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Quasi Option Value and Irreversible Choices
V. Bosetti and E. Messina
Universita degli Studi di Milano Bicocca, Dipartimento Informatica,

Sistemistica e Comunicazione.

Abstract. In this paper we are concerned with optimal invest-
ment decisions when dealing with land allocation problems. We
aim to emphasize the importance of flexible modelling in order to
capture irreversibility. In particular, we stretch a discrete model,
firstly developed in Coggins and Ramezani [3], in order to cover a
more realistic and complex scenario. Both environmental and eco-
nomic uncertainty are included in the model and treated using an
integrated approach, in which decision analysis techniques and op-
tion pricing theory are jointly applied to evaluate development ver-
sus conservation opportunities. Moreover, we take explicit account
of how uncertainty interacts with two types of irreversibility: sunk
costs associated with investment in developing decisions, including
environmental and social costs due to environmental degradation, as
well as sunk costs associated to environmental regulation and con-
servation. Finally, we use the Quasi Option Value, QOV, to derive
decision rules that account for different levels of flexibility of land
allocation possibilities.

JEL classification: Q30; Q20; D81

Keywords: Uncertainty; Irreversibility; Environment; Land Al-
location

1 Introduction

In the presence of uncertain future events, the possibility to postpone develop-
ment investment decisions can lead to strategies diverting from those derived
using traditional discounted cash flows approaches. Indeed, the arising of new
information may partially resolve uncertainties over time, thus making it prof-
itable to wait and act in the light of it. This flexibility becomes even more
valuable when we are in presence of irreversible choices.



In order to take into account the level of irreversibility we introduce the
Quasi Option Value (QOV), that is the extra value that can be captured by
performing a fully dynamic analysis of the decision problem.

The issue of irreversibility, uncertainty and environmental policy has been
largely discussed in the last three decades. From the first definition of the QOV
given by Arrow and Fisher [2], the key concept has been developed in several
articles, among others, by Conrad [4], [5], Hanemann [11], Krutilla and Fisher
[12].

The aim of the present paper is twofold. First, we stretch the discrete model
developed in Coggins and Ramezani [3] to focus on a set of decision problems
that are particularly relevant in the European context, where decision makers
are more concerned with land recovery expenditures and conservation efficiency
rather than with wilderness area preservation. Conservation projects imply ir-
reversible investments and operative costs. Hence, we allow for two different
sources of irreversibility: sunk costs associated with investment in develop-
ing decisions, including environmental and social costs due to the permanent
commitment of resources, as well as sunk costs associated to environmental
regulation and conservation investment plans. Indeed, information about eco-
logical effects and their economic consequences may reveal land recovery and
conservation expenditures as inefficient or redundant. For this reason, in our
optimal land allocation model, we compare two investment opportunities, in
alternative to the status quo possibility: development, on one side, and land
recovery/conservation (Natural Park), on the other side, both entailing initial
sunk costs.

Secondly, we deal with the issue of different types of uncertainty, through an
integrated methodology which combines the decision analysis techniques to the
option pricing theory and that was firstly developed in several papers by Smith
and others [18], [17] and [19]. The irreversible choice has to be made in pres-
ence of two relevant types of uncertainty: economic and environmental. Indeed,
uncertainty can either be related to future social and financial costs/benefits
or to the evolution of the environmental scenario. Thus, it is useful to intro-
duce both these two sources of randomness in the model. In the case of the
conservation investment alternative, in addition to being uncertain about the
demand for wilderness (recreation, ecological services, etc.), market uncertainty,
the decision maker is uncertain about the efficiency of the Natural Park choice,
environmental uncertainty, depending on a vector of environmental parameters
that are not known until after the investment is undertaken. In fact, until
investment in on site research and in land recovery is not undertaken, those
parameters composing the ecological value index are partially or completely un-
known and one can uniquely deal with subjective probabilities, calculated by
experts, regarding possible outcomes of the Natural Park value index.

Market uncertainties are dealt using the option pricing approach [7], [20]
and[6], that value real investment projects trying to replicate their return and
risk characteristics through a portfolio of existing assets. If we imply no arbi-
trage opportunities, the deriving probabilities, risk neutral probabilities, can be
applied to calculate the expected present value of the investment.



