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1. Introduction

Survey data for contingent valuation analyses are often obtained through a

dichotomous choice questioning framework: individuals are asked if they would be willing

to pay some specified amount to insure access to some public good, and the answer may be

Yes or No. In single bound models the elicitation procedure stops at this stage; while in

multiple bound models further payment questions follow. Individual responses are then

analyzed by means of statistical models to produce an estimate of the value that the public

places on the good.

While non parametric or semi-parametric approaches are becoming more popular

among contingent valuation practitioners, it is often necessary, for inference or prediction

purposes, to uncover a functional relationship between the demand for the public good and

individual socioeconomic characteristics. Since the dependent variable is discrete,

estimates of the relevant parameters are generally obtained through a maximum likelihood

procedure, and the value of the mean, or median, willingness to pay is calculated as a

function of the estimated parameters. It is well known that maximum likelihood estimates

are consistent if the model specification is correct, but that this does not hold in general for

misspecified models: the risk of producing biased estimates of the benefits stemming from

the public good is quite serious, and this may diminish the reliability of the analysis for

public choice purposes.

Since distributional assumptions are so crucial in the estimation results, it would

seem obvious that tests for model specification should play an important part in the

statistical analysis of discrete data. In contingent valuation studies it can be observed that

the application of tests for nested models is quite common, for example by means of

likelihood ratio tests; the analysis, though, is much less accurate when the competing

hypotheses are non nested.

The analysis of non nested models has followed two distinct approaches in

literature: model selection criteria, and hypothesis testing (cfr. Gourieroux and Monfort

(1995)). In the model selection approach, each competing model is evaluated by means of

a numerical criterion: for a given sample observation, the procedure consists of selecting

the model that optimizes the chosen criterion. A typical example in linear regression is the
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(adjusted) R2 criterion, while in maximum likelihood estimation a commonly used criterion

is the information criterion proposed by Akaike (1973), or one of its variants.

The problem of the model selection approach is that it produces a deterministic

outcome, defined by the ranking of the values of the criterion, and it does not take into

account the probabilistic nature of that result. Vuong (1989) points out that differences in

the criterion values may not be statistically significant: yet the deterministic model

selection approach would consider a model superior to another one, while in fact they may

be considered as statistically equivalent. He then sets the information criterion in a testing

framework, where the null hypothesis is that the two competing models are equally close

to the true model.

The hypothesis testing approach takes a step further, extending the classical testing

procedures to the case of non nested hypotheses: examples are the generalized Wald test,

the generalized score test, and the Cox test, which is a generalized likelihood ratio test; or,

in a different line, the tests based on artificial nesting: the Davidson-MacKinnon (1981)

test, the Atkinson test and the Quandt test belong to the latter category (cfr. Gourieroux

and Monfort, cit.).

In contingent valuation analyses, non nested competing models are generally

assessed by means of selection criteria, such as Akaike’s (1973), while we are not aware of

any testing approach in this field; and it might be added that such applications are very few

in discrete data modeling in general. As put forth by Pesaran and Weeks (2000), the extra

computational difficulties that the testing approach entails may explain why this path has

been so neglected. However, there may be also a more theoretically founded justification

for the choice of model selection criteria over hypothesis testing to test economic theories:

as pointed out by Granger et al. (1995), the choice of the null hypothesis and the

significance level is arbitrary, and this is even more so when testing is applied to non

nested hypothesis. In their view, when the choice of the particular model is data dependent

it is “better to use well-thought-out” model selection procedures rather then formal

hypothesis testing.

The aim of this paper is to investigate on the performance of either approach in

selecting among different contingent valuation models applied to simulated data. In
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particular, we compare three methods that are based on the Kullback-Leibler Information

Criterion (KLIC):

• the Akaike information criterion;

• the Vuong test;

• the Cox test, in the simulated approach of Pesaran and Pesaran (1993).

The structure of the paper is the following: section 2 gives a brief background about

the KLIC and explains the 3 procedures above, section 3 describes the experimental setting

of the simulation exercise, section 4 reports the results of the experiments and finally

section 5 contains our conclusions.

2. Methods

In order to describe the different statistics or criteria we introduce some notation

and terminology.

Consider a sequence ( )ii XY ,  i=1,2….. of i.i.d. random vectors. The modeler is

interested in the conditional probability distribution of the vector iY  given iX  . Define the

true conditional density as:

∏
=

=
n

i
ii xyxy

1
00 )|()|( ϕ ,

which is unknown. To evaluate its proximity to a specified parametric model, that

we define as:

Θ∈=∏
=

θθϕθ ,);|();|(
1

n

i
ii xyxy ,

we make use of the notion of Kullback-Leibler Information Criterion (KLIC):







=

);|(
)|(log1))|();|(( 0

00 θ
θ

xY
xYE

n
xyxyKn .

We will be interested in comparing pairs of competing parametric families of

conditional densities of iY  given iX  given by
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{ }G
iig xygH ℜ⊂Γ∈γγ ),;|(: ,

where the models Hf and gH are strictly non-nested.

It can be shown (cfr. Gourieroux and Monfort, cit.) that the asymptotic Kullback-

Leibler proximity between the true probability distribution and a given parametric model is

approximated by

∑∑
==

−=
n

i
nii

n

i
ii xy

n
xy

n
K

11
0 )ˆ;|(log1)|(log1~ θϕϕ ,

where nθ̂  is the maximum likelihood estimator of θ .

Since 0ϕ  is unknown K~  cannot be used; it can be noticed, though, that when two

models are compared, the first term of K~  remains constant, so that minimization of the

criterion only depends on the second term, i.e. on the maximum likelihood of the two

competing models.

Denoting by nβ̂  and nγ̂  the (quasi) maximum likelihood estimators of β and γ

under Hf and Hg respectively, this amounts to calculating:

∑∑
==

−=
n

i
nii

n

i
niinnn xygxyfLR

11

)ˆ,(log)ˆ,(log)ˆ,ˆ( γβγβ ,

i.e. the likelihood ratio of the two models.

