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Abstract

We model club formation as a non-cooperative game of coalition formation and
surplus division. We show how social norms and individual rationality sustain a
particular form of collective inefficiency, namely excessive entry in the joint produc-
tion and exploitation of an excludable good. We term this phenomenon the ‘tragedy
of the clubs’. The tragedy of the clubs is a pervasive equilibrium phenomenon.
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1 Introduction

The essence of several economic activities is the generation and sharing of a surplus
through cooperation by selfish individuals. However, such activities rarely if ever will
call for universal cooperation. There are almost always limits to the size of a cooperating
group, beyond which new entrants in the cooperative activity will not be welcome because
they decrease average surplus. When no or limited ezclusion power can be exercised,
excessive entry in the cooperative activity is bound to result. In the limiting case where
the surplus is available and is maximum for a single exploiter!, this phenomenon is called
the tragedy of the commons. But suppose that groups do have the power of excluding the
unwanted, so that the cooperating groups have the nature of clubs. Does this mean that
no excessive entry will result? In this paper we provide an analysis of this issue, and show
that the presence of exclusion power generates surprisingly complex group interactions.

In particular, we demonstrate that excess entry in the joint production and exploitation
of an ezxcludable good by rational and selfish individuals will typically occur. For evident
reasons, we term this phenomenon the ‘tragedy of the clubs’. When the tragedy of the
clubs occurs, the exclusion power of club members is empty, since it cannot be used in a
profitable way:.

Two simple examples will be useful to make concrete the range of issues we address.

Example 1 Any group out of N agents (firms, countries) can set up an R&D joint-
venture, which will generate an expected benefit B for each member (the benefit itself is
thus a non-rival good). The total cost of the R&D project is given by some function ¢(n),
where n is the number of participants, such that B — ﬂn@ attains a maximum at n* < N.
Will a joint-venture form? How large will it be if it forms? In particular, will it have n*

participants?

Example 2 Three political parties haggle on the formation of a government. None of
the parties alone has a majority, while each pair of parties has one. Each party cares

equally about being in power, and only about being in power. The utility from power

IThis is a limiting case from our perspective because no cooperation is needed.



is inversely proportional to the number of parties sharing it. At the analytical level, the
main difference between this example and the previous one is that in this case no gain
can ever come from the addition of a member to an ‘optimally’ sized coalition. Does a

government necessarily form with two parties?

More in general, define a ‘club’ as a group of homogeneous agents who can (1) jointly
generate a divisible and rival net surplus through cooperation, and (2) exclude outsiders
from the consumption of this joint surplus®. Other examples range from regional federa-
tions and free-trade areas between countries, to joint ventures and cartels between firms,
to gangs of thieves.

In this setup, a natural question to ask is how the membership of a club is determined.
We are interested in the typical situation where, because of congestion, the number of
potential members is greater than the membership size which is optimal from the point
of view of the members. This is the size that maximises net surplus per capita: would-be
members will not be admitted unless they increase the surplus more than they increase
the congestion costs they generate?.

The classical approach (initiated by Buchanan (1965) as far as economic clubs are
concerned, and by Riker (1962) in the context of political coalitions) assumed that club
size is determined by efficiency in the exploitation of economies of scale?. In this way no
excessive entry occurs. Call this the club-efficiency hypothesis.

More recent contributions have, on the other hand, analysed club formation in an
explicitly non-cooperative framework®. For our purposes, the most relevant work is that

of Scotchmer (1985), who studied a model of entry in which the number of clubs providing

2Even if, as in our example, the good being produced is non-rival, the net surplus, or part of it, will

be rival as long as production is costly.
3This is sometimes called ‘within club optimality’ (e.g. Cornes and Sandler (1997)), as opposed to

‘total economy’ otpimality. The conflict between these two viewpoints is not addressed in the model we

present.
40lson (1971) also stresses the central role of economies of scale in group cooperation, but places

issues of strategic interaction at the centre of his analysis (albeit in rather informal way). Our approach
is very much in that spirit.

5See Cornes and Sandler (1997) for a very thorough analysis of issues concerning club goods.



a given facility is endogenous. She found that excess entry typically obtains in equilibrium,
in the sense that the equilibrium number of clubs is greater than the efficient number.
In this paper we concentrate on a different type of (within-club) inefficiency: the excess
entry of members into a club (rather than of clubs in the market). This is what we call
tragedy of the clubs. So, the perspective we are taking is not one of ‘firms’ (sometimes
called jurisdictions) entering the market and competing (by posting entry fees and club
size) in the provision of local public goods to a ‘passive’ set of potential customers. Rather,
we consider individuals as active agents involved in the setting up a of club. Here, it is the
members themselves who decide the size of the club (as well as a division of the surplus)
when forming it. We do not believe that this issue has received specific attention so far.
In example 1, set N =3, B =4, and let ¢(n) =n? —n+5 (or ¢(n) = 3+ 2"), so that

the total costs are:
e 5, if undertaken by a single agent;
e 7, if undertaken by any two agents;

e 11, if undertaken by all three agents.

It is not profitable for a single agent to engage in the project. Two agents forming a
club will reduce cost per capita to %, with a net total cooperative surplus of 2x4—7 = 1.
The addition of a third agent would further reduce the cost per capita to %, and ensure
positive net surplus per capita. But this is not enough to increase the net cooperative
surplus, which stays put at 4 x 3 — 11 = 1 and is now to be divided between three
agents rather than two (congestion). The club efficiency hypothesis mandates that the
club should comprise two members only (although, given the symmetry between agents,
it seems impossible to predict from these data alone who the lucky agents will be). But to
stress that this conclusion is far from being as trivial as it may seem, just notice that the
Core of the cooperative game associated with this situation is empty: every joint venture
and every division of the joint surplus is vulnerable to immediate profitable deviations by

other partnerships with other divisions, and is thus seemingly unstable®. This reasoning

SWooders (1978) is an early work which studies the typical emptiness of the Core in economies with

clubs.



casts doubt on the procedure of singling out two-agent partnerships for special attention,
as the club-efficiency hypothesis would recommend. In particular, the grand partnership,
even though causing a loss of % — % = % per member with respect to the two-person ones,
seems on this logic no more unstable than them, despite its (within club) inefficiency.

We take the view that in order to clarify the mechanism at work an explicit noncoop-
erative model of club formation should be considered, and its equilibria studied. In this
paper, we analyse a natural such model.

We distinguish the act of approaching a potential member from that of making a
proposal on surplus division once a candidate partnership has been formed. Initially,
players costlessly” alternate in approaching the partners they would like to form a club
with, until the proposed members have agreed to form the club. Once this happens, they
bargain over the division of the surplus in a (multi-person) Rubinstein-like fashion. This
distinction between coalition formation phase and bargaining phase echoes that found
in several recent models of coalition formation, with the major difference that our model
permits a potentially infinite repetition of the two-stage structure®. Because the structure
of the equilibria is quite complex, here we limit ourselves to analyse the minimal case
which is sufficient to capture the effect of first increasing and then decreasing returns to
cooperation, namely the three-person case. This allows us to focus on the main issue, and
in particular to avoid the thorny problem of multiple club formation.

The results are quite surprising. We begin with the analysis of stationary equilibria.
This analysis enables us to formulate precisely the issue of the instability of any agree-
ment suggested by the Core logic discussed above, and to tie it up with considerations
about technology and time-preferences. If the discount factor is sufficiently high and the
returns to scale are sufficiently decreasing, the Core outcome is upheld: no stationary
equilibrium exists. If some stationary equilibrium exists (which is always the case for a

range of discount factors, depending on the pattern of returns to scale), it is unique, and

it generates the tragedy of the clubs. We then consider more complex, non-stationary

“Note that our results do not depend on this assumption, which we use just for notational simplicity;

indeed, what is necessary is just that approach costs (eg. a telephone call) are sufficiently small.
8We refer the reader to the survey by Carraro and Moriconi (1998) of two-stage models of coalition

formation.



equilibria. In this case, too, it turns out that the tragedy of the clubs is a pervasive
equilibrium phenomenon. Depending on what particular ‘social norm’ prevails, almost all

partitions can be supported as a tragedy of the clubs®.

2 The partnership game

In this section we describe our basic model. There is a group of potential partners, or
players, denoted I = {1,2,3}. To give generality to the model, we treat the surplus
each coalition can generate as a primitive. Any set of two players can create a net total
surplus S(2), provided that they agree on two things: (1) forming a partnership and (2)
a division of the surplus. Similarly, three players can obtain a total net surplus S(3)
through cooperation. We assume S(2) < S(3) < 25(2), so that although the addition
of a third partner does not decrease total surplus, average surplus is higher in a two-
partner club than in the grand club. The payoff of not being a member is S(1), with
25(1) < S(2). Thus, an agreement can be struck either between two players only (any
(¢, 7) pair - henceforth denoted simply by ij - on a partition (x;, x;) of the available surplus,
with z; + z; < S(2), leaving the third player k out with S(1)); or among all three players
(the triple 123 on a partition (z1, z2,z3), with > ;c; z; < S(3)). Any particular division
of S(2) or S(3) can be interpreted as reflecting a club membership fee structure; but, of
course, the generality of the setting allows for other interpretations, such as cost-sharing
problems of the type considered in the introduction. Using Binmore (1985)’s terminology,
this can be called a three-player/four-cake game.