Environmental uncertainties, that are project specific and therefore cannot
be entirely diversified, are dealt computing certainty equivalents using subjective
probabilities and utilities, as suggested in [19], [17], [18].

We represent the problem as a two periods optimal stopping problem [7],
where stopping corresponds to invest, while continuation corresponds to wait
for information to resolve part of the uncertainty.

In section 2 we introduce the analytical framework and we start dealing
just with market uncertainty. In section 3 we develop the model to include
also environmental uncertainty. Section 4 is devoted to a sensitivity analysis of
critical initial values and to a numerical analysis and in section 5 we give some
conclusions.

2 Analytical Framework

In this paper we are concerned with the optimal investment decision concerning
a land area that can be devoted to three alternative uses: leave the land as it is,
Status Quo (SQ); develop the area investing in a profitable project, Development
(DV); preserve the land converting it into a Natural Park (NP). The third
option is particularly relevant when the decision maker is not dealing with a
tract of wilderness land but, as it is often the case in European countries, with
a partially degraded area where there is a need to invest in order to re-convert
the land to a "natural” state.

Choosing the Status Quo option, the only source of profit is a constant
amenity value accruing every year from recreational use. In addition, this option
is characterized by complete flexibility, thus making it possible to reconvert the
area to both other two alternatives in a second period. Moreover, it does not
imply any commitment to sunk costs (e.g., research, re-conversion of habitat
degradation, active protection). On the contrary, the other two uses involve an
initial investment and annual maintaining costs.

The Development alternative would result in a stream of random revenues
throughout the operating life of the project - we rule out the temporary shut
down possibility. However, this choice implies the irreversible sacrifice of any
amenity value as well as of any other potential value source related to the
conserved site, thus the environmental option is killed.

Preserve the land through a Natural Park would entail a stream of random
revenues accruing from the amenity value of the site as well as from uncertain
revenues due to external effects and ecological services deriving from a com-
pletely preserved land. In this state, the developing option is not killed and
switching in a second period is conceivable, although, the initial investment
outflow may be different now. Indeed, in some cases, it will be sensible to sup-
pose that the new investment amount will be considerably augmented due to
compensation for lost social benefits, to increased construction required time,
etc. On the contrary, whenever the NP investment has beneficial effects on the
development project this will entail a decreased initial outflow.



Let r denote the constant risk-free interest rate and R be the compounding
factor, R = (1 +r).
In the SQ state, the present value of the land over n years is:

& A "A
A:; (1+r) :gﬁ (1)

Where A is a constant amenity value accruing from the S@ state at each
year t. When computing the present value for an indefinite time horizon, i.e.
t € [0,00), (1) becomes:

= A R
;F: &1 (2)

In the Development state the initial investment for instantaneous construc-
tion of the project is I > 0. The present value of the stream of annual constant
per unit operating cost, c, is given by

n—1 Rn—1
¢ ; 1+r)  “R-1(R—1) 3)

where n coincides with the operating life of the project.

If we assume that the project will yield one unit of good per year, then
the yearly revenue will be given by the output price of the produced good that
is assumed to follow a stationary multiplicative random walk. Denoting the
output price P, at time ¢ + 1 it will either rise to P}, = uP; (where u > 1)
or decrease to P, ; = dP;, (where 0 < d < 1), with probability ¢ and (1 — g),
respectively, with ¢ € (0,1).

Therefore, the price follows a process that can be described by a binomial
tree with parameters (FPy, u, d, q), see Figure 1.

), *=uuP,

P,* =duP,

P,~=ddP,
t=0 t=1 t=2

Figure 1: Binomial Tree



Thus, given Py, the expected value of P, at time ¢t = 0, will be given by:

E[P] = (qu+ (1 —q)d)' P (4)

where is E is the expectation operator.

We denote the present value of the expected stream of revenues accruing
from the n operative years of the DV project, calculated in t = 0, as PV?, and
it is given by:

b~ E[P]
PP =" —*= 5
; In (5)
Denoting
p=(qu+ (1 —q)d) (6)

and assuming that p < R, we obtain:

D R™ — un
PVy (F =R | = 7
P (Prd) = P | ] ©

The third alternative, the Natural Park, is characterized by an initial invest-
ment, I,, where 0 < I, < I4, and a stream of annual constant per unit operating
cost, g. The present value, computed for an indefinite time horizon is given by:

oo g R
GZ; a+ni  J®R-1) ®

K2

The revenue accruing from the Natural Park investment, fit, with initial
value Ay > A, is assumed to follow a stationary multiplicative random walk,
in order to include market uncertainty! [4]. Then, at time t + 1, the value
of conservation associated to the Natural Park will either rise to A}, 1= sA,
(where s > 1) or decrease to A 1= bA; (where 0 < b < 1), with probability p
and (1 — p), respectively, with p € (0, 1).

