famous of these companies is Celera Genomics, led by

scientist J. Craig Venter (formerly working at NIH and then at the Institute for Genomic Research)2

which decided to attack the problem with an innovative approach using the most sophisticated

computer technology available, and to further drive the effort with the full force of  Venter’s

personality.

Celera’s initial announcement in 1998 described plans to sequence the human genome more

rapidly and much more efficiently than the public HGP. The differences were astonishing: Celera’s

budget was US$300 million versus HGP’s budget of US$3 billion; and completion of the project

was set for the year 2001, four years earlier than HGP’s deadline.

Celera’s challenge to the academic research community provoked a new sense of urgency

and reality in public researchers and eventually gave rise to a boost in HGP. Venter forced HGP to

double and redouble its effort to both remain competitive and to guarantee public access to the

large information databases generated. HGP was also forced to adopt some of Venter’s ideas to

avoid being left behind (Lemonick, 2001). In the subsequent months, thanks to many innovations in

the sequencing process, the productivity of sequencing grew significantly to a turnover of 12,000

bases every minute. Francis Collins, the newly appointed head of the agency’s genome project, had

been under pressure to work out his differences with Celera’s Craig Venter. Differences over who

should receive the credit for this scientific milestone; over whose genome sequence was more

complete, more accurate, more useful; over the free exchange of what may be mankind's most

                                                
2 Celera’s founder and CEO, Venter, was coming from NIH where he was trying to locate and decode a gene that
governs production of a brain-cell protein. The work was agonisingly slow. When he heard about a computerised
machine that used lasers to automatically identify the chemical letters in DNA, he bought a prototype, even though his
NIH bosses would not pay for it. If that purchase became a symbol of Venter's disdain for authority, the new technique
for finding genes, the so-called "expressed-sequence tags", he developed with that purchase demonstrated his brilliance
and enabled him to start identifying genes at a hitherto unimaginable pace of 25 or so a day. Despite the success,
Venter’s project was denied federal funding. Venter became increasingly unhappy within NIH, with its bureaucracy,
limited funds and intramural sniping. So he started talking with investors.  Backed by venture capitalist Wallace
Steinberg, Venter founded the Institute for Genomic Research, where in 1994 he upped the gene-sequencing to a new
level. Within a year he had been transformed from a government scientist with a $2,000 savings account to a
millionaire. And that money proved to be very useful to attract many young talents from public research into his
project. Meanwhile, he continued to pour money into genomics. Using his own technique, Venter sequenced the entire
genome of living organisms, such as the genome of Haemophilus influenzae bacterium (a bug which causes ear and
respiratory infections). Following this path, he then founded a new company called Celera Genomics (Golden and
Lemonick, 2001).
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important data versus the exploitation of what may also be highly valuable. The dispute had

become downright nasty at times.

In June 2000, U.S. President Bill Clinton and British Prime Minister Tony Blair, together

with C. Venter and F. Collins, held a press conference to mark what was correctly presented as one

of the most important scientific breakthroughs of the modern era - the complete mapping of the

human genetic code (Golden-Lemonick, 2001). During the press conference, both Clinton and Blair

stressed the importance of full disclosure of the results. Finally, in February 2001, Celera and the

HGP simultaneously published their results on the web-sites of two leading scientific magazines,

Science3 and Nature4 respectively. Typically a major scientific milestone has been achieved, for the

most part, in an atmosphere of fierce competition between the public and private sectors involved5.

Moreover, while the above-mentioned announcement was expressly made by Clinton and Blair to

make the two scientists look like equals, most of the press considered Venter's studies much further

along.

The financial dimension involved in genome sequencing is not trivial. The HGP was funded

with US$ 3 billion by taxpayers and philanthropists. Celera was funded with US$330 million by

private investors and the company created huge value for shareholders. During the process Celera

announced that it had filed provisional patent applications on thousands of newly discovered genes,

charging  millions of dollars a year to wade through its data and computer services. HGP, by

contrast, was publishing its results on the Web, which were free to all. One of the biggest users of

HGP data, incidentally, was Celera itself (Thompson, 1999, 2000).

The scientific, medical and commercial development of the genome mapping still requires

assessment. But many economists and scientists are already commenting on the research policy that

should follow the genome race, as the genetic research environment will hardly remain unchanged

after this story.For many observers, mainly in the U.S., the government funded research in biotech,

as in other key areas, is now redundant on the basis of efficiency considerations; they argue that the

private sector knows (and performs) better. Other observers, mainly in Europe, believe that private

research is intrinsically risky because it is driven by profit rather than by the general interest. In the

next sections we will argue that each project contributed to the other in a competitive environment,

                                                
3 http://www.sciencemag.org/feature/data/genomes/landmark.shl

4 http://www.nature.com/genomics/human

5 This is particularly disappointing since the collaboration between C. Venter of Celera Genomics and G. Rubin at the
University of California at Berkeley proved, in the past, that the two sectors could work fruitfully together, yielding the
sequence of Drosophila in only a few months (Nature Biotechnology, 2001).
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showing that their coexistence is beneficial. If Science and Technology (as precisely described

below) coexist, Technology works with higher effort, sometimes higher productivity, and

constantly provides a competitive stimulus to researchers working in Science. On the other hand,

Science provides positive externalities, through human capital, knowledge spillovers, peer-review

and transparency.

Indeed, the vision that launched the publicly funded HGP in 1986 reflected, and now

rewards, the confidence of those who believe that the pursuit of large-scale fundamental problems

in the life sciences is in the general interest. And the technical innovation and the drive of Craig

Venter and his colleagues made it possible to celebrate this accomplishment far sooner than

expected. Moreover, there are excellent scientific reasons such as the opportunity for comparison,

for applauding an outcome that has given two sequences of the human genome. In the following

sections we shall formally address this issue and provide a unifying game-theoretic framework to

discuss public versus private research.

