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Abstract

We study a long-term relationship between a risk-neutral firm that
has been delegated to manage a local utility project and a regulator
that has always the option-to-revoke the delegation. We show that
when the threat of revocation is credible and the cost of exercising it
is not too high, the “cooperative” equilibrium is an efficient solution
which guarantees the utility with an appropriate level of return. The
regulation timing consists of a endogenous regulatory lag where the
regulation has a fixed-price nature followed by a period of rate-of-
return regulation in which the firm is motivated to adjust its output
price downward to avoid revocation. We also show that excessive
revocation costs make the firm an unregulated monopolist with an
infinite regulatory lag.
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1 Introduction

This paper investigates a long-term contract between a private firm and a
regulator that has the option-to-revoke the contract. The problem we address
stems from the recent trend to delegation in managing public utilities such
as sewage and fresh water management, urban waste infrastructures and
provision of public transport. These markets are usually supplied by local
authorities which can decide to delegate their provision to a private company
as alternative to direct management or to full privatization. The delegation
is done under specific institutional features and determines the partial and
temporary management of the service on the ground of a contract between
the local authority and the private firm; this contract is usually long-term and
provides the ongoing opportunity to renegotiate prices and terms (Spulber
and Sabbaghi, 1994). Broadly speaking, the ownership of the assets remains
in the hand of the collectivity, while “the right to use it” becomes private.

In France - the country with the widespread experience in this field -
delegation in local utilities has been fostered by the national legal code:
in the water resource sector, for istance, the municipality is in charge of
managment of the service and the mayor is personally liable for any damage
due to negligence on its part. Moreover, the mayor has been prohibited by law
from insuring himself against the risk of damage and against the uncertainty
regarding how his negligence will be defined by courts. By delegating the
service to a private firm, however, the mayor can offset his personal liability,
which is transferred to the delegated firm along with the management of the
service. In this framework, the adoption of new technologies is a further
incentive for delegation when local authorities cannot easily speed up the
required technological change. In fact, technology determines the basic limits
on quality of the service and the potential for accidents; consequently, the
adoption of new technology represents a relevant element for the mayor’s
liability in the court ex-post decision when an accident occurs (Clark and
Mondello, 2000). Hence, delegation becomes the most effective means of
restricting the mayor’s personal liability in the aim to reduce the full risk of
direct management of the local utility.

In other countries, however, delegation is popular with local authorities
as an intrument to promote efficiency in the allocation and the managment
of the service. Referring again to the water resource sector, delegation finds
its main theoretical justification in the aim to get better and/or cheaper
services: the delegated firm is potentially capable of injecting technological,



financial and managerial resources which the local authority may be unable
to come up with because of fiscal and bureaucratic constraint and the lack
of adequate incentives (Dosi and Easter, 2000). These features showed to
be particularly relevant in developing countries, and recently in Spain and
Portugal (OECD, 1999).

In the model we present we consider a risk-neutral firm that has been
delegated to manage an indivisible public project and a regulator that has
always the right to revoke delegation and return to direct management if the
project is a positive net present value investment. The long-term contract
signed by the two parties provides for an “allowed” rate of return as a maxi-
mum ceiling for the firm and the regulator threatens the firm with revocation
of the assignment if that rate is crossed. Revocation is, then, analogous to
a perpetual call option where the local authority has the right - but not the
obligation - to purchase at any time an asset (the utility) of uncertain value
for a present exercise price. The option-to-revoke will be exercised optimally
when the rate of return of the project exceeds a critical value (i.e. the allowed
rate of return). The trigger value is determined endogenously in the model
but the optimal exercise time is stochastic.!

We, then, offer an optimal regulation mechanism where the commitment
by the regulator to end the contract if the allowed rate of return is exceeded
ensures that the private firm will behave consistently with the contract it-
self: once the firm’s costs or production conditions improve, it adjusts prices
to keep its rate of return below the allowed one and therefore to prevent
revocation. However, as the termination threat is costly, a stochastic regu-
latory lag may follow over which prices are fixed and its not optimal for the
regulator to recall the contract. Based on the above argument, these costs
may refer to the sum necessary to overcome the obstacles to renewing direct
management of the service such as contractual indemnities on the value of
the investment, technological costs, recruiting and training costs, loss of fis-
cal advantage and, no less important, legal costs if the firm decides to sue
the regulator for breaking the contract. Excessive revocation costs make the
firm an unregulated monopolist with a infinite regulatory lag.

Our model is closest in spirit to the theory of monopoly regulation in
a dynamic setting, in which mechanisms such as rate-of-return (ROR) and

'Reffering to the French municipalitis’ negotiating disadvantage in the face of some
cartelized water management, Clark and Mondello (1997) model the municipality’s right
to revoke delegation as a call option.



price cap arise endogenously as a self-enforcing and mutually beneficial co-
operative equilibrium.? However, in this literature both the regulator and
the regulated firm share the same bargaining power (i.e. either player has
incentive to violate the contract) and they are not affected by regulatory
lags. Although playing a crucial role in determining the incentive property
of the regulation mechanism, these lags are of fixed time and exogenous.
On the contrary, in our setup, the different bargaining positions of the two
parties coupled with the regulator’s option-to-revoke determine these lags
endogenously as it is in the essence of ROR regulation (Laffont and Tirole,
1994, p.15). Regulatory reviews are initiated by the local authority when the
option-to-revoke is worth to be exercised.® The result of an endogenous reg-
ulatory lag may thus explain the empirical evidence that, although contracts
between local authorities and private operators are of limited duration, their
renewals are often signed without any variations of contractual terms (Joskow
and Schmalensee, 1986, p.7). Finally, we look at the option-to-revoke from
the perspective of collective welfare maximization and discuss the specific
characteristics of the dynamic regulatory rule stemming from the continuous
rate of hearing between the regulated firm and the regulator, as a tool for
obtaining a long-term efficient equilibrium.

On a formal level, our paper builds upon two distinct streams of literature.
The first one relates to the stochastic control techniques recently developed
to identify optimal timing rules and optimal barrier regulations.* These tech-
niques have been widely used in the literature of irreversible investments®,
and emphasize the role of the option value of delaying investment decision,
i.e. the value of waiting for better (although never complete) information on

2See for example Salant and Woroch (1991, 1992) and Gilbert and Newbery (1989).

30ur option-to-revoke is similar in spirit to the option-to-own studied by Néldeke and
Schmidt (1998). In a hold up problem in which two parties have to make relationship-
specific investments, N&ldeke and Schmidt show that an option-to-own contract where one
party owns the firm initially while the other has the option to buy it at a price specified
(in the contract) at a later date, induces both parties to invest efficiently. They also show
that this result is robust to renegotiation and uncertainty, and that it permits specification
of side payments for the joint surplus between the parties.

*In particular, we refer to the works of Harrison and Taksar (1983) and Harrison (1985).
Applications of this methodology to economic problems can be found in Bentolila and
Bertola (1990), Dosi and Moretto (1994) and in a strategic context by Moretto and Rossini
(1999), and Moretto (2000).

SMuch of this literature was recently surveyed by Pindyck (1991), Dixit (1992) and
Dixit and Pindyck (1994).



the stochastic evolution of a basic asset.