Without loss of generality, from now on we use the normalisations S(2) = 1 and
S(1) =0, so that the free parameter is S(3) = s € [1, %)

The structure of the partnership game consists of two phases:

A) Approach phase: In this phase, the promoter of an agreement costlessly approaches
either only one of the other two players or both of them to solicit entering negotia-

tions on how to share the surplus. The first promoter, at the beginning of the game,

9We discuss the relation of our model with the game-theoretic literature on coalition formation in

section 5.



is player 1. The other promoters are determined via the following procedure. Each
of the solicited players can (in the order given by their numbers) either accept the
approach, or costlessly reject it. If each and every of the solicited players accepts,
we say that a partnership is established; the game enters the bargaining phase
B described below. If, instead, a solicited player ¢ rejects an approach, he becomes
the promoter of some different partnership. This phase continues until a partnership

is formed. Perpetual disagreement results in a null payoft for all players.

B) Bargaining phase: in this phase, the promoter of an established partnership pro-
poses a partition of the available surplus to the other member(s), who have to accept
or reject it in the order given by their numbers. If the proposed partition is accepted
by every member of the partnership, the surplus is shared accordingly. If, instead,
the proposed partition is rejected by a member, he can either make a counterproposal
within the established partnership, or initiate a new approach phase by becoming
the promoter of some different partnership. In either case, a delay cost is incurred.

Perpetual disagreement yields a null payoft in the bargaining phase as well.

Phases A and B together form a negotiation round. The feature we want to capture
in the model is that approaching costs - the costs incurred in a ‘sounding out’ stage - are
negligible relative to those of actual bargaining. Rejection of a partition proposal results
in the game entering the next round, which entails a cost. Player ¢’s payoff from an
agreement struck in round ¢ which yields him a share z; is given by 8'z;, with § € (0,1)
a discount factor representing players’ time preferences. The extensive form of the game
is depicted in figure 1 below.

As mentioned in the introduction, many recent models of coalition formation exhibit,
like ours, a distinction between two phases: one in which the coalition is “chosen” and
one in which payoff division is decided upon through some bargaining procedure. Unlike
those models, however, ours does not impose the restriction that the game is a two-stage
one; there is no erogenous limit on the number of negotiation rounds that can be played.

For our subsequent formal analysis it is useful to identify the types of decision nodes
that can be reached during play. Since there are several of them, as a mnemonic device

we have chosen the notation so that: the name of the node suggests the type of decision

7



Game starts here pront ;5

(prouf) 12

9 3

13
4A/ resp

t=0
pront,,,
______________________________________________________________________________ 3 T
resp, i j 13
sol' 53

/
T
N S— ¢ R
(Y1uY2)
ye%
=1 R1 R2 P

prop,, pront,, [ "
: : ye
Prog,;
2

respi A

\‘ 1 prop] 103 .

3 2 ,
reszg\A pront ;55 -

J
A=accept 3 PTOPD ;2

Rl=reject and make a counter-offer A ,
R2 prom ;55 -

R2=reject and promote another partnership (%1572575)

Figure 1: Club formation procedure




to be made (e.g. accept or reject a bargaining offer); superscripts indicate which player
is making a decision; and subscripts indicate other features of the decision (e.g., the
partnership within which a proposal is being made).

Decision nodes in the approach phase:

1. Node of type prom’)p: at this node player ¢ is a promoter who has rejected the
approach by the promoter of a partnership p, or has rejected a bargaining offer
within partnership p and has not made a bargaining counter-proposal. Player ¢ at
this node can promote any partnership different from p. That is, his action set is
{q € {4, k, jk}|iq # p}. The initial node is considered a special node of type prom’)p,
with p = (.

2. Node of type sol;'-,p: at this node a solicited player 7 has been approached by the
promoter j of a partnership p. He can either accept or refuse the approach. Nodes

belonging to this class can only follow nodes of type prom’)p.
Decision nodes in the bargaining phase:

1. Node of type prop;: at this node player ¢’s participation in a partnership p has been
established and he has to propose a partition between the members of p. Nodes
belonging to this class can only follow the acceptance of an approach by all the

solicited players involved.

2. Node of type resp;'-,p: at this node player ¢ has to respond to a bargain proposal
made by player j within partnership p. He can either accept the proposal, or reject

it and move to a node of type prop}, or reject it and move to a node of type prom’)p.

3 Equilibria

We analyse the subgame perfect equilibria (s.p.e.) of this game!®. Each s.p.e. in which
agreement is reached will characterise a pair (p*,x;*), where p* € {ij,ik,jk,ijk} is

the equilibrium partnership and z7. is the equilibrium vector of shares of the surplus

10T the model presented here, all equilibrium agreements exhaust completely the size of the pie.



distributed to the partners (recall that the payoff for a player excluded from a partnership
is normalised to zero).

There are several s.p.e. in the game, with the tragedy of the clubs featuring promi-
nently, even in the case where the addition of a third partner adds no value at all to the
club (s = 1)! In particular, we find that, while there exists only one club efficiency equi-
librium (with “Rubinstein payoffs”), almost all partitions can be supported in equilibrium
with the (within club) inefficient grand partnership forming. This type of equilibrium is
supported by a “social norm” that punishes partners who try to cheat on the specified
agreement. Both the equilibrium strategies supporting this outcome and those supporting
the club efficiency outcome are non-stationary.

The complexity of the equilibrium structure is dramatically reduced by restricting at-
tention to stationary strategies, a case we will consider first. In this case, the first notable
result is that there can never exist a club efficiency equilibrium. The Core outcome sug-
gesting the instability of all agreements can be validated when the players are sufficiently
impatient and/or when the returns to scale decrease sufficiently sharply (s small). But
if an equilibrium exists, then it is unique. Moreover, it must involve the tragedy of the

clubs. Given s, there is always a range of discount factors such that an equilibrium exists.

3.1 Stationary equilibria

In general, there isn’t any strong theoretical justification to confine attention a prior:
to stationary strategies, as is sometimes practice in the bargaining literature. Indeed,
in our model the non-stationary equilibria are most interesting. However, a preliminary
analysis of stationary equilibria can also be of interest, because it allows us to study in
depth exactly how the intrinsic “Core” instability of any agreement in any partnership
limits the scope for “simple” agreements in the club formation process. In this section,
therefore, we present a complete characterisation of the stationary equilibria of the game.

It turns out that the instability depends crucially, and in a non-obvious way, on con-
siderations of time preferences and returns to club size. In addition, because stationary
equilibria are unique when they exist and never involve club efficiency, they permit us

to exhibit in a particularly stark form the tragedy of the clubs phenomenon and thus to

10



strengthen our general point.

The formal proof of our results is very lengthy, so that it is difficult to provide an
informal overview which strictly adheres to its logic. Nonetheless, with some amount of
hand-waving, we are able to pinpoint the crucial insights.

First, observe that, in order for a stationary equilibrium to exist, s must be high,
relative to 6. Otherwise, if there are little gains from extending the partnership and
rejection costs are high, the “threat” to form a three person partnership is never credible
in two-partner negotiations. In this case, therefore, the only “outside option” available to
the players in two-partner negotiations is to form another two-person partnership. This
type of three-player negotiations has been studied, for example by Binmore (1985), and
it is not too difficult to see that the standard Rubinstein-like logic drives the outcome:
the payoffs in any two-person agreement must be the Rubinsteinian ones. But then,
because the first proposer has an advantage, an incentive is created to jockey to become
the proposer rather than the responder in a two-person partnership. That is, there is
an incentive to reject the approach by a player proposing a two-person partnership and
turn to the third player instead, to form a two-person partnership with him. So no
stable partnership can form and no equilibrium can exist!*. Note how this logic, although
supporting Core outcomes, is different from the one underlying it.

If the surplus generated by the grand partnerships is sufficiently high to guarantee exis-
tence, two possible regimes can ensue, both involving the tragedy of the clubs, but differing
in terms of the agreements that occur, off the equilibrium path, in two-person partner-
ships. Club efficiency equilibria cannot exist because of the same argument used above to
demonstrate non-existence of an equilibrium altogether: if they existed, they should be
Rubinstein-like!?, and this creates instability in the partnership formation phase. So any
stationary equilibrium must involve all three players and thus a tragedy of the clubs.

Which of the two mentioned regimes prevails depends on whether the responder share
in two-person negotiations (off the equilibrium path), is driven by the Rubinstein logic (in

which case a rejecting player would make a counterproposal in the same partnership) or

'We return to this important issue at the end of the next section.
2For out of equilibrium rejections in two-person partnerships would continue with a two-person

partnership.

