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Abstract

We compare taxes and quotas when firms and the regulator have asymmetric
information about abatement costs. Damages are caused by a stock pollu-
tant. Uncertainty enters multiplicatively, i.e. it affects the slope rather than
the intercept of abatement costs. We calibrate the model using cost and
damage estimates of greenhouse gasses. As with additive uncertainty, taxes
dominate quotas. The advantage of taxes is much greater with mulitiplica-
tive, compared to additive uncertainy.
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1 Introduction

When polluters have better information than regulators about the cost of
pollution abatement, social welfare depends on both the form of regulatory
policy and its level. Complicated non-linear taxes (e.g. [8]) can achieve the
(information-constrained) social optimum, but these types of policies are not
actually used. Most actual regulatory devices rely on standards or some other
form of quantity control, and to a lesser extent, linear emissions taxes. An
important literature, beginning with Weitzman [22], compares social welfare
under taxes and quotas when polluters and regulators have asymmetric infor-
mation about abatement costs. Most subsequent contributions (e.g. [4],[10],
[18], [20], [24] and [25]) to this subject study the case where the damage
depends on the flow of pollution. However, several important environmental
problem, e.g. global warming and acid rain, are associated with the stock
rather than the flow of pollution. For these problems, the comparison of
taxes and quotas requires a dynamic model.

Hoel and Karp ([7]) use a dynamic extension of Weitzman’s model to com-
pare the two policies for a stock pollutant.! They assume that the abatement
cost is a quadratic function of emissions, that damages are a quadratic func-
tion of the stock, and that the identically, independently distributed random
term alters the intercept, but not the slope, of the abatement cost function.
That is, the random variable enters additively. In each period the regulator
chooses the policy level, knowing the distribution but not the realization of
the random variable. As with the static model, taxes are more likely to be
preferred to quotas when the slope of the marginal abatement cost is large
relative to the slope of marginal damages. In addition, taxes are likely to
be preferred when the future is not very important, either because of a high
discount rate or a high decay rate for the stock of pollution. Taxes are also
likely to be preferred when the regulator uses a feedback policy rather than
an open loop policy, and when new information arrives quickly (the length
of a period is small). The ranking of the two policies is independent of the
magnitude of uncertainty and of the current stock of pollutant.

!'Newewll and Pizer [12] and Staring [19] also study a dynamic version of Weitzman’s
problem. They both restrict attention to open loop policies, whereas [7] compare open
loop and feedback policies. [12] includes the generalization where the random variable is
serially correlated.



Hoel and Karp calibrate the model using previous estimates of the slopes
of the damage and abatement cost functions for greenhouse gasses. FEven
if the estimated ratio of the slopes of the two cost functions is wrong by a
factor of one thousand, taxes dominate quotas for reasonable values of the
other parameters. This result suggests that in fact it might be important
to use taxes rather than quantity restrictions in controlling greenhouse gas
emissions. There is currently considerable debate both about the extent
to which emissions should be limited, and the manner in which these limits
should be achieved. Thus, the conclusion that taxes are better than quotas
has significant implications for policy.

Although this conclusion is robust with respect to variations in param-
eter values, it is conditioned on the assumption of quadratic functions and
additive uncertainty. Given our lack of knowledge about actual costs and
the resulting need to use a parsimonious model, the quadratic specification is
reasonable. However, the assumption of additive uncertainty is made purely
for its tractability. There is no reason to believe that the intercept of the
abatement cost function is subject to more randomness than the slope of
that function. We know that in the static model, multiplicative uncertainty
can change the ranking between policies, holding fixed other parameters. In
view of the importance of determining the best method of controlling green-
house gas emission, it is worth investigating whether the conclusion in [7]
survives the introduction of multiplicative uncertainty. In addition, since
there are numerous other important stock pollutants, it is worth having a
simple means of comparing the two policies under both additive and multi-
plicative uncertainty.

The next section describes and solves the linear quadratic model with
multiplicative disturbances. We also discuss some of the determinants of the
comparison between the two policies. The following section uses previous
estimates of costs to calibrate the model. We use this calibration to compare
the two policies, and then relate our results to the case of additive uncertainty.

2 The model

We define pollution emissions and costs as flows, e.g. billions of tons per unit
of time or billions of dollars per unit of time. Each period lasts for h units
of time and we assume that variables are constant within a period. We can



think of h as being the amount of time between the arrival of new information,
or the amount of time during which decisions are held fixed. Thus, h can be
viewed as a measure of the flexibility of decisionmakers. The comparison
between taxes and quotas depends on many parameters, including the length
of each period. By explicitly including h, we are able to determine how this
parameter affects the comparison.