The second one considers the existence of efficient sub-game perfect equi-
libria for infinite-horizon-threat-games where, in the absence of a binding
commitment, for the threatener it is an equilibrium for the victim to make a
stream of payment over time®. The expectation of future payment keeps the
threatener from exercising its threat. Indeed, we formulate a time-dependent
supergame in continuous time, where optimal revocation for the regulator re-
quires identification of the time at which to pay a sunk cost in return for a
public project whose value is stochastic. The regulator does not revoke the
contract until the revenue that it expects to earn from managing the invest-
ment by itself is equal to the expected present value of the rates regulation
that the firm announces.

The plan of the paper is as follows: Section 2 sets out the basic as-
sumptions of the model. Section 3 presents the regulator’s option-to-revoke.
Section 4 examines the regulation that belongs to this scheme. Section 5
discusses the regulatory rule, while the Appendixes collects all the proofs.

2 Basic model and assumptions

We consider the simple relationship between a self-interested-risk-neutral reg-
ulator and a risk-neutral firm that was delegated, at ¢ = 0, to manage a
one-time sunk indivisible public project’. Here, what is called “delegation”
is the temporary (generally long-term) supply of a public service by a local
authority (i.e. a municipality) to some private operator under contractual
relationship®.

We assume that, once set up, the single project allows some flexibility in
its operation at each time ¢ > 0, by varying certain inputs according to the
following production function:

a=alf with0<ep <1 (1)

6We refer to the works of Klein and O’Flaherty (1993) and Shavell and Spier (1996).

"To simplify matters we assume that in doing delegation the local authority becomes
de facto the regulator for the firm.

8In principle, our analysis could be applied to utilities of global range (national utili-
ties), but given our assumption on revocation of the contract by the regulatory body, the
local dimension is more realistic (see below). In fact, the management of a contract at
national level can affect the regulated firm’s bargaining power which, in turn, can affect
the regulator’s decision to revoke (regulatory capture).



where ¢; denotes the production at time ¢, [; is the operating input such as
labor (or some intermediate input) and a; is a technology-efficiency parameter
whose value is determined stochastically. The firm can sell the output at price
p: which is bounded by a ceiling p, and the operating input is a perfectly
flexible factor which can be rented at the instantaneous price w; whose value
is also stochastic. In addition, the firm is faced by a (constant elasticity)
demand function:

D(p) = dip, " with >0 (2)

where the parameter d; is an index of the position of the demand curve: it
may be a function of the consumers’ income or of a price index for substitutes
which the firm takes as given in its optimization. The operating cash flow
function is defined as:

T(pe; ar, wy) = TII}&XPtQt wily (3)
subject to equation (1), (2), D(p;) < ¢ and p; < p. We abstract from
production decision as well as from market uncertainty by considering the
case of a steep demand function (i.e. p — 0).° This leads to the following
expression for the operating cash flow:

m(p; 0:) = 11(p)0; (4)
where:
0(p) = (1 - @)~
and:
0; = 0(ay, w;) = aSw, with £ = % > 1 (5)

We adopt this additional assumption for the rest of the paper, since it ap-
pears to do little violence to the general substantive properties of the results.
The new variable 6, summarizes at every instant the business conditions for
the project, and satisfies the conditions th > (0 and af; < 0 : it is higher
the higher is the productivity indicator a; and the lower is the flexible-factor
rental cost wy.

9 Joskow and Schmalensee (1986, p.3) underline that the demand for utilities such as
electricity, water and gas by most industrial customers and all residential custormers is
very inelastic especially in the short run before stock of plant, equipment, appliances, and
housing can be replaced in response to higher electricity prices.

6



Uncertainty is introduced in the model by assuming that both a; and w;
evolve over time according to geometric Brownian motions, with instanta-
neous rates of growth «, > 0, ,, > 0 and instantaneous volatilities o, > 0,
oy > 0. That is:

day = o adt + 0%aidzy, ap=a

dw; = owidt + o widzy,  we =w

where dz' and dz;’ are the standard increments of two Wiener processes
(possibly correlated), uncorrelated over time and satisfying the conditions
that F(dz¢) = E(dz") =0 and E[(dz")?] = E[(dz")?] = dt . In other words,
we assume that the input’s price and the factor’s productivity are expected
to grow at a constant mean rate, but the realized growth rates are stochastic,
normally distributed and independent over time.

These assumptions allow us to reduce the model to one dimension. By
expanding df; and applying 1t6’s lemma for Brownian process it is easy to
show that 6, is driven by:

d@t = a@tdt + O'Qtdzt with 00 = 9, (6)
with:

o= a® — (6~ D" + £(E ~ DI5(0") + 5(0") — 700",

and:

o = (097 + (0)2(€ = 1)* = 2y0°0E(€ — ).

The drift and the standard deviation parameters of the process #, are lin-
ear combinations of the corresponding parameters of the primitive processes
a; and wy, with weights given by the exponents of (5) and v = E(dz{dz")/dt.
Hence, making use of (4) and (6), and provided that p — a > 0, the expected
value at time t of discounted cash flows from an infinite-lived project can be
expressed as V(6;) = Hp% , resulting in dV; being given simply by:

AV, = aVidt + oVidz, Vo=V (7)

In this respect Vj can be interpreted as the “reasonable” rate of return
at the delegation time to induce the firm to manage the utility. However, as
any reasonable rate of return on an investment could be imbedded directly



through a contractual (fixed) price for the service, this formulation sacrifices
no generality.!’ !

In the remainder of this paper the value of the utility V;, which evolves
according to (7) with starting state Vj, is taken as the primitive exogenous
variable for the regulator’s delegation-revocation process.

We conclude by assuming that the regulator is theoretically always in the
position of being able to revoke the contract with the firm and manage the
utility by itself. However, to manage the utility it has to pay a sunk cost
I. If revocation is carried out the firm suffers a loss V, while the regulator
derives a gain V — I . As V >V — I | the revocation is inefficient given that
the firm’s loss exceeds the local authority’s gain.!?

3 The regulator’s option-to-revoke

For the regulator, optimal revocation implies finding the point at which to
pay the sunk cost I in return for a project whose value V' evolves according

to (7). If we denote the value of the regulator’s investment opportunity at
t =0 by F,,(V) then:

Fr(V) = max By |(Ve = D)e™"" | Vo = V| (8)

where T'(V*) = inf (t > 0| V; — V* = 07) is the unknown future time when
the revocation is made and V™ is the value that triggers it. The maximization
is subject to equation (7), p is the constant discount rate and V; is the value
of the utility at time zero. To simplify discussion, we assume, if no otherwise
indicated, that V; < V* so that T* > 0 (see Appendix A for the general
case).

10In terms of cash flow, the regulator may set at time zero the price of service j so that

the firm breaks even:
I(p)f < (p— a)s0

where sg is a “reasonable” rate of return (Joskow, 1973).

1Tt is easy, at this level, to relax the assumption that the ceiling for the output price
is fixed. We can introduce an automatic adjustment clause such as p; = pe“?, where the
price is indexed, for example, to the planned inflation or to the price of the input, i.e.
w=a".

12Without any loss of generality we can consider the case in which revocation requires
some contractual indemnities K (i.e. the underpreciated value of investment in technology
and infrastructures) from the municipality to the firm, with —V + K < 0, I = K + I’ and
I'>0.



