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Processes
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Abstract

In this paper we analyze methods which allow us to estimate and identify the
sources of censoring in dynamic models. We explicitly take into account the
existence of corner solutions by considering a discrete-time-discrete-choice
dynamic structural model. The availability of microeconomic datasets al-
lows us to focus on decisions at the individual level and directly exploit the
information contained in the corner solutions. We show how a discrete deci-
sion process (DDP) represents a natural framework within which to analyze
agents’ behaviour when optimal inaction generates censoring in observed de-
cisions. A discrete decision process is characterized by a control variable
which only takes a finite number of values. Some problems are naturally
discrete, such as the optimal engine replacement or job the search problem
in which the individual decides whether or not to accept a job offer. Other
problems may be described very efficiently by a discrete decision problem.
This is clear in the case of fixed costs of adjusting inputs which imply the
discrete decision of whether or not to vary the production factor.
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1 Introduction

The recent economic literature has paid increasing attention to modelling
agents’ infrequent reactions in response to shocks. This type of behaviour
is typically associated with the presence of lump-sum and/or kinked adjust-
ment costs, partial or total irreversibilities, menu costs, indivisibilities and
non-negativity constraints. Infrequent behaviour is apparent in longitudinal
datasets which report firms (or other agents) decisions over time. For in-
stance, there is evidence that firms may not respond to observed changes in
demand and/or costs, even when these are of a large magnitude. A conse-
quence of inaction is the existence of corner solutions which cause a break
down in the standard marginal conditions for optimality given by Euler equa-
tions. This implies censoring in the observed decision variables. Censoring is
simply the result of the possibility that an agent may find that the optimal
choice is ”doing nothing” and postpone economic decisions to the future.
Dixit and Pyndick (1994) describe, in the case of investment, a firm with
an opportunity to invest as holding an option. When a firm makes an ir-
reversible investment expenditure, it exercises its option to invest. It gives
up the possibility of waiting for the arrival of new information which might
affect the desirability or timing of the expenditure; it cannot disinvest should
market conditions change adversely. This lost option value is an opportunity
cost that should be included in the cost of investment.

In this paper we analyze methods which allow us to estimate and identify
the sources of censoring in dynamic models. We explicitly take into account
the existence of corner solutions by considering a discrete-time-discrete-choice
dynamic structural model. The availability of microeconomic datasets allows
us to focus on decisions at the individual level and directly exploit the infor-
mation contained in the corner solutions. While discrete time is obviously a
characteristic of the data, discrete choice also represents the natural frame-
work within which to analyze agents decisions of remaining inactive in certain
periods even in the presence of shocks. Some models may also comprise both
continuous and discrete choices, see Pakes (1994).

Structural models attempt to derive behavioural predictions from an ex-
plicit solution to an underlying optimization problem. Given specific func-
tional forms for the primitives, the agents preferences and beliefs, we can
estimate and identify the unknown parameters. These restrictions impose a
tight and interpretable structure on our models although at the cost that they
may omit other ancillary features of the data. We, thus, may use structural



models to implement counterfactual experiments and evaluate the effects of
changes in the behavioural parameters. (See Keane and Wolpin (1997) for a
brief discussion of structural estimation in applied microeconomics.)

The foundations of the structural analysis of discrete choices are to be
found in the work of the most recent Nobel laureate D. McFadden. We an-
ticipate McFadden approach which we will discuss in Sections 3 and 4. We
start form agents’ decisions as recorded in the data. Both decisions and infor-
mation relevant for describing a certain economic phenomenon are observed
with some error. This implies that we can only define observed decisions in
probabilistic terms. However, assuming rationality, agents’ decisions must be
consistent with some individual optimizing behaviour. McFadden proposes,
in a static context, an axiomatic approach (a stochastic revealed preference
axiom) which implies the consistency between probabilistic choices and a
model of optimizing behaviour. Although he considers a static framework,
his methodology may be extended to embed dynamics. We start to consider
dynamics in Sections 5 and 6.

In Sections 6 and 7 we define DDP models: their distinct characteristic
is given by a control variable which takes a finite number of alternatives,
for example a firm decides whether to upgrade or downgrade or maintain
unaltered the stock of capital. Another crucial feature of DDP models lies
in the specification of uncertainty. There are two sources of uncertainty.
The first, is common to all models which assume uncertainty, is given by
the possibility of exogenous shocks to the variables relevant for the decision
process. This may entail a revision of the optimal plans after the realiza-
tion of a shock. The second source of uncertainty is typical of the discrete
choice methodology, and it arises from the econometrician’s lack of knowl-
edge on the state variables relevant for the decision process. This may be the
consequence of difficulties in obtaining exact information about some state
variables: prohibitive costs, inaccessibility and imperfect monitoring, and it
introduces an observation noise which plays a crucial role in the identification
and estimation of the structural parameters. While agents know the state
variables relevant for their optimal plans, the econometrician only has im-
perfect knowledge about these variables. In Sections 8, 9 and 10 we discuss
simplifying assumptions which allow us both mathematical and econometric
tractability, such as Rust’s Conditional Independence, which allow us to ob-
tain a dynamic version of the basic static discrete choice model proposed by
McFadden.

In Sections 11 and 12 we show how, in the context of McFadden’s ax-
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iomatic approach, an optimal policy exists and it is the solution to the DDP.
Together with the simplifying assumptions just mentioned we will be able to
obtain a closed form solution, which allow us to directly estimate the struc-
tural parameters in a two stage estimation procedure, as shown in Section
13. In Section 14 we discuss an application of the DDP methodology and in
Section 15 we draw some conclusions. Although, there has been number of
competing methods for estimation of DDP, all based on applications of max-
imum likelihood (ML) estimation, we concentrate on the approach proposed
by Hotz and Miller (1993) which avoids the computational burden of directly
estimating the structural model implied by the ML estimator. *

In the next section we briefly discuss some models in which agents’ be-
haviour implies a discrete choice set.

2 Models with Discontinuous Behaviour: a
brief survey

An increasing number of studies emphasize the role of inaction in agents
optimal decisions. Models of discontinuous behaviour has been flourishing
in recent years in many fields. Given their large number, in this section
we will only mention a small set. We divide the literature into two groups:
Models with discontinuous behaviour, such as (S,s) rules, which would be
best modelled as DDP, but which are not necessarily considered within this
structure in the studies reported below and models which directly on DDP
and propose methods for their estimation.

Recent studies on dynamic labour demand emphasize the importance of
non-convex components in the structure of hiring and firing costs in the form
of either fixed or kinked adjustment costs (Hamermesh, 1989, Bentolila and
Bertola, 1990, Hopenhayn and Rogerson, 1993, Aguirregabiria and Alonso-
Borrego, 1999, Rota (2000) and, for a discussion of the literature, Hamer-
mesh and Pfann, 1995). These studies have emphasized how non-convexities
in the structure of adjustment costs may have been substantially enhanced
by labour market regulations. > Some hiring and firing provisions add an

LOther methods which avoid direct solution of the structural model are Manski’s (1993)
path utility approach, Rusts’s (1988) backward estimation and Hotz, Miller Sanders and
Smith’s (1992) simulated value function.

2Del Boca and Rota (1998) provides an account of the legislation on hiring and firing
in Italy.



element of fixity to the cost structure, providing an incentive for firms to
react intermittently to changes in the exogenous variables.

In the case of a fixed cost, employment change tends to be concentrated
in a single-period, so that firms avoid paying this cost too frequently. More-
over, firms only make those changes in the labor input which are justified by
sufficiently large departures of desired employment from their most recent
choice of the number of employees. The adjustment process is lumpy and
intermittent: in the face of a shock, a firm may decide that it is optimal to
maintain the same number of employees and to postpone adjustment to the
future. Continuous and gradual reactions to exogenous shock would penalize
the firm since each small change would imply the payment of fixed costs.

Kinked linear costs imply a constant marginal cost of adjustment. Hence
the adjustment is not lumpy, although it stops before the level of employment
which would be attained in the absence of those costs is reached. Also in this
case, there is a band of inaction around the no-costs target also in this case,
generated by two target levels: one for hiring and one for firing. For levels
of employment close to the target levels it will still be optimal for a firm not
to adjust.

In either case, the standard marginal conditions for optimality given by
the Euler equation fail to hold. The adjustment path is characterized by
periods of inaction and discrete jumps is often defined as (S,s) rule. Consider
the case of demand for inputs, say labour, in the presence of fixed hiring and
firing costs. A two-sided (S,s) rule may be defined as the following: if the
number of employees is above (below) or equal to a critical threshold s” (sV)
then the firm decides to reduce (increase) employment to its desired level S,
otherwise it leaves it unchanged - superscripts U and D indicate upward and
downward adjustment respectively. Hence, there is a zone of non-adjustment
delimited by the two critical values s” and sV. 3

A large part of the debate on (8S,s) rules has concentrated on expenditure
on durable goods and inventory management. These studies emphasize the
lumpy nature of durable goods purchases: individuals update their durable
stocks infrequently and when they do make purchases their purchases are
large. In other words, whenever an individual’s existing stock reaches a
critical level s, she will make a purchase and fully update her stock to a level
S. If the existing stock remains above this threshold then no purchase occurs.