The firm’s flow of pollution in the absence of regulation is z*. If its actual
level of pollution is x, its abatement is x* — x. The firm’s abatement costs in

the absence of uncertainty are b(m*; 2’ which we rewrite as —(f +az — La?).

We introduce multiplicative uncertainty by replacing the parameter b with
b and then writing abatement costs as —(f + az — £2?).?  The random
variable 6 is independently and identically distributed. At the beginning of
the period the firm, but not the regulator, observes the current value of 6.
The first and second moments of § are £ = 0 and E6* = v, so var(d) =
o= — 6°. The regulator knows the probability distribution of 6.

If the regulator chooses a tax p per unit of pollution, the firm minimizes
the sum of abatement cost and tax payments. The first order condition to
the firm’s cost minimization problem implies that the flow of pollution is

- (“—;p> 0= 20, (1)

which uses the definition z = “;*. We can think of the regulator as choosing
the variable z rather than the tax p. Thus, under a tax, the flow of pollution
in any period is a random variable. When the regulator chooses a quota, z,
we assume that it is binding. With a quota, the flow of pollution in a period
is deterministic.

If we normalize by setting = 1, then var(d) = v — 1 With this nor-
malization, z is the expected flow of pollution when the regulator uses the
tax p = a — bz. We provide the formulae for general values of # and then
specialize to 6 = 1.

The flow of damages resulting from the stock of pollution, S, is ¢S+ £52.
The firm ignores these costs, but the regulator cares about them. The flow

2In his reply to Malcomson[10], Weitzman [23] models multiplicative disturbances by
having the random variable divide rather than multiply the slope of marginal costs. We
adopt this formulation because it leads to a slight simplification in the derivations. Of
course the two formulations are equivalent, since one is obtained from the other merely by
re-defining the random variable. An (equivalent) alternative, replacing % with (b + 6) 22,
can also be obtained by redefining variables.



of payoff (the negative of abatement costs minus damages) for the regulator
is

(f +azx — 2—60x2) — (CS + %82) . (2)

Using (1)and (2), the regulator’s expected flow of payoff in a period if she
uses a tax (7T') is

AET)= Mz, S5T)=f+ (azt — gﬁ) 0 — (cSt + gSf) . (3)

If the regulator uses a quota (Q)) her expected flow of payoff in a period is

b 1
AEQ =M 55Q) =+ an - 3B () - (s 52). @
Since each period lasts for A units of time, and since all variables are assumed
to be constant within a period, the regulator’s expected payoff for a period
is A(t;i)h, fori=T,Q (taxes, quotas).
The equation of motion for the stock of pollutant, S, is

StJrh = ASt + xth (5)

where the fraction of stock that persists until the next period is A = e%"; §
is the continuous time decay rate.

With a discount factor 3 = e~ and an initial value of the stock Sy, the
present discounted value of the regulator’s payoft is

J (Sp;1) = max B Z BN (t;3) b
=0

subject to (5), for i =T, Q.

Under quotas, the regulator has a standard deterministic linear-quadratic
problem. The term F (%) enters the payoff as a constant which multiplies
b (see 4); uncertainty has no other effect on the problem. Under taxes, the
regulator has a stochastic control problem with multiplicative disturbances.
In this case, the “Principle of Certainty Equivalence” does not apply: the
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state contingent optimal control rule depends on both the mean and the
variance of 0. However, the control rule is still linear, and the value function
is still quadratic, (as is the case for both the deterministic problem and the
problem with additive uncertainty). Thus, we can use standard methods to
solve the control problem under taxes. We first solve this problem, and then
use our result to obtain the solution to the problem under quotas.

We begin by “guessing” that the value function under taxes is quadratic:
J(S;T) = py + p1S + 55 for some parameters p, py, po. Using this guess,
we can write the regulator’s dynamic programming equation under taxes as:

po+ S+ 25 = max{A(z S T)h (6)

+8E [po + py (AS + 20h) + % (AS + zeh)ﬂ }
0

— h
= max{oao—iroalﬁhz—k%f}, (7)
which uses the definitions
_ 95* P2 (A2
ar = a+fB(p +p,AS)
ay = PBphy —bo.
The optimal control rule is
b
S=— (8)
Substituting equation (8) into (7) and equating coefficients of powers of S
gives the equations for p,.