11



by an “outside option” constraint (whereby the rejecting player would form a three-person
partnership, so that he must be given the payoff he would gain with this rejection). This in
turn depends on the relative values of s and 6. For a responder in a two-person partnership
to accept the Rubinstein share it must be the case that his incentive to reject and propose
to form the grand partnership is not too great. This imposes, given 6, an upper bound on
s (or a lower bound on 6 given s): if the additional surplus attainable with the presence
of an extra partner is large relative to the cost of rejection, then it may be better to be
the first mover in a three-person partnership rather than the responder in a two-person
partnership, even allowing for a period of delay. In this case, the threat to reject and
implement a three-person partnership acts as a binding outside option constraint faced
by proposer in two-person partnerships, and the payoff is determined accordingly..

In the next result we show formally that, for any value of s in the admissible range, the
range of discount factors such that a stationary subgame perfect equilibrium (henceforth
s.s.p.e.) exists is never empty; that when an s.s.p.e.. exists it is unique; and that it must

feature the tragedy of the clubs.

Proposition 1 There exist §,,65 € (0,1) (which depend on s € [1, %)) with 8, < &5 such

that:

1 s s
1126 1326 1426

(a) For all 6 < 6, only the partition ( s) can be supported at an s.s.p.e.
where agreement is reached immediately. The off-equilibrium agreements vary according
to whether the condition 6 < 6, holds;

(b) If § > bs,there are no stationary s.p.e..

Proof: The proof of this result is long. Here we only describe its structure, and

relegate the actual proof to Appendix 1. The argument follows these steps:

Step 1: Define a stationary strategy profile which is perfect when 6 € [és,gs] and which

supports the equilibrium partition zj93 = (1 +125s, 1 f%s, T f% 8).

Step 2: For 6 € [QS,ES}, Yij = (ﬁ, 1—%) is the only s.s.p.e. payoff which can be supported

in a two-person partnership; however

Step 3: For 6 € [és,gs}, no s.s.p.e. exists which supports agreement in a two-person

partnership along the equilibrium path.

12



Step 4: For 6 € [és,gs}, z193 is the only s.s.p.e. payoff which can be supported in a

three-person partnership.
Step 5: If 6 > 65, no s.s.p.e.e exists.

Step 6: Define a stationary strategy profile (different from that of step 1) which is perfect

when ¢ < ¢, and which supports the equilibrium partition z;s3.

Step 7: If 6 < §,, the only s.s.p.e. payoff that can be supported in an s.s.p.e. is z193 In
the grand partnership.

Step 8: If 6 < b, no s.s.p.e. can exist with agreement in a two person partnership along

the equilibrium path. B

3.2 Club Efficiency Equilibria

One suggestion of the previous section is that not always will “simple” strategies be
enough to support an equilibrium. The large scope for deviations which exists in the club
formation game may require more complex social arrangements to sustain an equilibrium.
This leads us naturally to the study of equilibria in non-stationary strategies. In the sequel
of the paper we emphasize in particular the introduction of “punishment mechanisms”
for deviators from a given social norm for the formation of a club and the division of the
surplus.

From now on we consider the limiting case S(3) = S(2) = 1. This notational sim-
plification makes our main results harder to prove: the grand partnership is maximally
unattractive, and the underlying characteristic function form game is not even strictly
superadditive. Those results would obviously continue to hold a fortiori without the
simplification. Moreover, this particular case is of direct interest in the context of the
formation of political coalitions (see section 5 for additional comments on this aspect).

We begin by describing strategies that support the formation of a two-person part-
nership, with Rubinstein shares. This is a useful auxiliary result, which also allows us
to compare the workings of our model to those in Binmore (1985), who pioneered the

general line of enquiry under exam here.

13



Lemma 1 There exists an s.p.e. in which the partnership 1¢ is formed in the first round,
with © = 2 or 1 = 3, and the partners agree in the first round on the partition y;; =
(v 185):

The strategies which support this outcome require player 1 and, say, + = 2 to engage
in a bilateral Rubinstein bargaining; a “deviant” approach is punished by the solicited
player by rejecting and entering a Rubinstein partnership with the remaining player. Any
proposal in the grand partnership is also considered deviant and is punished in the same
way.

More precisely, the equilibrium strategies that support the partnership 12 are defined
in the following manner (the case for the partnership 13 is analogous). We define a set of
states, on which the action taken by a player at any given node will depend: the equi-
librium state (which is also the initial state), denoted by “E”, and the punishment
states, denoted by “P,;”, ¢ =1,2,3. State P; is triggered either by a deviation by player
i from the strategies specified for the existing state in the approach phase, or after any
proposal by player i in the grand partnership 123 (note well: P; is not triggered by a
deviation by 7 in the bargaining phase of a two-person partnership).

In state P;, player i is shut out of the negotiations, and the other two players agree

on the Rubinsteinian partition. Denote by ¥, the partition which gives players ¢ and k

6

— _1 —
shares y; = 115 and yx = 175,

respectively; and by w;;, the partition which gives players

i, j and k shares w; = }f‘; and w; = wy = 1—j6, respectively.

Player 1:

1. in the approach phase: at nodes prom}p approach player 2 in state E and P3 (note

that in these states p # 12)'3) and player 3 in state Py (in this state p # 13); at

nodes sol}yp accept the approach only if p = 17 and the state is not Pj;

2. in the bargaining phase: at nodes propzl), in any state, propose yy; if p = 1i and

propose wy;; if p = 1ij; at nodes resp}yp, in any state, accept only offers yielding at

6
least 145"

3In fact, in general, state P; must be triggered by an action by player ¢, while a node of type promij &

can only be reached by player j after an action by player k.
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Player ¢ # 1:

1. in the approach phase: at nodes promjp approach player k # j in state P; (in this

state p # ik); at nodes solj-yp accept the approach only if p = 75 and the state is not
P

j.

2. in the bargaining phase: at nodes prop;, in any state, propose y;; if p = ij and

propose w;ji, if p = ijk; at nodes resp;'-’p, in any state, accept only offers yielding at

least 1 + 15

The equilibrium above can be visualised with the aid of Table 1.

That these strategies constitute an s.p.e. can be checked easily by means of the one-
deviation property (which obviously holds in this game since infinite histories yield the
worst payoff). Let us consider player 1 first. At all nodes of type prom}p, deviating
from the prescribed strategy triggers the punishment state P; which yields player 1 a
null payoff in the continuation game; hence there cannot be any profitable deviation. At

nodes sol] , the prescribed strategy yields a payoff of either — (if player 1 is responding

%,p? 1+§

in P; to promoter i), or if player 1 is responding to promoter ¢ in Pj;). Rejecting an

s (
approach that should be accepted yields zero (as the punishment state P; is triggered).

14

Accepting an approach that should be rejected yields 2 71 in the continuation game™®, and

is thus not a profitable deviation either. Consider now the bargaining phase. If player 1
were to deviate from his equilibrium bargaining strategy at a node of type prop; and claim
more than what prescribed by the strategy for himself, the responder(s) would reject, and

player 1 would obtain 1 + T if p=li and 0 if p = 123, rather than - and 19 ‘vespectively;

1+6 1+§’

hence, no deviation is profitable. Finally, at a node of type resp- it would be suboptimal

for player 1 to accept an offer yielding less than as by rejecting and sticking to his

1+6’

equilibrium strategy he could obtain ﬁé in the subsequent round (forming a partnership

with just j # ¢, which is worth 5 + Tr in present discounted value).

The optimality of the strategies prescribed for players 2 and 3 is easily checked in the

same way. |

MNote the ‘united in sin’ aspect of this occurrence. This deviation happens when player i is approached

by a deviant player j and instead of rejecting his approach he enters a partnership.
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E P1 PQ P3
approaches 2 3 2
rejects approach from - 2,23,32 | 3, 23, 32
player 1 | in two person bargains: proposes | Y12 Y1k Y1k
6 6
accepts | - x> s |7 > s
in three-person bargains: proposes | - W1923 W123
6 6
accepts | - x> e | T > 4%
approaches - 3 1
rejects approach from - 1, 13, 31 3, 13, 31
player 2 | in two person bargains: proposes | - Yok Yok
s s s
accepts x21—+6 xzm x21_+5
in three-person bargains: proposes | - W31 W93
6 6
accepts | - x> 5 x> 4%
approaches - 2 1
rejects approach from - 1,12,21 1 2,12, 21
player 3 | in two person bargains: proposes | - Y3k Y3k
6 6 6
accepts $21_+6 .sz $21—+6
in three-person bargains: proposes | - w312 W319
s s
accepts | - x> s | T > 145
Transition

Table 1: The perfect equilibrium of lemma 1
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In a three-person partnership, or if player ¢ deviates

in the approach phase, state changes to P;.