By an arbitrage argument and applying the Ito’s lemma, the value of
the opportunity to invest held by the regulator is given by solution of the
following Bellman equation (Dixit and Pindyck, 1994, p. 147-152, Clark and
Mondello, 1997):

1
SOV B+ aVE, — pF, =0 for V€ (0,V"], (9)

where F,, (V) must satisfy the following boundary conditions:

lim £,,(V) = 0 (10)
Fu(V)=V*—1 (11)
FL (V) =1 (12)

If the value of the utility goes to zero, the value of the option to invest
should also go to zero. Efficient operation conditions (11) and (12) respec-
tively imply that, at the trigger V*, the value of the option is equal to its
liabilities where I indicates the sunk cost for revoking the contract (match-
ing value condition) and suboptimal exercise of the option to invest is ruled
out (smooth pasting condition). By the linearity of (9) and using (10), the
general solution is:

(V)= AVFA, (13)

A is a constant to be determined and 3, > 1 is the positive root of the
quadratic equation:

B(5) = 50°B(3 ~ 1) + 0B~ p=0 (14)

Furthermore, as (13) represents the option value to optimally revoke the
contract, the constant A must be positive and the solution is valid over the
range of V' for which it is optimal for the regulator to keep the option alive
(0, V*]. By substituting (13) for (11) and (12) we get:

Gl I, with b

V= I
pr—1 py—1

>1 (15)

and:
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B

Putting together (8), (11), (12) and (15), we can write the regulator’s
investment opportunity at time ¢ as:

A(V*) = (V)5 >0,

AV for all V; < V*
Fn(Ve) = (16)
V-1 for all V, > V*

The optimal trigger value V* indicates the utility’s value for which the
regulator will find it profitable to revoke the contract. Or, in other words, the
local authority will find it expedient to manage the public service by itself
the first time V;, randomly fluctuating, hits the upper threshold level V*.
We are able to highlight the revocation timing by comparing the opportu-
nity costs of currently revoking the contract and the corresponding benefits
of optimally postponing the decision. This can be done by evaluating the
difference F,,(V;) — V.2(V;), where, by (16), V2(V;) = V; — I is the net value
of the public utility when it is acquired at time ¢, and F,,(V;) = AVPY If we
assume V; < V* so that the regulator finds it optimal to wait before revoking,
we get:

Fu(Vi) = VS(Vi) =1+ AV -, (17)

The first term on the r.h.s. of (17) is the direct cost of revocation. The
second term is the value of the option-to-revoke, and since revocation implies
“killing” this option, in (17) it appears as an opportunity cost of current
revocation. The third term is the current value of the project and is thus an
opportunity benefit. Since V; < V* and F,,(V;) — V.2(V;) > 0, the direct cost
plus the opportunity cost are greater than the opportunity benefit, and the
revocation decision should be delayed.

4 Revocation and firm regulation

From the previous section, once the delegation is in place, the regulator does
not have any incentive to revoke the contract as long as V; is below the
revocation level V*. Indeed, as V;, — [ — AV;ﬂ 1 <0 for all V; < V*, recalling
the contract implies a cost to the local authority which makes the (threat of)

10



revocation not credible. On the contrary, for V; > V* the local authority’s
gain from managing the utility is strictly positive, V;—1I > 0. Here, the threat
is credible. This reveals the simple stationary nature that this extreme threat
possesses: the first time V' hits V* revocation is carried out, the firm suffers
the loss V* and the regulator’s gain is V* — I. This extreme equilibrium
represents the minimax point of the game.

To avoid revocation, the firm may be willing to reduce profits to keep V;
below V* and then to guarantee its contract. However, without a binding
commitment any lump sum regulation, evaluated from the difference V; — V*,
will be inefficient (Klein and O’Flaherty, 1993; Shavell and Spier, 1996). The
firm knows that the regulator has an incentive to carry out the threat of
revocation as soon as V* is hit. In this respect, the regulator can set the
length of the relationship whereas the firm cannot. If the firm makes a once-
for-all reduction of the utility’s value the first time V; hits V*, the regulator
will revoke immediately after regardless of the level of the regulation unless
Vi < V*. Furthermore, by backward induction, the same happens for any
finite number of controls. The firm does not have any incentive to regulate
the utility’s level to delay the revocation decision. The regulator does not
expect to see regulations. It, then, optimally carries out the threat as soon
as V* is hit. The unique sub-game perfect equilibrium is inefficient, since the
revocation is carried out regardless of the firm’s gain staying in the market.'?

To avoid this inefficiency the firm must requlate in continuum the utility’s
value. As decisions are taken in continuous time, for ¢ > 7% the firm elects
V* as its ceiling and chooses to reduce expected profits via a downward
adjustment of the output price just enough to keep V; from crossing the
ceiling V*, so that continuing the contract or revoking it makes no difference
to the regulator.'*

BFor V > V*, “...the threatener’s problem is that he will have an incentive to carry out
his threat even if he is paid......... Because this means that the victim will not prevent the
threatened act by paying, he will not pay. The threatener cannot overcome this problem
in a single (or finite) period setting, and his threat will therefore fail in this version of the
model” (Shavell and Spier, 1996, p. 3-4).

14In continuous time repeated games there is no notion of last time before t. The real
line is not well ordered and then induction cannot be applied. Continuous time can be
seen as discrete-time with a length of reaction (or information lag) that becomes infinitely
negligible to allow the threateners to respond immediately to the firm’s actions. In Simon
and Stinchcombe (1989), for example, a class of continuous strategies is defined so that
any increasingly narrow sequence of discrete-time grids generates a convergent sequence of
game outcomes whose limit is independent of the grid sequence. In Bergin and MacLeod

11



Letting the firm start with the initial value V4, the optimal policy from
here on is a simple one: for V; < V*, it allows the value of the utility to
evolve over time according to the geometric Brownian motion (7); at V* a
costless regulator dr; is applied to stop the process V; from going above V*.1°
The overall process can be described as:

dV, = aVidt + oVidz — dry, Vo=V, for V € (0,V"] (18)

where 7; represents the upside value of the project cut by regulation. The in-
crement dr; gives the sum the firm is willing to pay (i.e. the loss that the firm
is able to bear) between t and ¢ + dt to keep the contract alive. In technical
terms, V* is no longer an absorbing barrier but is a (reflecting) barrier con-
trol (Harrison and Taksar, 1983; Harrison, 1985), while the optimal control r;
is a right-continuous, non-decreasing and non-negative adapted process that
takes the form (see Appendix A and figure 3):

*

Jnf_ (‘V/ W itvizve (19)

This control has several interesting features. Firstly, it represents the
cumulative amount of the project’s value that the firm abandons up to time
t. The firm must increase r; fast enough to keep V; — r; below V* but wishes
to exert as little regulation as possible subject to this constraint. Secondly,
the regulation r; is parametrized by the initial condition V* which, in turns,
depends on the revocation cost I. Thirdly, as r; depends only on the primitive
exogenous process V;, the regulated process V; — r; is also a Markov process
in levels (Harrison, 1985, Proposition 7, p. 80-81).