—2
py = —gh+pFp A2 — M 9)
’ ’ Bpyhry — bo
—2
' ' Bpyhry — bo
(a+ fpy)” hO’

(11)

Po = fh+ﬂp0_2(ﬁp2h7—b§)

3Under additive uncertainty, the optimal levels of = and z, for a given level of S, are
the same. This “certainty equivalance” does not hold under multiplicative disturbances.
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Given that the value function is bounded above and that it is quadratic, it
must be the case that p, < 0. We first obtain the negative root of equation
(9) and then solve the linear equations (10) and (11) recursively.

We obtain the solution to the problem under quotas by specializing the
above solution under taxes. Using the normalization § = 1, we simply
replace # and v by 1 and replace b by bE (%) in the equations for p;, and in
the definitions for «; above, to obtain the solution under quotas.

The model with additive uncertainty [7] is simpler, and provides a useful
basis for comparison. Under additive uncertainty, we write abatement costs
as — (f +[a+ 6]z — 22%). We solve the optimization problem using the
same procedure as above, and obtain a system of equations that correspond
to equations (9) - (11). In that system of equations the second moment
() appears only in the equation for p,. This feature enables us to obtain
a closed form comparison of the value functions under taxes and quotas.
With multiplicative uncertainty all the parameters p, depend on v under
taxes; all of these parameters depend on E (é) under quotas. However,
(with multiplicative uncertainty) the parameters v (under taxes) and E (3)
(under quotas) enter the equations for p, in different ways, precluding a
simple comparison of the payoffs under the two policies. Nevertheless, we
can identify similarities in the comparisons under additive and multiplicative
uncertainty.

With additive uncertainty, we know that taxes are more likely to dominate
quotas when the convexity of the abatement cost function is large, relative
to the convexity of the damage function, i.e. when b is large relative to
g. 'This ranking is also likely to hold under multiplicative uncertainty, and
the intuition is essentially the same. The value of the regulator’s program
is the sum of the expected value in the current period, A(t;i)h, and the
expected continuation payoff, 5.J(S;in;4) (equation 6). Taxes and quotas
affect these two terms differently, and the extent of the difference depends
on the magnitude of b and g.

The following thought experiment helps in understanding this difference:
hold future policies constant, and compare the payoff under a quota in the
current period and under a tax that produces the same expected flow of
pollution (i.e., let £ = z in the current period). Since we are holding future
policies constant, the function that gives the continuation payoff, J(Siin),
(but not it’s argument S;,5) is independent of the current policy. We saw
that in going from taxes to quotas, the parameter b is replaced by bF (%) >
b. Consequently, the current expected flow of benefits under a quota z is
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less than the expected flow of benefits under a tax that generates the same
expected level of emissions: That is, if z = x, then the expectation of current
benefits is greater under taxes. The larger is b, and the larger is F (%), the
greater is the difference in expected benefits. Consequently, taxes tend to
be preferred when b or F (%) are large.

However, when a quota is replaced by a tax, the current level of emissions
becomes stochastic; x is replaced by the stochastic variable z6 = x6, so the
level of the stock in the next period is stochastic. In view of the concavity
of the value function (p, < 0) and Jensen’s inequality, the expectation of
the value function is lower under uncertainty. The concavity of the value
function is increasing in the parameter g: the absolute value of the negative
root of equation (9) is an increasing function of g under either taxes or quotas.
Thus, a larger value of g increases the concavity of the value function and
tends to make the regulator prefer quotas. For a given degree of concavity of
the value function, the loss in future welfare from using a tax rather than a
quota is an increasing function of the variance of . Thus, a larger variance
(larger ) tends to make the regulator prefer the quota.

In other words, given the current level of S and holding fixed future
policies, a tax (relative to a quota) in the current period leads to higher
current expected benefits but a lower expectation of future benefits. The
future becomes more important relative to current benefits (and thus the
quota tends to be preferred) if either the discount factor § or the retention
factor A are larger. Thus, larger values of § or A make it more likely that
a quota is preferred.