Similarly to previous discussion, the value A, follows a process that can be
described as a binomial tree with parameters (Ao, 8,b,p).

Again, we consider the expected value of the stream of revenues accruing
from the conservation project, calculated in ¢ = 0, PV, given by:

PV =>" T 9)
=0
where, as in (4):
E[A] = (s + (1~ p)b)' o (10)

I'We will treat environmental uncertainty in next section.



where FE is the expectation operator.
Denoting

v=(ps+(1-pb) (11)

and assuming that v < R, we define the present value of the expected stream of
revenues accruing during the life of the Natural Park, calculated in year 0 as:

~ < R
PV (Ag,p) = Ag—— 12
' (Ao.p) = Ao (12
Let us firstly analyze the problem applying the traditional discounted cash
flow rule, without considering different levels of flexibility that each option can
offer. In fact if we consider each decision as irrevocable we could represent the
problem as in the decision tree of Figure 2.

A
Q
PV P-(I,+C
D DV
NP
PVoY -(1,+G)

Figure 2: Inflexible Modelling Decision Tree

According to the traditional Ezpected Net Present Value (ENPV) decision
rule, the value of the land area is given by the following statement:

WENPYV = max [Z, PV (Po,q) — (Ia+ C), PVy¥ (Ao, p) — (I, + G) (13)

Now, let us capture potential flexibility sources. We include in the model the
possibility to postpone some of the decisions to the second period. The decision
rule should now take into account possible future information and embody it
in the calculations. Once developed, the land will be irrevocably compromised,
whereas the other two alternatives involve the possibility to switch to substitute



PVoP-(1d+C)

Figure 3: Flexible Modelling Decision Tree



and more profitable uses®?. The flexible approach is depicted using the decision
tree in Figure (3).

The SQ alternative is a completely flexible choice, i.e., the decision maker
is free to postpone the possibility of both investments, to the second period.
Hence, during the first period the only revenue will be the SQ amenity value,
A. 1In the second period, the availability of new information concerning the
price P; and the value of the Natural Park, Al, will leave the decision maker
the possibility to choose her strategy according to the maximization criterion,
whichever state of nature has occurred. If both investment decisions are delayed,
then the value of land is given by:

W= Ay 2OV 0o We T HO—paW AW, - (14)

Where the second term of the right hand side of equation (14) is the expec-
tation value, with respect to the probabilities p and g of the quantities defined
below, (the state of nature of P; and A; are assumed to be independent) :

Wit = max [4, PVP(P,q) - (I,+C), PVY(AF,p) - (1,+G)| (15)
Wit = max |4, PVP(Pyq) = (1,+C), PVN(AL,p) = (1,+G)|
Wi = max [, PYO(PT0)— (1, 0). PV (K ) — (1,4)
Wi~ = max [, PVP(Py ,q) — (I,4+C), PVN(A7,p) - (IPJFG)-

The NP option leaves the decision maker the opportunity to switch during
the second period to the DV alternative, as long as this is more profitable.
It can either be that the investment required is now increased, Ij, or that
the development project can benefit from the Natural Park investment, thus
implying a lower initial investment, I, (for example, this might be the case
when the developing projects is related to the tourism industry).

The value of land, when the first period choice is NP, is given by:

/= Uity gy B 2000 g oo © g
where:
V1++ = max [ PWD(PT’Q) - (Id+C)’ PVlN(;ﬁr’p) B G} (17)
Vit = max [ PVP(P],q) — (I,4+C), PVN(Af,p) - G}
Vit = max| PVP(PLq) — (1,+C). PV (A7 .p) - G|
VT T = max _PV{D(P;’CI) — (I, +C), PV (AT, p) — G}

9 . i ..
“Flexible policies are known as closed loop policies.