The drawback of using LRn as such, is that it increases for more general models. In

order to overcome this problem, Akaike (1973) proposed a correction of this criterion, that

penalizes more complex models. The Akaike Information Criterion (AIC) penalizes the

log-likelihood of each model by a quantity equal to the number of its parameters:






 −= ∑

=

pxyfAIC
n

i
nii

1
)ˆ;|(log β ,

where p is the number of parameters. The Akaike criterion for model selection (AICMS)

simply consists in comparing the AIC values for the two models:



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 −−
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 −= ∑∑
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)ˆ,(log)ˆ;|(log γβ .
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If the value is positive the first model is chosen, otherwise the second will be

deemed best. Obviously, if the two models are characterized by the same number of

parameters p and q, the Akaike criterion for model selection reduces to LRn.

A criticism to the use of model selection criteria such as Akaike’s is that they are

deterministic: the model that satisfies the given criterion is selected. However, some

authors point out that this result is just the outcome of a random draw from the sample

space, and as such should be treated in probabilistic terms.

This issue is addressed by Vuong (1989), whose approach sets the model selection

criterion in a hypothesis testing framework. More specifically, it tests whether the models

under consideration are equally close to the true model, where closeness is measured by

the KLIC.

The null hypothesis is given by:

,0
);/(
);/(log: 00 =

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∗

∗
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ii
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);/(
);/(log0 
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
∗
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ii

ii

xyg
xyfE  ( fH  is better than gH ), or
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xyg
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where β* and γ* are the pseudo-true values of β and γ respectively. The tests statistics

proposed by Vuong are the following:

-an unadjusted LR statistic given by

nnnnLRn ωγβ ˆ)ˆ,ˆ(21− ,

where

2
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-an adjusted LR statistic given by
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nnnnRLn ωγβ ˆ)ˆ,ˆ(~21−  where

nnnnnnn LRRL ξγβγβ −≡ )ˆ,ˆ()ˆ,ˆ(~ , and ξn is a correction factor that penalizes each

model for model complexity. Different correction factors, as well as a slightly different

version of the denominator term, give rise to different variants of the Vuong’s statistics,

that in any case, for non nested models, is asymptotically standard normal under H0.

While Vuong’s approach is to test if the two models are statistically different, the

Cox approach aims at testing if the true conditional probability distribution belongs to one

of the competing models under examination. The null hypothesis may be that the true Data

Generating Process (DGP) belongs to Hf ; but it also may be that the DGP belongs to Hg.

Due to the special role of the null hypothesis in this context, it is not obvious which null

hypothesis we should choose. Many (see Pesaran and Pesaran (1993), henceforth P&P;

Weeks (2000)) advocate performing the non-nested test twice by reversing the role of the

null and alternative hypothesis. This procedure could very well lead to a situation where

both models are accepted or both are rejected.

Following P&P, the standardized Cox statistic is asymptotically normal and under

the null Hf is given by

ffnnf vTnS ˆ)ˆ,ˆ( =γβ ,

where fv̂  is an estimate of the asymptotic variance, and

.)ˆ,ˆ(1ˆ)ˆ,ˆ(1





−= nnnfnnnf LR

n
ELR

n
T γβγβ

The expression )(ˆ ⋅fE  stands for the conditional expectations operator under Hf; it

should be noted that 




 )ˆ,ˆ(1

nnnf LR
n

E γβ  is zero when we have nested models but does not

vanish in the case of non-nested models. Due to the difficulties in computing this term (see

Pesaran and Weeks (2000)), this test has not been widely applied outside the linear

regression model. The difficulty lies in computing an estimate of 




 )ˆ,ˆ(1

nnnf LR
n

E γβ ,
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because it entails finding an estimate of the pseudo true value *γ , i.e the value that

maximizes )),((log γxygE f .

In the case of discrete choice models, P&P have derived a simulation method to

compute the above statistic which we can apply to the case of the single bound CV model.

P&P simulate R independent samples of n indicators (dependent variable) assuming that F

is the true distribution; then for each one of the R simulated samples they compute the

maximum likelihood estimate of γ using the c.d.f. G. Denoting by )(ˆ* Rnγ  the average of the

R estimates of γ, this is a consistent estimate of the pseudo true value. Finally we can

estimate the expected value above as follows:
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FF
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FF
n
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** ))(ˆ(
)ˆ(log)ˆ(

))(ˆ(1
)ˆ(1log))ˆ(1(1)ˆ,ˆ(1ˆ

γ
ββ

γ
ββγβ .

Since there is no a priori reason why F should be the null hypothesis, P&P suggest

to reverse the null and alternative hypothesis, i.e. testing G against F: therefore it  will be

necessary to find an estimate of the expression 




 )ˆ,ˆ(1

nnng LR
n

E γβ  and this in turn will

require finding an estimate of the value that maximizes the expected value of the log-

likelihood using model F when G is the null model. Full details on the derivation of the

Cox simulation based test statistic are given in Appendix 2.

3. Experimental Design

The dichotomous choice elicitation method for contingent valuation produces a

dichotomous type of response to payment questions that are differentiated among

individuals. This particular setting allows different modeling options: the latent dependent

variable can be modeled either as a dichotomous variable, as in the random utility model

(RUM) framework used in the utility differential model by Hanemann (1984); or as a

censored variable, which is the approach proposed by Cameron and James (1987) and

Cameron (1988). The latter produces separate estimates for the coefficients and the scale
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parameter of the model, and their standard errors, and allows for a more straightforward

calculation for the mean or median value of the public good, and was therefore chosen for

this application.