This thought experiment helps to provide intuition for the comparison of
policies, but it does not provide the basis for a proof because future policies
are in fact different under taxes and quotas. Consideration of limiting cases
shows that the intuition described above is certainly correct over some range
of parameter space. For example, if ¢ = 0 then p, = 0 (under both policies).
In this case it is easy to show that taxes are preferred to quotas regardless of
the other parameter values. If b = 0 the firm’s decision rule, equation (1), is
not defined. However, for b arbitrarily close to 0, the firm’s decision rule is
defined and we can compare the payoffs by considering their limiting values.
For x = z and b = 0 the single period payoffs under taxes and quotas are equal
(equations (3) and (4)). However, the evolution of the stock is stochastic
under taxes and remains deterministic under quotas. Thus for b = 0 the
only difference between the two policies is that quotas enable the regulator to
exactly control the evolution of the state, whereas taxes enable the regulator
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to choose only the mean of the evolution of the state. In this case, we
expect the payoff to be higher under quotas. In view of the continuity of
all the functions that define p,, we conclude that taxes dominate quotas for
sufficiently small g, and the ranking is reversed for sufficiently small b.
Taxes dominate quotas if 3 = 0, since in this case the regulator is uncon-
cerned with the future. The future is also relatively unimportant if A = 0.
In this case the stock in period t + 1 is z;h and we are back to a static
model. The values of p; and p, are the same under taxes and quotas, so a
comparison of the policies requires only a comparison of the values of p,. It

is straightforward to show that for A = 0 taxes dominate quotas if and only
if

E;—1
var(0)

> mﬂ% (12)

Here, taxes are preferred to quotas if: ¢ is small, the future is discounted
heavily (/3 is small) or it is possible to make adjustments quickly (A is small).

The left side of (12) shows that the type of uncertainty as well as its
magnitude affects the comparison. For a fixed value of F %, taxes are more
likely to be preferred if the magnitude of uncertainty, measured by var(6),
is small. However, for a given distribution function, % — 1 varies with the

variance of . The left side of equation (12) is not necessarily monotonic in
var(0).

3 An Application to Global Warming

The previous section shows how to compare the benefits of taxes and quotas.
Under the assumption that uncertainty about marginal abatement costs is
additive, [7] compares these policies as a means of controlling global warm-
ing. With additive uncertainty we need estimates of the ratio { and of the
parameters 7,0, and h. Even if the largest available estimate of ¢ understates
the true ratio by a factor of 1000, taxes dominate quotas for reasonable values
of r,6and h. The robustness of the comparison suggests that in fact taxes
are likely to yield a higher payoff than quotas. Here we want to determine if
this conclusion holds when the slope of abatement costs is uncertain. With
multiplicative disturbances we also need estimates of the intercepts a and ¢
and information about var(6) and E
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In order to obtain estimates of the parameters of the damage and abate-
ment cost functions, we use estimates of the absolute levels of damages and
abatement costs. Our unit of time is years and we set h = 1, so one period
equals one year. We measure costs in billions of 1990 dollars, and the stock of
carbon in billions of tons. The estimated stock in 1990 was 800 (billion tons)
[6], [17],and the estimated Gross World Product (GWP) was 2,200 (billion
dollars)[11], [16].

We assume that the cost of a stock higher than 800 is w, so that the
parameter c is given by ¢ = —800g. We use the parameter ¢ to denote the
annual percentage reduction in GWP due to doubling the world atmospheric
stock of carbon The parameters ¢ and g satisfy

$22000  g8002

_ —4
00 5 = 9=0.875x 107", (13)

A high estimate for the annual cost resulting from a doubling of the stock of
carbon is 400, implying ¢ = 1.8; many other estimates are approximately half
of that magnitude.* We consider three damage functions that correspond
to three values of ¢: ¢ = 1 (a conservative damage estimate); ¢ = 5 (a
high damage estimate) and ¢ = 30 (an extremely high estimate). For the
conservative estimate, g = 6. 875 x 10~* and for the extremely high estimate,
g=2.0625 x 1072,

There are a range of estimates of annual emissions in 1990. We adopt
a “moderate” estimate of 6 billion tons per year ([11], [16],). There also
exist a range of estimates of the absolute costs of reducing emissions. These
estimates vary according to country and time period. It is cheaper to reduce
emissions slowly, because of the lower adjustment costs (assuming that these
are convex in the rate of adjustment) and because of technological improve-
ments. A “moderate” estimate is that a 50% reduction in emissions leads
to a 1% loss in GWP, or 220 billion 1990 dollars [13].> If we assume that
decreasing emissions (z) below 6 results in abatement costs of 2(6 — z)?, the
moderate estimate (1% loss of GWP due to a 50% reduction of emissions)
implies that b = 48.9, a = 293.3.