Consequently, the decision whether develop in the first period, delay any invest-
ment or commit to the semi-flexible option is based on the following comparison:

We = max |[Wenpv, Wi, W, (18)

When Wgrnpy(g,p) is greater than the other two quantities, development
should take place immediately. When Wy = W{’, both decision should be
delayed to the second period and no sunk costs should be undertaken. Finally,
when W§ = W, the suggested policy is to commit to environmental sunk costs
(NP), whilst letting the opportunity of future adjustments of the decision.

We can consider the problem as a two periods optimal stopping problem
[7] and[15], where stopping corresponds to invest either in the irreversible or in
the NP project, while continuation corresponds to do not commit to any sunk
cost. The (18) is the Bellman equation® for this problem, where the termination
payoff is either given by Wgnpy or by WV.

For some initial critical value of F, it will be optimal to stop and kill the
option, i.e. for By > Fy it will always be optimal to invest immediately, while
for Py < Pj§ continuation will be optimal. There exists a similar critical value
fl(’j for Agy. These two cut-off values divide the optimal strategy space. The S@)
choice is optimal provided that neither Py or Ay reach the barriers F§ and ;13,
respectively.

The QOV, corresponds, in the present work, to the difference, when positive,
among the traditionally measured value of the land and the value calculated
using the dynamic model:

QOV = max[0, Wi—Wgnpv] (19)

The QOV can capture the value of the right to delay any decision, as well as
to delay just the totally irreversible choice, whilst committing to environmental
regulation sunk cost only.

3 Valuation Methodology

In the preceding section we have not made any specific assumption either on the
probability distributions or on the discount rate to be used in the valuation. It
is not sensible, though, to discount risky cash flows using the risk-less discount
rate, r, without making any specification.

Whilst, in the DV case we can assume that there exists a complete market
for the output good and, therefore, the associated risk can be perfectly hedged
by treading securities, this assumption cannot be made in the NP case, where we
face both market uncertainty (i.e., the consumers’ demand for recreation and
ecological services) and environmental uncertainty, concerning the ecological
valuation index of the NP. Indeed, the latter are project specific and cannot

3see, for example, A K. Dixit and R.S. Pindyck, "Investment Under Uncertainty” Princeton
University Press, Princeton, NY, (1994)



be hedged by trading securities. The NP investment entails measurements of
a series of attributes of the site, as biodiversity, rareness, size, naturalness,
representation, that will have to be combined into an overall evaluation index
of the site. Following the criteria-based evaluation method [10], the model will
allow for three possible state of nature?:

1) if either the size is insufficient or the unnaturalness of the site is classified
as permanent, due to previous damage, the NP is not instituted and the only
value accruing thereon is coming from the S@Q) recreational value;

2) if the site attributes are combined to give a middle-low class value, the
investment is inefficient and this negatively affects the NP value, A, = bAy;

3) if the site attributes are combined to give an high class value, the invest-
ment is efficient and this positively affects the NP value, A, = sA,.

In Figure 4, we make explicit the distinction among market uncertainties
(represented by white nodes) and environmental uncertainties (represented by
black nodes). As it is shown in the picture, if the NP choice is not undertaken
at time ¢ = 0, the only uncertainty to be considered, before the investment
is undertaken at time ¢t = 1, is the one related to the market demand. At
this point, if the NP decision is taken, we face three possible states of nature
related to the site characteristics and to research results. Hereafter, if the NP
is effectively instituted, the yearly revenue varies uniquely according to market
uncertainty.

As we have already seen in the previous section, investment can take place
at t = 0,1, while uncertainties are resolved at times ¢t = 0,1,..,n,..,00. We
are assuming that investment options are available just in the first two periods,
however the model could be easily modified to introduce greater flexibility. The
decision maker’s state of information at each time ¢ is denoted by 3¢, formally
modeled as elements of a filtration on a suitably defined probability space. More-
over, market assumptions can be formalized as a market filtration, 37, (37 C
¢) that represents the market risks resolved by time t¢.

As most of the real options literature assumes, the decision maker can either
decide to invest in the project (all-or-nothing decision) or to invest in shares
of securities at market prices, as well as lending and borrowing money at the
risk-free interest rate 7.

Four assumptions on the securities market are critical. Firstly, there are
not arbitrage opportunities. Secondly, market is partially complete, i.e., market
uncertainties can be hedged by trading securities. Thirdly, market is efficient
and does not depend on private information and finally there are not transaction
costs.