3In Rota (2000) the conditions under which we may empirically represent firms’ in-
tertemporal employment decisions as an (S,s) rule are defined.



See Lam (1991) for the case of durable goods expenditure, Eberly (1994) and
Attanasio (1997) for the analysis of households’ decisions to update their
holdings of automobile, and Aguirregabiria (1999) who combines an (S,s)
inventory model and menu costs. 4

Recently consideration of irreversibility in the analysis of investment be-
haviour has posited the attention on the possibility of firm’s inaction and
intermittent capital adjustment. What causes partial or total irreversibil-
ity: capital goods be, at least partially, firm-specific and, hence, the cost of
capital may be partially or totally sunk or the price at which capital goods
are purchased is different (higher) from the price at which those goods can
be sold. In these cases, investment occurs infrequently and the standard
formulation of q theory breaks down. Various studies provide evidence that
a large portion of investment at the plant level is concentrated in a few
episodes. Cooper, Haltiwanger and Power (1995) show that at the micro
level the probability of a plant experiencing a large investment episode is
increasing in the time since its previous episode. At plant level, bursts of
investment are then followed, on average, by periods of low investment. This
is in contrast with the usual presumption of positive serial correlation in in-
vestment activities which emerges from the standard convex adjustment cost
model. Nilsen and Schiantarelli (1996) find evidence of lumpiness both at
plant and firm-level. Barnett and Sakellaris (1998) find that investment has
a non-linear relation to q, Abel and Eberly (1999) allow for irreversibility
and fixed costs in a model of heterogeneous capital goods and Caballero and
Engel (1993 and 1994) show that lumpy adjustments play an important role
in firms’ investment behaviour.?

There are numerous models in which the decision problem is inherently
discrete such as the optimal engine replacement model (Rust, 1987).5 Harold
Zurcher is the maintenance manager of the Madison Metropolitan Bus Com-

*A number of studies has proved the optimality of (S,s) rules: Scarf (1960), Costan-
tinides and Richard (1978), Grossman and Laroque, (1990) and Bar-Ilan and Blinder
(1992).

% An important issue, on which recent studies on intermittent behaviour have concen-
trated is the possibility that microeconomic frictions influence aggregate dynamics. The
effect of heterogeneity of agents, idiosyncratic uncertainty and lack of coordination can
imply highly nonlinear behavior in aggregate time series. Hence, reference to microeco-
nomic models becomes relevant if aggregate dynamics are to be correctly understood, see
Caballero and Engel (1993) and Bertola and Caballero (1994) and Caballero (1997).

%See the Eckstein and Wolpin (1989) and Rust (1994) for a survey and a more detailed
discussion of these models.



pany. He has to decide how long to operate a bus before replacing its engine
with a new completely overhauled bus engine. The estimated model im-
plies that the expected monthly maintenance cost increase by $1.87 for every
additional 5000 miles. A finding very close to the Zurcher’s perceptions of
operating costs.

Other studies have been carried out on problems concerning airline’s de-
cisions on whether or not to remove and overhaul an aircraft engine (Kennet,
1992); whether or not to refuel a nuclear reactor (Sturm, 1991); whether or
not to renew a patent and pay the renewal fee (Pakes, 1986); whether or
not to dig an irrigation well in semiarid India (Fafchamps and Pender, 1997).
Discrete decision process are a very natural representation of job search prob-
lem, Wolpin (1987), in which the individual decides whether or not to accept
a job offer when received, and job matching models Miller (1984).

Hotz and Miller (1991) estimate a DDP model involving a family contra-
ceptive choice. The family faces three choices: one extreme choice, such as
sterilization, which is regarded as irreversible and is modelled as an absorbing
state, a choice of no contraception and a choice of temporary contraception.
This paper is very important because in that Hotz and Miller develop a new
estimation method which reduces the computational burden typical of these
models, which otherwise would require repeated solution of the optimiza-
tion problem at each trial paprameter value.We will refer to their estimation
methodology in the discussion on the identification and estimation of DDP
models.

3 Static Models of Discrete Choice

Although our focus is on intertemporal models, it will be very useful to
illustrate briefly a class of static models which give us an important insight
in the understanding of economic processes which involve discrete decisions.
We follow the work by McFadden (1973,1974) in the context of probabilistic
consumer theory of discrete choice. Assume that consumers are rational, ie
that they make choices that maximize their perceived utility subject to their
budget constraints. Consumers know the variables which are relevant for
their optimization problem, although they may be uncertain about future
values of those variables and their decisions may be subject to exogenous
shocks.

However, there is an additional and very important source of error which



is typical of micro datasets which record information on a large number
of individuals, often over a number of periods. Those data typically have
recording errors of various type, which implies that data observed by the
econometrician will contain an error term; in addition to this source of error,
there may be unobserved state variables and/or unobserved characteristics
which are important in modelling individuals’ behaviour, such as fixed effects,
which result in the econometrician having less than full information on all
the relevant variables. These error components make utility random from
the standpoint of the econometrician, even in the case in which agents take
decisions in a situation of perfect information.

Thus, the decisions we observe from data, should be described in terms of
probabilistic choice models. However, assuming rationality, these decisions
must be consistent with some individual optimizing behaviour. Is a model of
random utility maximization indentifiable from the observed distributions of
demands? McFadden and Richter (1970) propose a stochastic revealed pref-
erence axiom which implies the consistency between a probabilistic choice
system and a model of optimizing behaviour. In other words, the demand by
a certain individual, observable in the data, is consistent with that individ-
ual’s utility maximization, and it represents the most likely outcome, given
her choice set and the attributes observable by the researcher.

Although the literature is based on random utility maximization models,
in order to be maintain a consistent notation in what follows, we consider
a model of profit maximizing decisions. In Appendix 1 we further discuss
McFadden’s model of probabilistic consumer theory.

Consider a dataset of firms faced with J choices. The profit from choice
d=j, II;; may be expressed as:

Iy = mi; + €55 (1)

where i, i=1,...,N, indexes firms and j, j=1,...,J. The profit from choice d=j
is partitioned in two components: an observable term, 7;;, and a random
component, &;;. Profit maximization implies that

P(d; =j) =Pr(Il;; > I1;,) for all other m # j (2)

where m indicates a decision alternative to j. The probability of observing
decision j is defined once we make distributional assumptions on the error
term, €. McFadden (1973) showed that if the J disturbances ¢;; are iid and



follow an extreme value, or Weibull, distribution, ”

F(ij) = exp (— exp (—¢45)) (3)

then P;; is a logit. This implies that if the firm makes a choice, d=j, then
the pay-off from that choice II,;; must be the largest of all J pay-offs. The
probability of choice j, may be thus expressed as

_ _OXPTy __ &XP (ﬁlﬂfzj) (4)
S expmi; > exp (6'zi;)

x;; is a vector of individual and choice specific attributes. Suppose that

the regressor vector x;; has dimension (kx1), then there are only (J-1)xk

identifiable parameters. The logit model has a very useful property, ie the

probability of any pair of decisions (j, m) is equal to the log-odds ratio:

P(d; =)

Qi (j,m) = log <%> = 1 (ﬁj - 57”) = Tij — Tim (5)

The logit model has the benefit of having a simple but restrictive structure.
Since we are assuming iid disturbances, the log-odds ratio does not depend
on the total number of choices considered, J. If the individual were offered
an expanded choice set, equation 5 would not change. This property is
referred to as ”independence of irrelevant alternatives”, Luce (1959); see
also Manski (1981, 1984). The standard example is that of the red and
blue buses, attributed to McFadden but noted by Debreu (1960). We follow
Cramer (1991) for an illustration. Consider the choice among several modes
of transport, with j denoting some form of private transport such as driving
or cycling, and m travel by a red bus, the only mode of public transport.
Suppose that a new service is introduced: a blue bus, identical to the existing
buses except for the colour. The choice set is now wider, but the log-odds
ratio formula for (j,m) is unchanged. In other words, the new service is
suppose to proportionately reduce the probabilities of all existing transport

TA standard type I extreme value distribution, also known as Weibull or Gumbel, has
the form:

F(x) = exp (—exp (= (z — p) /A))

where 4 is a location parameter and A is a scale parameter. In the standard form g = 0
and A = 1.



modes. But it is much more likely that the blue bus will affect the red bus
utilization more than that of the other means of transport.