The first and the second property make the regulation related to past
realizations and then to the history of the game. Since V' fluctuates stochas-
tically over time, although the intervention is continuous, its rate of change
is discontinuous. Furthermore, the last property is important as it effectively
makes the regulated process (18) a function solely of the starting state. At
the beginning of each period both the firm and the regulator can predict the
evolution of the utility value referring only to its current state.

Tt:[].—

(1993) a class of inertia strategies represents a delay in response: an action at time ¢ must
also be chosen for a small period of time after ¢, with this small period of time tending to
Z€er0.

15The assumption that the regulation is cost-free is not technically necessary for the
analysis. We can alternatively assume that the firm faces a cost C; = cdr(V;) without this
altering the results.

12



The above strategies and the regulation mechanism (19) can improve
upon static non-cooperative outcomes. These strategies imply an instanta-
neous response by the regulator when the firm departs from the regulation
rule (19) with the minimax threat: revocation. In addition, since the project
is infinitely lived, the present value of foregone profits will ensure participa-
tion by the firm and the expectation of future regulations keeps the regulator
from exercising the threat.

Proposition Part I (Threat equilibria). For any V* > Vj > 0,if the
firm regulates the utility’s value with the non-decreasing proportional
rule (19), then the following regulator’s strategy is a sub-game perfect
equilibrium:

Do not revoke

at ¢ = T™ if the firm has followed the rule r;
to keep V; < V* for t' <t

¢(V27 Tt) =
Revoke

if the firm has deviated from 7,
at any t' <t

Proof. see Appendix A.

According to the decision rule strategy the firm observes V;, chooses an
action (19) and the regulator stays (¢(V;, r;) = “Not Revoke” for all t > T™)
or, equivalently, at 7™, sets a continuous time control rule for each realization
of V; for any ¢ > T*.1% The regulated utility’s value is obtained from V; by
imposition of an upper control barrier at V*. Regulation increases to keep V;
lower than V* and it is given by the cumulative amount of control exerted
on the sample path of V; up to t. Regulation is related to the history of
the game and past value realizations, this makes ¢(V;, ;) a time-dependent
strategy. The regulator’s “threat” strategy is adopted if the firm deviates
from the regulation rule (19). The regulator believes that this mechanism,
from initial date and state (7, V*), is kept in use for the whole (stochastic)
planning horizon. If the firm deviates, the regulator expects a fresh rule. The
punishment for the firm deviating from the announced rule is revocation.!”

15Tn our continuous time setting we can assume, without any loss of generality, that
when the regulator is indifferent it does not exercise the threat; see footnote n.13
17The firm cannot commit itself to changing the rule without losing its credibility. In

13



However, although the utility lives forever, the regulation takes place
within a finite (stochastic) time span. Owing to uncertainty, neither player
can perfectly predict V; each time. As V; follows a random walk there is, for
each time interval dt, a constant probability of moving up or down, i.e. of
the game continuing one more period. The game ends in finite (stochastic)
time with probability one, but everything is as if the horizon were infinite.!®

Proposition Part IT (Regulation timing). As long as V; < V* nothing
is done. The first time V; crosses from below V*, at T* = inf(t > 0 |
Vi — V* = 07), the firm regulates using (19) to keep the regulator
indifferent to revoking. Regulation goes on up to the point where the
unregulated utiltiy’s value V; crosses from above the trigger VV* and the
regulator becomes (again) indifferent, i.e. 7% =inf(t > T* |V, - V* =
07).

Proof. see Appendix A.

Since the regulator’s strategy is time-dependent, the firm cannot decide
whether to continue or stop the regulation referring only to the current re-
alization of V;. If the regulated value V; — r; goes below V*, in the interval
[T*,T*) the firm may be willing to stop regulation to increase the utility’s
value. However, for the sake of perfectness, earlier interruption is not allowed
before T*. Earlier interruptions are not feasible as long as the threat of clo-
sure by the public authority is credible. The credibility relies on the fact that
the regulator’s option-to-revoke if the firm deviates from r; is always worth
exercising at V; > V* ie. F,(V;) > F,(V*). At T¥, however, the firm is
able to restore the process V; and the game can start afresh. The timing of
the game is shown in figure 1 below.

Figure 1 about here

this respect, a change in the regulation policy is perceived by the regulator as a stoppage
of regulation.

18In a discrete-time and constant-payoffs game, Shavell and Spier (1996) propose a
similar scheme, where the threatener uses a threat strategy with maximal punishments.
Our continuous time framework calls for a refinement of the threat strategy as in footnote
n.13.

14



5 Analysis of the results and policy implica-
tions

Although our regulation mechanism may lack some features of real schemes,
several novel implications follow from our analysis. We summarize the dis-
cussions of our results in the following six items.

e The regulatory rule

The regulatory rule (19) is endogenous. It rises as optimal response from
a continuous rate of hearing between a regulated firm and a regulator that
cannot sign binding contracts with the firm it regulates. The rule is dynamic
in nature: such a repetition of the relationship substitutes long-term con-
tracts and guarantees the firm with an “allowed” level of return. Moreover,
recalling the non-decreasing property, this rule may appear as an “insurance
premium” based on the value of the utility V;, paid in continuous time and
in advance by the firm to avoid revocation. The firm starts paying the first
time V; goes above V* (the first occurrence time) and cannot stop or reduce
it since this would cancel its coverage. When the utility’s value goes again
above V* (the second occurrence time), the firm will be asked to increase its
premium to maintain the coverage. In other words, it continues paying even
when “things get better” (profits decrease as well as the local authority’s
value of revoking the contract) in order to have the option of being active
next time the value goes above V*. It follows that the new regulation is
higher, since the firm pays the premium due after the “second occurrence”
(see figure 3 in the Appendix A).

e Option-to-revoke as a tool for collective welfare

The higher the cost of revoking the contract, the higher the option-to-revoke
which increases the value of waiting for better information on the stochastic
evolution of the utility before the local authority commits itself to the invest-
ment decision. With this in mind, we can look at the regulatory rule from
the perspective of collective welfare maximization. In this specific instance
the expected value of cumulative future premiums (equations (27) and (40)
in Appendix) can be expressed at time ¢ as :
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ROEV) = B{ [ e arv) | V7 = Vif (20)

= (- @B [ eI V)ds | 1] = Vi)
t
= BV,

with B(V*) = ﬂ—ll(‘/*)lfﬂ1 > 0 and V}" is the regulated value as in (18). Equa-
tion (20) is the firm’s expected cumulative controls in terms of lower output
price. The adoption of the policy rule (19) means that it makes no difference
to a “local community” whether it receives benefits from the firm’s regula-
tions or from the local authority’s maximization of the discounted consumer
surplus (see Appendix B), i.e.!?:

AWVHV = B9V =0, for t > T*
e Price adjustment

Once the numerical value for V* is known, by using (4) and (5), the optimal
policy (15) can be written as:

_ p
(1—@)p' p'0=—"=(p—a)l (21)
pr—1
with § = 0" for p = p. By inverting (21) we can obtain the optimal boundary
function p(#) which determines the optimal price regulation as a function of
the sole state variable # and the parameter of the problem ¢ :

x\ 1/€
p=p <%> with % <0 (22)

The boundary function is shown in Figure 2. For any given value of contrac-
tual price p, random fluctuations of § move the point (0, p) horizontally on
the left or on the right. If the point goes on the right of the boundary, then

YFormal proof (see Appendix A) shows that the regulator in revoking the contract does
so in rational expectation of subsequent (marginal) price regulations by the firm. It turns
out that for the regulator this makes no difference to the trade-off between revoking now
and waiting another instant, i.e. the regulator’s option value is identically zero. See Leahy
(1993) for the same result in the context of a competitive industry.
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a price reduction is immediately undertaken so that the point shift down to
the boundary. If € stays on the left of the boundary, no new price regula-
tion is undertaken. Price reduction proceeds gradually to maintain (21) as
an equality.