It is interesting to discuss in a little more detail at this point why club efficiency
equilibria and in particular Rubinsteinian equilibria cannot be supported in a “simple”
way in our model (we treat this issue more formally in the course of proving proposition 1).
The best way to do this is to compare our model to a related one in Binmore (1985) (the
“telephone” model). He considers a three-player/three-cake sequential game in which the
proposing player chooses which one of the other two potential partners to “phone” and
make an offer to. Binmore finds, contrary to us, that the standard Rubinstein equilibria
are ‘surprisingly resistant to the introduction of a third player’: ‘although the original
players are free to open channel of communication to the third player, it is optimal for
them not to do so’ (p. 276). The strategies supporting, say, an immediate Rubinstein
agreement between players 1 and 2, are simple, and rest on the fact that player 3 is
constantly ignored. So, in the course of the negotiations between 1 and 2, either player
always makes a counterproposal to the other rather than making a proposal to 3. This is
the unique equilibrium in Binmore’s model. But such strategies in our model imply that
player 2 has an incentive to refuse player 1’s approach (not offer) and then turn to player
3, obtaining the first mover share rather than the responder’s share. We believe that
the jockeying to be the player with the initiative in bilateral partnerships is an essential
feature that emerges in the club formation game under scrutiny. This feature should be
modeled, and our “approach phase” captures just that (see section 5 for further comments
on this issue). In order to break the jockeying to be the first mover, we need to construct
sufficiently complex social punishment mechanisms, in the form of ezclusion mechanisms,

to support club efficiency equilibria.

3.3 Tragedies of the Club

The club efficiency equilibrium described in lemma 1 can in turn be used to support
equilibria in which the tragedy of the clubs occurs. The set of such equilibria is very large,
so much so that we are able to establish an “almost folk theorem”: almost all divisions
(depending on time preferences) of the cooperative surplus in a grand partnership can be
supported in equilibrium. What happens is that a social norm is established, whereby any

player who attempts to profit from the tragedy of the clubs and to form a club efficient
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partnership instead is labeled as a “cheater”.A cheater in a two-person partnership, faces
a credible threat of “social exclusion”, with a zero payoft. So, it can never pay to try an
break away from the tragedy of the clubs!®.

Let A* denote the k-dimensional simplex.

Proposition 2 : Let z}y; = (2%, 23, 23) € A2 There exists 6* € (0,1) (which depends
on Tiy3) such that, for all 6 € [6*,1) the pair (123, x7,3) is supported in some s.p.e. with

immediate agreement.

Proof. The strategies can be described by means of five states, %, PB;, and P;

i = 1,2,3, and with the aid of Table 2 below (recall the notation y;; for the partition

6

755, respectively).

which gives players ¢ and j in partnership 75 shares y; = ﬁ and yi, =

x is the initial state, and PB; is the state in which Punishment in the Bargaining phase

of * is inflicted upon player 1. The states P; correspond to the same states in lemma 1.
Along the equilibrium path, in state x, player 1 approaches 23, who accept the ap-

proach; player 1 proposes x7,5, which is accepted. In PB; player 2 at respil23 accepts only

6

45 while player 3 accepts only proposals x € A?

proposals z € A? such that zy, 23 >

such that x3 > %. In PBy, player i # 1 approaches j # 1 at promjp#ij.

15Tt is worth noticing at this point that a “haggling” equilibrium, that is one in which players perpetually
try, unsuccessfully, to form a partnership does not exist (whereas non existence of an equilibrium due to
disagreement in the bargaining phase is taken care for by point proposition 1 b).

Consider first the case for stationary strategies; one possible profile could be the following: in the
approach phase, player ¢ approaches player 7 + 1 (modulo 3) and rejects approaches from player i — 1
(modulo 3); in the bargaining phase, always claims the whole pie when making an offer, and always
accepts any non-negative offer when responding. The strategies described in the bargaining phase are
needed to eliminate any incentive for a “perpetual haggler” to deviate and accept an approach (since
in this case his continuation payoff would be zero); however, the responder’s strategy in the bargaining
phase is not in equilibrium, since he could improve on his payoff by rejecting and obtaining 1 in the next
round.

This same logic applies when considering non-stationary strategies: on the one hand, one needs the
continuation payoff to be zero in the approach phase, but on the other hand no equilibrium strategy
profile in the bargaining phase can ensure this. This “circle” is however broken in the modification of
the model in section 4.1, where each player has to re-approach his opponent before making a counteroffer

(and which allows us to use a (1,0) punishment in proposition 3).
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Transitions between states work as follows:

e In state x a deviation by player ¢ in the approach phase or by player ¢ # 1 in
the bargaining phase triggers a change to state P; of lemma 1 (see table 1), and
then play reverts to the strategies described there. A deviation by player 1 in the

bargaining phase triggers instead a change of state to PB;.

e [n state PB; a deviation by player ¢ in the approach phase or in two person bargains
changes the state to P; and play reverts to the strategies described there (a deviation

by player i in three-person bargains leaves the state at PBy).

We claim that the above strategies can support in equilibrium any partition 7y,

yielding player 1 at least %, which tends to zero for ¢ tending to one, thus verifying the
statement with 6* = iﬁ
1

1-6

Let’s check the optimality of the strategies described for 7 > 1.

The optimality at
states P; has been shown in lemma, 1.

State *:

approach phase: Consider first player 1. If he were to approach i, the state would change
to Py, in which player 1 obtains a null payoff. Consider now player ¢ # 1; if he
rejected at sol’i,123, the state would become P;, in which player ¢ obtains a null

payoft;

bargaining phase: A deviation by player 1 at propl,; would prompt a change of state to
PB;. This yields player 1 a null payoff if the deviant proposal z = (1, To, x3) € A2
is rejected. For x to be accepted by both players 2 and 3, it must be x5, x3 > %:
so this is not a profitable deviation by player 1 if 7 > 1 —2 (l—ié) = %g. Consider
next player ¢ # 1 at TespiuS. Rejecting the equilibrium offer triggers state P,

where player 7 earns a null payoff.
State PB;:

approach phase: In this phase the only possible deviations at node promip are by players

2 or 3, which trigger P; and thus are never profitable. Consider now node 305;-71']-,
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* PB;
approaches 23
rejects approach from
player 1 | in two person bargains: proposes
accepts
in three-person bargains: proposes | T]o3
accepts
approaches 3
rejects approach from
player 2 | in two person bargains: proposes Yo3
accepts
in three-person bargains: proposes | -
accepts | iq3 | T2 > 1_—6% if x5 > 1_—6%
approaches 2
rejects approach from
player 3 | in two person bargains: proposes Y32
accepts
in three-person bargains: proposes
accepts | Tjoz | T3 > 1—j6

Transition: see text.

Table 2: The perfect equilibrium of proposition 2

20




with 4, j # 1; if player i rejected, state would change to P;, yielding him a payoff of
zero. Notice that this is the only type of solﬁ,p that can occur in state PB;.

bargaining phase: Player 1 cannot improve by deviating from his acceptance strategy, as

4

this would change the state to Py, yielding him a payoff of zero. If player i # 1
accepts a deviant proposal z € A?, the state remains PB;. Consider first player

2, and suppose he is confronted with a deviant proposal x € A% If 2, < l_ié
or rs <

1 +6’ the payoff from following the equilibrium strategy and rejecting the

deviant offer is l—ié (that is, the Rubinstein first mover share, one period later),

while the payoff from accepting is that is, the Rubinstein responder share, one

i (

period later), since player 3 will subsequently reject and approach player 2. If instead

To, Ty > the payoff from following the equilibrium strategy and accepting is zs,

b
1467

since player 3 will also accept. Rejecting, on the other hand, yields —>- (that is, the

115 (

Rubinstein first mover share one period later). This shows that it is optimal for 2 to

reject a deviant proposal x unless x5, x3 > Consider finally the case when player

1+§

3 is confronted with a deviant proposal x € A? (which must have been accepted
by player 2). The payoft from accepting is x3, whereas the payoff from rejecting is

(that is, the Rubinstein first mover share one period later). If z3 > the

1+6 1+6

equilibrium strategy prescribes to accept, while if x3 < the equilibrium strategy

1+§

prescribes to reject. In either case, player 3’s equilibrium strategy is optimal. |

Modifications to the basic game

4.1 Approach before any counterproposal

It is important to test the robustness of a bargaining model to modifications of the basic

structure. One natural such modification is the following. Instead of allowing a player

who rejects an offer in the bargaining phase to make a counteroffer, in the same partner-

ship, in the following round, we could ask that the rejecting player necessarily triggers a

new approach phase, rather than a new bargaining phase, even if he intends to make a

counterproposal within the current partnership. In other words, a rejecting player in the
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bargaining phase would have to “ask for permission” before continuing in the bargaining
with the same player(s).

The most interesting change in the results from this alteration is that it would allow us
to obtain a full folk theorem, thus strengthening the main message of our paper (results
analogous to the others can be obtained). What sustains this result is the social norm
according to which the entire surplus can be extracted from a cheater in a two-person

partnership, by means of a credible threat of social exclusion.

Proposition 3 Let § > 1; then, for any 3,3 = (7,33, 2%) € A? there exists a perfect

equilibrium which supports (123, x743) with immediate agreement.

Proof. Again, the strategies can be described by means of five states, ', PB}, and P;
i =1,2,3, and with the aid of Table 3, where 7,; = (y:,¥;) = (1,0). Transitions between
states work as in proposition 2, with " and PB’ in place of * and PB;, respectively.

Along the equilibrium path, in *’, player 1 approaches the other two players, who both
accept; then, player 1 proposes x},3 € A?, which is accepted. In PB] player 2 at resp} 53
accepts only proposals x € A% such that x,, z3 > 8, while player 3 accepts only proposals
x € A? such that x3 > 6. In PBY, player i # 1 approaches player 1 at promjp.