3. Science vs. Technology

The race between public and private research in genome sequencing, briefly recalled in the

previous section, fits remarkably with a recent economic theory of knowledge, developed by Partha

Dasgupta, Paul David and others, where Science and Technology are defined as distinct institutions

for the creation and transmission of knowledge.

In economics there is substantial literature describing and explaining the dynamics of both

technological change and scientific progress, although it has been uncommon to relate the two,

analysing them at once in a unified framework. In a series of papers, Dasgupta-David (1987) and

Barba-Dasgupta-Maler-Siniscalco (1996, 1998) start from the idea that knowledge can be produced

through different institutions or allocation mechanisms: Science and Technology, as well as Arts

and Crafts. Science and Technology, in this framework, are not defined according to the types of

knowledge they produce (i.e. general principles vs. applied knowledge) nor on the methods of

inquiry they adopt (focused vs. broader perspective). Rather, Science and Technology are defined

according to the differences in the institutional arrangements involving the allocation of resources

and efforts in the production of knowledge.
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To elaborate the proposed viewpoint, the obvious starting point is to study the distinctive

characteristics of the commodity that both scientists and technologists are engaged in producing,

namely knowledge.

Knowledge is not a homogeneous, but a differentiated good (even in the same field). There

are no natural units in which knowledge can be measured. Nevertheless, it is possible to appeal to

economic theory and seek an account of the forces that influence its production, dissemination, and

use.

Knowledge, if properly codified through a common language, can be effectively

communicated. This characteristic makes it a non-rival good. It follows that knowledge has one of

the two characteristics of a public good, that it can be used jointly by many agents6. The other

attribute of a public good -- that once it is produced, it is not possible to exclude anyone from using

it -- is not an inevitable feature of knowledge; for patents, copyrights, and secrecy are ways by

which people can be effectively excluded. Such arrangements (that economists call institutions) are

not intrinsic to knowledge and must be introduced on legal grounds.

We also note that the use of knowledge is subject to certain indivisibilities, in that the same

piece of information can be used over and over again, at no extra cost, and does not need to be

produced twice. Even more, the value of knowledge tends to increase with use.

Another characteristic of knowledge is the existence of  externalities (or spillovers), i.e.

actions which directly affect the production possibilities by other agents. By “directly” we mean to

exclude any effect which is mediated by prices. Knowledge externalities are positive (knowledge

produced by one agent directly helps the production of knowledge by all the other agents) and

typically are a source of increasing returns. They take place inter alia through human capital

mobility and education; through the nature of knowledge spillovers (knowledge proceeds in

incremental steps, building on other researchers’ results; no project eventually can be entirely

secret) and through the peer-review process (which, by validating other people’s research, often

improves it7).

A final characteristic is that the production of knowledge is a risky process per se, since

investment or effort often does not grant attaining the desired results. The probability of success,

                                                
6 This observation was the starting point of Kenneth Arrow's classic analysis of the economics of inventions. See
Arrow (1962, 1971).

7 See Merton (1938, 1965).
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among other things, depends on the size of the research community, on effort, and on externalities.

Disappointing outcomes are always possible.

Summing up, knowledge is a partially public good, with non-rivalry in consumption, partial

excludability and indivisibility. Its production takes place with important positive externalities and

some degree of risk. For such reasons, the creation and transmission of knowledge imply market

failures (for a general discussion, see Mas Colell-Whinston-Green, 1995).

Given this background, economists discuss the resource allocation mechanisms that can be

relied upon, in principle, to produce and disseminate knowledge. In particular, they are interested in

comparing different resource allocation mechanisms that can sustain an efficient production and

diffusion of knowledge.  In the real world there is a multiplicity of such institutions. To our aim it

may be useful to investigate two limiting cases of non-market and market mechanisms, that are

conventionally defined as Science and Technology.

Consider first Science (S). In the proposed approach, Science is a non-market allocation

mechanism, where knowledge is treated as a pure public good and where fixed compensation,

together with research grants and the rule of priority, gives scientists an incentive to work and

disclose their results. In this scheme, intentionally, there are no property rights on knowledge, the

disclosure of results is complete and positive externalities are maximum. In such a mechanism,

knowledge cannot be “owned”, but financial resources must come from outside (usually general

taxation, but also philanthropy). This is at the heart of Samuelson's analysis of the efficient

production of public goods (Samuelson and Stiglitz, 1954) and is the case of the government

financing the HGP, as discussed in section 2. It is also important to note that in this scheme the

volume of public expenditure in the production of knowledge (and the allocation of expenditure for

the production of different kinds of knowledge) are public decisions implemented through some

sort of government planning.

Consider now Technology (T). In the proposed scheme, which recalls Lindahl’s (1919) and

Coase’s (1960) solution to the problem of public goods and externalities, there are intellectual

property rights on knowledge which can be sold to users on the market for a profit (provided there

is demand for it)8. In this scheme, knowledge can be owned and researchers are compensated with

profits related to revenues and costs. Given the patent mechanism, revenues depend on success in

the research activity.
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Both Science (through priority) and Technology (through patents) reward discovery since

“winners take all”. In case of success, the reward in T is usually higher than in S, yet in case of

failure, the reward is always positive in S, while it may be negative in T.

Unfortunately both Science and Technology are institutional arrangements with their own

shortcomings. Science, as an effort allocation mechanism, ensures full disclosure and positive

externalities, but implies well-known agency problems (moral hazard, free riding, low effort).