Figure 2 about here

e The regulation as a sliding scale

Our result establishes a connection between ROR regulation and price cap
regulation. In fact, simple algebra allows us to write the policy rule (19) as a
sliding scale over an allowed rate of return (Joskow and Schmalensee, 1986,
p. 29):%

0 , for sg < s < s*
s; =s;+hi (8" =), withh, =4 1= inf_(V*/W) .
iy for s, > s
(23)
where s = VT’f, s = 4 and s* = Y=, By (23), the actual rate of return under

regulation sy is given by the actual rate of return without regulation s, i.e.
at the output price that prevails in time ¢, plus the adjustment s* — s;, where
the revocation rate s* plays the role of the upper “allowed” rate of return.
Thus, if at time ¢ the earned rate of return goes above s*, the output price is
adjusted according to (22) by the firm to decrease the rate of return by the
fraction h; > 1 of the difference between the earned rate of return and the
allowed rate of return.

Contrasting with the formula proposed by Joskow and Schmalensee (1986),
in (23) h; is time-dependent and not-decreasing. That is, h; is the optimal
adjustment rate that keeps the regulator indifferent between revoking the
contract and leaving the project to the firm. To obtain consistent behavior
by the firm, h; cannot decrease when the difference between the earned rate

20The formula proposed by Joskow and Schmalensee (1986, p. 29) would adjust prices

so that the actual rate of return s at new prices would be given by: s} = s;+ h (s* — s¢),
where s; is the rate of return at the prices in the year ¢ (old prices), h is a constant between
zero and one and s* is the ROR target.
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of return and the allowed rate of return drops. It follows that in the period
0 <t < T* where s; < s*, we will have h; = 0 and s] = s;. During this
regulatory lag the firm is allowed to earn the actual rate of return at the
rates fixed at time ¢ = 0, i.e. p; = p (a period of price-cap or fixed price
regulation period).?! When s, > s*, in period t > T*, the adjustment rate
h; jumps to 1 and it will remain at that value until dV; > 0 so that s} = s*.
The firm is allowed to earn a rate of return no greater than the upper rate
s* = % > 1 and p; < p (a period of ROR regulation). However, in periods
where dV; < 0 we will have h; > 1in order to keep the difference s; — s
constant at the highest level reached up to ¢.

¢ Regulatory information

The rule (23) is parametrized by the revocation rate s*. So, in the specific, the
key variable for the value of the option-to-revoke and thus for the regulator’s
position during the delegation period is the direct cost I which - in turn-
depends, excluding indemnities on the value of the investment, on training
and hiring costs for qualified personnel, costs of procuring new technology
and legal costs if the firm decides to sue the local authority for breaking the
contract. Thus, the initial set of information and the demand/cost data the
regulator uses are fundamental in determining the length of the regulatory
lag. This effect could be weighted with respect to the well-known tradeoft
in ROR literature between a short regulatory lag that promotes allocative
efficiency but is bad for productive efficiency, and a long regulatory lag that
produces the opposite effect on allocative and productive efficiency.
Furthermore, the revocation rate s* is related to the credibility of the
regulator, given the firm’s information on the regulator’s revocation costs.
This credibility is relevant for the renegotiation process since it determines
the regulator’s bargaining power with the delegated firm and - in turn - the
timing of contract renewal. Indeed, if the revocation costs, on the one hand,
measure the “inefficiencies” the local authority incurs by direct management
and are, therefore, used to positively evaluate the decision to delegate the
public service to a private operator, on the other hand, they raise the prob-
lem of the irreversibility of the delegation once it is taken. In the case of
local provision of utilities we refer to, after the delegation has taken place

21Gince the difference between a price-cap and a fixed price regime seems to be relevant
when the regulated firm faces competition, where the price-cap provides only a ceiling
rather than both a ceiling and a floor, we do not adopt this distinction here.
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the municipal authority plays the role of a regulator with respect to the pri-
vate firm: the inexperience of the municipal authority in this role can affect
negatively its credibility and thus determine a negotiating disadvantage.

e Market expectations

Finally, as long as public utilities are not traded in limited supply for in-
vestment purposes by a large number of investors, their growth rate a may
actually fall below the equilibrium total expected rate of return & required
in the market by investors from an equivalent-risk traded financial security,
ie. § = &— a > 0 (McDonald and Siegel, 1986). However, by the asset
price equilibrium relationship & —r = Ao, we are able to evaluate the regula-
tor’s value of the option-to-revoke, replacing o with the risk-adjusted rate of
growth a — Ao = r— 6 and behaving as if the word were risk neutral: where r
is the risk-free rate of interest, ¢ is the below-equilibrium return shortfall and
A is the utility’s market price of risk. The allowed rate of return becomes:

s*=s"(r,\ 0)

Although, it seems reasonable to assume that utilities with higher “capital
costs” will be allowed to earn higher rates of return, i.e. % > 0, it is also
confirmed the empirical evidence that a higher systematic risk, as measured
through the market price of risk A, results in a higher allowed rate-of-return,
ie. % > 0 (Fan and Cowing, 1994). Furthermore, a higher volatility also
increases the allowed rate of return, i.e. % > 0, but for reasons other than
those related to interest rates and systematic risk. From section 3 we know
that an increase in the instantaneous variance, o2, of the revenue process
reduces (3; and then increases the option multiply ﬂlﬂ 1. As aresult, when the
utility’s market or economic environment becomes more volatile, the market
value of the public project can go up, but it also increases the regulator’s
value of keeping the revocation opportunity alive. Thus, the allowed rate
of return s* is higher since the regulator optimal policy is to lag behind in
revoking the contract with the firm.

6 Conclusions

In this paper we have modelled the regulation of a local public utility as a
long-term relationship between a firm and its regulator. After formulating
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a time-dependent supergame in continuous time, we have shown that when
the regulator has a credible threat of revoking the contract and the cost of
revocation is not too high, the cooperative equilibrium is an efficient solution.
Such a repetition of the relationship may substitute long-term contracts and
guarantee utilities with an appropriate level of profits. Furthermore, since
the output price is contractually fixed at time zero and the firm is the resid-
ual claimant for its profits, we have a stochastic regulatory lag where the
regulation has a fixed-price nature. Excessive revocation cost makes the firm
an unregulated monopolist with an infinite regulatory lag. This fixed-price
regulation is followed by a period of rate-of-return regulation in which the
firm is induced to adjust its output price downward to keep its rate of return
below the allowed one set by the regulator and avoid revocation.
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A Appendix: The threat game

We prove that the regulatory scheme proposed is a perfect equilibrium be-
longing to the class of efficient perfect equilibria (which may be very large)
for the continuous time threat-game described in the text.