This structural interpretation of the static logit model represents the
foundation of the analysis of discrete choices over time and, and as we shall
see, equations 4 and 5 provide the large part of the theoretical setup we will
employ. However, within a dynamic framework we need to take into account
that a decision today affects choices in the future and this complicates the
analysis.

4 Social Surplus

The choice probabilities P(d | ), ie the probability of observing choice d
given the information in the data available to the econometrician, are given
by the gradient of a Social Surplus Function G proposed by McFadden (1974).
The Social Surplus was used to prove the consistency of the conditional choice
probabilities as a representation of a random utility maximization problem.
Indicate the distribution of the error terms as g (¢ | z)- which is a logit if the
g's follow an extreme value distribution, the following function G constitutes
a Social Surplus:

G (s () | ) = [ max[m; ()] a(es | 2) 0
G satisfies the following properties:

1. It is a convex function of v; (z) and d

2. It has the additive property that G({m; (z) + a} | 2) = G (7; (x) | ) +
«, where « is a scalar.

3. The partial derivative of G with respect tom; (z) exists and equals the
conditional choice probability:

0G (7 (2) | =)
Om; (x)
Assuming a population of random utility maximizers indexed by €, G (7; (x) | x)

may be thought of as the expected indirect utility function from choosing al-
ternative j.

= P(d]x) (7)

8 Also stated to be the discrete choice version of the Roy’s identity, see McFadden (1981)
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5 A Dynamic Model of Discrete Choice

When the problem becomes dynamic the consequences of choosing an action
from the set of available alternatives is twofold: the firm receives an immedi-
ate reward, current profits, but also it specifies a probability distribution for
the subsequent system state. Then, in order to characterize the profitability
of a current choice we must assess the expected profitability of subsequent
choices. Hence, in each period and in any state, the decision rule has the
property that it must also be optimal for the continuation process, treating
the current state as starting point. Decisions are taken and revised in stages,
based on information as it becomes available and agents’ beliefs about the
future.

The major tool for dealing with sequential optimization under uncertainty
is dynamic programming or (DP) algorithm, ie a method which reduces a
multidimensional problem to a recursive solution of a sequence of two-period
problems (Bellman’s Principle of Optimality, 1957). The DP algorithm allows
us to compute the optimal decision rule by backward induction, starting at
a finite terminal point, T. The logic of backward induction may be extended
to infinite horizon problems. The DP algorithm may be applied to either
continuous, or discrete and mixed discrete continuous choice sets.

Assume discrete time and infinite horizon framework and consider the
following specification:

max E, {; B (54, dt)} (8)

where II indicates profits, s; is a vector of state variables, d; is the decision
variable, (3 is the discount factor, 5 € (0,1) and the expectation E is taken
with respect to information available at time t. We omit the firm index in
order to simplify notation.” We may express the sequence problem 8 by the
following value function (Bellman, 1957):

Vis) = max { (s, di) + BE [V (5t41) | 81,di]} 9)

9The firm selects an action d; at time t with knowledge of the state s;; a decision rule
6 (s;) is a mapping of the state vestor s; into the decision d;, representing a decision rule
for choosing an action at each period t, for each possible value of state variables that
may occur; a policy 6( 61,..6,—;,..) is a sequence of 8's and represents a decision rule for
choosing at each period t an action for each possible value of the state variables over the
entire horizon.
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where the first component on the right hand side indicates current profit and
the second part represents the continuation value. The valuation function
enables us to decentralize a complicated multiperiod problem into a sequence
of two-period decision problems, providing the correct valuation of the future
consequences of current actions. Ideally we would like to use the dynamic
programming algorithm to determine closed-form solutions for V' (s;) but in
many cases one has to resort to numerical solutions and this may be time
consuming since the maximization must be carried out for each value of s;.
Indeed, for complex multidimensional problems the computational burden
may be prohibitive. In what follows we try to reduce this dynamic model to
obtain an estimable form.

6 A Markovian Model

Equation 9 has a Markov structure. Markov processes have the defining prop-
erty that all the information relevant to the determination of the probability
distribution of future values is summarized in the current state. This implies
that the firm does not need to remember the entire previous history to solve
its optimization problem, but only a summary statistics belonging to a finite
vector space, s; € S, ie the value of the set of state variables s at time t, and
its law of motion, ie the probability distribution which characterized how the
state changes from period to period:

p(sl = St+1 ‘ § = Stadt) (10)

where the prime indicates variables not known in the current period. Proba-
bility 10 stochastically determines next period’s state s’ as a function of the
current state vector s; and the current decision, d;. The Markovian prop-
erty is clearly very desirable since it effectively summarizes past information
that is relevant for future optimization making previous history irrelevant.
It allows us to consider time in two blocks: the present and the future.!’ In

10The sate variable sy, is sufficient, ie it effectively summarizes past information that is
relevant for future optimization making previous history irrelevant. Given the value of s;
one may calculate the optimal decision and also the future value s;; 1. It represents a very
economical description of the state of the system making previous history irrelevant as far
as future profits are concerned. Otherwise, the optimal decision would be a function of
the previous history of the system determined by all the values of previous decisions and
states. Previous history is itself sufficient too but it takes values in an increasing space

12



equation 10 we are assuming stationarity. According to this assumption, the
future looks the same whether the firm is in state s; at time t or in state s;
at time t+k, provided that s, =s;,, ie the current state is the only variable
which affects the firm’s perception of the future. Then we may write s’=s; 1,
s=s;, and d= d;. Hence the decision rule and the value function are time
invariant. !

7 A Discrete Decision Process (DDP)

In this section we introduce a particular class of Markov models. Suppose
that the decision or control variable, d, is restricted to a countable set of
alternatives. For example, the firms has to take one of two mutually exclusive
choices: decide whether to invest, knowing that after purchasing a machinery,
costs will be partially or completely sunk, or not invest and keep the option
to invest for the future. Another example is the decision the firm has to
hire, fire or not to vary the stock of employees, in the case of non-convex
adjustment costs. In this case d may assume three alternative values: hire,
not to vary the number of employees, fire. If the control variable only takes
a countable set of values, then the Markov structure specializes to a discrete
decision process (DDP). Thus we obtain the following Bellman’s equation:'2

V (s) :m(?x{ﬂ(s,d)—i-ﬂ/\/(s')p(s’ | s,d)} (11)

where d is equal to a finite (typically small) number of choices.
A discrete-choice dynamic structural framework such as 11 represents a
natural framework within which to analyze firms’ behaviour when optimal

as t increases, while s; takes values in a fixed space. It clearly simplifies the problem to
use variables which take values in a fixed low dimensional space, and indeed it is desirable
that this dimension be as low as possible.

' The Markov structure may seem very restrictive. Indeed, suppose lagged values of the
state variables were relevant, say s; 1, we can expand the state vector to s=(s, st,l)/ and
still maintain the Markovian property. However, they may problems with high-dimensional
state vectors, which make computation very burdensome.

12The infinite horizon case introduces complications since an infinite number of periods
implies an infinite number of decisions. This requires the study of the convergence property
of the DP algorithm. The Contraction Mapping Fixed Point theorem proves that the
function V(s) is the unique solution to Bellman’s equation. See Bertzekas,(1987) for a
proof.
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inaction generates censoring in observed decisions. We mentioned in the
introduction that the optimizing response in the presence of fixed adjustment
costs may be inaction and thus there is the possibility of corner solutions
in the demand for inputs. In this case, the standard marginal conditions
for optimality given by the Euler equation fail to hold. Another example is
given by (S,s) rules in the case of expenditure on durable goods and inventory
behaviour. A large number of studies emphasize the lumpy nature of durable
goods purchases and inventory management. In the case of durable goods,
individuals update their durable stocks infrequently and when they do make
purchases their purchases are large. Infrequent behaviour is apparent in
longitudinal datasets which reports firms’ (or other agents) decisions over
time and show that firms may not respond to observed changes in demand
and /or costs, even when these are of a large magnitude. The DDP framework
allows us to model directly inaction and to exploit the information contained
in the discrete choice. See Eckstein and Wolpin (1989), for a survey and Rust
(1994) for a discussion.