Under these assumptions, we can always construct a portfolio whose payoffs
exactly replicate the payoffs of the project [9]. Thus, we can determine the
unique “risk-neutral” distribution such that the current market price of a vector
of securities, s(0), that generates a random dividend stream, c(t), is given by:

is is clearly a Qi ificati 3 N itv ssi scenarios accrui .
1This is clearly an oversimplification of the complexity of possible scenarios accruing from
the combination of the citated attributes, and we consider this as an important expansion to
be made in future development of the model.

10
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Figure 4: Decision Tree with Specified Uncertainty Types
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-~ Ex[c(t)
s(0)=) =7 (20)
; (1+7r)

where F; is the expectation with respect to the ”risk neutral” probability,
7, (with 7 € (0,1)), and ¢(t) equals the random stream of revenues accruing
from the project. Therefore, whenever the riskiness of a project is diversifiable,
it is possible to calculate the value of the project applying the “risk-neutral”
probability distribution and using the risk-free interest rate.

If we apply the (20) to calculate “risk neutral” probability distribution for
the DV and the NP alternatives, we obtain:

- (1-a)

RO
and

_ (1-))

P= G0

For a detailed demonstration we refer the reader to Coggins and Ramezani
[3].
It is easy to check that, for such values of the probabilities ¢ and p, the value
of (6) and of (11) is equal to one.

Therefore, the expected value of the DV alternative, given in (7), is now:

. R*"—1
PVP (P, q) = Py [ }

RI(R—1)

This result entails that, once invested in the project, the decision maker has
the opportunity to contract with a buyer the selling price of the entire stream
of production, fixing it at the investment-time price.

However, as we previously noticed, environmental uncertainties cannot be
hedged by tradeable securities. In order to include in the model this source
of risk, a traditional approach is the capital-asset-pricing model that produces
a risk-adjusted discount factor, according to the risk category of the project.
However, this is not the first best procedure when the riskiness of a project is
not comparable with other’s, known, projects and when dealing with long time
horizon projects.

An alternative approach has been developed in literature firstly by Smith
and others [18], [17] and [19], to deal with project specific uncertainties and it
can be applied to deal with environmental uncertainties. We say market is par-
tially complete if security prices depend only on market states, if the market is
complete with respect to market uncertainty and if private events do not influ-
ence market events. The procedure involves the use of subjective probabilities,
suggested by experts, regarding the possible future states combined with the
decision maker’s preferences for consumption in different periods opportunely
defined. This allows us to compute the value of a project as the decision maker’s

12



breakeven buying price. Indeed, the value is calculated as the lump-sum that
makes the maximum expected utility accruing from the decision of undertak-
ing the project and choose a trading strategy equal to the maximum expected
utility accruing from just investing in a trading strategy.

In this particular case we assume market is not complete with respect to
environmental uncertainty that is represented by the three possible scenario
following the NP investment.

The utility function describing the decision maker intertemporal preferences
should be continuous, strictly increasing and strictly concave. Moreover, for
constistency and separation theorems to hold, the utility function should satisfy
the property of additivity independence® and the A-property’. Without loss of
generality we can assume, for the sake of concreteness, that the utility function
takes the form:

U(zy) = —exp(—x¢/Ky) (21)

where K, is the decision maker’s effective risk tolerance defined as:

K, :g o (22)

Hence, K; is the sum of the discounted future decision maker’s period—i’s
risk tolerance, p,;. Assuming that p, grows with a rate r* (r* # r), we obtain,
for period t = 0, 1, the (22) becomes:

Ko = o mirr = mi (2

i=0 (r—r

~—

K - p% (24)

Once the tree of prices has been generated, projects are evaluated by starting
at the end of the tree, applying a standard dynamic programming “rollback”
procedure that can be synthesized in the following steps (see Figure 5 for an
example):

e for each node representing market uncertainty, calculate the present value
using risk-neutral probabilities (E;g) and the risk-free interest rate;

5The decision maker’s preferences for risky cash flows depend only on the marginal distri-
bution for each period, not on the joint distribution.

61f the decision maker is indifferent between a gamble and its certainty equivalent, then she
will be indifferent between the same gamble plus a quantity A and the certainty equivalent of
the gamble plus the same quantity A.