1) Regulation mechanism

We define the regulation as the negative increment dV; to let V; stay at
V* that is, a policy control is a process Z = {Z;,t > 0} and a regulated
process V" = {V/",t > 0} such that

Vi =Wz, for V] € (0,V7], (24)

where:

e i) V; is a geometric Brownian motion, with stochastic differential as in
(7);

e ii) Z, is a decreasing and continuous process with respect to V; ;

o iii) Zo=1if Vy <V* and Zy = V*/Vj if Vj > V* so that V] = V*;

e iv) Z; decreases only when V" = V™.

Applying Ito’s lemma to (24), we get:

dz,
AV = aVidt + oV dz + v;‘7t, Vee 0,V

t

where V[dTZ: = VidZ; = —dr; is the infinitesimally small level of value given
up by the firm. In terms of the regulated process V", we can write:

rn=r(V;) =V, = V) = (1 - Z,)V,, (25)

Although the process Z; may have a jump at time ¢ = 0 it is continuous
and maintains V; below the barrier using the minimum amount of control, in
that control takes places only when V; crosses V* from below with probability
one in the absence of regulation. Therefore, in the case of V < V*, we get
V" = Vi, with initial condition Vj = Vo =V, and Z, = 1. At T* =T (V*) =
inf(¢ > 0|V, — V* = 07) the regulation starts so as to maintain V;” = V*.
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The firm regulates the utility’s value by the amount r, = V; — VJ” > 0 every
time V* is hit.

Finally, the same conditions (i) — (iv) uniquely determine Z; with the repre-
sentation form (Harrison,1985; proposition 3, p. 19-20):22

inf (V*/V,)  for t>0 (26)

0<v<t

B { min(1, V*/V;)  fort=0
t:

Figure 3 about here

2) Cost of regulation

Let’s now indicate with R(V"; V*) the expected value of future cumulative
losses in terms of the firm’s value due to the regulation. As neither player
can predict the end of the game, the rational player evaluates R considering
the infinite life of the project:

ROVGVY) = B [ erar(v) | Vg € (0,v7]} (21)
0
~ _E, { / ePVdZ) | VI € (0, v*]}
0
Since V" is a Markov process in levels (Harrison, 1985, proposition 7, p.80-

81), we know that the above conditional expectation is in fact a function
solely of the starting state.” Keeping the dependence of R on V" active

22This is an application of a well-known result by Levy (1948), for which the process:
nV) =1 InZ; =1 — inf (1 —InV*
nV, nV;+InZ, =InV; oéggt(nvv nV™*)
has the same distribution as the “reflected Brownian process” | InV; —InV* |.
BFor Vo = V > V* optimal control would require Z to have a jump at zero so as to

ensure V' = V*. In this case the integral on the right of (27) is defined to include the
control cost 7y incurred at ¢t = 0, that is (see Harrison 1985, p.102-103):

o0
/ e Pldry = ro + / e Pldry
0 (0,00)

where 1o =V — V.
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and assuming that it is twice continuously differentiable, by Ito’s lemma we
get:

1
dR = R’dV[+§R”(dV[)2 (28)

1
= R(Z,dV; + V,dZ;) + §R”Zt2(dvg)2

dz,. 1
= R(aV/dt+oV/dz + V;T7t) + 5 R Zio"dt
t

1 dz,
_ §R"aﬁw2dt +RaV/dt+ RoV/dz + R’V[7:

where it has been taken into account that for a finite-variation process like
Z,(dZ)? = 0. As dZ; = 0 except when V" = V* we are able to rewrite (28)
as:

1
dR(V; V") =[50 VPRI (VI V) + a VIR (V] V)dt (29)
+o V] R(V]; V) dzy — R(V*V*)dr(V;)
This is a stochastic differential equation in R. Integrating by part the process
Re™" we get (Harrison, 1985, p.73):
IRV V) = ROG V)4 (30)

t 1
+/ e P |:§O'2‘/;T2R”(‘/ST;V*) +OK‘/;TR,(‘/ST,V*) o pR(‘/;T7V*):| ds
0

t t
to / e PVIR (VI V) dzy — RV V) / P dr(V,)
0 0

Taking the expectation of (30) and letting ¢ — oo, if the following conditions
apply:

(a) }iI%Pr[T(l) <TWV*)| Vg e (0,V¥]] =0forl < V) < V* < oo, where
T(I) = inf(t > 0| V7 =1) and T(V*) = inf(t > 0 | V7 = V*);

(b) R(V;";V*)) is bounded within (0, V*];
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(c) e PV R (V/"; V*) is bounded within (0, V*];
(d) R(V5 V) =1,
(€) 2P VPR (Vs V") + a VP RI(VE: V) — pR(VE: V) = 0,

we obtain R(V";V*) as indicated in (27). Condition (a) says that the prob-
ability that the regulated process V" reaches zero before reaching another
point within the set (0, V*] is zero. As V] is a geometric type of process this
condition is, in general, always satisfied (Karlin and Taylor, 1981, p. 228-
230). Furthermore, if condition (a) holds and R(V";V*) is bounded then
conditions (b) and (c) also hold. According to the linearity of (e) and using
(d), the general solution has the form:

R(VG5 V) = BV, (31)
with:
1
I
As for Vo < V*, Zy = 1 and V§ = Vg =V, then R(V;V*) = R(V; V™).

On the other hand, if Vi > V*, we get Z, = V*/Vj, so that Vj = V* and
R(Vy; V*) = R(V* V™).

B(V*) = —(V*)1%1 > 0. (32)

3) The value of the option-to-revoke

Although the firm prefers to regulate rather than close (i.e. the loss from
closure is larger than the (expected) cost of regulation), it always prefers
to stop regulation if the threat of revocation is not carried out, i.e. r; =
Vi =V >0, for all t > T™. To simplify discussion we assume that V, < V*
so that T* > 0. While regulation reduces the project’s value but keeps the
firm’s contract alive, the regulator is not in the same condition. Indicating
with F! (V; V*) the regulator’s option value when the firm controls itself, it
can be expressed, at time zero, by:

Fp (Vi V) = max By { (V= e | Vy = V} (33)
orusing r, =V, = V" =(1-2Z,)V;:

Fr(V;V*) =max Eo[(Vr — De " — (Vo — Vi)e T | Vo = V] (34)

24



In (34) the regulator’s option value, with a barrier control on V;, takes account
of two terms depending upon the joint evolution of V; and V. The first
(Vi —I) is the net project’s value without the barrier, while (Vi — V) is the
reduction in value due to the regulation. Again, keeping the dependence of
E" on V; active and assuming it twice continuously differentiable, by Ito’s
lemma we obtain:
r 1 'y rr2 2 ! T r! T r! 'rdZt
dsziFmV; o“dt+ F, aV/dt+ F, oV dz + FV, Z (35)

As dZ; = 0 except when V" = V* the above differential equation becomes:

1
dFL, (VI VE) =[SV L (VE V) + o VIR (VI V)lde (36)

+o VI E (Vs V*)dzy — FL(VE5VH)dr (V)

Integrating by part the process F7 e gives:

e "TEL (Vi V) = FL (Vi V)+
(37)

™ 1
[ e [SRVERI VIV b a VI E VIV o ViV ds
0

* T*

o [ ePVIR VIV dz — BV [ e (V)
0 0
Taking the expected value of (37), if the following conditions apply:

(a) e PV Fr(Vr; V*) is bounded within (0, V*]
(b) Er (Vi V)=V =1

(c)
(d)

Er(Vs V) =0;
10-2‘/;7‘2F7;Il(‘/;r;v*) + a‘/;rF:nl(‘/;r; V*) _ pF;L(V;T, V*) =0

2

we obtain the expression for F] (V;V*) as in (33). Now the two conditions
(b) and (c) together with the fact that at 7* the regulation starts so as
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to keep V" = V* (i.e. compare condition (c) with condition (12)), give
Fr(V;V*) =0.