8 Unobserved State Variables

The econometrician’s goal is to estimate the unknown parameter vector 6 €
O, in amodel that is fully specified up to ©, a compact convex subset of
a Euclidean vector space. As in the case of the static model discussed in
Section 3, if we were able to observe all components of s (given forecasts
of ) and if the primitives were correctly specified, the estimated decision
rule would allow us to perfectly predict firms’ behaviour at each point in
time and to know the precise consequences of their decisions. This is a
consequence of Blackwell’s theorem (Blackwell, 1962 and 1965) which implies
that the optimal decision rule is a deterministic function of the agent’s state
vector, s.'3 However, datasets are not rich enough to provide full information
on the state variables relevant for the firm’s decision making and real data
usually show different values of the decision, d, associated with the same

13Under certain regularity conditions, such as boundedness of 7, the Bellman’s equation
is mathematically equivalent to a fixed point contraction mapping. This implies existence
and uniqueness of the DP algorithm. Blackwell’s theorem states that the stationary deci-
sion rule computed from Bellman’s equation is an optimal decsion rule. A stationary policy
is Blackwell optimal if it is simultaneously optimal for all the -discounted problems, with
B € (0,1). See Bertsekas (1987) and Stokey and Lucas (1989) for a discussion.
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values of the state variables.!* The typical solution is to add the error term
such as unobserved state variables and/or measurement errors, in order to
reconcile the difference between the observed behaviour and the prediction
of the discrete decision process. From our standpoint, we assume that this
error term is a consequence of the fact that our data fail to fully measure all
the characteristics of a firm and partition the vector of the state variables as
the following:

s =[x,€] (12)

In expression 12 we allow the state vector, s, to comprise an observable
component x, known to the econometrician (and to the firm), which include
all variables, knowledge of which can help to determine a certain decision,
and an unobservable term e, which reflects the econometrician’s imperfect
knowledge about the state variables relevant for the firm’s decision process.
Hence, the decision rule is deterministic from the standpoint of the firm but
stochastic from our standpoint. This disturbance term has the same role as
in the case of the static models discussed in Section 3.

Following the discussion in Section 3, we make the following assumption:

Assumption 1: The profit function is additively separable and may be
written as

T (s,d) = 7 (z,d) + & (d) (13)

where the unobserved state variable € is a vector with at least as many com-
ponents as the number of alternative choices (McFadden, 1981; Rust, 1987)
and where E[Il (x,d)] = 7 (x,d) is the one-period profit, conditional on the
observables x and the choice d.

Because of the presence of the random disturbance term e, profits are a
random variable and we have thus to consider their expected value, where the
expectation, E(.), is taken with respect to the joint distribution of the random
variables. As we have already seen, additive separability between observables
and unobservables was introduced by McFadden (1973) and (1981) in order to

4 Manski (1977) lists a number of reasons for incorporating this random component: it
reflects unobserved characteristics, unobserved taste variation and similar imperfections
which force the analyst to treat the choice process as random. See also McFadden (1973,
1981) in the context of static structural discrete choice models and Bertsekas (1987) for a
discussion of problems with imperfect state information.
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define the random preference maximization model, in which preferences are
influenced by a unobserved variables. It is clearly a strong assumption, but
relaxing it requires one to postulate a probability distribution of € conditional
on x and to integrate the decision rule over € to obtain a form in terms of
observable and structural parameters only. This turns out to be intractable,
see Rust (1992).

The dimension of € may vary with the number of elements in the agent’s
choice set, D(x). We can identify each choice set as a set of integers: D(x)={1,...
|ID(x)| }, and let the decision space D be the set D={1,..., sup,ex |D(x)| }
Then whenever |D(x)| < |D| we can consider the remaining components |D|
- |D(x)| as superfluous. Thus the vector needs to have at least as many
components as the number of elements in D(x) - see Rust (1994) for a full
account.

Assumption 1 allows us to rewrite the value function 11 in the following
way:

V(s) = max [0 (z,d) + e(d)] (14)

where

6(z,d):7r(x,d)+ﬁ/V(s']x,d)p(s'[x,d) (15)

which represents the dynamic version of the static model discussed in Section
3.

Error structure: it may be useful at this point to summarize the error
structure in the model. There are two sources of uncertainty which make the
model stochastic:

1. A disturbance, which may be unpredictable or imperfectly predictable,
is standard in models involving uncertainty about the future. Here
it represents unexpected states occurring during the evolution of the
system, e.g. exogenous shocks, both idiosyncratic and/or aggregate
shocks. These are represented by the expected values of the variable
regarding the future.

2. An error component which represents an ”ignorance effect” arising in
the case in which some state variables, also current, are imperfectly
observable. We have assumed that the econometrician does not have
perfect knowledge of all the state variables which each firm takes into
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account when making current and future plans, in particular the infor-
mation she has access to may have errors. Namely, the state variables
which are perfectly known by the firm are random variables for the
standpoint of the econometrician.

In what follows we deal with this second source of disturbance by refor-
mulating the imperfect information case into a basic problem with perfect
information. Intuitively, this may be done by defining a new system the state
of which consists, at time t, of all variables the knowledge of which may be
of benefit to the econometrician when modelling a decision observed in the
data.

Our objective is to obtain the same structure a in Section 3 where we
were able to concentrate on the difference between the pay-offs from two al-
ternative choices. However, there is a fundamental difference between this
model and the static structure discussed earlier. Since our problem is dy-
namic there is the possibility that the error terms are serially correlated. This
is a likely case in many studies which use microdata where heterogeneity and
persistence in idiosyncratic shocks cannot be easily neglected. If € is auto-
correlated, all future values of x are correlated with past and current values
of e. Bellman’s equation 14 is carried out over a state space of expanding
dimension and this makes estimation extremely difficult if not intractable.
This problem is known in the literature as the ”curse of dimensionality”
(Bellman, 1957). '

In order to make the problem tractable we need to assume that the tran-
sition probability satisfies the conditionally independence assumption (Rust,
1987). Conditional Independence

We make the following assumption:

Assumption 2: The transition probability for the process {x,e} may be
expressed as:

p(a e |xe,d)=q( | 2)p(a |z, d) (16)

where p{z’| x,d) is the transition probability of state z’ given state x and
decision d.

15Kwane and Wolpin (1994) propose a method for approximately solving discrete choice
dynamic programming problems, based on simulation and interpolation. This method’s
partially solve the problem of Bellman’s ”curse of dimensionality” by obtaining approxi-
mate solutions for problems which would be otherwise intractable.

17



According to 16, conditional on the contemporaneous observed state vari-
ables, z’s, the unobservables do not depend on any previous state variables
and decisions. Any serial dependence between € and €’ is transmitted entirely
through the observable state vector x’, which becomes a sufficient statistics
for &’. Moreover, conditional on the current state vector and decision, the
probability density for the observable state variables 2’ , next period, depends
on x and not on €. Under conditional independence we may write equation
14 as:

V() =max{r(@.d)+e@+8 [V |2 d]a |2)p@ | 2.d)} (17)

We have expressed the value function as an expectation which depends only
on the observable state variables. In particular, consider the following con-
ditional value function, ie the value function after having optimally chosen
one of the available alternatives, for instance d* = 1:

i (z) = 71 (2) + &1 +ﬁ/ maxo; () g (€' | 2)p(@/ |2.d" = 1) (18)

where j={1, 2, ..., J} indicates the number of choices available to the firm and

v (2) = E[V; (s) | 2, d" (s) = 1] (19)

is the value function in terms of only the observables. One of the very impor-
tant consequences of Assumption 2, is that we may express the conditional
value function in terms of the observable state variables.

It may be useful to summarize these last steps we have discussed. Start-
ing from equation 17, we suppose that the firm’s optimal choice at time t is
d=1, for instance ”invest” or ”hire”, which we observe in the data. Never-
theless, to model this decision we can only rely upon imperfect information
and the conditional value functions, the value function relating to having
optimally chosen ”invest” or ”hire” are, in principle, unknown functions of
the state variables and structural parameters. However, we may rewrite the
conditional value functions as expected value of functions of future paths of
state variables and structural parameters, where the expectation is condi-
tional on the current state variables and decisions, observable in the data,
as indicated in equation 19 and implied by Assumption 2. It is essential
to assume that, conditional on the observables, the autocorrelation in the
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unobservables should be entirely captured by the autocorrelation in the ob-
servables.(see Aguirregabiria, 1997 for a discussion)

Using Assumptions 1 and 2 and some assumptions on the distribution
of the unobservables, we may obtain a known functional form for equation
18. This will be play an important role in the estimate of the discrete choice
model.