Technology, by nature, is a highly motivating allocation mechanism, but seizes the main results of

research and prevents many positive spillovers related to the nature of knowledge.9

Conventional wisdom usually treats Science and Technology as alternative mechanisms,

each with its own benefits and shortcomings, and analyses them separately. The referred theory of

knowledge, proposed by Dasgupta, David and others, suggests that Science and Technology do

coexist and should coexist in the society as a whole. The genome sequencing race recalled in

section 2 tells an important story where Science and Technology coexist even in the same research

field.

Starting from the portrayed story, therefore, we ask a few fundamental questions: (i) why do

researchers with similar backgrounds and education choose to do research in the same field but in

different institutions (Science and Technology)?  (ii) Is the co-existence of Science and Technology

in similar research areas a transitory or permanent state of affairs? And finally, (iii) is the

coexistence between Science and Technology socially desirable?

Such questions, which are relevant in any research field, become particularly important in

the Science vs. Technology controversy in genomics.

                                                                                                                                                                 
8 The demand for knowledge, as usual, is related to the specific product of research: for example the demand for
mathematical theorems is low, while the demand for gene mapping or gene related drugs can be very high. This can be
rationalised considering fundamentals, such as consumers’ preferences and production technology.

9 In addition to the above referred shortcomings, markets for knowledge are usually thin, with few transactions, and non
competitive players. We do not consider this case in our analysis.
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4. Choosing between Science and Technology: A Positive Analysis

Consider N individuals – researchers – who have identical attributes (i.e. they are symmetric

players), work in the same scientific environment, and have absolute specialisation (i.e. work only

as researchers in a given field). Of course, researchers can decide not to work if their expected

compensation is lower than their reservation wage. However, in the sequel we will assume this not

to be the case. Hence, all N researchers work and the supply of researchers is perfectly inelastic.

Researchers produce knowledge, which is a partially public good with positive externalities.

More precisely, as described in the previous section, knowledge is a differentiated good, with non-

rivalry, partial excludability and indivisibility in consumption, and positive externalities (or

spillovers) in production which depend on intrinsic and institutional factors. The intrinsic

characteristics of knowledge which generate positive externalities are education, human capital

mobility and leakages. The institutional features which can internalise externalities are patents and

copyright; at the opposite end, the peer review process. Given the existence of knowledge

externalities, each researcher i=1,2…N produces knowledge by means of his/her own effort xi and

the other researchers effort X-i which spills over his/her own production. Effort xi, is, of course,

costly.

Imagine that researchers face two distinct institutions that govern the production and diffusion

of knowledge: Science (S) and Technology (T). Assume, by now, that S and T are exogenously

received institutions.

In S, knowledge is intentionally treated as a pure public good, with no property rights and full

disclosure of results. In this institutional context, positive externalities are as large as possible. To

deal with the incentive problem related to the production of public goods with externalities,

researchers in S are compensated through a complex remuneration structure: a fixed component Fi,

unrelated to effort or to success, plus a “prize” component k related to the discovery.10 F and K

                                                

10 The “prize” component k, which is meant to summarise a priority-based compensation system, includes monetary
and non monetary rewards directly and indirectly related to discovery.
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(respectively, the sum of Fi and k which are payed to the whole scientific community) are usually

provided by the government.

In T, the existence of intellectual property rights limits positive externalities to create a private

incentive mechanism. Thanks to patents and copyrights, knowledge can be sold. Thanks to human

capital mobility, leakages, etc., some positive externalities still exist (smaller than in S). The

compensation mechanism of researchers in T is quite standard. Researchers in T produce

knowledge and sell their product on the market. Their reward is the profit from selling their

product.

In both S and T, the production of knowledge is a risky activity with a probability of success.

Only winners get a prize (in S) or a patent (in T). But knowledge, even in the same field, is a

differentiated good so that more than one prize and/or one patent are available even in the same

field. Accordingly, this model can be considered a Dasgupta-Stiglitz type model with more than

one winner of the race towards invention (see Dasgupta and Stiglitz, 1980). To sum up, in any field

the probability of success for researchers, both in S and in T, depends on several elements: own

effort, the effort by all other researchers in S and T (with different externalities, greater from S than

from T), the number of researchers N. Notice that the probability of success does not affect the

fixed component of compensation of researchers in S, while it affects the revenues of researchers in

T.

Given the above hypotheses, it is possible to write the payoff functions for researchers that work

in S and T respectively. Let

[1] Πi
S = Fi(n)  +  Pr

S(N, xi
S, X - i 

S, X T) k  –  ci
S(xi

S)

be the expected payoff of researchers in S, where n is the number of researchers working in T, and

[2] Πi
T = Pr

T(N, xi
T, XS, X -iT) pi

T γi(xi
T)  –  ci

T(xi
T)

be the expected payoff of researchers in T, where pi
T = D[γi(xi

T)] is the inverse demand function and

γi(xi
T) denotes total output. Hence γ(.) is the production function of knowledge in Technology. Let

β(.) be the production function of knowledge in Science. As usual, γ(.) and  β(.) are increasing and

concave, with γ(0) = 0, β(0) = 0.

In equation [1], the expected payoff Πi
S of a researcher i working in Science is equal to a

fixed component Fi (n), plus the prize k multiplied by the probability of success Pr
S(.) minus the cost

of the research effort ci
S(xi

S). As usual, the cost function ci
S(.) is assumed to be convex with ci

S(0) =
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0. The fixed component Fi(n) positively depends on n, which is the number of researchers working

in T; for example, Fi(n) does not depend on effort, but is positively related to the condition of the

labour market (given N, the higher the competition for researchers from T, the higher Fi, i.e.

∂Fi(n)/∂n > 0).