It is helpful to consider what the strategies imply off the equilibrium path. A deviation
by player 1 at node propi,; in state * triggers his own punishment PBY, in which player
2 obtains a unitary payoff in the following round. In PB} Player 1 will have to accept
a zero payoff, for otherwise his subsequent approach (in P;) would be rejected: it is at
this point that the change in structure we consider is crucial. Consequently, the reward
to player ¢ # 1 from punishing this type of deviation is worth ¢ at the time when the
deviation is produced (instead of 1—j6 in proposition 2). Thus, in order for player 1 to
have his deviant offer accepted, he must concede to the other players at least 6 each. But
this implies that the most player 1 can squeeze out of a deviationis 1 —26 < 0if 6 > %,
so that such deviant offer is unsustainable.

The optimality of the strategies described can be checked by following steps analogous
to those in the proof of proposition 2. This part of the proof is relegated to Appendix 2.
|
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* PB/
approaches 23
rejects approach from -
player 1 | in two person bargains: proposes | -
accepts | - 1 >0
in three-person bargains: proposes | T7y3
accepts -
approaches - 1
rejects approach from -
player 2 | in two person bargains: proposes | - Yo1
accepts | Z]og
in three-person bargains: proposes | -
accepts | - To > 61f 23>0
approaches - 1
rejects approach from -
player 3 | in two person bargains: proposes | - Y31
accepts | Z]gg
in three-person bargains: proposes | -
accepts | - r3 >0

Transition: see text.

Table 3: The perfect equilibrium of proposition 3




4.2 Costly approach

In our basic model, approaches are costless. In fact, all that is needed for the results to
go through is that the costs in the approach phase are significantly less than those in the
bargaining phase. It is easy to check that all proofs remain valid when there is a cost
£ to promote a partnership, provided ¢ is sufficiently small. That approach costs should
be negligible with respect to bargaining costs is what defines the approach phase. This
phase should be seen as one in which players are still “sounding out” each other, and no
major advantage is gained - unlike in the bargaining phase - by having the initiative. The
approach phase is the battleground in which the initiative is sought for the moment when

bargaining in earnest starts within a partnership.

5 Some Game-Theoretic Considerations

The present work is not presented as a competitor with general models of coalition for-
mation or of multiperson bargaining (as emphasized by the choice of terminology). Our
interest lies in providing an analysis of a specific situation and problem, namely the possi-
bility of congestion in a club in spite of the exclusion power its members enjoy. However,
as there are links between our methodology and several more general game-theoretic mod-
els, we feel that we ought to comment on this aspect. The reader not interested in abstract
game-theoretic issues may skip to the next section.

Both models of multiperson bargaining a la Rubinstein (see e.g.Binmore (1985), Sutton
(1986), Chae and Yang (1988), Chae and Yang (1994), Krishna and Serrano (1996)) and
models of coalitional bargaining in characteristic function, partition function or strategic
form games (e.g. Selten (1981), Chatterjee et al. (1993), Bloch (1997), Ray and Vohra
(1997), Mariotti (1997), Seidmann and Winter (1998), Ray and Vohra (1999), and the
survey by Carraro and Moriconi (1998)) are somehow related to our work. Chatterjee
et al. (1993) is particularly relevant'®. When reformulated for a general characteristic

function setting, the only departure of our model from theirs is the distinction we make

between an approach phase and a payoff division phase. In their model, a proposal consists

16 And, for the partition function case, Ray and Vohra (1999).

24



of the simultaneous choice of a coalition and a payoff partition. While this departure may
seem minimal, it is in fact very substantial. The general results of Chatterjee et al.
(1993) applied to a 3-person club formation game with S(2) < S(3)!" have the following
particular implication: in a stationary subgame perfect equilibrium, for sufficiently high
discount factors the two-person coalition must form. If the discount factor is low, then
the grand coalition will form. This follows from the fact that in any game with an empty
Core there is no efficient (in the global, not within-club sense) stationary equilibrium if
the discount factor is high. The case we have considered has an empty Core, and the
formation of the grand coalition is the only globally efficient result (if S(2) < S(3)).
A similar result holds in Seidmann and Winter (1998). Some of the insights we draw
against the club-efficiency hypothesis thus appear to be quite robust: in particular, high
‘transaction costs’ (low discount factors) and stationary strategies generate the tragedy
of the clubs both in our model and in Chatterjee et al. (1993)’s one. With high discount
factors (and stationary strategies), however, our modelling choice makes a difference.
Since in addition it significantly complicates the analysis, we had better justify it in full.

First, note that the distinction between a stage when coalitions are formed and one
where bargaining occurs appears natural. Negotiations between corporations, countries
or political parties, for example, typically involve a “sounding out” phase (often between
lower-level representatives) before beginning in earnest. This fact is reflected in the large
number of analyses of games with externalities which rely on the two-stage modelling
device, as surveyed in Carraro and Moriconi (1998). One of the motivations for our
approach is to try and improve on the standard two-stage literature by removing the
disturbing finite-game nature of the process and introducing time-preferences.

More crucially, we view as an essential feature of a model of club formation that it
mimics in a dynamic context the ‘atemporal’ Core outcomes when bargaining frictions
disappear - so that deviations are ‘cheap’ -, immediate agreements are considered'® and
‘non-dynamic’ strategies are used. In our case the Core is empty, and we would not feel we

had made the appropriate modeling choice if the Core was ‘filled” even when the discount

1"The case S(2) = S(3) is not addressed by Chatterjee et al. (1993), who impose strict superadditivity.
We return to issue later.

18Seidmann and Winter (1998) is a careful study of gradual coalition formation.
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factor approaches one and with stationary strategies.

In conclusion, we should also underline two aspects of game-theoretic interest in our
model. Firstly, we do not limit ourselves to considering stationary strategies. It is usual
in this type of model to have large sets of non-stationary equilibrium outcomes; what is
needed is a deeper exploration of the properties of those outcomes. Our work contributes
in this direction. Secondly, we deal extensively with the non-strictly superadditive case
(S(2) = S(3)). This feature makes our model intersect with the quite distinct literature
on committees and political coalitions, where minimal winning coalitions are smaller than
the grand coalition. Our model applies quite naturally to the political context insofar as
only one club (political majority) can form. The classical contribution in this respect is
Riker (1962). He claimed a “size principle” in which political coalitions would be minimal
winning or, in our setting, club-efficient ones. This conclusion is vulnerable not only to
the by now well-rehearsed theoretical observation that no minimal winning coalition is
stable, but also to the fact that, empirically, grand coalitions are observed from time to

time!'®. Our work offers a counterpoint to Riker’s approach.

6 Concluding Remarks

Club formation when diseconomies of scale justify the exclusion of potential members is
an intrinsically unstable process, because there is an immediate incentive to upset every
potential agreement (empty Core). The classical theory of clubs bypasses the difficulty
of modelling the strategic complexity thus generated by assuming that technology alone
(that is, the structure of the economies of scale) determines club membership size at the
efficient level. The more recent noncooperative approach to club theory emphasizes the
potential inefficiency due to excess entry of clubs in a market. We have concentrated
instead on the excess entry (from the point of view of the members) of members into a
club. We view the formation of too large clubs as a ‘solution’ to the basic instability

problem. We have proposed a dynamic, noncooperative model of club formation that

19 An instance of excess entry is that of many goverments in Italy, where coalitions with up to six parties

formed.
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captures the insight of the atemporal Core logic for limiting values of the discount fac-
tor when only stationary strategies are allowed. In this case, the tragedy of the clubs
is the unique equilibrium phenomenon when an equilibrium exists. The existence of a
stationary equilibrium depends both on time preferences and on the technology of returns
to club size; for the instability problem to be resolved in this case, deviations must be
made sufficiently costly by the combination of preferences and technology. When more
complex social arrangements to punish deviations are allowed (non-stationary strategies),
an equilibrium always exists, and the tragedy of the clubs is a feature of most equilibria,

quite independently of considerations of preferences/technology.

Appendix 1

Proof of proposition 1: The argument follows these steps:

Step 1: Define a stationary strategy profile which is perfect when 6 € [QS,ES] and which

supports the equilibrium partition z193 = (1 +1265, T f%s, i f% 8).

Step 2: For 6 € [és,gs}, Yij = ( ) is the only s.s.p.e. payoff which can be supported

1 8
1+67 1+6

in a two-person partnership; however

Step 3: For 6 € [és,gs}, no s.s.p.e. exists which supports agreement in a two-person

partnership along the equilibrium path.

Step 4: For 6 € [QS,ES}, z193 is the only s.s.p.e. payoff which can be supported in a

three-person partnership.
Step 5: If § > &, no s.s.p.e.e exists.

Step 6: Define a stationary strategy profile (different from that of step 1) which is perfect

when ¢ < ¢, and which supports the equilibrium partition z;s3.

Step 7: If 6 < §,, the only s.s.p.e. payoff that can be supported in an s.s.p.e. is z193 In
the grand partnership.
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Step 8: If 6 < §,, no s.s.p.e. can exist with agreement in a two person partnership along

the equilibrium path.