9 The Optimal Decision Rule

Suppose for simplicity that there are only two choices, j=1,2. The firm
decides to choose option 1 if vy (z) > vy (z) otherwise it chooses alternative
2. Using the definitions of the two conditional value functions we may express
the optimal decision rule in terms of the differences in the expected pay-offs
associated with the two alternative choices, as the following:

_w_ 1 if (a2 —er) < (m(x) +or(2f) — o () + v (2))
5($7€)_d _{ 2 Zf (62—81)>(7T1
(20)

vy (z) is specified as in equation 18 with an exact counterpart in the case
of choice 2. The optimal discrete choice is, thus, expressed in terms of in-
equalities between the conditional value functions. In particular, equation
20 indicates that the firm decides to choose alternative 1 if the difference
between the choice specific stochastic terms (e — €1) is less than (or equal
to) the difference between the conditional value functions relating to choice
1 and 2 respectively, and it will take action 2 if the reverse inequality holds.
The same reasoning may be easily extended to the case of more than two
choices. The decision rule takes the form of a threshold rule, where it is pos-
sible to compare the reward relative to each decision. In a static world, and
hence not considering the terms v; (') and v, (2') and assuming that the £’s
are distributed according a type I extreme value distribution we would have
the static logit model discussed in Section 3.

In general, with J alternatives, given assumptions 1 and 2, the optimal
discrete choice becomes:

d* = arg max <7Tj (z) + €& (z) + BBV (m)) (21)

je{1727"'7']}

The decision rule is expressed in terms of the observables. As we discussed
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in the previous section, this is a consequence of Assumption 2 which implies
that we can look for sufficient statistics which summarize all the information
that is necessary for control purposes. In the absence of perfect knowledge
on the state variables, the researcher may re-define the problem in terms
of probabilistic states, making the problem conditional on the information
available at current time, ie the observed decisions and the characteristics
of the firms. There is a probability measure which allows us to redefine the
basic problem with imperfect state information as a problem with perfect
state information: the conditional choice probability. The problem may be
stated in the following way: given the choice between 1 and 2 what is the
probability that the we observe the employer selecting, say, choice 1, given
the information available in the data?

10 Conditional Choice Probabilities

Assumption 2 allows us to adopt the same methodology as in the case of
static discrete choice models. Define the following probability:

P(d\x):/l{dzé(:c,a)}q(da\:1;) (22)

where ¢ (z,¢) is the decision rule, I is an indicator function and q(e | z) is
the conditional distribution of € given x, which we will define later. Prob-
ability P (d | x) is the conditional choice probability ie the probability that
the econometrician observes the firm optimally choosing d = 6 (z,¢). It rep-
resents that sufficient statistics which summarizes all the information that is
necessary for control purposes we were invoking in the previous sections.

Consider the conditional value function 18; using the definition in 22, we
may rewrite the continuation value as a weighted average of the conditional
value functions relating to each alternative choice where the weights are given
by the probabilities that a decision is taken. Remember that the conditional
value function is the value function conditional on having optimally chosen
one of the available alternatives. Thinking again, for simplicity, of the two-
choice case, we may rewrite the conditional value function relating to having
optimally chosen alternative 1 as:

v (@) =m (@) +a+5 [

;Pj (@) v; (@) p (2’ | ,d" =1) (23)

20



Equation 23 is equivalent to formulation 18. Since the vector j comprises
only two mutually exclusive choices: j=1,2, equation 23 becomes:

o (@) =m (@) +e+ 8 [RE)0 @)+ P @)n @) pa | 2d =1)
(24)
In the case of two choices, the probability of making choice 1 may be written
as (Hotz and Miller, 1993):

e +AT

o= [ [ dgle) (25)

2=—@

= /_ g1 (€1, [e1 + T2 — 11]) dey

where U; = 7 4+ v;, g is the error joint density. The integrand in the last line
of 25 is the probability density for €, given decision rule 20, in particular
T1+€1 > Ta+eo which applies when choice 1 is optimal. (McFadden, 1981).

In the general case, with J choices, the conditional choice probability
satisfies the following:

_ J J J (!
Pr{d = argje{rlr}gfj} <7r (x) + & (z) + EpV (z ))} (26)

In the next section we will show how choice probabilities allows us to
represent the model in terms of the measured attributes of alternatives and
individual characteristics, while maintaining the recursive structure inherent
in the problem. Hence they may be directly used as representation of the
intertemporal choice problem.

11 Reduction of the Model

The function vy may be computed by solving the contraction fixed point
which involve using computationally intensive backward recursion methods.
Hotz and Miller (1993) provide an alternative representation which avoids
having to solve explicitly for v,. Their approach is based on a new represen-
tation of the valuation function which is expressed in terms of future pay-offs,
choice probabilities and probability transitions of choices and outcomes that
remain feasible in future periods.
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Conditional on d*=j, there is a relationship between the information er-
ror term, which captures the econometrician’s imperfect knowledge on the
state variables relevant for the firm’s decision making and the conditional
choice probability. In particular if q(e | z)follows a multivariate extreme
value distribution then the conditional choice probability may be written as
a multinomial logit

P (d | I) _ €xp {Ud (IL‘)} (27)

exp Y {v; ()}
Consider the optimal decision rule in the case of two choices, 1 and 2, as
in equation 20, where the optimal policy is defined in terms of inequalities
between the conditional choice value functions. For each choice, Q(.) repre-
sents a positive, real-valued mapping from the differences in the conditional

value functions.

P(d=1) = P{(e2—e1) < (U2 -71)} (28)
= Q@ —7) = Q (A7)

where AT denotes the difference between the conditional valuation functions
associated with the two alternatives choices, and 7; = 71 + v;. Hotz and
Miller (1993, Proposition 1) show that Q(.) is a real valued, invertible func-
tion which allows us to express the difference in the conditional value func-
tions in terms of the conditional choice probabilities as the following

AT (z) = Q7" [Py ()] (29)
In particular, if the information error term e are i.i.d. extreme value dis-
tribution, we obtain the standard logit specification, according to which the
difference in the conditional valuation functions, Av, reduces to a log-odds
transformation:

1- P, (x)] (30)

AT (z) = Q '[P, (z)] = log [ P (2)

We have, thus obtained the dynamic version of the structural multinomial
logit model discussed in Section 3. Using this new expression of the valua-
tion function we may now give a clearer representation to the firm’s optimal
decision process. Note that the term in square brackets in equation 24 may
be rewritten as the following:
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Py () vy ()41 = Py) (') v2 (2') = v (&) +(1 = P) (02 (2') — 01 (2)) (31)

Thus we equation 24 may be rewritten as

1—P1(.I')

vy (z) = 71 (z)+e1+0 / {logl P (@)

] (1—P)+ P (2") v (x’)}p(x’ | z,d" =1)

(32)

In the general case, consider the choice j=1 as the benchmark choice and

express the problem in terms of difference in the conditional value functions,
ie the log-odds ratios. We have that

va(z) = my(x)+ ﬁ/log Zexp {v; (') — v, (;g’)}] p(2' | x,d) (33)
8 [ v (@)p(@ | 2,d)

= ma(@)+ 8 [log | S P (@) /P ()| p(o! | 2.d)

8 [ v @)p (@ | 2,d)

The conditional value function comprises the one-period profit function, and
the continuation value which is expressed in terms of the difference in the
conditional choice probabilities relating to alternative choices.

The log-odds ratios may be estimated non-parametrically and constitutes
an important part in the estimation of the discrete choice as we shall see later.

Rust (1994) notes that in the dynamic logit model does not suffer from
the independence from irrelevant alternatives problem, which implies that
the ratio of choosing any two alternatives does not depend on the attributes
of the others. In the dynamic version, the way v(.) is specified implies that
all alternatives are taken into accounts at each stage.

General Model

Let us summarize the results obtained in the previous sections by considering
the general case in which there are J decisions. We may write the continuation
term in the value function in general terms as:
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J

V(@) = [ X)) () p [ @d =d) (34

J=1

= /log

where j=1 is considered as benchmark choice. As discussed earlier, the ex-
pectation of the choice specific error terms, may be written in term of the
vector of conditional choice probabilities, P(z') = {P; (¢'),..., Py (z')}. We
only need a parametric specification of v(.) for a single alternative, d=1,
instead for all alternatives, j. Given the benchmark conditional value func-
tion, the functional forms for the remaining conditional value functions are
uncovered non-parametrically by inverting the mapping Q from value func-
tions into choice probabilities. The invertible mapping reduces to a simple
log-odds transformation when the error terms are i.i.d extreme value distri-
bution because, in this case, function q[.] is a logit '°. However, even if P (.)
has a closed form in terms of the value functions wvg (.) if the €’s are i.i.d.
extreme, we need to know the functional form of the conditional choice value
function v, (2'). Usually we do not have a priori known functional form.

SP @) /P ()| p(a! |2, d)+ 5 [ o () p (el | 2.d)

12 Closed Form Solution

The optimal decision rule may be written as
| — * g * g -] -] .] /
j=d =8 (vd) =arg_max (7 (@) +& (@) + EBY (&) (35)

where v, is the unique fixed point to the contraction mapping defined by the
following condition 7

16This distribution has the following form:

q(e | #) =J[ exp ({—e + v} exp{—exp {—e +~}})

The scale parameter v , known as Euler’s constant ~ 0.577, shifts the extreme value
distribution to obtain an unconditional mean equal to zero.