The probability of success Pr
S(.) positively depends on own effort xi  and on the effort X-i

S by

the other researchers in Science (because of positive spillovers across researchers in S). It negatively

depends on the size of the research community N and on the total effort XT undertaken by the n

researchers working in T. Hence, N and XT capture a competition or race effect (the more

competitors in the overall field and in T, the lower the probability of being a winner, despite the own

effort and the positive externalities flowing from the other researchers in S. In addition, increased

competition may reduce the accuracy of research thus further decreasing the probability of success).

Therefore:

∂Pr
S /∂N < 0            ∂Pr

S/∂xi
S > 0            ∂Pr

S/∂XS
-i

 > 0         ∂Pr
S/∂XT < 0

Notice that, if Fi(n) is larger than ci
S(xi

S) for all n∈[0,N-1] and all equilibrium effort levels,

then Πi
S is always greater than zero. In addition, whatever Fi(n) > 0, researchers working in S can

always get a positive payoff if their effort is zero, because ci
S(0) = 0. For this reason, some free-

riding effects may occur. Indeed, at no effort, Πi
S = Fi(n) > 0 for all n∈[0,N-1].

Finally, let us assume decreasing returns from research efforts, i.e. ∂2Pr
S/∂(xi

S)2 < 0,

∂2Pr
S/∂(XS

-i)2 < 0 but increasing effects of competition ∂2Pr
S/∂(XT)2 < 0.

In equation [2], the expected payoff Πi
T of a researcher i working in Technology is equal to

the revenue pi
Tγi(xi

T) from the knowledge product sold on the market thanks to patents, multiplied by

the probability of success Pr
T(.), minus the cost of own effort ci

T(xi
T). Again, the cost function ci

T(.)

is assumed convex with ci
T(0) = 0.

The probability of success (only winners get a patent) positively depends on own effort xi
T

and on the externality flowing from the total effort XS of the researchers working in Science. It

negatively depends on N and X-i
T, which capture again a competition or race effect. Therefore:

∂Pr
T /∂N < 0            ∂Pr

T/∂xi
T > 0            ∂Pr

T/∂XS > 0           ∂Pr
T/∂XT

-i < 0

Notice that, since the whole revenue depends on Pr
T(.), the payoff, Πi

T may be negative. At

no effort, Πi
T = 0. Again, let us assume decreasing returns from research efforts, i.e. ∂2Pr

T/∂(xi
T)2 < 0,

∂2Pr
T/∂(XS)2 < 0 but increasing effects of competition ∂2Pr

T/∂(XT
-i)2 < 0.
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As said above, absolute specialisation prevails. Therefore, all N researchers decide to work in

this research field, because their reservation wage is assumed to be smaller than max[Πi
S, Πi

T]. This

condition is feasible because at worst researchers get Fi(n) when they set their effort equal to zero.

It is worth noting that for both groups of researchers in S and T, the sign of knowledge

externalities depends on the institutional arrangements (partial excludability vs. non-excludability).

With knowledge as a public good in S, the effect of XS on both Πi
S and Πi

T is positive, as the positive

spillover effect dominates the negative competition effect. On the contrary, with knowledge as a

private good in T, the effect of XT is negative as the competition effect dominates the positive

spillover effect, which is smaller than in S but still existing.

The following two important assumptions concern spillovers:

Assumption 1: A marginal change of own effort has an impact on the probability of success larger

than the one of a marginal change of the total effort undertaken by the other researchers (both

internal and external).

Assumption 2: A marginal change of internal spillovers has an impact on the probability of success

larger than the one of a marginal change of external spillovers.

These two assumptions define a hierarchy of knowledge spillovers. A researcher’s own effort

has a larger impact on its own probability of success than the total effort of the other researchers in

his/her group, which is larger than the impact of the total effort of the researchers in the other group.

The emergence of the two institutions, S and T, is modelled as a two-stage, non-cooperative

game. In the first stage, symmetric researchers choose to work either in S or T. This is a group

formation game, where N researchers can all join T or S or divide themselves into two groups. In the

second stage, researchers choose their optimal effort level, either xi
S or xi

T.

Let us solve the game backward. The optimal effort level is obtained by maximising the

payoff functions [1] and [2] with respect to xi
S and xi

T respectively. This yields:

[3] 0  
x
c  -  

x
),,x,(   

x

S
i

 S
r =

∂
∂

∂
Ρ∂=

∂
Π∂ −

S
i

S
i

TS
i

S
i

S
i

S
i XXNk
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These first order conditions can be re-written as:
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where, without loss of generality, we have assumed that the first n researchers work in T and where

ε < 1 is the inverse of demand elasticity.

The equilibrium conditions for the research effort can be interpreted as follows. Equation [5]

says that in Science the marginal cost of the research effort must be equal to the marginal benefit

yielded by this effort, where the marginal benefit is equal to the reward k multiplied by the change of

the probability of success induced by a marginal change of the research effort. Hence, research effort

in Science can be increased by:

- increasing the reward k (through more prizes, public recognition of the value of research,

sabbatical years, publications in journals, etc.)

-  reducing the cost of carrying out research (i.e. less bureaucracy in Universities).

However, research effort does not depend on the fixed remuneration Fi(n). Therefore, a

researcher in S who believes that his/her own effort has a very small probability of success provides

a very small research effort.
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Equation [6] states that also in Technology the marginal cost of the research effort must be

equal to its marginal benefit. Now the marginal benefit is equal to the change of the probability of

success multiplied by the reward for researchers working in Technology, which is the revenue from

selling to the market the output of the research effort, plus the change of revenue induced by the

marginal change of effort multiplied by the probability of success. Notice that demand elasticity has

an impact on the marginal benefit of effort. An elastic demand (ε < 1) implies that a positive change

of effort increases the revenue for researchers in Technology. An increased effort in Technology can

be induced by giving researchers the possibility to patent their discoveries thus creating a demand

for the output of their research.