Depending on the assumptions on the individuals’ preferences, the latent variable,

individual willingness to pay, or wtp for brevity, can be modeled as a linear or non linear

function of the individual socioeconomic covariates. The econometric modeling involves

further assumptions on the distribution of the error term, and its functional relationship

with the deterministic part of the wtp model: the combination of the two components can

possibly give rise to many modeling specifications, but in practice probit, logit, log-

normal, log-logistic, weibull are the most commonly used. This choice may be due to the

fact that they can easily be estimated with econometric modules available in popular

statistical packages like Limdep, Stata, or Sas (cfr. Hanemann and Kanninen, 1999).

For our experiment, we considered different DGP for the wtp, obtained from a

linear functional form for the deterministic part of the model, which is common to all

experiments, and an additive error term that is varied across experiments. The general

model is the following:

iiiii xxxwtp ε++−+= 321 5.035.127 ,

where 1x  and 3x are continuous variables respectively ranging from 4 to 75 and from 0.5 to

1.5; while 2x  is a qualitative variable, taking values zero or one.

For the error term we investigate three different scenarios, allowing for differences in the

degree of skewness of the distributions. In the first one the error term is distributed as a

Normal with zero mean and standard deviation 15. In the second one we assume that the

error term follows an extreme value distribution1 with mean zero and standard deviation

15; while in the third scenario the error term is generated as a translated lognormal2,

obtained from a lognormal by subtracting its mean, so that the resulting error has mean

                                                
1 The parameters of the extreme value distribution are: a=-bγ and 

π
615=b  where γ is Euler’s constant

which we approximate with the value 0.5772156649.

2 The parameters of the lognormal are: 










−⋅
=

)1(
15ln
ee

µ , σ=1.
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zero and standard deviation 15. The shape of the last two distributions is depicted in the

histograms below which have been produced by generating samples of size 20000 from the

two distributions described above.

We hypothesize that the researcher assumes a model linear in the covariates, with

an additive error term, obtaining the following econometric model: for each individual i,

iii xY εδ +′= ,

where x is the vector of regressors. In this model the latent variable Yi is

unobserved: the observed variable is the answer YES or NO to the question regarding

whether or not the individual would be willing to pay a given amount ti.

For a given sample of n independent observation, the generic log-likelihood

function is:
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where Ψ represents generically one of the distributions hypothesized by the

researcher; ),( νδθ = , and Ii is a dummy variable assuming value one if the individual

response to the bid question is positive, zero otherwise. Since bids are varied among

individuals, δ and v can be estimated separately.

A further assumption is that the researcher (righteously) thinks that the

deterministic part of the model is correctly specified, but is unsure about the distribution of

the random term, and tries different specifications: Normal, Logistic, Extreme Value, that

combined with the linear function for the deterministic part of the model give rise to the

Probit, Logit, and Weibit3 models. As mentioned earlier, the first two models are

frequently applied by contingent valuation practitioners: the underlying distributions for

these two models are both symmetric, with fatter tails for the logistic. The weibit model is

much less common; we choose it because it is an example of asymmetric distribution

associated to a linear functional form for the deterministic part of the model, and this

facilitates comparisons between models for our purposes.

Since the model checking methods under analysis are based on the KLIC, the

models have to be compared in pairs. The Akaike criterion only requires maximization of

the log-likelihood for each model, and then the calculation is straightforward; in Vuong’s

approach the calculation is slightly more involved, but still it only requires the computation

of the maximum log-likelihood of each model. For the simulated Cox test the procedure is

definitely more complex, since it involves the computation of the quasi maximum

likelihood estimates of each model assuming that the other model is the true DGP.

The purpose of this study is to assess the three approaches in situations that are

typically encountered by applied researchers, rather than to investigate the large sample

                                                
3 Notice that this is a different specification from the non linear Weibull model frequently used in contingent
valuation studies.
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properties of the tests. The sample sizes considered in the experiments, 300, 600, and 1000

observations, are representative of a small, medium and large contingent valuation data set.

4. Results

We now examine the results of our simulation for each of the three DGP (Normal, Extreme

Value, translated Lognormal) and the three candidate models: probit, logit and weibit. As

explained in the preceding section, the KLIC requires that the three models should be

compared in pairs, so the tables report results for the pairs probit vs logit, probit vs weibit,

and logit vs weibit.

In table 1 of each experiment we report the estimates of the parameters obtained

from the two models to be compared. The number of replications in the Monte Carlo

experiments was fixed at 300, but the actual number in each experiment depends on the

rate of convergence –always very high, even though it never attains 100%; the differences

in the number of successful replications explain the slight differences between estimates

obtained under the same specification and the same data but in a different experiment.

It can be observed that parameter estimates do not differ very much across models.

The parameter v is a scale parameter for the logit and the weibit, that should be multiplied

respectively by 
3

π  and 
6

π  to obtain the estimated standard deviations for the two

models. Moreover, since the mean of the extreme value distribution is not zero we have to

add 0.5772⋅v to the estimated constant by the weibit to compare it to the corresponding

probit estimate. A general feature of all experiments is that the estimates of the parameters

δ3 and especially δ4 are less efficient than the others; we are not able at this stage to

provide an explanation of this discrepancy in the precision of the parameter estimates.

Similar parameter estimates produce similar estimates for the mean wtp value, as it can be

observed in table 2 of each experiment; but it can be observed that the asymmetry of the

extreme value distribution generally produces a lower value for the estimated median –

whether it is more correct or biased depends on the true DGP. Choice of the median rather

than the mean as a central tendency measure is often deemed to be preferable, both on

statistics and economics grounds (cfr. Hanemann and Kanninen, cit., pp. 325-6): therefore,

we will focus on the estimated value for this central tendency measure for the weibit
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model. Closeness of the estimated mean and median wtp values to the true population

value can be measured by the mean square error (MSE); this criterion can give us a

measure of the goodness of fit of each specification. Since the sampling happened to be not

well behaved, with the 600 sample being closer to the population values than the 1000

sample, in the same table we report also the MSE with respect to the sample WTP values.

Finally, table 3 of each experiment shows the conclusions drawn from each of the three

methods under investigation: the Akaike information criterion, the Vuong test and the Cox

test.