From (34) and (31), a heuristic but direct way of looking at the same result
is to see I}, (V;V*)as the difference between the regulator’s option value to
manage the utility, F,,(V) = A(V*)VP1, and the firm’s expected value of
future cumulative controls due to the regulation, R(V) = B(V*)V%1| that is:

Fr (Vi V) = AVHV = BVHV =0

In other words, it should make no difference whether the “community” re-
ceives the benefits in terms of the firm’s regulation (lower output price) or
by direct transfers from the regulator. For 0 < t < T™, V;" =V, and then
E! (Vi) = F,.(V;). At T* regulation starts killing the option, i.e. FJ,(V) =0,
for all ¢ > T™.

4) Optimal threat and perfect equilibrium

Since V; follows a random walk there is, for each time interval of small length
dt, a constant probability that the game will continue one more period. The
game ends in finite (stochastic) time with probability one, but everything
is as if the horizon were infinite. Neither player is able to perfectly predict
V; at each date and the regulation scheme described by (25) with the form
(26) is viewed by both contenders as a rule for evaluating all future value
reductions.?* In the strategy space of the agency it appears as:

241t is well known that infinitely repeated games may be equivalent to repeated games
that terminate in finite time. At each period there is a probability that the game continues
one more period. The key is that the conditional probability of continuing must be positive
(Fudenberg and Tirole, 1991, p.148). Integrating the differential form (7), the geometric
Brownian motion can be expressed as:

Vivar = Vtedy'
where dY; = pdt +o0dz, and = o — %02. The differential dY; is derived as the continuous
limit of a discrete-time random walk, where in each small time interval of length At the

variable y either moves up or down by Ah with probabilities (Cox and Miller, 1965, p.
205-206):

Pr(AY = +AR) = = (1 + “—”N) . Pr(AY = —AR) =1 (1 - “—Vm>
2 o 2 o
or defining Ah = o/ At:
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Do not revoke at ¢ = T if the firm

plays the rule r, = (1 — Z,)V; for ¢/ <t
¢(W7 Tt) =

Revoke if the firm deviated from

re=(1—2)V, atany t' <t

where ¢(V;, 1) is the action at ¢ with history (V;, Z;). The regulator’s
“threat” strategy is chosen if the firm deviates by regulating V; less than
r; or by abandoning r, = (1 — Z;)V; as a rule to evaluate future regulations.
The regulator must believe that the regulation, from the initial date and state
(T*,V*), will be kept in use for the whole (stochastic) planning horizon. If
the firm deviates, the regulator believes that the firm switches to a different
rule in the future and knows for sure that the regulator revokes immediately.
The regulator does not revoke in ¢ if r > Vi, — V7 for all ' < ¢, because value
controls are expected to continue with the same rule and F, (V') = 0 for all
t>T* Ifry < Viy— V] for some t' <t the regulator expects a different rule
and carries out the threat, switching from F (V;) = 0 to F,,,(V;) > V* — I.
The game is over.

To prove this, let’s first consider R as in (27). For each ' > T* integration
by parts gives:

t '
/t e P47, = (38)

!

! t 7 t 7
N~ ViZu+p [ e Zds — [ e Zay,
t/ t

U

1
Pr(AY = +Ah) = 3 (1 + “Ah> , Pr(AY = +Ah) = % (1 - ”Ah>

o2 o2

That is, for small At, Ah is of order of magnitude O(v/At) and both probabilities become
% + O(\/E), i.e. not very different from % Furthermore, considering again the discrete-
time approximation of the process Y;, starting at V*et2" the conditional probability of
reaching V* is given by (Cox and Miller, 1965, ch.2):

1 if £<0
PT(Y1€:0|Y;€:0+Ah) :{ 872/1Ah/(72 if p>0

which converges to one as Ah tends to zero.

27



Taking expectation of both sides and using the zero expectation property of
the Brownian motion (Harrison, 1985, p.62-63), we have:

t t
Ey / e PC~V,dZ, = B[V Zee "1V, Zy +(p— ) Ey / e~ 7. ds
t t!

(39)
By the Strong Markov property of V;"?, it follows that Ey[V;Z,e=Pt~*)] =
Ep Vi Z | Eyle 1] = V*Ey[e=P(t=1)] — 0 almost surely as t — 00, so that:

E, / efp(sft’)‘/stS = -VuZ, + (P — a)Et, / e*P(S—tl) (‘/5 — ’I“s)dS
t’ t!

Since —VuZy + (p — a)Ey [° e~ ")V, ds = 0, substituting in (27) and
rearranging we get:
R(Vy; V') = (p— a) By / e~ ds (40)
t/

Secondly, let us assume (#',¢) be an interval in which r, is flat so that V" <
V*, and ¢ as the first time in which dZ;, > 0. Considering the decomposition
(39) we can write (40) as:

t o)
R(th;v*) _ (/) _ a) {Et’/ e—p(s_t’)rsds + Ep {/ 6—p(s—t')rsd8}}
t t

= (p—a) {Et/ /t e P~y ds + E, {e"’(t_t') /Oo e_p(s_t/)r:ds}}
2 t/

where we have defined V,* = V., and r} = r;ys — r, for ¢ < ¢. Applying,
again, the Strong Markov Property of V;” we get:

t ’ ’ o0 ’
R(Vy; V™) = Et// e P ds + Ey {e‘p(t_t)Et// e—Pls—t )‘X"r’;‘ds}
t/ tl

t 7 '
= (p—a)Ey / e P ds + Ey {e*p(t*t )R(Vt/; V*)}

tl

t ) /
= (p—a)Ey / e P ds + R(Vy; V¥)Ey {e—P(t—t )}

tl

Since 1y = rp = Vi — V) for all s € (¥,t) we can simplify the above

expression as:

25The Strong Markov Property of regulated Brownian motion processes stresses the
fact that the stochastic first passage time ¢ and the stochastic process V,” are independent
(Harrison, 1985, proposition 7, p.80-81).
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R(VZ/, V*) — (p a)’l”t/ — (p Oé) (V;E’ _ J) (41)
P P

From (41), any application of controls r» < Vi, — V7, leads to a reduction of
(40) for all t > ¢’ and then to F,(V;; V*) > 0. Furthermore, the firm does not
regulate more than r; since, by doing so, it does not increase the probability
of a delayed closure. It does not pay less, since r, < V; — V;" induces closure
making them worse off, i.e. 0 < V;. Finally, as V;" is a Markov process in
levels, it is immediate by (40) that any sub-game beginning at a point at
which revocation has not taken place is equivalent to the whole game. The
strategy ¢ is efficient for any sub-game starting at an intermediate date and
state (t,V;). We have sub-game perfection.