17The contraction mapping is v: B— B, where B is the Banch space of all measurable
bounded functions, v: XxD — R, where X is the state space and D is the decision space.
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v(@) = m@)+e+06 [ G @) | 2)pE'|2.d) = (36)
Wj(x)+€j+ﬁ//mjax[vj(x') | 2] q(g; | 2)p (2’| z,d)

and it is the unique solution to Bellman’s equation 17. G(.) is the social
surplus 6 defined in Section 4.

G (v; (') | z) / max [v; (') | 2] ¢ (¢; | 2) (37)

For specific functional forms for the density g (¢; | z)we obtain very tractable
forms of the conditional choice probabilities P (d | x), the social surplus
G (vj (x) | x) and the contraction mapping v; (x).

We follow Aguirregabiria (1999) and, given Assumptions 1 and 2, repre-
sent the optimal discrete choice by the following expression:

d* (z;0) = arg max {mj (2;05) +e;+v; (0)} (38)

where 6 = (0,,60;)and v; (f) has a closed-form solution. Exploiting the re-
cursive structure of the problem, we may define the following Social Surplus:

G(z;0)=F max {m; (x;0:) +e;+ Pv; (';0)} | z; 60 (39)

where 6 is the vector of the parameters of the value function and 6, is the
vector of the parameters of the profit function we have omitted so far in
order to simplify the notation. Specification 39 is equivalent to equation 6
in Section 12. Using expression 39 we may rewrite the continuation value as
the following:

v (@'30) = [ G@50)p (@ | 2.d;0y) (40)
and 0 is vector of the parameters of the transition function and
J
G (2;0) =) _Pj(x;0)
=1

J

73 (2302) + aa (P10) + 8 [ G @'30)p (o | 2.50))

(41)
Equation 41 defines G (z;0) as the fixed point of a contraction mapping. Nu-
merical solutions of this contraction mapping may be obtained for particular
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values of 6 . Methods such as the nested solution-estimation algorithm have
successfully estimated discrete choice structural models, see Rust (1994) and
the survey by Eckstein and Wolpin (1989). These methods require an ex-
plicit solution of the model at each iteration in the search for the parameter
estimates. This may become very demanding from a computational point
of view. For instance, Rust (1994) suggests a nested fixed point algorithm:
an ”inner” contraction fixed point algorithm to compute v(6) for each trial
value of §, and an ”outer” hill-climbing algorithm to search for the value of
6 that maximizes full information maximum likelihood, L(#).

However, we can avoid having to solve the fixed point contraction map-
ping since G(.) has a closed form solution which may be expressed in terms
of the one-period profit function, the conditional choice probabilities and the
transition probabilities. To obtain this we need to discretize of the space
of the observed state variables. Let 2!, 22, ..., 2™ } be a discretization grid.
Using this discretization we may write the contraction mapping in matrix
form as the following:

Z By (0) * [m4 (0r) + qa (P [0]) + BFu (07) G (0)] (42)

where v (0), Py (0) and qq (P [0]) are Mx 1 vectors, * is the element by element
product; 74 (6;) is an Mx (J — 1) matrix and Fy (0)is the MxM matrix of
transition probabilities conditional on discrete choice d. The solution to the
contraction mapping 42 is given by

G(0) = (In — BF (¢ {ZPd 9)+qd(P[9]))} (43)

where F (0) = >/, Py (0) F4(0) is the matrix of unconditional transition
probabilities; P, () is a diagonal matrix with the conditional choice proba-
bilities on the diagonal. Let 68" be the true vector of structural parameters
in the population, and define P} = P, (0*), F; = Fy; (0") , F* = F(0"), where
the asterisk indicates the true parameter. Therefore, for any 6 close enough
to 6" we have that

G (0) =~ (In — BF")" {ZPd +qd(P*))} (44)

Then 41may be written in the following estimable form:
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J J
va(0) = Fy (fM—ﬁF*)l{ZPI*M ); > Pjxqa(P } (45)
j=1 j=1

Equation 45 is a closed-form solution to problem 34 and we may obtain consis-
tent estimates of the structural parameters without having to solve directly
the structural model. Indeed, we know the form of the one-period profit
functions 7 (0,) and we can estimate F*, F?" and P* non-parametrically.

13 Estimation

Semi-parametric estimation of model 45 proceeds in 2 stages:
Stage 1.

e Nonparametric estimation of the conditional choice probabilities for
each discrete alternative over the range of non-discretized state vari-
ables. The local probability Pjof making choice j conditional on the
vector £ of state variables is estimated as

m Z K (52)dy

s E ()

J

where n is the total number of observations, K(.) is the kernel (local
averaging) function, typically chosen as Gaussian, and h is the window
size, typically taken as proportional to n°

e Estimation of the transition probabilities of the observed state variables
to obtain estimates for 6. For this purpose, we require a discretization
of the observed state variables. The optimal size of the discretizing
grid depends on the number of state variables and the dimension of the
dataset. Grid size should be chosen to ensure approximately equal num-
bers of observations in each cell. When the state variable dimension ex-
ceeds one, the need to avoid sparsely populated cells can force a course
mesh. Transition probability are estimated as the sample frequencies
at the mean cell values of the state variables. In general the matrix of s-
step-ahead probabilities is p(z;is | 7, d = j) = F*~'F}, s > 0, where F
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is the MxM matrix of transition probabilities and F} is the MxM ma-
trix of one-period transition probabilities conditional on discrete choice
d=j. In a stationary Markov environment, all future probabilities can
be obtained from the one-step-ahead probabilities, see Aguirregabiria

(1993).
Stage 2.

e Having estimated the conditional choice probabilities and the transition
probabilities in Stage 1, for any values of the parameters in 6,, we can
construct the values for expression 45

va(x,0) = F (I, — F*) ! {i P; o« 11y (05) ; iPd* * (g (P*)} (46)

j=1 j=1

where I, (0,) is the matrix of the one-period profit functions and P} is
the matrix of the conditional choice probabilities. Under the hypothesis
that the error terms ¢’s are i.i.d. extreme value, this enables us to
calculate the adjustment probabilities

Pt - Sl "

Given a set of orthogonal variables Z, satisfying

E(Z|I(d=j)— Pa (1,5;65)|) =0

we may define the vector e of generalized residuals by e (6,) = I (d = j)—
Py (I1,0;0,).  This motivates the generalized method of moments
(GMM) estimator obtained by minimization of the criterion function

mine'Z (Z'02) " Z'e (48)

where Z is the matrix of instrumental variables, 2 = E (ee). Because
Q2 is unknown and unknowable, we follow White’s (1980) two stage
procedure. At the first stage 2 is replaced by the identity matrix and
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at the second stage W = (w;;) = Z'QQZ is calculated from the first
stage residuals € by

n
Wi; = Z Zkizkjgi (49)
k=1

Hotz and Miller (1993) show that the conditional choice probability
estimator is consistent and asymptotically normal.

14 An Example

To illustrate this, consider again the simplified case in which the firm has
to decide between two mutually exclusive choices. We follow Rota (2000)
and analyze firms’ intertemporal employment decisions in the presence of
lumpy adjustment costs.!® In a discrete time, infinite horizon framework,
the firm’s intertemporal problem is to find an optimal employment policy. In
the presence of lumpy and kinked adjustment costs, firms may find it optimal
not to vary the number of employees, even in the presence of shocks. Firms
only make those changes in the labour input which are justified by sufficiently
large departures of desired employment from their most recent choice of the
number of employees. The adjustment process is lumpy and intermittent: in
the face of a shock, a firm may decide that it is optimal to maintain the same
number of employees and to postpone adjustment to the future; there is the
possibility of corner solutions in the demand for labour. In this case, the
standard marginal conditions for optimality given by the Euler equation fail
to hold. At the beginning of period t, the firm chooses the profit maximizing
level of employment. It observes the beginning of period number of workers
L;_1, the current wage, W; and the productivity shock, w;, but it is uncertain
about future wages and productivity shocks. There are two exogenous state
variables in the model: wages and productivity shocks. Wages are imperfectly
observed by the econometrician due to lack of information on the costs of

18Tn Del Boca and Rota (1998) the analysis of the legal provisions on hiring and firing
in Italy show how that the legislation favours the use of collective firings as a way of
reorganizing personnel, while the strict unfair dismissal regulation makes discharges very
difficult. The implied pattern is alternating regimes of large adjustment and of non-
adjustment, consistent with that generated by fixed adjustment costs. See Hamermesh
(1989) for the seminal work on labour demand in the presence of fixed costs.