Step 1: An s.s.p.e. exists when 6 € {és,gs}.

Denote by y;; the partition which gives players 7 and j shares y; = 175 and y; = %,
respectively; and by z;;, the partition which gives players ¢, j and & shares z; = ms and

respectively. Strategies which justify part (a) of the proposition are for

&
Zj = %k = 13265

player ¢:

1. in the approach phase: At nodes promjp 2iji approach jk; at nodes promjij,C ap-

proach ¢ + 1 (modulo 3); at nodes sol’ %5, accept the approach, and at nodes sol] ij

reject the approach;

2. in the bargaining phase: At nodes prop;; propose y;; and at nodes prop;,, propose

Zijk; at nodes Tespj ;; and Tespj .5 accept only offers yielding at least m and 15z +25 s,

respectively, and move on to node propij and propijk, respectively, when rejecting.

That these strategies constitute an s.p.e. can be checked easily using the one-deviation

property.?® At all nodes of type prom! Ipstijh the equilibrium payoff s cannot be im-

1+26

proved upon by a deviation, as any approach to form a two-person partnership is turned
down by player j # i, who then re-approaches the grand coalition, yielding i a payoff

of s. At nodes sol®

T +26 5k the equilibrium strategy always yields

1+26 s, as does reject-

ing. At nodes sol’,;, by conforming to his equilibrium strategy player i should reject and

J5tg?

obtain the proposer’s share of s in a grand coalition, that is —:s. On the other hand,

1
1426

by accepting the approach by player j he would obtain - Consequently, the optimal-

+5
ity of player i’s strategy at such a node is ensured as long as -4 < s, that is if?!

1+6 — 1+2§ ?
§< s—=1+vs246s+1 — 5
> 4 = 0Os.

Consider now the bargaining phase. If player ¢ were to deviate from his equilibrium

strategy at a node of type propi and claim for himself more than what prescribed by the

_6

or 1755

strategy, the responder(s) would reject. Player i would obtain either ; —2—s one

+6

20Which, as noted in the text, holds in this game.

21_6
T+ =

— 2 . . .
81,0 = =BTl one of which is negative.

ﬁs can be rearranged as 26 — (s —1)§ — s < 0. The two roots of the polynomial are
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1

e

period later, rather than either s, depending on whether p = ij or p = ijk,

1+26 ’

respectively. At a node of type respz-yij,C player ¢ cannot profit from accepting an offer

yielding less than as by rejecting and conforming to his equilibrium strategy he

1+26 S

could obtain —5:s in the subsequent round. Furthermore, deviating and moving to a

1+26

node promjij,C is not profitable either, as the solicited player would reject and approach
the grand coalition, where player ¢ would still earn the responder share one period later.
Next, consider the optimality of player i’s strategy at nodes resp;'- ;;~ When confronted

with a disequilibrium offer, by conforming to his equilibrium strategy he can obtain 5 + s

in the following round. Alternatively, he could either (i) reject and approach player k, or
(i) reject and approach the grand coalition. If (i), his approach would be rejected and
he would subsequently earn the responder’s payoff in the grand partnership. If (i), such

a deviation would be profitable only if =~ < § )s, that is if 6 < E = 6,. Thus,

1+5 <1+25

0 > 6, guarantees optimality.
Finally, it remains to notice that

5 _S—1<8—1+\/82—‘r68—‘r1

=0,
= 2—35 4

To see this, note that:

o) 1
0s (2—3s)

and

5—14Vs? 46541 1
4 Ha;l% “) :i(l—i—(s—l—?)) (s2+6s+1)§> >0 Vs

so that both bounds are monotonically increasing in s. Furthermore, lim,_.; by = % >

6, =1=1lim 3§ Since

3 3
—3 S5—

0 = lims_.; d,, and lim,

o), A=)
0s . 0s , 96
s=3 s=3

&, approaches 8, from below. Since the two functions only intersect at s = % for s € [1, %},
the interval [(_55,58] is always non empty. Therefore, 0 < §, < 6, < 1 guarantees the

existence of a § which satisfies part (a) of the proposition.
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Steps 2-8: Notation. Let r denote the role in which a player acts in the bargaining
phase of some partnership, where r = 1,2, 3 refers to him being the proposer or the first
or the second responder, respectively. Thus, if z, is some s.s.p.e. payoff vector, z; ()
indicates the s.s.p.e. payoft to player ¢ in partnership p and role r.

Step 2a: In an s.s.p.e. a player cannot obtain his maximum payoff when acting as a
responder.

Let I be the maximum s.s.p.e. payoff that player i can achieve in some partnership,
and assume to the contrary of the claim that player i can obtain I when acting as a
responder in some partnership in which some other player, say player j, acts as proposer.
Therefore, by rejecting player j’s proposal, player i could obtain at most §I. But then,
player j could instead propose a partition which gives T — ¢ to player i (and, in the case
of a three-person partnership, his unchanged payoff to player k, who would accept by
stationarity), who would accept if I — ¢ > &1, true for ¢ sufficiently small.

Step 2b: If 6 > 6, = ;%i, n an s.s.p.e. any agreement in a two-person partnership

can yield no more than 1+6 to the proposer.

Assume to the contrary that the supremum of the s.s.p.e. payoffs that any player, say

player i, can obtain as a proposer in a two-person partnership, say ij, is yi(1) = m + ¢,
with ¢ € (0, T +5} Correspondingly, the infimum of the s.s.p.e. payoffs that any player,
say j, can obtain as a responder in a two-person partnership, say ij, is y;(2) = 1—j6 — €.

However, player 7 would be better off by rejecting y;(2) and counteroffering (in the same
bargain, at node prop”) a partition y;; with y/(2) = 1+5 +¢eand yi(1) = 1—+6 — ¢, since

byj(1) =6 (1—+6 — 5) > 1—+6 — & = y;(2). Player i would accept this offer, since otherwise,

he could obtain at most y.(1) one period later, with y(1) = 6 (1%6 + 6) < 15+ =yl (2).
We now prove that this assertion is true.

Assume first that the optimal action after i’s rejection leads to the formation of a
three—person partnership, with player ¢ acting as a proposer, in which he obtains a payoff
of == 5 +e+mn,n>0. Let K be the corresponding s.s.p.e. payoff to player k. In order to
ensure that this proposal is accepted by player j, it must be the case that there does not

exist an x such that the following two inequalities are satisfied:

1
5 T e—p—
x > s T e—n—K
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1
—r—K 5 ——
s—x > (1—1—6+8+n>

Similarly, in order to ensure that this proposal is accepted by player k, it must be the

case that there does not exist an = such that the following two inequalities are satisfied:

bx > K

1 1 1
— ——  _s—p—-K)\) = K- - S ——
S—x <s 156 E—n > m—l—l 6+8—|—7]> <1 6—1—6—1—7])

In both sets of inequalities, the top one ensures that the responding player is better
off by rejecting, while the bottom inequality ensures that his deviant proposal is accepted
by both other players.

The two sets of inequalities can be written as

o 1 1
L fe—bn—-K (s — e p—_K
S— 13 s 05T Om >x>6<s 15 ¢ " >

and

1 K
K+(1—_+_(5+8+77>(1—6)>$>F

respectively. They admit a solution in z if
0>s—1—(14+06)(e+n)—K
and

1

0<é6(——= - K
<1 R ")

hold, respectively. It follows that, in order for both deviations to be prevented we need

both the above inequalities not to hold, which implies in particular:

14+ 26
>
5> s + (1+26) (e +1n)

But this contradicts (given that £,7 > 0) the assumption s < 2 & § > =0

1+6 s*

par
Next, if the optimal action after ¢’s rejection leads to the formation of a two-person
partnership with ¢ as a proposer, by definition ¢ cannot get more than /(1) in the following
round.

By step 2a we can rule out the cases in which the optimal action after player i’s

rejection lead to the formation of a partnership in which player ¢ acts as a responder. We

31



can thus conclude that no player can obtain more than 1—+5 in a two-person partnership

when he acts as a proposer.

Step 2c: If 6 > b4, in an s.s.p.e. any agreement in a two-person partnership yields no

less than 1—+6 to the proposer.
Assume to the contrary that in some s.s.p.e. agreement y;; we have y}(2) = 1_+5 +e=
yi(1) = 1—+6 — ¢ (so that ¢ < 1+5) But player i could instead propose y/(1) = 1—+6 —be =

Yi(2) = 1 + To5 + 6¢, which player j would accept, since he could obtain at most y;(1) = 1%6
in the following round. This last assertion is true because by rejecting and making a

counteroffer in the same partnership, player j obtains at most (by step 2b), worth

1+6

1—j6 in present discounted value.
Similarly, if the optimal action after player i’s proposal leads to the formation of a

two-person partnership with player j acting as a proposer, by step 2b he obtains at most

1
1+6°

Finally, if the optimal action after player ¢’s proposal leads to the formation of a three-
person partnership with player j acting as a proposer, this deviation is profitable only
if his payoft is greater than m However, by the argument in step 2b player j cannot
achieve an s.s.p.e. payoff in excess of - + Tr5 in a three person partnership.