13
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PV P(P)-(Id+C)

PV P(P1)-(1a+C)

Market Uncertainty Environmental Uncertainty
Risk Neutral Probability ( P, ) Subjective Probability (j, y, 1- ¢ - k)

Figure 5: Fragment of the Decision Tree

e for each node representing environmental uncertainty, calculate the effec-
tive certainty equivalent at time ¢, EC E,, using the subjective probabili-
ties (¢, k, 1 — ¢ — K s.t. ¢+ Kk < 1)), then subtract the outflows;

e at each of the decision nodes, choose the best strategy according to the
maximization criterium.

If assumptions on market partial completeness and on preferences hold, the
integrated procedure gives the breakeven buying price of the project using the
certainty equivalent replicating portfolio.

In particular, to calculate the ECE;, we take expectations over period-t’s
environmental uncertainties, with respect to the “subjective probability”, ¢,k
and (1—¢ — k), and we apply the exponential utility function described in (21).

PV (A 9). A
Kt

(25)

Where K, is the decision maker’s effective risk tolerance, and PV Z—l (Af 1),

—N ~ —
PV, (A7 1,D), A are the time ¢ + 1 possible value of the NP project.

Now, according to the integrated approach, we can calculate the value of
different land uses. Firstly, let us consider the value of the land according to

ECEu [PVt (AL D) A= —Ken(B,, [exp | -

14



the traditional ENPV rule, Wy py:

7 — 55D AN =N~ ~N A N

Wn py = max [A,PVO (Py.d) — (I,+C), ECE, [on (Ax5),4 | aso] —(Ip+G)}
(26)

Where PV (Py,q) is calculated using “risk-neutral” probabilities, while, the

effective certainty equivalent, EC Ey, is calculated using subjective probabilities

and the decision maker’s utility function, see Figure 6.

A

PV P(Py, 4)- (I4+C

Figure 6: The Unflexible Tree, with Uncertainty Specification

Secondly, we consider the possibility to wait and postpone both the invest-
ment options. Thus, the value of land in the SQ state, W§’ , becomes:

s — A PV 41— W, ++(1Ii)qu1+ =P (=)W, (27)
Where:
T7++ < 50 p ~ + it iR ]
Wi = max |A, PV, (P, ,q) — (I;+C),ECE, -PV1 (A7=.D),A] 3o 7(IP+G)
-+ 4 5P 4 (I* BN (A 5 A 3] '
Wy = max |A, PV, (P, .,q) — (I;+C),ECE, _PVl (AT=.D),A] 3o —(1,+G)
— -_ — + r—nN ~ _ B .
Wit~ = max|A,PVy (P, q) ~ (I3 +0), ECE, |PVy (AT*p) 4| 35| ~(1,+G)
17— — - 550 T + [55Y T—t N7 (\,_ ]
Wy = max |A, PV, (P, ,q) — (I;+C), ECE, _PVl (AT=.p),A] 3o f(Ip+G)

15




Where we denote gfi the second period amenity value when the market
state is high, Zlf, and the investment may reveal both efficient, Aii’"k = s;ﬁ =
ssAg, or inefficient, fﬁl’f* = bgf = bsAp. Analogously we can define gfi. The
S() flexible model is depicted in the decision tree of Figure 7.

A ~
~(Ip*+G) PV N(AL™)
NP PV NAL)
P1+ \K _A
} v PV,2(P,")-(1+C)
A
-(1p*+G) PV1N(£‘1++)
NP - PV AL
\i\ A
P\/lD(Pl')-_(Id+C)

A -~
PV NAL)
PVNAL)

PV,P(Py)-(1a+C)

Figure 7: The First Period SQ-Option Value of Land

Finally, we can calculate the value of committing to environmental sunk
costs only, WV, thus investing I, and first period operating costs, g, as:

17 = q =D AN =N, = N ~.
WY = —(I,+9)+ ECE, |4, AF +Egpmax | PV, (P1q) — (I,+C), PV (Aup) - G| | 3|
— -~ SNt A1+ N+ — N _DNv— —
_ —(Ip+g)+EC’E0 {A7A(:)t+p<1‘/1 +p(1-q)V; +(11i)qu] +(1-p)(1-q)V, 3‘,0} (28)

Where we define:
O+ ol pt + SV T+ o
Vi = max |PV, (P, —(I;+C),PV, (AT"p) -G
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-~ —D, __ N~
Vot = max [PV (Prg) - (I;+C), PV, (AF%5) G
~ —D . N~
VT = max [PV, (P{g) — (I;+C), PV, (A4F75) G
~ —N ~ e
Vo = max [PV (Pra) - (I5+0), PV (A 5) G

With lei+ denoting a high state of the market conditioned on either a high
value of the NP efficiency index, f~10+ , or a low value, Zla , while A is the SQ
payoff accruing if the NP is not instituted.