From table 3 of each experiment, we can derive the probability of rejecting the null for the

Vuong and Cox tests when the nominal size is five percent. For the Vuong test, the null

hypothesis is that the two models are equivalent and therefore the probability of rejecting

the null should approach 1 if the null is false, while it should approach 0.05 if the null is

true. The null hypothesis for each one of the two Cox tests is that one of the models is

correctly specified, therefore the probability of rejecting each one of the two nulls should

be computed considering the two cases when the corresponding null is rejected, either

because the alternative is accepted, or because both are rejected.

To help the exposition, we use the following code for our experiments:

Pairs of models

DGP

Probit
vs

Logit

Probit
vs

Weibit

Logit
vs

Weibit

Normal A-I A-II A-III

Extreme value B-I B-II B-III

Trans. Lognormal C-I C-II --
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We analyze the results by first considering the experiments where one of the models was

correctly specified: i.e. experiments A-I and A-II, and experiments B-II and B-III.

As recalled above, in these cases the probability for the Vuong test to reject the null should

approach one. In experiment A (probit correctly specified) it falls quite short of one even

for n=1000: the probability is 23% in I (probit vs logit), and 52% in II (probit vs weibit). In

experiment B (weibit correctly specified) the probability is 42% in II and 57% in III (logit

vs weibit). In terms of power of the test, these results are not very encouraging for the

Vuong test; we are not aware of any simulation study where the behavior of the Vuong test

has been investigated, so we cannot compare our results with other benchmarks.

Let’s see now, for the same set of experiments, the performance of the Cox test. We can

observe mixed results, but in general it performs better, in terms of power of the test, than

the Vuong test, especially when the probit and the weibit are compared. In addition, the

power improves, while the size of the tests decreases, with the sample size; the latter

reaching levels of 10-13% for n=1000. In this sense our results are comparable to Weeks

(2000)4. It remains to analyze the performance of the Akaike criterion: when one of the

models is correctly specified, and the sample size is large enough (in our case, 600 or

more) the Akaike criterion works very well when the weibit is compared with the other

two; while when two similar models, probit and logit, are compared, the Akaike criterion is

not able to pick up the correct model in more than 20% of the cases. For the small sample

size this problem extends also to the comparisons involving the weibit model: with the

exception of experiment B-III, the Akaike criterion may lead to choosing the wrong model

in about the 20% of the cases.

Let’s now consider the subset of experiments where both models are misspecified.

These are experiments A-III, B-I, and both experiments C.

In experiment A-III, we compare the logit and the weibit, the DGP being Normal.

The Akaike criterion will choose the logit over the weibit, with increasing frequency as the

sample size increases. The Vuong test seems to point out that both models are equivalent in

terms of KLIC; but as the sample size increases, the probability that the logit model is

chosen increases as well. It can be noticed that the probability that the Vuong test selects

                                                
4 It should be noted that Weeks compares alternative variants for the Cox statistic and does not use the
simulated version of P&P for all sample sizes.
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the “worse” model (in this case, the weibit) is close to zero. As for the Cox test, its

behavior is not very satisfying for the small sample; while it improves with sample size,

yet in this case the power of the first Cox test falls short of 53% even for n=1000.

Experiment B-I considers probit versus logit when the true DGP is Extreme Value.

The Akaike criterion would choose logit or probit with almost the same probability when

the sample size is small, but the frequency of the logit choice increases with sample size.

Here the probability of rejecting the null for the Vuong test reaches 0.096 and both models

are found to be equivalent 90% of the time, while the Cox test accepts both models over

65% of the time for n=1000. Here the Cox test lacks power since the probability of

rejecting the null is below 23% for both tests for n=1000.

This situation is reversed when we consider the last experiments, under the translated

Lognormal DGP. Here the Akaike criterion discriminates much more between models,

leading to choosing the logit and the weibit over the probit. Also the Vuong test now

shows a strong support for the same models and it chooses the logit around 85%, and the

weibit 100% of the time for n=1000. While the selected models, especially the weibit, are

indeed closer to the true DGP, none of them is correct: in this case the Vuong test, like the

Akaike criterion, is not able to signal that both models are misspecified. Only the Cox test

points out that in this situation none of the models is to be accepted, again improving with

sample size, with the power of both Cox tests approaching one for the large samples.

Summing up, when both models are misspecified, the Akaike criterion is obviously

dominated by the other two methods, since it does not give any information about the

misspecification problem. For the other two methods, we get mixed results, depending on

the DGP and the sample size. In general, the Cox test seems to perform better than the

Vuong, especially for large samples; for the smaller sample size instead the Cox test is not

so satisfying, since it often accepts the null when it is false.

5. Conclusions

From an operative point of view, it is important that the selection method be able to

signal a possible misspecification when its consequences are more serious. In our context

this could be answered by considering the MSE of the estimated mean and median. The
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most serious consequences of misspecification can be observed in experiment C, where the

data generated by a strongly skewed distribution (the translated Lognormal) is fitted with

symmetric (probit and logit), or sligthly asymmetric (weibit) models. In this experiment we

could see that the Cox test is the only one that, for an adequately large sample size,

uncovers the misspecification problem.

Unfortunately, in other cases we could observe that the power of the Cox test is

unacceptably low: this holds for example in experiment B-I, where misspecification leads

to a relevant bias in the estimated median wtp. Also, the performance of the Cox test when

the sample size is small is generally poor.

In conclusion, the results of our experiments can be interpreted as follows:

• the Akaike model selection criterion is unsatisfactory, since when both

models are misspecified it cannot signal it; even when one model is

correctly specified, for small size samples it presents a non negligible

probability of choosing a wrong model. When the sample size is small, it

may be preferable to use the Vuong test rather than the Akaike criterion,

since it makes less mistakes in the choice of the model, and may suggest

further checks of the specification in the (too frequent) case that the two

models are deemed equivalent;

• when the sample size is large enough, it is preferable to use the Cox test,

that, although more complex to implement, seems more effective and

conclusive than the two model selection methods.