Moreover, the absence of a system of severance payments in Italy, makes alternative
cost structures, such as linear costs less appropriate.
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monitoring workers, and heterogeneity with respect to human capital. Thus
the state vector, s, comprises an unobservable component, € , which captures
the heterogeneity in both the outcome paths and the employment choices
observed in the data:

s = [Ltfla VVt; We, gt] (50)

The vector of observables is:

T = [Lt—la VVt; wt] (5]-)

The one-period profit function has a very simple form:

where A>0, 0<a<1, b>0 is the cost per unit of labour, K is the fixed cost and
1(Ly # L;_1) is an indicator function. When the firm adjusts employment it
pays both kinked and lump-sum costs. In this model adjustment costs are
symmetric.

Under assumptions 1 and 2, the conditional value function, relating to
choice d=A, ie adjust the number of employees has the following form:

va(x) = ma(x)+ea+ (53)
B [{ua @)+ 11— Pa(@)] [ona (@) = va @)} p(a’ | 7,d" = A)

where the conditional value function is expressed in terms of the observable
state variables and, since there are only two choices, it must be that P4 =
(1 — Pya). Equation 53 is the analogous of equations 23 and 24 in Section
11. We may write the value function conditional on having optimally chosen
alternative d=NA, as

UNA (23) = 7TNA )+5NA+ (54)
ﬂ/{UA +[1 = Pa(2)] [ona (@) —va (@)} p (2" | 2,d" = NA)

Equation 53 may be rewritten as:
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va(z) = () +ea+ (55)

B/{m #1= Pa@ion [P b @ =

where 7 is a constant of proportionality. The conditional value function for
decision d* = N A is defined symmetrically.

Before proceeding to the estimation of the discrete choice implied by the
existence of non-convex adjustment costs, it is worth noticing the following
property of our model. If we concentrate on the value function conditional on
adjusting, ie conditional on the firm deciding to change from L; ; to L;, we
may take the first order condition with respect to L; and obtain the following;:

NA

ovt _ om! Ilt41 N A0+
= + + =0 56
oL, 0L, BB OL; oL, It 1oL, (56)

where ¢;11 = log [P—A"'—} . Here, the first term is standard and relates to in-
t+1

creased profits from the current period adjustment, but this is augmented by

the square-bracketed term which relates to the consequences of maintaining

this new level of employment in subsequent periods, as the result of lumpy

adjustment costs. Using the one-period profit function 52, we obtain the

following marginal productivity condition:

<%>t =W, W, + ¥y (PQ)t+1 + V1 (57)

where

tJH NAaQH-l
(Pq)yy1 = oL, %+ + Py oL, (58)

and vy, is a realization error. The structural parameters are related to the
coefficients of 57 by:

19The decision rule is the following:

Ui (ewa—ea) < (ra(e) bua (@) — ma (2) + ona (2)
6(z,6) =d —{ 2 i (ema—en) > (M (@) + v (@) — Tora (2) + Vs (2)
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=ty = Loy = (59)
a a a
Equation 57 is a simple marginal productivity relation augmented by the
forward-looking term (Pgq),,,which captures the alternatives of future ad-
justment or non- adjustment arising from the presence of fixed adjustment
costs. 2

Equation 57 may be estimated using a two stage procedure; we first esti-
mate the conditional choice probabilities P/}, and P{" and the slopes %
non-parametrically, using a kernel method, and construct the term (Pq),, ;.
In the second stage we use GMM to estimate the augmented marginal pro-
ductivity equation 57, by conditioning the model on adjustment occurring
at time t. We thus consider the sub-sample of interior solutions, which com-
prises the firms which have optimally adjusted at time t. 2!

The semi-reduced form 57, obtained by exploiting the first order condi-
tions for optimality, allows us to obtain estimates of the parameters of the
production function. The important new result is that, conditional on hav-
ing adjusted employment between t-1 and t, the marginal revenue product
of labour will differ from the wage the firm pays by a forward looking term
which embodies the discrete choices implied by the cost structure. This pro-
cedure allows us to exploit standard orthogonality conditions in estimation
and it may also provide a way of properly estimating intertemporal relations
for a variety of other problems (eg investment demand and inventory).

However, the fixed cost parameter K is not identified from these estimates.
In order to estimate fixed costs we need to directly model the discrete choice.
In order to do this, we need to refer to the methodology proposed by Hotz and

20Quppose that the firm increases (decreases) employment in period t but, because of
high adjustment costs, expects not to adjust in the subsequent period (Pﬁﬁ‘>Pf+1). Thus
Pl{\fl‘ is high and q¢41 positive. Suppose that at the beginning of period t+1, L; is above the
desired level, then the derivatives of both Pﬁ_“l‘ and qz41 with respect to L will typically
be positive. This implies that the term q;11 will be positive. The firm expects to reduce
employment in the future but, at present, L; is higher than it would have obtained in the
absence of adjustment costs, and marginal productivity is low relative to the wage rate.
In the opposite case, the firm intends to hire new employees in the future, but at present
L; is below the desired level and marginal productivity is high with respect to the wage
rate (the term qzyq is negative). The term qs11, therefore allows us to take into account
the future choices the company faces subsequent to adjustment at t.

2IFor this purpose, we adopt the following selection window: we keep or drop the ob-
servation on L; according to whether it is different from or equal to L; .
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Miller (1993) and Aguirregabiria (1999) and discussed in Section 15. Nev-
ertheless, we are able to simplify their procedure by utilizing the structural
parameter estimate obtained from estimation of the first order condition 57.

To estimate the size of fixed costs we need to estimate first the transition
probabilities p4 and py 4. To estimate the discrete decision process we require
a discretization of the space of the observable exogenous state variables, W;
and w;. We consider a grid of m=52 =25 cells with approximately equal
numbers of observations. Define:

< va (F) > ~ (I, — AR)"! < T4 (Z) +¢ea ) (60)

vy (Z) TNa(Z) +ena

where

61
TnaPa TnaPwya (61)

R — [ TaPa  TaPya ]
and where I is the identity matrix, T4 and Ty, are (mxm) matrices of
the one-period transition probabilities, P4 and Py, are diagonal matrices
with the conditional choice probabilities on the diagonal, and 7 indicates the
discretized state space. The value functions and profits are evaluated at the
mean cell values of the state variable. The one-period transition probabilities
are estimated non-parametrically.

The vector of generalized residuals is

e = dy — P <£> -0 (62)
gyJ

where J;; indicator function, ® is the standard normal distribution function,
o7 is the sample standard deviation of the J;; and 6 is an intercept. According
to the structural methodology, firm i should adjust in period t if J;>0 but
otherwise it should remain with an unchanged labour force.

In the first stage we choose 6 to minimize

ROAVAVARIAL (63)

where 7 is a matrix of instruments, {2 is a covariance-weighting matrix which
corrects for heteroscedasticity (White, 1980). At the first stage Q is replaced
by the identity matrix and at the second stage Z’€) Z is calculated using the
first stage residuals.
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It should be noticed that fixed costs parameters are not only associated
with the constant terms in the choice specific intertemporal profits. Fixed
costs are also associated with some components of v4. It is crucial for the
identification of these parameters that these components present significant
sample variation. Estimation on a sample of more than 3000 Italian firms
recorded over the period 1982-1989 indicates that adjustment costs are very
high. The median level of fixed costs corresponds to approximately 3.65
times average unit labour costs.

15 What Do We Gain By Being Discrete?

In this paper we have emphasized how the DDP model represents a natural
framework within which to analyze agents’ behaviour when optimal inaction
generates censoring in observed decisions. Certain phenomena are naturally
discrete - we have mentioned Rust’s machine replacement model or Hotz and
Miller’s fertility decisions. It is obviously desirable to model these as discrete.
Considering individual agents decisions overcomes the representative agent’s
problem, as the McFadden’s example explains: half the population travels
always by bus and half always by car, while the ”representative person”
travels 50% by bus and 50% by car. Is the latter truly representative?

Other economic problems may result in agents behaving in a discontin-
uous manner, alternating period of actions to ones in which their optimal
decision is "doing nothing”. Omne of the many examples, is given by the
optimizing response of a firm in the presence of fixed adjustment costs; the
firms may optimally choose to postpone the decision of changing one or more
inputs to the future even in the presence of shocks. This behaviour generates
corner solutions in the optimal adjustment path and a break in the stan-
dard first order conditions given by the Euler equation. One solution would
be to consider only the subset of interior solutions and recover the Euler
equations. However, we would lose the information contained in the discrete
decision, and obtain inefficient parameter estimates. In order to exploit the
information contained in the discrete choice we need to model this behaviour
as a discrete (or mixed continuous-discrete) decision process. Longitudinal
datasets, which record cross sections over time, show that often agents do
not respond to observed changes in the variables relevant for their decision
making, even when these are of a large magnitude.