By solving [5] and [6] with respect to xi
S  and xi

T, we obtain the system of reaction functions:

xi
S = Ri

S (xS
-i , XT, N, k)          i = n+1,….N

[7]

xi
T = Ri

T (xT
-i , XS, N, ε)          i = 1,….n

which can be written, at the Nash equilibrium S
ix̂ , i = n+1,….N, and T

ix̂ , i = 1,….n, as:

[ ]k ,N ,x̂ n ,x̂ )1nN(R  x̂ T
i

S
i

 S
i

S
i −−= i = n+1,….N

[8]

[ ]ε−=  N, ,x̂ 1)-(n , x̂ )nN(R  x̂ T
i

S
i

T
i

T
i i = 1,….n

because of symmetry. Notice that, from here on, the index i could be dropped. We prefer to preserve

it in order to emphasise the individual nature of the choice between the two institutions.

Assuming a unique and interior solution, the N equations [8] yields the equilibrium values of

the researchers’ effort levels:

 [9] 0
n
x̂                     ),,,( x  (n)x̂

S
iS

i
S
i >

∂
∂= εkNn     i = n+1,….N

and
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[10] 0
n

x̂                    )k,N,(n, x)(x̂
T
iT

i
T
i <

∂
∂= εn     i = 1,….n

where N, k and ε < 1 are given and n is determined in the first stage of the game. Total research

effort is then (N-n) (n)x̂S
i  in Science and n (n)x̂T

i  in Technology.

Assumption 3: The effect of a positive change of the group size on the total research effort produced

by the group is positive, i.e. the positive size effect dominates the negative effort effect.

By replacing the equilibrium values [9] and [10] into [1]and [2], we obtain the values of the

payoff functions in the first stage of the game.

[11]      [ ] [ ])(x̂c -  )(x̂   ),(x̂ )1(  ),(x̂)(F  )( S
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S
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[12]  [ ] ( )[ ] ( ) [ ])(x̂c - )(x̂  )(x̂D )(x̂1)-(n ),(x̂n)-(N ),(x̂P  )( T
i
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S
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S
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r nnnnnnnT

i γγ=Π    i = 1,….n

Notice that, in the first stage, expected payoffs depend only on the number of researchers in

each group, i.e. on n, because the size of the other group is given by N-n. In the first stage, the

strategy space of each researcher is binary – [S,T] – because he/she decides which institution to

choose to carry out his/her own research activity.

The equilibrium of the first stage is again a non-cooperative Nash equilibrium. Following a

widely accepted standard in coalition formation theory (Cf. D’Aspremont et al., 1983, Carraro and

Siniscalco, 1993, Barrett, 1994, Yi, 1997), the Nash equilibrium is defined as follows: n* researchers

choose Technology at the equilibrium, and consequently N-n* researchers choose science, iff:

[13]   Πi
S(n*) ≥ 0 and   Πi

T(n*) ≥ 0 0 ≤ n* ≤ N

and

[14] Πi
T(n*) ≥ Πi

S(n*-1)  and Πi
T(n*+1) ≤  Πi

S(n*) 0 < n* < N

Conditions [13] define the usual profitability of the equilibrium group size n*. Conditions

[14] define the stability of the equilibrium group size. At the equilibrium, no researcher wants to
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leave Technology to join Science and no researcher wants to leave Science to join Technology.

Assuming N sufficiently large, [14] can be approximated by the following equilibrium condition:

[15] Πi
S(n*)  =  Πi

T(n*)

In order to determine the equilibria of the first stage of the game, i.e. the size of the group of

researchers choosing Technology, we make use of a geometric representation of the payoff functions

Πi
S(n) and  Πi

T(n) that will help understanding under which conditions either an interior solution

exists or one of the two corner solutions (n* = 0 or n* = N) emerge at the equilibrium.

Differentiating the payoff functions Πi
S(n) and  Πi

T(n) with respect to n, we obtain:
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Let δi
S = -[∂ S

ix̂ /∂(N-n)][(N-n)/ S
ix̂ ] and δi

T = -(∂ T
ix̂ /∂n)(n/ T

ix̂ ) be the elasticities of the

optimal effort with respect to the size of the group of researchers in S and in T respectively. Using

Assumption 3, δi
S  < 1 and δi

T < 1, i.e. the size effect dominates the effort effect. Then, the

derivatives of the payoff functions with respect to n can be written as:
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where Ri
T = pi

Tγi(xi
T) is the revenue obtained by a winner in Technology. Given what said in

sections 2 and 3, it should be obvious to assume:

Assumption 4: A winner in Technology receives a reward larger than the one of a winner in

Science, i.e. Ri
T > k  for all 0 < n ≤  N.

Using Assumption 1, namely that own effort has a larger impact on the probability of success

than internal spillovers, then  
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S  < 1 and δi

T < 1 by Assumption 3. Hence,  
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sufficient to assume that the effect of a change of the group size on revenue is larger than the effect

on costs, namely  
x
c  p )-(1 ) (P T
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x
γε > 0, to conclude that  

dn
d T

iΠ  is negative for all n ∈ [1,N].

As a consequence, Πi
T(n) is monotonic and decreasing in the interval [1,N].

In order to simplify the analysis and to reduce the number of cases to be analysed, let us

assume that Πi
S(n) is also monotonic in the interval [0,N-1]. Hence, we have two cases:

Case A: A(n) ≥ B(n) for n ∈ [0,N-1] for which Πi
S(n) is monotonically increasing.