In this paper we have analyzed three methods for model selection based on the KLIC: as

pointed out by Aznar Grasa (1989), this is just one of many alternative measures of

closeness. Further research is required to find out if other methods are superior to those

assessed in this study.
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APPENDIX 1

A. NORMAL DGP

Experiment A-I: Normal DGP, Probit vs Logit

Table A-I.1 Parameter estimatesa for normal DGP using Hf (normal) and Hg (logistic)
across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.488
(9.056)

26.745
(9.154)

26.450
(5.747)

26.688
(5.661)

26.609
(4.647)

26.853
(4.674)

δ2
1.508

(0.118)
1.502

(0.118)
1.501

(0.083)
1.497

(0.084)
1.503

(0.067)
1.497

(0.068)

δ3
-2.817
(4.264)

-2.803
(4.216)

-2.847
(2.907)

-2.872
(2.935)

-3.009
(2.120)

-2.965
(2.126)

δ4
0.531

(6.260)
0.497

(6.411)
0.796

(4.439)
0.783

(4.390)
0.762

(3.407)
0.722

(3.450)

vc 14.752
(2.018)

8.290
(1.215)

14.829
(1.387)

8.346
(0.894)

14.863
(1.021)

8.325
(0.643)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 284, 288 and 293 for the 300,

600 and 1000 sample size respectively.
c) The estimated scale parameter of the logit should be multiplied by π/31/2 for

comparison with the corresponding probit estimate.

Table A-I.2 Mean estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEa

SMSEb
Mean-
Median
(st.dev)

MSE
SMSE

300 86.314
(1.869)

6.773
3.482

86.301
(1.886)

6.788
3.545

600 84.351
(1.158)

1.359
1.343

84.374
(1.167)

1.374
1.361

1000 85.455
(0.991)

1.892
0.979

85.458
(0.990)

1.895
0.977

a) MSE with respect to the population true mean wtp: 84.500
b) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the

300, 600 and 1000 sample size respectively.
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Table A-I.3 Conclusions drawn from each method (% frequency)

Method Conclusion
Hf is better Hg is better

300 0.711 0.288
600 0.781 0.218

Akaike

1000 0.789 0.211
Hf is better Hg is better Hf and Hg equivalent

300 0.204 0.003 0.792

600 0.260 0.000 0.740

Vuong

1000 0.228 0.003 0.769
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.373 0.024 0.429 0.172

600 0.423 0.013 0.423 0.138
Cox

1000 0.413 0.003 0.467 0.116
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Experiment A-II: Normal DGP, Probit vs Weibit

Table A-II.1 Parameter estimatesa for normal DGP using Hf (normal) and Hg (extreme

value) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.688
(8.438)

19.308
(9.631)

26.875
(5.872)

19.360
(6.644)

27.231
(4.497)

19.649
(5.019)

δ2
1.499

(0.106)
1.507

(0.118)
1.495

(0.084)
1.498

(0.089)
1.497

(0.063)
1.503

(0.065)

δ3
-3.357
(4.291)

-3.512
(4.756)

-2.903
(2.877)

-3.016
(3.212)

-2.888
(2.329)

-3.045
(2.541)

δ4
1.033

(6.268)
1.014

(6.736)
0.747

(4.629)
0.774

(4.920)
0.236

(3.269)
0.076

(3.633)

vc 14.573
(1.940)

12.880
(2.053)

14.676
(1.426)

13.093
(1.584)

14.761
(1.151)

13.281
(1.149)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 292 for the 300, and 296 for the 600 and 1000

sample size.
c) The estimated scale parameter of the weibit should be multiplied by π/61/2 for comparison with the

corresponding probit estimate and we should add the factor 0.5772v to the constant of the weibit.

Table A-II.2 Mean and Mediana estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEb

SMSEc
Mean

(st.dev)
MSE
SMSE

Median
(st.dev)

MSE
SMSE

300 86.227
(1.808)

6.242
3.262

86.469
(2.165)

8.549
4.703

83.755
(2.138)

5.110
10.988

600 84.425
(1.271)

1.616
1.611

84.542
(1.416)

2.000
2.011

81.783
2.138

9.324
8.942

1000 85.404
(0.924)

1.668
0.853

85.477
(0.969)

1.891
0.937

82.679
(0.964)

4.244
8.645

a) For the probit model the two values coincide.
b) MSE with respect to the population true mean wtp: 84.5
c) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
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Table A-II.3 Conclusions drawn from each method (% frequency)

Method Conclusion
Hf is better Hg is better

300 0.764 0.236
600 0.905 0.094

Akaike

1000 0.983 0.017
Hf is better Hg is better Hf and Hg equivalent

300 0.250 0.000 0.750

600 0.344 0.006 0.648

Vuong

1000 0.523 0.000 0.476
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.589 0.164 0.123 0.123

600 0.790 0.074 0.006 0.128
Cox

1000 0.885 0.013 0.003 0.097
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Experiment A-III: Normal DGP, Logit vs Weibit

Table A.III.1: Parameter estimatesa for normal DGP using Hf (logistic) and Hg (extreme

value) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.903
(8.476)

19.276
(9.615)

26.800
(6.417)

19.160
(7.037)

27.383
(4.583)

19.649
(5.265)

δ2
1.512

(0.122)
1.527

(0.136)
1.494

(0.085)
1.497

(0.094)
1.490

(0.061)
1.506

(0.068)

δ3
-3.351
(4.137)

-3.638
(4.255)

-2.924
(2.953)

-2.755
(3.009)

-2.982
(2.279)

-3.251
(2.538)

δ4
0.347

(6.075)
0.185

(6.364)
0.999

(4.531)
0.908

(4.816)
0.538

(3.443)
0.238

(3.892)

vc 8.264
(1.020)

13.085
(2.052)

8.273
(0.942)

13.137
(1.508)

8.276
(0.660)

13.293
(1.124)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 288, 290 and 294 for the 300, 600 and 1000

sample size respectively.
c) The estimated scale parameter of the logit and the weibit should be multiplied by  π/31/2 and by

π/61/2 respectively, for comparison with the corresponding probit estimate. We should add as well
the factor 0.5772v to the constant of the weibit.