The decision tree representation is shown in Figure 8.

PV,°(P,")-(Ia+C)

K PV 2(P,)-(1+C)

b PV N(A;)-(G)
"DV PV,°(P)-(1¢+C)
NP Py NA)-(G)
PV2(Py)-(1+C)
NP PV,YA)HG)
DV PV,2(P,")-(1¢+C)

J\'J’//Pvl (A)-(G)
DV TRV RR)- (|d+C)

<W1 (A)-
P\/lD(P1+) (|d+C)
<PV A

PV P(Py)- (|d+C)

O NP (bt

Figure 8: The First Period NP-Option Value of Land

Similarly to the previous section, we can calculate the value of the land, at
t =0, as:

WSZ max [WENP\/, Wﬁg, Wé\f (29)

The decision rule is as the one described in previous section, and, similarly,
the QOV, when positive, corresponds to the mistake one would make following
the traditional ENPV approach instead of the flexible one. The QOV can
capture the opportunity of avoiding either the irreversible development choice
or the flexible commitment to the NP sunk costs. Its value is give by:

QOV = max|0, 17[/\6‘ - WENPV} (30)
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4 Numeric Example and Sensitivity Analysis

We perform a numerical analysis in order to make clearer what has been dis-
cussed in sections 2 and 3. Let us suppose that the parameters in the model are
defined as in the table of figure 9.

Parameter| R [nj u | d|gt|c| Id|s|{b|p*lgllp|A]]j i
Value [1,10{10|1,3|0,8]|0,4|50/1000|1,3{0,8|0,4|35/800|75(0,4/0,5

Figure 9: Table of Parameters Values

In example 1 we consider how strategies change, varying the initial value of
the DV investment, Fy, while keeping the value of the NP choice, Ag, constant,
firstly for a low value of Ag, then for a higher value. Similarly, in example 2,
we let Ay change while we keep Py constant again first for a low, then for an
higher value.

Exam /Ple 1 Letting the other parameters fived, we consider the trend of WE NPV,
Wo , W&, their mazimum WO, and the QOV , as a function of Py. In figure 10,

we firstly perform the analysis setting Ag = 100. As we would expect, this setting
produce results that are very similar to the ones in Coggins and Ramezani [3],
the effect of the NP alternative being almost irrelevant. Until the initial DV
price reaches the value P(;, the traditional rule and the flexible approach rule
coincide, and the suggested stmtegy is do not commit to any of the two invest-
ments. The first kink in the Wo curve, in PO, indicates that we are capturmg
the second period development opportunity for high market state, PJr In PO the
WEN pv curve starts to increase, indicating that a decision maker who follows
the traditional rule would now decide to develop immediately, while, according
to the flexible approach waiting and postpone any decision is still the optimal

strategy. Above Po , that indicates the second kink in the Wo curve, the de-
cision to develop in the second period may nmow be optimal even for a low state
of the market, conditioned on the market state for the NP wvalue. The cut-off
point, Py, for Ag = 100, represents the threshold value dividing the continua-
tion region from the stopping region, that is immediate development. The QOV
represents the maximum amount a rationale decision maker would accept to pay
for the right to delay any decision and it becomes zero above the cut-off value.
Secondly, we set Ay = 200, results are shown in Figure 11. As a consequence
of the higher Ay value, the NP opportunity exerts, now, a determinant effect

on the threshold level separating decision regions. P(;, P(;/, P, are defined as
in the previous case. Up to the cut-off point P§, the Wy curve lies above the

Wenpy and Wév curves. However, the effect of the NP investment, when a
favorable state of nature occurs, positively affects the SQ choice, thus shifting P§
to higher values. Therefore, the stopping decision, that corresponds to immediate
investment, is now optimal for higher DV initial values compared to the previous
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Figure 10: Varying Py for ,ZIO = 100. Where the dashed line represents the
QOV, the hghter line is W0 , the thicker line is WE NPV, the line with triangles

represents WO and the line with squares is their maximum, WO

scenario. From Py to Py the QOV captures the value of the right to postpone

DV decision sunk costs, as in the previous case. While, up to point P, the QOV
captures the flexibility value of the SQ choice.