Case B: A(n) ≤ B(n) for n ∈ [0,N-1] for which Πi
S(n) is monotonically decreasing.
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where the first three terms are positive by Assumption 1 and because ∂Fi(n)/∂n > 0. The fifth term,

is also positive by Assumption 2, namely that internal spillovers are larger than external ones, by

Assumption 3, which implies δi
T < 1 and by Assumption 4.
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Assuming that the difference between Ri
T and k is sufficiently large to
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and that  ∂Fi(n)/∂n ≥ ∂ci
S/∂n, then:
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iΠ > 0  for all 1 < n < N-1

i.e. the slope of Πi
S(n) is always larger than the slope of Πi

T(n), even when Πi
S(n) is decreasing.

Finally, when n* = 0, all researchers are in Science and:

[19]  [ ] [ ])0(ˆc -  )0(ˆ )1(  ),0(ˆ)0(F  )0( S
ii

S
i

S
i

S
i

S
r

S
i xkxNxP −+=Π

When n* = N, all researchers are in Technology and:
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By normalising the reservation wage to zero, we have Πi
S(0) ≥ 0, Πi

T(N) ≥ 0. Of course, Πi
T(0)

and Πi
S(N) are not defined. From the above analysis, three main conclusions can be derived:

(i) The equilibrium payoff in T is a negative function of n. Indeed, more researchers in T induce

less spillovers from S and more competition in T.

(ii) The slope of Πi
T(n) is always smaller than the slope of Πi

S(n). As a consequence, if Πi
S(1) >

Πi
T(1), then Πi

S(n) is above Πi
T(n) for all n∈[1,N-1] which implies that all N researchers are

in Science.

(iii) In all other cases, the two institutions co-exist unless the equilibrium payoff  in T is larger

than in S even when almost all researchers are in T [Πi
T(N-1) > Πi

S(N-1)].

From these conclusions, three types of equilibria of the above two-stage game may emerge:

(a) Science only.

If Πi
S(1) > Πi

T(1), then the payoff from choosing Science is higher than the payoff from

choosing Technology for all group sizes in the interval [1,N-1]. Hence, all researchers choose

Science which is the only institution which emerges at the equilibrium (see Figure 1). This is the

case when property rights in T are weak or ill-defined and hence researchers in T cannot market their

discoveries; or when there is no demand for the output of research in T, e.g. because the research
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field  focuses mostly on basic research (e.g. mathematical theorems). Hence, there is no incentive to

move from S to T.

(b) Technology only.

If Πi
S(1) < Πi

T(1) and  Πi
S(N-1) < Πi

T(N-1), then the payoff from choosing Technology is

higher than the payoff from choosing Science for all group sizes in the interval [1,N-1]. Hence, all

researchers choose Technology, which is the only institution which emerges at the equilibrium (see

Figure 2). This is the case when researchers in S are badly paid, or when discoveries in T are highly

demanded and innovations can adequately be patented.

         Π S                                                                                                  Sa
        ΠT

                                                                                          Sb

                                                                                          T

                0     1                                                                                         N-1      N          n

Figure 1. Science only
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(c) Science and Technology.

If Πi
S(1) < Πi

T(1) and  Πi
S(N-1) > Πi

T(N-1), then there exists a value of n*, with 0 < n* < N,

such that Πi
S(n*) = Πi

T(n*). Hence n* defines the number of researchers who choose Technology.

The remaning N-n* researchers choose Science (see Figure 3) Hence, even identical researchers

divide themselves into two groups. Consequently, S and T permanently coexist even in the same

field.  In this case, Technology is more profitable than Science when there are few producers in T

who benefit from spillovers from S and from reduced competition in T. However, as the number of

researchers in T increases, competition also increases and spillovers from S decrease, thus creating

an incentive to belong to S.

       ΠS

       ΠT

                                                                                           T

                                                                     Sa

                                                                         Sb

             0      1                                                                                                N-1     N      n

Figure 2. Technology only
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To sum up, looking at the structure of the model,  n* and N – n* depend on spillovers, property

rights and market demand for knowledge. The model also explains why some research fields are

commonly defined as science or technology, respectively. Science is usually associated to subjects

where market does not play any role; technology is usually referred to research subjects where the

market does play a role. The difference, we argue does not depend on the subject per se, but rather

on the resource allocation mechanism intrinsically associated to it.

5. Welfare Analysis

The situation characterised in Section 4 shows that, on positive grounds, identical researchers

may divide themselves into two groups, corresponding to Science and Technology as institutions.

The obvious question at this point is whether (or not) such state of affairs is socially desirable, or

welfare maximising.

      ΠS

     ΠT

                                                                                                                 Sa

                                                                         T

                                 Sb

              0     1                          na
*                                           nb

*               N-1     N       n

Figure 3. Science and Technology
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Assume for simplicity that the social cost of tax revenue collection is zero or negligible (i.e.

there are no distortionary effects of taxation). Then, the aggregate revenue of researchers in Science

Fi(n)(N-n) + K (where K is the total amount of prizes k paid to scientists) is equal to the cost born by

the taxpayers.

Given the above assumption, the social welfare function W(n) is:

[21]  W(n) =  nΠi
T(n) + CS(n) + E[Y(n)]

where nΠi
T(n) is the aggregate profit of the researchers in T, CS(n) is the consumers’ surplus, and

E[Y(n)] is the expected monetary social value of Y(n), which is the flow of produced knowledge.

Hence, E(Y) is the value of knowledge as a public good, whereas nΠi
T(n) + CS(n) is the market

value of knowledge. [21] is the welfare function usually adopted in the literature on industry

regulation (see, for example, Laffont and Tirole, 1993) in which the positive public good value of

knowledge has been added. In a similar vein, the negative value of environmental externalities is

added to the welfare function in environmental economics (see, for example, Xepapadeas, 1995)

The total production of knowledge is

Y(n) = (N-n) Pr
S(N, xi

s, XS
-i, XT)βi(xi

S) + nPr
T (N, xi

T, XS, XT
-i)γi(xi

T),

which, by substituting equilibrium values, becomes
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In order to analyse the shape of the welfare function W(n), let us focus on its components.