Table A-III.2: Mean and Mediana estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEb

SMSEc
Mean

(st.dev)
MSE
SMSE

Median
(st.dev)

MSE
SMSE

300 86.284
(1.772)

6.315
3.130

86.459
(2.044)

8.001
4.190

83.702
(2.014)

4.678
10.748

600 84.548
(1.393)

1.936
1.948

84.548
(1.476)

2.199
2.228

81.900
(1.441)

8.828
8.463

1000 85.526
(0.940)

1.932
0.885

85.526
(0.978)

2.154
0.973

82.795
(0.988)

3.881
8.060

a) For the logit model the two values coincide.
b) MSE with respect to the population true mean wtp: 84.5
c) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
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Table A-III.3 Conclusions drawn from each method (% frequency)

Method Conclusion

Hf is better Hg is better

300 0.753 0.247
600 0.813 0.186

Akaike

1000 0.921 0.079
Hf is better Hg is better Hf and Hg equivalent

300 0.118 0.034 0.847

600 0.217 0.020 0.762

Vuong

1000 0.333 0.003 0.663
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.392 0.395 0.038 0.173

600 0.493 0.189 0.006 0.310
Cox

1000 0.486 0.040 0.000 0.472
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B) EXTREME VALUE DGP

Experiment B-I: Extreme Value DGP, Probit vs Logit

Table B-I.1: Parameter estimatesa for extreme value DGP using Hf (normal) and Hg
(logistic) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.270
(8.009)

26.195
(7.870)

26.596
(5.539)

26.432
(5.463)

26.183
(4.576)

26.152
(4.489)

δ2
1.522

(0.117)
1.515

(0.114)
1.514

(0.078)
1.507

(0.077)
1.515

(0.065)
1.506

(0.064)

δ3
-2.783
(4.037)

-2.725
(3.987)

-3.140
(2.837)

-3.145
(2.769)

-3.226
(2.197)

-3.152
(2.163)

δ4
0.414

(6.088)
0.325

(5.965)
0.593

(4.318)
0.634

(4.184)
1.0

(3.422)
0.918

(3.388)

vc 14.624
(2.316)

8.013
(1.226)

14.858
(1.475)

8.127
(0.798)

14.839
(1.202)

8.103
(0.682)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 274 for the 300, and 291 for the 600 and 1000

sample size.
c) The estimated scale parameter of the logit should be multiplied by π/31/2 for comparison with the

corresponding probit estimate.

Table B-I.2: Mean, median estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEa

SMSEb

Mean

MSEc

SMSEd

Median

Mean-
Median
(st.dev)

MSE
SMSE

Mean

MSE
SMSE

Median

300 86.531
(1.775)

7.268
3.197

23.354
10.452

86.150
(1.729)

5.704
3.001

19.908
8.374

600 84.594
(1.250)

1.568
1.586

8.107
8.476

84.198
(1.247)

1.641
1.603

6.228
6.541

1000 85.583
(1.032)

2.234
1.077

13.645
7.772

85.166
(1.015)

1.471
1.112

10.829
5.753

a) MSE with respect to the population true mean wtp: 84.5
b) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
c) MSE with respect to the population true median wtp: 82.03.
d) MSE with respect to the sample true median wtp: 83.827, 81.964, and 82.992 for the 300, 600 and

1000 sample size respectively.
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Table B-I.3: Conclusions drawn from each method (% frequency)

Method Conclusion
Hf is better Hg is better

300 0.485 0.514
600 0.344 0.656

Akaike

1000 0.251 0.749
Hf is better Hg is better Hf and Hg equivalent

300 0.124 0.036 0.839

600 0.048 0.054 0.896

Vuong

1000 0.031 0.065 0.904
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.248 0.106 0.500 0.146

600 0.158 0.140 0.642 0.058
Cox

1000 0.120 0.168 0.656 0.054
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Experiment B-II: Extreme value DGP, Probit vs Weibit

Table B-II.1: Parameter estimatesa for the extreme value DGP using Hf (normal) and Hg

(extreme value) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.905
(8.729)

20.531
  (8.384)

26.662
(5.726)

20.475
(5.777)

26.904
(4.490)

20.323
(4.314)

δ2
1.503

(0.128)
1.504

(0.119)
1.513

(0.080)
1.506

(0.076)
1.499

(0.064)
1.497

(0.060)

δ3
-2.935
(4.056)

-3.206
(3.811)

-3.005
(2.782)

-3.085
(2.584)

-2.954
(2.165)

-3.039
(1.908)

δ4
0.486

(6.071)
0.488

(5.550)
0.507

(4.572)
0.490

(4.270)
0.709

(3.480)
0.713

(3.143)

vc 14.326
(2.351)

11.229
(1.737)

14.707
(1.422)

11.518
(1.211)

14.847
(1.268)

11.677
(1.030)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 294 for the 300 and 600 sample sizes and 290 for
c) the 1000 sample size.
d) The estimated scale parameter of the weibit should be multiplied by π/61/2 for comparison with the

corresponding probit estimate and we should add the factor 0.5772v to the constant of the weibit.