6) Non-decreasing path of r; within [T* 7).

So far we have implicitly assumed that, once started at 7™, the regulation
goes on forever. Earlier interruptions are not feasible as long as the threat
of closure by the regulator is credible. Credibility relies on the fact that the
agency’s option-to-revoke the contract if the firm deviates from r; is always
worth exercising at V; > V* ie. F, (V) > F,,(V*). As the decision rule
strategy depends on the history of the game, the regulator expects regulation
to continue according to the rule r; and any premature stop could make it
no longer subgame-perfect.

However, in an optimal Brownian path there is a positive probability that
the primitive process V; crosses V* again starting at an interior point of the
range (V*,00). In this case, the firm may be willing to stop regulation. That
is, the firm regulates its value until V; > V* letting the agency expect the
regulation to continue in the future according to the same rule r; = (1—2;)V;,
but when V; reaches, for the first time after 7™, a predetermined level, say
V' < V*, it stops the regulation. The regulator will face a jump from zero to
F,.(V") < F,,(V*) making the threat of revocation no longer credible. To see
this, consider the possibility of the firm’s regulation terminating at time 7"
with T* < T' < oo, where T" = inf(t > T* | V; > V') is the first hitting time
of V' < V* when regulation is on. The regulator’s option value starting at
any t € [T*, 00),can be expressed as:

Fr(Vis V') = P(V'; Vo) By [Fy, (Vi )e "= 10] + (42)
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(1= P(V';V;)) max B[(Vy — T)e "")]

where P(V’;V;) is the probability of the unregulated process V; reaching
V' < V* starting at an interior point of the range (V*, c0), which is equal to
(Cox and Miller, 1965, p. 232-234):

‘/; —2u/o?
P(T" < 00 | Vi) = P(V'sVi) = (1)
with g = (a — 30?).20 As the starting point is now any ¢ € (7, 00), we can
immediately see in (42) the dependence on both V;" and V;. Recalling that
the option value in the case of regulation is zero and that at time 7" when

the contract is revocated it is simply F; (V) = F! (V'), we get:
(Vs V') = PV Vo) E[E, (Ve ")
According to the Strong Markov Property of V" equation (42) becomes:

- B
B, (Vv = PV EL(7) (15) (43)
where 3, < 0 is the negative root of (14). Since at ¢ the unregulated process

9/02
V; is greater than V' and P(V';V}) (%)% - (%)'g2 2/

FEr (Vi V) < Fr (V') for all t € [T*,T"), which implies that:

< 1, we obtain

B ) V! B1 V. Bo—2u/0?
Rosv=mw) (w) () <men e

Therefore, to avoid revocation the regulation continues until time 7" =
T'(V*) =inf(t > T* | V; — V* = 07) when the trigger V* is hit again (for
the first time) after 7*. The game ends and can then be restarted afresh.

B Appendix: Self-interested regulator and so-
cial optimum

Although the precise objective function of the regulator does not matter for
the qualitative results, contrary to current wisdom, we have assumed the

26This probability is P(V’;V;) =1 for u < 0, see footnote n. 23.
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public authority to be self-interested. However, it is not difficult to adapt
the methodology of Dixit and Pindyck (1994, chapter 8) to the case of a
regulator that maximizes the consumers’ surplus.

Let p; and @); be the actual price and quantity in period ¢. Stationary demand
is D(p), from which we obtain the inverse demand function p; = p(Q;). Total
quantity is produced by N productive units?” which may differ in their effi-
ciency. Unit n produces g(n) in such a way that Q(N) = J;" q(n)dn. Before
beginning production, each unit can be activated by the public authority
incurring a sunk cost [ that is independent of the scale of operation. The
area under the demand curve at any instant ¢ can be seen as the flow of total
social utility generated by the output flow (); produced by N; productive
units. This is given by:

Q1 fONt q(n)dn
0 J

0,U(Q(N,)) = 6, / p(z)dz = 6, pla)de (45)

0
where the multiplicative variable 6 takes up the meaning of change in con-
sumers’ tastes. Recalling (6), the geometric Brownian motion follows:

d9t = aetdt + O'thzt, with 00 =40 (46)

Therefore, taking the derivative of (45) with respect to N and assuming, for
the sake of simplicity, no variable costs, the marginal social utility expresses
the last unit’s operating profits:

U'(Q(N:))Q'(N1)8; = p(Q(N:))q(Ny)8; = m(Ny)0; (47)

The regulator aims to maximize the expected present value of social utility
net of the cost of capacity expansion. If an amount of dV; is added to capacity
at this instant a cost equal to IdN; is incurred. The regulator’s objective
function can then be expressed as:

Eo { / e OU((Q(N))dt — S e ™ IdN, | 6y = 9} (48)
0 t
where the sum is taken over the instants when new units are introduced.
Indicating by W(N,6) the above maximized value with initial productive
units N, for any given value of the shift 6, it should satisfy the following
Bellman equation (Dixit and Pindyck, 1994, p.284-287):

2"To simplify, we treat N as a continuous variable.
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%U2QQW99(N, 0) + afWy(N,0) — pW (N, 6) = —6U((Q(N))

For fixed N this can be seen as an ordinary second order differential equation
in 0, the general solution of which can be expressed as:

OU((Q(N))
p—«
Whilst the second term in (49), M%ﬂ, is the expected present value of the

social utility if NV is held fixed at its level, the first term, B(N)#°', represents
the value of the comunity’s ability to increase N optimally in response to
the evolution of #. In other words, it is the value placed by the society on
its option to expand its productive capacity. To complete the solution we
need to find the optimal capacity expansion rule. At the boundary where
the marginal d/N-th unit is added, the regulator decides to increase capacity
only if Wy (N, 8)dN = IdN: the increase in the value function must be equal
to its cost (matching value condition):

W(N,0) = B(N)6” + (49)

U (QIN))Q'(N)
p—
Furthermore, the marginal gain and marginal cost should smooth out at the

boundary (smooth pasting condition), i.e.:

Wy (N, 0) = B'(N)§° + =1 (50)

U'((QIN)E'(N)
p—a
When a marginal expansion is actually carried out, the comunity loses the
value of the marginal option thus exercised which is given by —B'(N)#%.
Via the smooth pasting condition (50) and making use of (47) we are able to

write:

Whno(N,0) = 3,B' (N)§°r ' + =0 (51)

g = G (U’(@(N))@’(N))ﬂl # (52)

gy p-o
A V) <W(N)9>ﬂ1 o
By p-a
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w(N)6

Finally, defining V' = and substituting it in (52), we get the simplified

expression: a
— 1)1 1-5
—pen = %ﬂl T (53)
1
where:
A(V*):i(v*)1*ﬂ1>0, and V= —D1p
6 G -1

As a representative of consumers’ interests, the regulator’s maximization of
the discounted consumer surplus implies the maximization of the option value
to revoke the contract as expressed in (13) in the text.
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Figure 1: Discrete time representation of the game (dominant strategies)
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