Example 2 Similarly, letting all the parameters fived, we can represent the
trend of Wgnpy, W§, WL, their mazimum, W, and the QOV, as a func-
tion of Z@ We firstly assume Py = 450. As it is depicted in Figure 12, for very
low values of Ao the best stmtegy is to develop immediately, hence, the traditional
rule is not misleading. In AO, the Wo curve starts to lie above the WE NPV One,
thus, generating a positive QOV, that represents the mistake one would incur
into if he developed in the first period. The divergence is due to the second
period NP investment possibility, that is optimal for favorable market states of
nature. From the value Ag on, the ENPV rule would suggest to commit to the
NP expenditure, while it is just for 113, that the NP investment becomes the
optimal strategy, according to our approach. Therefore, up to the cut-off point,
AS, the QOV captures the value of not committing to environmental sunk costs
and just wait to the second period to take any decision.

Finally, we investigate the case where Py = 600, see figure 13. The increased
DV price strongly affects the optimal strategy regions. Both AO, Ao and the cut-
off value Ao are now shifted to the right. Above AO, up to AO , the QOV is
still positive. The reason for this is that the flexible approach captures the extra
value of the NP choice, due to the option to invest in the DV alternative, in the
second period.
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Figure 11: Varying P, with ZO = 200. Where the dashed line represents the
QOV, the hghter line is Wo , the thicker line is WE NPV, the hne with triangles
represents Wo and the line with squares is their maximum, Wo
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Figure 12: Varying Zlo, with Py = 450. Where the dashed line represents the
QOV, the hghter line is WO , the thicker line is WE NPV, the hne with triangles
represents WO and the line with squares is their maximum, WO
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Figure 13: Varying g@, with Py = 600. Where the dashed line represents the
QOV , the lighter line is W{¥, the thicker line is Wgy py, the line with triangles

represents Wy and the line with squares is their maximum, Wg.

Now, we analyse how the threshold initial values Fy and ZE“), separating the
continuation from the stopping region, may vary with the model relevant param-
eters supposing all remaining parameters can be considered fixed. In particular,
we consider how these trigger values change in respect to the following param-
eters: A, the first year value of the SQ alternative, Iy, the DV investment, Iy,
the NP investment, n, the operative years of the project and R, the discount
factor, R = 1+ r, where r is the risk free discount rate.

Proposition 3 Fj increases with A and it increases with Iy, while it decreases
with n, and R, the discount factor (see Figure 14). The latter relation is true
for R € (1.01,1.20), for higher values of R, of scarce economic relevance, P}
slightly starts to increase.

Proposition 4 Z{) increases with A, the first year value of the SQ alternative,
and I, the NP investment, and it also increases with R, the discount factor (see
Figure 15). The latter relation has economic foundation in the idea that very
long term projects are usually more sensible to an increased discount factor.

5 Conclusions

In this paper we have tried to take into account the economic as well as the en-
vironmental aspect of irreversibility. While the first feature has been largely in-
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Figure 14: Sensitivity Analysis performed for F§

vestigated in the quasi option value literature the second has been often ignored.
However, particularly in European applications of land allocation problems, the
importance of initial environmental expenditures should be considered, combin-
ing it with the flexibility potential of this option. Moreover, the uncertainty
related to the environmental response to recovery and conservation interven-
tions, should be taken into account in addition to uncertainty related to market
prices. Therefore, the valuation procedure has been developed to include envi-
ronmental influence on conservation projects. What we find is that it is possible
to calculate, in a similar framework to the Arrow-Fisher Option Value (QOV) of
preservation, an option value that may be referred either to the SQ or to the en-
vironmental investment project. Therefore, the flexible modelling, enabling us
to take into account different sources or irreversibility and uncertainty, prove to
be a useful tool in land allocation and environmental expenditure management.

In addition, the output of the model can be easily understood by non tech-
nical users and it can be helpful in promoting environmental and economical
rationale choices.
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Figure 15: Sensitivity Analysis: 1413 varying with R
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