Table B-II.2: Mean and Mediana estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEb

SMSEc

Mean

MSEd

SMSEe

Median

Mean
(st.dev)

MSE
SMSE

Mean

Median
(st.dev)

MSE
SMSE

Median

300 86.361
(1.573)

5.932
2.472

21.18
8.888

86.312
(1.704)

6.181
2.895

83.947
(1.654)

6.38
2.742

600 84.623
(1.262)

1.605
1.627

8.288
8.661

84.722
(1.881)

3.575
3.612

82.295
(1.775)

3.208
3.250

1000 85.583
(0.960)

2.091
0.934

13.502
7.629

85.619
(1.477)

3.426
2.200

83.159
(1.391)

3.190
1.956

a) For the probit model the two values coincide.
b) MSE with respect to the population true mean wtp: 84.5
c) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
d) MSE with respect to the population true median wtp: 82.03
e) MSE with respect to the sample true mean wtp: 83.827, 81.964, and 82.992 for the 300, 600 and

1000 sample size respectively.
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Table B-II.3: Conclusions drawn from each method (% frequency)

Method Conclusion
Hf is better Hg is better

300 0.190 0.810
600 0.092 0.908

Akaike

1000 0.059 0.941
Hf is better Hg is better Hf and Hg equivalent

300 0.020 0.204 0.775

600 0.017 0.353 0.629

Vuong

1000 0.017 0.400 0.583
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.119 0.717 0.068 0.095

600 0.030 0.826 0.020 0.122
Cox

1000 0.010 0.862 0.003 0.124
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Experiment B-III: Extreme value DGP, Logit vs Weibit

Table B-III.1: Parameter estimatesa for the extreme value DGP using Hf (logistic) and Hg

(extreme value) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.364
(8.567)

20.052
(8.479)

26.291
(5.553)

20.280
(5.648)

26.798
(4.523)

20.269
(4.389)

δ2
1.515

(0.112)
1.519

(0.110)
1.506

(0.081)
1.506

(0.078)
1.496

(0.062)
1.502

(0.059)

δ3
-3.055
(4.152)

-3.248
(3.974)

-3.010
(2.783)

-3.087
(2.670)

-2.995
(2.168)

-3.049
(1.966)

δ4
0.351

(6.283)
0.386

(5.884)
0.712

(4.439)
0.596

(4.168)
0.574

(3.443)
0.556

(3.193)

vc 8.033
(1.205)

11.485
(1.656)

8.065
(0.787)

11.501
(1.183)

8.145
(0.737)

11.656
(0.995)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 282, 294 and 286 for the 300, 600 and 1000

sample size respectively.
c) The estimated scale parameter of the logit and the weibit should be multiplied by  π/31/2 and by

π/61/2 respectively, for comparison with the corresponding probit estimate. We should add as well
the factor 0.5772v to the constant of the weibit.

Table B-III.2: Mean and Mediana estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEa

SMSEb

Mean

MSEc

SMSEd

Median

Mean
(st.dev)

MSE
SMSE
Mean

Median
(st.dev)

MSE
SMSE

Median

300 86.077
(1.836)

5.851
3.407

19.7
8.425

86.468
(2.037)

8.010
4.166

84.048
(1.950)

7.841
3.838

600 84.195
(1.243)

1.634
1.595

6.206
6.518

84.651
(1.740)

3.043
3.069

82.227
(1.646)

2.740
2.772

1000 85.189
(0.949)

1.373
0.969

10.844
5.724

85.587
(1.406)

3.155
1.989

83.132
(1.309)

2.911
1.729

a) For the logit model the two values coincide.
b) MSE with respect to the population true mean wtp: 84.5
c) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
d) MSE with respect to the population true median wtp: 82.03
e) MSE with respect to the sample true median wtp: 83.827, 81.964, and 82.992 for the 300, 600 and

1000 sample size respectively.
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Table B-III.3: Conclusions drawn from each method (% frequency)

Method Conclusion

Hf is better Hg is better

300 0.160 0.840
600 0.061 0.938

Akaike

1000 0.031 0.969
Hf is better Hg is better Hf and Hg equivalent

300 0.003 0.330 0.667

600 0.017 0.476 0.507

Vuong

1000 0.013 0.555 0.430
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.025 0.830 0.014 0.131

600 0.006 0.877 0.010 0.105
Cox

1000 0.003 0.888 0.000 0.108
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C. LOGNORMAL DGP

Experiment C-I: Lognormal DGP, Probit vs Logit

Table C-I.1: Parameter estimatesa for the lognormal DGP using Hf (normal) and Hg
(logistic) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.572
(7.758)

26.306
(6.804)

25.246
(5.379)

25.326
(4.768)

25.952
(4.258)

25.930
(3.763)

δ2
1.511

(0.103)
1.500

(0.092)
1.535
(0.07)

1.515
(0.062)

1.529
(0.057)

1.510
(0.052)

δ3
-2.813
(3.766)

-2.808
(3.328)

-2.952
(2.672)

-2.965
(2.348)

-3.095
(2.057)

-3.019
(1.769)

δ4
0.529

(5.985)
0.510

(5.196)
1.018

(4.420)
0.946

(3.857)
0.695

(3.459)
0.623

(2.963)

vc 12.202
(3.073)

6.091
(1.390)

13.147
(2.143)

6.468
(0.962)

13.216
(1.835)

6.455
(0.814)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 258, 261 and 247 for the 300, 600 and 1000

sample size respectively.
c) The estimated scale parameter of the logit should be multiplied by π/31/2 for comparison with the
corresponding probit estimate.

Table C-I.2: Mean and Median estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEa

SMSEb

Mean

MSEc

SMSEd

Median

Mean-
Median
(st.dev)

MSE
SMSE
Mean

MSE
SMSE

Median

300 86.483
(1.591)

6.456
2.559

44.588
24.555

85.773
(1.463)

3.755
2.401

35.496
18.006

600 84.633
(1.096)

1.214
1.238

22.688
23.353

83.851
(1.044)

1.507
1.419

15.934
16.488

1000 85.715
(0.846)

2.192
0.781

33.412
23.385

84.92
(0.764)

0.758
0.869

24.818
16.312

a) MSE with respect to the population true mean wtp: 84.5
b) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
c) MSE with respect to the population true median wtp: 80.
d) MSE with respect to the sample true median wtp: 81.789, 79.926, and 80.954 for the 300, 600 and

1000 sample size respectively.
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Table C-I.3: Conclusions drawn from each method (% frequency)

Method Conclusion
Hf is better Hg is better

300 0.097 0.903
600 0.015 0.984

Akaike

1000 0.008 0.992
Hf is better Hg is better Hf and Hg equivalent

300 0.011 0.422 0.565

600 0.000 0.704 0.295

Vuong

1000 0.000 0.854 0.146
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.050 0.259 0.232 0.457

600 0.004 0.210 0.100 0.678
Cox

1000 0.000 0.133 0.024 0.842
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Experiment C-II: Lognormal DGP, Probit vs Weibit

Table C-II.1: Parameter estimatesa for lognormal DGP using Hf (normal) and Hg (extreme

value) across 300 replicationsb.