The consumers’ surplus CS(n) is, as usual, an increasing function of the number of researchers in

Technology. More competition induces lower prices and higher quantities, thus increasing surplus.

The total profit nΠi
T(n) is by contrast a decreasing function of n. By differentiating nΠi

T(n)

with respect to n, we have:
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Without externalities and spillovers, nΠi
T(n) would be a decreasing function of n because the

negative effect on revenue is larger than the increase of total profits induced by an additional

producer. In our model, this implies:
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a condition already used when comparing the slope of Πi
S(n) and Πi

T(n).

Moreover, due to externalities and spillovers, there are three additional effects that further

reduce aggregate profits of researchers in T when n increases. The first one is a race effect:
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i.e. an increased number of producers in T increases competition and reduces the probability of

success. The second one is a knowledge spillover effect:
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because less researchers in S produce smaller spillovers to T (given Assumption 3 in Section 4).

Finally, there is a negative effort effect:
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because more researchers in T reduce the individual effort in T (see equation [10]). As a

consequence, total profits nΠi
T(n) are a decreasing function of n.

By differentiating the total production of knowledge Y(n) with respect to n, we obtain:
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which can be decomposed into the sum of five effects:

(a) a productivity effect
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which is positive if productivity in Technology is sufficiently higher than productivity in Science.

(b) a direct effort effect

[30]
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which is positive for low values of n/N and becomes negative as n tends to N. This humped-shape

depends on equations [9] and [10]. At the equilibrium, effort in S increases with n, whereas effort in

T decreases with n. When n/N is small, the increase in effort in S dominates the decrease of effort in

T. Vice versa when n is close to N.

(c) a spillover effect
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which is negative for all n∈[1,N-1], because a smaller number of researchers in S reduces the

positive knowledge spillovers both within S and towards T. This reduces the probability of success

for researchers in S and T and thus the production of knowledge Y.

(d) a race effect
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which is also negative for all n∈[1,N-1], because an increasing number of researchers in T increases

competition and reduces the individual probability of success both in S and in T.
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(e) an indirect effort effect via externalities
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which is positive for low values of n/N and becomes negative as n tends to N. The reason is the same

as for the direct effort effect explained above.

In order to strengthen our results, let us assume that researchers are identical also in terms of

productivity, namely γ (.) = β(.). As a consequence, the productivity effect [29] is likely to be

negligible. Let us also recall that we assumed decreasing returns of research effort. This implies that

the effect of total effort undertaken in Science shows decreasing returns both within S and from S to

T (mainly because of indivisibilities). By contrast, the marginal effect of total effort undertaken in

Technology, where the race component dominates, was assumed to be increasing (∂2Pr
S/∂(XT

-i)2 < 0

and ∂2Pr
T/∂(XT

-i)2 < 0).

Using these assumptions, when n/N is close to zero, i.e. most researchers work in Science,

the four effects [30]-[33] are either positive, or negative but small. The reason is that, when n/N is

small, an increase of producers in Technology fosters individual effort in Science, whereas the

negative effects on the probability of success of an increase of n are still small. When n is close to N,

all four effects become negative or, if already negative, they further decrease. The reason is that

when most researchers work in Technology, research spillovers are low, the negative effects on the

probability of success of excess competition are high, and individual effort decreases in T.

The above results lead to the following conclusions:

(a) If N is sufficiently large, the function Y(n) is first increasing and then decreasing in the interval

[1,N-1]. The first derivative of Y(n) is indeed positive for small value of n/N (unless positive

knowledge spillovers and negative race externalities are very large), whereas it becomes negative

for n/N which approaches one (unless the probability of success in T is much larger than in S).

(b) If N is sufficiently large and Y(n) is humped shaped, then Y(n) is also slightly skewed to the left,

because when n/N is small, positive components of the first derivative of W(n) are partly offset

by negative components, whereas when n tends to N all components but one become negative.

As a consequence, the three components of the welfare function are as follows: CS(n) is an

increasing function of n; nΠi
T(n) is a decreasing function of n; E[Y(n)] is typically first increasing
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and then decreasing with respect to n in the interval [1,N-1]. The total derivative ∂W(n)/∂n =

∂CS(n)/∂n + [Πi
T(n) + ∂Πi

T(n)/∂n] + E[∂Y(n)/∂n] is therefore positive if:

[34] ∂CS(n)/∂n + E[∂Y(n)/∂n] > - [Πi
T(n) + ∂Πi

T(n)/∂n]

 whereas it becomes negative if:

[35]  ∂CS(n)/∂n <  - [Πi
T(n) + ∂Πi

T(n)/∂n] - E[∂Y(n)/∂n]

From the above discussion, [34] is very likely to hold for small values of n/N, whereas [35] is

very likely to be true for values of n/N approaching 1. Indeed, when n is sufficiently close to N,

E[∂Y(n)/∂n] is most likely to become negative. As a consequence, the welfare function W(n) is first

increasing and then decreasing with respect to n in the interval [1,N-1]. Of course, there may be

cases in which W(n) is increasing for all n∈[1,N-1].  For example, when the probability of success

in T is much larger than in S, or when demand in T and therefore the consumers’ surplus are very

high. And there may be cases in which W(n) is decreasing for all n∈[1,N-1]. For example, when

knowledge spillovers within S and from S to T are very large, or when the negative race effects are

very strong.  However, if N is sufficiently large (as it is the case because our model is a micro model

of individual choices), then the most likely case is the one in which W(n) is first increasing and then

decreasing with respect to n. In this case, the above effects simply move the maximand of n either to

the right or to the left in the interval [1,N-1].