We can conclude, in turn, that no player obtains less than in a two-person part-

1+5
nership when he acts as a proposer.

Step 3: If 6 > &5, no s.s.p.e. can exist with agreement in a two person partnership
along the equilibrium path.

By steps 2a and 2b, y;; = (ﬁ, ﬁ) is the only s.s.p.e. payoff vector which could
be supported in a two-person partnership. However, a strategy supporting the above
agreement along the equilibrium path would have to prescribe player 7 to approach player
4 at nodes prom} i and player j to accept the approach at nodes soll 4j- But player j
would gain by rejecting the approach in order to become (in that same round) the first
proposer in a two-person partnership with player k£, who would accept the approach. In
fact, k cannot promote a partnership with ¢, who would reject and form a partnership

with j (in this way obtaining — 715 instead of The only other alternative is for player k

Te5)-

to approach the grand partnership. Here, he has to propose a partition which gives player
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i at least a payoff of —, (otherwise ¢ would reject the approach and form a partnership

5 (

with j) and player j at least a payoff of ; + To see why player 7 has to be given at

1+6°

least 7 +6, assume to the contrary that there exists a s.s.p.e. in which player ¢ obtains

116, player j obtains 7 5 — ¢, and player k£ obtains s + €. But then, player j could reject

and counteroffer a partition which gives + 715 to player 7 and s + ¢ to player k£, who would

1

both accept, keeping the residual ; +5 — ¢ for himself, thereby improving on the payoft
he rejected, since ¢ (1—+6 — 5) > m — €. Thus, in the grand partnership player k£ would

obtain a payoff of at most s — 1, where s — 1 < m S s < 11125‘5 &6 >0,

Step 4a: If 6 > b4, in an s.s.p.e. any agreement in the grand partnership yields a
payoff to the proposer which is not less then his payoff when acting as a responder.

Note first that, by step 3 any rejection of a proposal in the grand partnership must
eventually lead back to a proposal within that partnership, either immediately with a
counteroffer, or after a sequence of approaches. Assume to the contrary that there is an
s.s.p.e. in which one player, say player ¢, obtains payoffs equal to I as a proposer, equal to
I > I as a responder to player j’s proposal, and equal to T >Iasa responder to player
k’s proposal. Consequently, efficiency requires that at least one of the other players, say
player j, obtains payoffs J and J, with J < J, when acting as a responder to i and as

22

a proposer, respectively. But then player ¢ could improve by claiming instead a share

I + n for himself and leaving j with a share J —n > 6J > 6. for n sufficiently small.
Step 4b: If 6 > &, in an s.s.p.e. any agreement in the grand partnership yields the

proposing player a payoff not greater than —=: 1+26

Assume in contradiction to the statement that the supremum of the s.s.p.e. payoffs

that any player, say player i, can obtain as a proposer in the grand partnership is z; =

Let z; = 25— ¢ — 2. We show that there cannot be an

—=S+ ¢, WlthEE(O 426

1+25 ’ 1+25S}

agreement on zj,3 since at least one responder could gain by rejecting the proposed share
Zg4;- In fact, for both players j and k not to gain by rejecting it must be the case that

the following two incompatible inequalities hold (as we explain below):

s s ,+1—5 TN 5
y4 yA — S yA — S
ko= 14926 F=1426

22By stationarity, player k obtains the same payoff in three-person partnerships independently of the

identity of the proposer.
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0
- 1+2(5

26 s 6(1+6

1+263—z,'€—e><:>z,€+5

If the first inequality does not hold, then player k could profitably reject and obtain

Zy =2, + 5 +255 one period later by proposing the partition 27,3 with 2z = —%-s+ ¢ and

1+26

Z// 26

i = TiosS —E— z, = zj. Player i would accept this offer, since otherwise he could get at

most z; by making a counteroffer in the following period, worth 6z; = 6 (W‘S + E) <z
By stationarity, player j would also accept the offer, because it is the same as the one he
is assumed to accept it in the s.s.p.e.

If the second inequality does not hold, then player j could profitably reject and obtain

z/// _ 146

=S — e (=s— (ms + e) — z},) one period later by proposing the partition

n n

e With 2" = z;, and 2] = —%=s+e¢. Players i and j would accept this offer by the same

1+26

reasoning of the previous paragraph.
Step 4c: If 6 > &5, in an s.s.p.e. any agreement in the grand partnership yields the

proposing player a payoff not less than —==s. Assume in contradiction that there is an

1+2(5

s.s.p.e. agreement on a partition zj,; in which at least one of the responders, say 7,

gets 2 > 254 ¢ with ¢ € (O I—J”Ss} so that 2z = 125 — ¢ — z,. Then, player

j = 1428 ' 1426 1126
i could improve by instead proposing zj,; with 2 = ms + 6¢ and 2 = 2,50 that
2! = fj&s — 8¢ — 2z, > z.. This proposal would be accepted by player k because of

stationarity and by player j because of step 4b.
Step 4d: If 6 > b, in an s.s.p.e. any agreement in the grand partnership yields the

responding player a payoff not less than This follows from Step 4c, since any

1+26

responding player would reject any partition yielding a smaller payoff than —%-s and

1+2(5

secure 0z; (1) = s in the following round.

1+26

Step 4e: If 6 > &5, in an s.s.p.e. any agreement in the grand partnership yields the

responding player a payoff not greater than —:s. This holds since a responder obtaining

1+26

more than —%s implies that the proposer obtains less than and/or the other

1+25 1+258’

responder obtains less than contradicting Step 4c¢ and/or step 4d above.

5
1+255)
Step 5: No s.s.p.e. exists if § > 6.
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As a preliminary, recall that ¢, and &, solve 1—+6 =0 (1 J:Q 6) s and 1j 5= T +12587 respec-

tively. The first condition derives from

) 1
> >
1+6_6(1+26>S<:>5_§S (C1)

while the second derives from

0 <
14+6 1426

s& 6 <8, (C2)

If C2 is violated, a player who is solicited in a two person partnership has an incentive

to accept. In addition, since § > &, implies § > §,, condition C1 holds, so that -

(1 +12 5) s. These two facts imply that a player at node prom? T prefers to be the promoter

of a two-person rather than of a three-person partnership. Therefore there cannot be an
s.s.p.e. agreement in a three-person partnership along the equilibrium path. Joining this
to step 3, we can conclude that no s.s.p.e. agreement exists when § > &,.

Step 6: An s.s.p.e. exists when 6 < 4.

Denote by z;; the partition which gives players ¢ and j shares z; = 1 — +258 and

T; = ﬁs, respectively; and by z;;; as above the partition which gives players 4, j and k

shares z; = =55 and z; = z, = respectively. Strategies which justify part (a) of

b — 555
7% 14265

the proposition are for player i:

1. in the approach phase: At nodes promjp i, approach jk; at nodes promjz.jk ap-

proach i +1 (modulo 3); accept the approach at nodes sol’ 55 and reject it at nodes

2 .
solj i

2. in the bargaining phase: At nodes prop}; propose z;; and at nodes propjjk, propose

s, and

Zijk; at nodes Tespj ;; and respj ;1 accept only offers yielding at least ; +26 ,

when rejecting move on to node prom? Vi and propijk, respectively.

Let’s check the optimality of the strategies. At all nodes of type prom?p 2ijks the

equilibrium payoff —:s cannot be improved upon by a deviation, as any approach to

1+26

form a two-person partnership is rejected, eventually yielding i a payoff i3 55 in the three-

person partnership.. At nodes sol®

i1k the equilibrium strategy yields =55

T +2 5, while rejecting

the approach yields eventually the same payoff, no matter which player i approaches. At
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nodes sol; ;;, by conforming to his equilibrium strategy player ¢ would reject and eventually

get the proposer’s share in the grand partnership, Tl%s. If instead he accepted he would

6

only obtain the responder’s share in the two-person partnership, 17555.

Consider now the bargaining phase. If player ¢ were to deviate from his equilibrium

strategy at a node of type prop; and claim for himself more than what prescribed by

6

17355 in the grand

the strategy, the responder(s) would reject. Player ¢ would obtain

6

1125 s, depending on whether

partnership one period later, rather than either 1 — s or

1+26

p = ij or p = ijk, respectively. So, if p = ijk it is clearly not optimal to deviate. If

s>5<—3)<:>62s—(2—s)6—1§0.

p =17, there is no gain from deviating if 1 — T+25

1+25
This inequality is satisfied for all §,s such that 0 < 6 < 1 and 1 < s < % At a
node of type respé-,ijk player i cannot profit from accepting an offer yielding less than
T +255’ as by rejecting and conforming to his equilibrium strategy he could obtain W‘S
in the subsequent round. Furthermore, deviating and moving to node promzﬁjk is not
profitable either, as the solicited player would reject and approach the grand coalition,
where player ¢ would still earn the responder share. Next, consider the optimality of player
1’s strategy at nodes respj-’ij. When confronted with a disequilibrium offer, by conforming

to his equilibrium strategy he can obtain s in the following round. Alternatively,

1+26

he could either (i) reject and approach player k, or (ii) reject and make a counteroffer.
If (i), his approach would be rejected and he would subsequently earn the responder’s
payoff in the grand partnership. If (w ) such a deviation would be profitable only if

=5 < 0 (1 s, that is if 6 > 2= = §,. Thus, 6 < §, guarantees optimality.