It is tempting to suppose that aggregation makes discrete decisions con-
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tinuous, but many studies have found that microeconomic frictions may influ-
ence aggregate dynamics. The effect of heterogeneity of agents, idiosyncratic
uncertainty and lack of coordination can imply highly nonlinear behavior
in aggregate time series. Hence, reference to microeconomic models becomes
relevant if aggregate dynamics are to be correctly understood. Caballero and
Engel (1992, 1993 and 1994) propose an adjustment hazard function which
determines the probability that a unit adjusts, in a given time interval, as
a function of the difference between the current and the target value of a
variable (inventories, durables, capital etc.). The model encompasses both
(S,s) rules (where the hazard functions jumps from zero to infinity) and the
linear-quadratic model (constant hazard). Only in the second case does the
model generate aggregate dynamics which are indistinguishable from those of
the quadratic cost representative agent model, while a non constant hazard
introduces nonlinearities and complex dynamics into aggregate relationships.
In this case, the propensity to change the stock of inputs is positively related
to the size of the shock. The response to an aggregate shock will depend
on whether most units are within regions with large or small adjustment
hazards.

There is a fundamental methodological difference between discrete choice
and continuous choice models. In the former class of models, choice can be
varied continuously and the net effect of a marginal change on costs and
benefits helps to characterize the optimal decision: for example, concavity
of the objective function, implies that the solution to a first-order condition
fully characterizes the optimal choice. In the latter class of models, when we
deal with a finite number of choices, the value of taking each choice must be
compared with the others, so optimal behaviour is characterized in terms of
inequalities. Modelling the choice set as finite implies that people with similar
but not identical situations might make the same choice. See, for instance
McFadden (1981) in the case of the Social Surplus Function and Manki’s
(1993) in his static path representation according to which a basic social
feature of decision making is that one learns from the experience of others and
emulates them. Information about their marginal differences is lost and by
only focusing on broad based options, the econometrician must consequently
maintain stronger assumptions about the functional forms of preferences,
opportunities and the nature of unobserved heterogeneity throughout the
sample population in order to achieve econometric identification. However,
it is also possible to apply the DDP framework to models where the choice
variables come from a continuous support; indeed one method of handling a
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continuous choice model is to first discretize it with a finite number of states
and choices.

One final reason should motivate the study of certain economic phenom-
ena as DDP. While up until quite recently the estimation of dynamic struc-
tural models has been computationally very demanding (Flinn and Heckman
(1982) avoid this by relying upon a highly specialized structure), the method
discussed in this paper, proposed by Hotz and Miller, allows us to obtain
a closed form solutions in terms of conditional choice probability, transi-
tion probabilities and the one-period reward function. This greatly reduces
the computational burden implied by ML estimation techniques, which un-
til quite recently it was believed to be the only way to estimate dynamic
structural discrete choice problems.

All the structural estimation methods we have discussed, including that
proposed by Hotz and Miller, still rely upon the simplifying assumption of
conditional independence: this is needed in order to obtain a tractable econo-
metric model. If the model has serially correlated choice specific error terms,
lagged values of these error components would enter as additional state vari-
ables in the value functions. This may generate an increasingly expanding
state space and significantly aggravate the computational burden of solving
the DDP model. While it is plausible that the error terms are serially corre-
lated, there is no method available which allows us to relax the conditional
independence restriction.

As a final encouragement to the use of discrete models of behaviour I
return to one of the earliest but also most literary contributions to this liter-
ature: ”Be not too tame neither, but let your own discretion be your tutor:
suit the action to the word, the word to the action” (W. Shakespeare, Ham-
let).
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Appendix 1 McFadden’s Probabilistic Choice Model

Probabilistic choice system describes the observable distribution of demands
by a population of consumers. The distribution of demands in a population is
the result of individual preference maximization, with preferences influenced
by unobserved variables. What are the features of the observable distribution
of demands that are necessary or sufficient for their consistency with the
hypothesis of random preference maximization. Stochastic version of the
theory of revealed preference.

A choice probability specifies the probability of choosing an action i€ I,
where I is a set indexing alternatives, given that a selection must be made
from the finite choice set B€ B and that the decision-maker has characteris-
tics s € S. Choice probabilities are nonnegative and sum to one, they depend
only on the measured attributes of alternatives and individual characteristics.
Consider a probability measure i depending on s € S on the space of utility
functions on I. Then u gives the distribution of tastes in the population of
individuals with characteristics s € S. Then

Ul

P(iy | B,s) = /OO /u1 / B (ug, ..., uy; 8) duy...du, (64)

= / FP (u,...,u;s) du

where F? is the cumulative distribution function of fZ, and FZ denotes the
derivative of F'P with respect to its first argument. Choice is determined by
utility maximization and there is almost always a unique utility-maximizing
alternative. Is the model of individual utility maximization identifiable from
the observed distributions of demands. Could other model generate the same
observations? A necessary and sufficient condition for consistency with ran-
dom preference maximization, analogous to the strong axiom of revealed
preferences has been established by McFadden and Richter (1970). Strong
axiom of stochastic revealed preference states that for any finite sequence of
trials (B, C'), ..., (BM, CM), with repetition permitted,

M
m m 1 1 M M

D PEn|B 5) <N ((BL,CY), ... (BY C)) (65)

where N ((Bl, ch, .., (BM ,CM )2 is the maximum number of successful tri-

als in the sequence consistent with a single preference order. This condition
is necessary but not sufficient.
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Appendix 2 Discrete and Continuous Choices

We may partition choices into two types: continuous and discrete choices.
Define continuous choices made on date t by the M-dimensional vector ¢; =
(c1ty .-y ct) € C. Decisions made at t only exploit information available at
that time. We may write ¢; = ¢(s;) or ¢ue = ¢(Smt), Where s represents the
state of the world at time t. Similarly, define discrete choices as di; € {0, 1}.
The firm pick one the several actions ke {0,..., K} in each period t. If
a choice is selected then di; = 1. Information plays the same role as in
the case of continuous choices, hence dy; = d(s;). We assume that choices
are mutually exclusive so that d; = (dy, ..., dk¢) fully summarize the firm’s
discrete choices:

K
Y dy =1 (66)
k=0

The firm’s preferences are defined over the choices it makes over her lifetime,
and over the state variables. Thus s evolves according a stochastic law of
motion which represents the subjective beliefs about future state variables.
In the case in which s is discrete, ie it has finite support, we have the following
probability distribution:

Pr{sii1 | se; ¢, die = 1} = Fy (Se41 | 505 1) (67)

The future state variable s;,,is randomly determined by the current state
variable s; and current choices (¢, d;). This equation is also assumed to
underlie the data generating process.

The stream of profits may be thus defined as

T K
E Z Z dremre (ci, 8¢) | 20 (68)
=0 k=0
where 7y, is a real valued mapping from CxS. Whatever the date/state coor-
dinate pair is (t,s) the firm makes continuous choice c(s;) and discrete choice
d(s¢). In particular, if the firm’s state at time t is s;, it might choose j, ie set
dx: = 1, and make continuous choice c¢;. The the profit it would receive that
period is ug (¢, s¢). Integrating over s€ S, conditional on her initial state
sp,her expected profit at time t is

E{Z dktﬂ'kt [Ct, St] ‘ So} (69)

k=0
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In an infinite time horizon we have:

oo K
ED > difBimi(c, se) | so (70)
=0 k=0
firm’s problem: for each t€ {0, 1,...7'} and s€ S, it picks (¢;,d;) € C x D
to maximize 70 subject to 66. The solution to this problem can be interpreted
as an optimal decision rule (¢; (s;),d; (s¢)). We may express the problem in
terms of the following value function:

Zd;ﬂrksc—i—ﬂ/ NAF(s' | ¢, 9)] (71)

where, because of the stationarity. of the model, the time subscript

has been dropped and the apostrophe indicates variables not known at the
present time. All the dynamic factors are transmitted through the transition
probability Fi(s" | ¢,s). This problem can be further decomposed: for each
ke {0, ..., K} ,the firm chooses ¢; to maximize

cs—i—ﬂ/ "YdF;, (' | ¢, 5) (72)

Let cFdenote the solution to maximizing 72, and successively substitute
the solution to the K subproblems into current profit and transition proba-
bilities. The define the reduced +form profits 7, = 7, (c’“, 3) and transition
probabilities Fy(s' | s) =Fk(s’ | ¢,s). The optimal discrete choice d* maxi-
mizes

)+ / YdF (s' | 5) (73)

over ke {0, ..., K} . We have thus obtained a discrete choice problem 2

22Pakes considers both continuous and discrete controls.
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