Figure 4 shows the welfare function [21] resulting from the sum of the above described

effects. Total welfare W(n) increases and then decreases with the number n of researchers in

Technology. This implies that the co-existence of Science and Technology as resource allocation

mechanisms maximises social welfare even within the same research field and even if researchers

are identical. This is true even when the production functions γi(.) and βi(.) of Technology and

Science are the same. The above conclusion means that Science and Technology as different

allocation mechanisms should be part of a single consistent research policy.

Let n** be the maximand of W(n), i.e. n** is the socially optimal number of researchers that

should work in Technology. As a consequence, N-n** researchers should work in Science. The

above conclusions implies 0 < n** < N.  Depending on the whole set of parameters, the socially

optimal value n** may be larger or smaller than the equilibrium value n* (see Figures 5 and 6).

Hence, there is a scope for a research policy which should reconcile individual behaviour and social

optimum.
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Suppose that, given N, n* > n** (too many researchers in T vis a vis the social optimum).

Research policy can induce a decrease of n* by increasing Πi
S(.), i.e. by increasing the fixed

compensation of scientists, or their success related prize k, or by inducing higher spillovers among

scientists through better cooperation or more intense peer-review (in Figure 5, the function S moves

upward). Alternatively, policy could decrease the payoff  Πi
T(.) in Technology, but this would

reduce total welfare. The reason is that Πi
S(s) does not enter social welfare directly, whereas Πi

T(.)

does (see equation [21]).

  W(n)

                                                                                                       W

           0     1                                n**                                                                     N-1    N       n

Figure 4. The welfare function W(n)
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Figure 5. Too many researchers in Technology (W and Πs on different scales)
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Figure 6. Too few researchers in Technology (W and Πs on different scales)
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Suppose now that, given N,  n* < n** (too many researchers in S vis a vis the social

optimum). Research policy can increase the number of researchers in T either by reducing the payoff

of researchers in S or by increasing the one in T. The second policy option is to be preferred because

it shifts upward the welfare function. Hence, total welfare increases both because n* becomes equal

to n** and because W(n) moves upward (see Figure 6). Examples of this type of policy can be a

reinforcement of intellectual property rights on knowledge produced by T, an enhancement of

spillovers from S to T, an increased demand in T induced by public spending (the government buys

products of researchers in T like in the case of vaccines), and tax exemptions for researchers in T.

At this point it is worth noting that, given N, the move from n* to the social optimum n**

can also be Pareto improving for all researchers in S and T. Both in Figures 5 and 6, the payoff of

both types of researchers increase when the social optimum is achieved by increasing the payoff of

the group of researchers which is relatively too small.

Research policy can also induce a positive change of the consumers’ surplus when it

increases the number of researchers in T up to n**. If, however, it is socially desirable to reduce n*,

consumers’ surplus may decrease. This latter conclusion depends on the fact that, for simplicity, in

our model the demand for knowledge-products does not depend on the total amount of knowledge

embodied in such products. It is reasonable to imagine that demand does positively depend on such

knowledge content (consumers are prepared to buy excellent products, shifting upwards their

demand curve). If we consider the latter effect, consumers too may be better off whenever the total

production of knowledge increases even through a reduction in n*.

The proposed research policy may also be applied to correct cases where, for institutional

reasons, researchers are all in S or in T. For example, if all researchers are in S, public demand for

researchers in T may create the incentives for researchers to move from S to T. Vice versa, if all

researchers are in T,  weaker property rights may induce some researchers to move from T to S.

6. Conclusions

The paper makes it possible to reconsider the race to sequencing the human genome, as well

as other cases, and to argue in favour of the coexistence of Science and Technology. In particular,

under fairly reasonable assumptions, the model shows why similar, even identical, researchers

choose to work in two different institutions (S,T) and why this state of affairs can be welfare

maximising.
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The analytical framework, admittedly, provides a highly simplified picture. However, some

simplifications make the results stronger. For example, with asymmetric researchers (i.e. in terms

of risk aversion and/or productivity) the separation of researchers into two groups, Science and

Technology, would be easier but trivial to obtain.

Some other simplifications make the results clearer. For example, Science and Technology

are intentionally characterised as limiting cases, with no blend among the two institutions (in the

real world, in many countries there are intermediate models where, for example, universities can

patent their research or where researchers can work both in S and in T).

Additionally, other simplifications are there for analytical convenience. For example, in our

model one researcher in T is one firm, and the organisational dimension is ruled out both in S and

in T. Researchers in Science and Technology compete, and we do not consider forms of

cooperation between S and T, which exist in the real world and can create further spillovers.

Science and Technology are exogenously given institutions, chosen in a static two-stage game, and

there are no dynamics whatsoever. Finally, the demand for knowledge products does not depend on

their knowledge content (more and better knowledge could increase the demand  for knowledge

related products).

Even at this stage, however, we believe that the fundamental structure of our argument should

be clear and that the proposed analysis can help discussing what common sense cannot often grasp.

In a nutshell, (i) we recognise that the production of knowledge involves several market failures

and (ii) we argue that the two approaches to solve such market failure problems, namely Science

and Technology, tend to coexist and should coexist on social welfare grounds. Science, which is a

non-market allocation mechanism where knowledge is treated as a public good, maximises positive

externalities, but involves agency problems (moral hazard, free-riding, etc.) which hamper both

effort and productivity. Technology solves the agency problem, but limits severely the positive

externalities. The interaction between Science and Technology, even within the same field, can mix

optimally the two institutions combining somehow the best of both worlds.

If you believe this argument, in the race for human genome sequencing neither Celera nor

NIH won the race. The real winners were research and social welfare.
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