_6
1+26

Step Ta: If 6 < b, in a two-person partnership any player achieves an s.s.p.e. payoff

1+26

strictly less than - +25

Assume to the contrary that the supremum of the s.s.p.e. payoffs that any player,
say player ¢, can obtain as a proposer is in a two-person partnership, say ij, and is

zi(1) >

(2

T +2 5555 Correspondingly, the infimum of the s.s.p.e. payoffs that any player, say

J, can obtain as a responder in a two-person partnership, say 77, is x;(2) =1-7 +25
However, player j would be better off by rejecting 2,(2) and counteroffering (in the same
bargain, at node propgj) a partition zj; with z7(2) = 6zj(1) + &, with ¢ > 0, since

535;_/(1) =61 —62i(1) —¢] > 1 — (1) = $3(2) < xi(1) > l—ié + ﬁg. This inequality
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1425 4 8(1+26)

Tre —5~¢€, which is true

holds because (1) > =5 and 1525 > 5 + 2 & s >

1+25 1426 1+5
for e sufficiently small. Player ¢ would accept this offer, since otherwise, he could obtain
at most (1) one period later, with éz}(1) < 6z}(1) + . Thus, either (i) 2}(1) < ﬁs,
or (ii) the supremum x(1) is not achieved in a two-person partnership, or (iii) both.

However, by step 6 we know that —-s is attainable at an s.s.p.e., so that we can rule

1+25
out cases (i) and (iii).

By step 2a we can rule out the cases in which the optimal action after player i’s
rejection lead to the formation of a partnership in which player ¢ acts as a responder. We

can thus conclude that no player can obtain a payoff of at least —5:s in a two-person

1+25
partnership when he acts as a proposer.

Step Th: If 6 < &g, in an s.s.p.e. any agreement in the grand partnership yields a
payoff to the proposer which is not less then his payoff when acting as a responder.

Assume to the contrary that there is an s.s.p.e. with agreement in the grand part-
nership in which one player, say player i, obtains payoffs equal to I as a proposer, equal
to I > I as a responder to player j’s proposal, and equal to T >1asa responder to
player k’s proposal. Consequently, efficiency and stationarity require that at least one
of the other players, say player j, obtains payoffs J and .J, with J < J, when acting as
a responder to ¢ and as a proposer, respectively. If player j were unable to successfully
promote a two person partnership, then the same reasoning as in step 4a would apply.
Thus, assume that player j can successfully constitute a two person partnership with some
other player, and denote by X the corresponding s.s.p.e. payoff to player j. If X < J,
then player j’s continuation payoff when rejecting an offer would be J, so that the same
reasoning as in step 4a applies. Alternatively, if X > J, then player j would promote a
two person partnership when rejecting player ¢’s proposal in a grand partnership. But for
J to be part of an equilibrium offer when player j makes a counterproposal after rejecting
an offer in the grand partnership, it must be that 6./ > 6 X, contradicting J < X.

Step Tc: In an s.s.p.e. any agreement in the grand partnership is on zyo3.

This follows by repeating the same arguments used in steps 4b-4e, which hold since

by step 7a the maximum s.s.p.e. payoff cannot be achieved in a two person partnership.
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Step 8: If 6 < &,, no s.s.p.e. can exist with agreement in a two person partnership
along the equilibrium path.

Assume to the contrary that a two-person partnership, say 77, forms along the equi-
librium path. In this bargain, after the rejection of an offer, player ¢ will either remain in
the bargain with player j, or approach k. In fact, given that the maximum s.s.p.e. payoft
cannot be achieved in the ij partnership (step 7a), it must be the case that either j or k
or both would reject the approach by player i to form a grand partnership (otherwise, it
would not have been optimal for player i to approach j to form 4j). Similarly, if player
j were to reject an offer by player 7, it must be the case that either ¢ or k or both would
reject the approach by player j to form a grand partnership (otherwise it would have been
optimal to reject i’s approach to form 7).

We will now consider two cases. First, assume that, when player j rejects an offer in 7
he approaches player k and player k accepts the approach. By a reasoning analogous to the
above, this means that player k£ cannot successfully promote the grand partnership. Thus,
the grand partnership can never form either on or off the equilibrium path. By standard
arguments, the only s.s.p.e. partition that can obtain in a two-person partnership is the
Rubinsteinian one; and a straightforward adaptation®® of step 3 shows that a two-person
partnership cannot form in an equilibrium, yielding a contradiction.

Next assume that k rejects j’s approach; if so, then the optimal action by player k
can lead to the formation of either (i) some two person partnership, or (ii) to a grand
partnership where player k is the promoter. If (i), then it must be that player & cannot
successfully promote a three person partnership, so that the same reasoning as in the
previous paragraph applies. If (i), then both players i and j obtain a payoff of —%—

1+26 )

thus , it must be that the s.s.p.e. payoff to player j in a partnership ij is equal to 5 +25

(since when player j rejects an offer in ij he ends up with a payoff of —%=s one period

1+26

later). Consequently, the payoff to player i in ¢j must be equal to 1 — —=s. But in turn

1+26

this means that z193 is not an s.s.p.e. partition, except when the payoff that player ¢ could

23The argument in step 3 holds since now we know that a responder in a three person partnership

)

. § 1426
Given that 13555 > 145 © 5 >

Trh such equilibrium payoff is

obtains an s.s.p.e. payoff of 1+268
greater than the payoff ; 6 required in the proof (i.e., the payoff that player k would have to guarantee

to player j in a grand partnership promoted by player k).
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achieve by forming a partnership 7j in the following round is equal to his payoff in the

grand partnership promoted by player k, that is when 6 (1 — %s) = ?‘265 & s = i?‘;

However, this can never be, since by step 7a the supremum payoff to any player in a two

. 1 . . . . .« .
person partnership must be less than 17555, which in this case translates into requiring
_ 8 1 1426
l -1 <gms s> 1w

Finally, assume that when player j rejects an offer in ij he makes a counteroffer to
player ¢ in the same bargain. By stationarity this implies that the only s.s.p.e. partition
that can obtain in this partnership is the Rubinsteinian one. Once again, this is easily
checked not to be an s.s.p.e. In fact, in such an equilibrium player & would end up with
a null payoft, whereby both players 7 and j would have an incentive to enter negotiations
with him. Furthermore, an s.s.p.e. in which player k obtains a null payoff in some two
person partnership (off the equilibrium path) cannot be sustained, since - given that as
we just showed the grand coalition cannot be supported at an equilibrium - player k
would always improve on his (zero) payoff by rejecting the partition and counteroffering

for instance a partition yielding 6 to his opponent. |

Appendix 2

Here we check the optimality of the strategies described in proposition 3

State *':

approach phase: As in proposition 2, state .

bargaining phase: A deviation by player 1 at propl,; prompts a change of state to PBj.
This yields player 1 a null payoff if the deviant proposal x = (z1, 79, 73) € A? is
rejected. For x to be accepted by both players 2 and 3, it must be x5, z3 > 6: this

is not feasible if 6 > 1

5, and it yields player 1 a null payoft if 6 = % Consider next

player i # 1 at TespiuS. Rejecting the equilibrium offer triggers state P;, where

player i earns a null payoff.

State PB,:
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approach phase: In this phase the only possible deviations at node promip are by players
2 or 3, which trigger P, and thus are never profitable. Consider now node solil’h.; it

player 1 rejected, state would change to P;, yielding him a payoff of zero. Notice
that this is the only type of solﬁ,p that can occur in state PB;.

bargaining phase: Player 1 cannot improve by deviating from his acceptance strategy, as
this would change the state to Pi, yielding him a payoff of zero. If player i # 1
accepts a deviant proposal x € A%, the state remains PB;. Consider first player 2,
and suppose he is confronted with a deviant proposal z € A?. If 5 < 6 or 23 < 6,
the payoff from following the equilibrium strategy and rejecting the deviant offer is
6 (that is, the unitary payoff one period later), while the payoff from accepting is 0,
since player 3 will subsequently reject and approach player 1. If instead x9, x5 > 6,
the payoff from following the equilibrium strategy and accepting is x4, since player 3
will also accept. Rejecting, on the other hand, yields é (recall that the state remains
PB, so that player 2 obtains the entire surplus one period later). This shows that
it is optimal for 2 to reject a deviant proposal x unless x5, z3 > 6. Consider finally
the case when player 3 is confronted with a deviant proposal z € A? (which must
have been accepted by player 2). The payoff from accepting is z3, whereas the
payoff from rejecting is ¢ (that is, the unitary payoff one period later). If 3 > 6 the
equilibrium strategy prescribes to accept, while if z3 < ¢ the equilibrium strategy

prescribes to reject. In either case, player 3’s equilibrium strategy is optimal.  H.
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