Sample Size

300 600 1000Parameters Hf Hg Hf Hg Hf Hg

δ1
26.343
(8.456)

21.789
  (6.617)

25.832
(5.324)

22.214
(3.985)

26.391
(4.191)

22.240
(3.169)

δ2
1.511

(0.106)
1.502

(0.085)
1.530

(0.079)
1.501

(0.058)
1.527

(0.055)
1.505

(0.042)

δ3
-2.825
(3.892)

-2.846
(2.918)

-2.876
(2.722)

-3.047
(1.947)

-2.848
(1.934)

-2.771
(1.386)

δ4
0.646

(5.784)
0.786

(4.058)
0.592

(4.186)
0.475

(2.866)
0.225

(3.372)
0.162

(2.462)

vc 12.513
(3.005)

8.046
(1.636)

13.305
(1.978)

8.428
(1.150)

13.210
(1.581)

8.259
(0.768)

a) Mean values and standard deviations (in parenthesis) over 300 replications.
b) The actual number of successful experiments was 285, 281 and 287  for the 300, 600 and 1000

sample sizes respectively.
c) The estimated scale parameter of the weibit should be multiplied by π/61/2 for comparison with the

corresponding probit estimate and we should add the factor 0.5772v to the constant of the weibit.

Table C-II.2: Mean and Mediana estimated wtp and their MSE
Hf Hg

Mean-
Median
(st.dev)

MSEa

SMSEb

Mean

MSEc

SMSEc

Median

Mean
(st.dev)

MSE
SMSE

Median
(st.dev)

MSE
SMSE

300 86.376
(1.704)

6.416
2.901

43.588
23.937

86.215
(1.631)

5.596
2.658

84.52
(1.455)

22.571
9.571

600 84.642
(1.138)

1.312
1.337

22.866
23.533

84.518
(1.319)

1.734
1.742

82.742
(1.167)

8.892
9.288

1000 85.780
(0.813)

2.298
0.763

34.102
23.951

85.511
(0.753)

1.588
0.568

83.771
(0.671)

14.689
8.383

a) For the probit model the two values coincide.
b) MSE with respect to the population true mean wtp: 84.5
c) MSE with respect to the sample true mean wtp: 86.292, 84.429, and 85.457 for the 300, 600 and

1000 sample size respectively.
d) MSE with respect to the population true median wtp: 80.
e) MSE with respect to the sample true median wtp: 81.789, 79.926, and 80.954 for the 300, 600 and

1000 sample size respectively.
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Table C-II.3: Conclusions drawn from each method (% frequency)

Method Conclusion
Hf is better Hg is better

300 0.014 0.985
600 0.011 0.989

Akaike

1000 0.000 1.000
Hf is better Hg is better Hf and Hg equivalent

300 0.003 0.905 0.091

600 0.003 0.982 0.014

Vuong

1000 0.000 1.000 0.000
Hf accepted
Hg rejected

Hg accepted
Hf rejected

Both Hf and
Hg accepted

Both Hf and
Hg rejected

300 0.003 0.245 0.003 0.747

600 0.000 0.078 0.003 0.918
Cox

1000 0.000 0.020 0.000 0.980
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APPENDIX 2

Derivation of the simulation based Cox test statistic.

Let F and G be two candidate cumulative distribution functions for the single bound

model, with corresponding density functions f and g , which give rise to the two models

for the willingness to pay below:

)(1))((1)|(~,: 11111 βδεεδ iiiiiiiiiif FvxtFxtYPandFxYH −=′−−=>+′= , and

)(1))((1)|(~,: 22222 γδεεδ iiiiiiiiiig GvxtGxtYPandGxYH −=′−−=>+′= .

These two models differ only in the specification of the distribution of the error

term. The test statistic for the null hypothesis that the true DGP belongs to fH  against the

alternative that it belongs to gH is given by

ffnnf vTnS ˆ)ˆ,ˆ( =γβ , where
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Under fH  the log-likelihood is given by,
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maximum likelihood estimators, then the log-likelihood ratio is given by,
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In order to compute the second term in the numerator of the Cox statistic we need to find

an estimator of that value of γ- call it γ*- that maximizes the expected log-likelihood of Hg

when Hf  is true. The simulation method proposed by P&P(1993) consists of generating R

samples of n×1 indicators according to the distribution )( nF β , i.e. for each of the R

replications we have RjIII njjj ,...1),....,( 1 ==  where



 >−

=
otherwise

UFif
I ni
ij

0

)(11 β
, and U is drawn from a uniform distribution from

(0,1). For each one of the R samples Ij is used as the new data to compute the estimator ∗
jγ

which maximizes the expression below,

∑
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−+−
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i
iijiij GIGI

1

)](log[)1()](1log[ γγ .

The average of the estimates ∗
jγ  over the R replications, i.e. ∑

=

∗ =
R

i
j

R
R

1

1
)( γγ , can be used

as an estimate of γ*, therefore we have,
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The denominator of the Cox statistic- fv - is obtained as the standard error (not

corrected for the loss of degrees of freedom) of a regression of
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The Cox statistic when we reverse the roles of the null and alternative hypotheses can be

derived in a similar fashion by reversing the roles of F and G, and it requires simulating

samples of indicators under the assumption that G is correct.