4For a range of estimates see:[1], [2], [3], [5], [6], [9], [13], [14], [15] [16], [21].

5This estimated cost refers to a reduction that is phased in over decades, not an in-
stantaneous reduction. Obviously, our model ignores adjustment costs. If we included
adjustment costs, firms would solve a dynamic optimization problem, rather than a se-
quence of static problems, and the regulator’s problem would be changed accordingly.



The conservative estimates for damages and for abatement costs imply
that the ratio § = 1.4062 x 10=°. This ratio is critical in ranking taxes
and quotas. In the previous section we explained why quotas are more
likely to be preferred when the ratio is large. Since the ratio has little
intrinsic economic interpretation, we perform sensitivity studies by varying
the parameter ¢ (the percentage loss in GWP due to doubling the stock of
carbon from 800 to 1600). Equation (12) shows that g (and thus the ratio
£) is proportional to ¢.

To compare the two policies we also need assumptions about the random
variable. We have two free parameters, E5 and var(d). In order to re-
duce the dimensionality of parameter space, we assume that 6 is uniformly
distributed with support [1 —¢,1 + €], i.e.

O~U[l—¢€1+¢€. (14)
This distribution implies®
2 2
BO—1, EGQEVZPH?_)G, var(6) = 5 (15)

Eé:%{ln<1i6>—ln<1ie>] :1n(1+€)2_€1n(1_6). (16)

The thought experiment described in the previous section suggests that
taxes are more likely to dominate quotas when E3 is large and when var (6)
is small. For the limiting case A = 0, we saw (equation (12)) that the
comparison between the policies depends on the ratio of E% — 1 and the
variance. Using equations (15) and (16) we can write this ratio as

_E;—1 3[n(l+e€) —In(l—e)— 2

() = var() 2¢3 ' (17)

Using L’Hospital’s rule, we find that ®(¢) approaches co as € — 0. Since
the function is bounded for € > 0, it must be decreasing over some range.

6Tn defining costs, damages, and emissions as flows, we have made the parameters
a,b,c,g,r, and ¢ independent of the length of a period, h. However, the parameter € is
clearly not independent of h. A reasonable (but not necessary) assumption is that €2 is
of the same order as h.
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However, the function is not analytic at e = 0, and its behavior is difficult to
analyze. We therefore use Maple to obtain it’s graph, and find that for non-
negligible values of € (e > .001) ®(e) is strictly increasing. Consequently,
if A is small and the random variable is uniformly distributed with a non-
negligible variance, an increase in the variance makes taxes more likely to
dominate quotas.

Our estimate of § = .005 ([6], [14])” implies A = . 99501 when h = 1. For
greenhouse gasses A is not small, and therefore we need a complete solution
in order to compare the policies. We know that the comparison also depends
on the stock size. We assume that the continuous discount rate is r = .03.

Figures 1 - 3 graph the difference between the present discounted value
of payoff under taxes and quotas (J(S;7T) — J(S;Q)) for S in the interval
[800,2000]. We use nine combinations of parameter values®: ¢ ¢ (1,5,30)
and € € (0.2,0.4,0.6). The value ¢ = 0.2 implies a standard deviation (which
equals the coefficient of variation) of 0.149, and e = 0.6 implies a standard
deviation of 0.258.

For the conservative estimates (¢ = 1 and € = .2), when S = 800 taxes
dominate quotas by about 450 (billion 1990 dollars — see Figure 1), approx-
imately 2% of GWP, or twice the estimate of the annual loss in GWP due
to a 50% reduction in annual emissions.” This difference decreases slightly
with the stock size. Tripling the value of € leads to nearly an eight-fold
increase in the advantage of taxes when S = 800. For the high estimate of
damages (¢ = 5) taxes still dominate quotas (Figure 2). As the analysis
of the previous section suggests, this difference decreases when damages are
larger. In addition, the difference becomes more sensitive to the stock size.
For the extremely high estimate of damages (¢ = 30) taxes continue to dom-
inate quotas for moderate stock levels, but by a smaller amount. However,
for stock levels between 1350 and 2000, quotas yield a higher payoff.

Table 1 reports the expected steady state under taxes (the first entry)
and the steady state under quotas (the second entry) for the nine sets of
parameter values. The expected steady state under taxes is always larger

"This estimate may be low, thus biasing our results in favor of quotas. Other estimates
suggest a value of § = .0083 [17].

8The other parameter values are: h = 1,7 = .03,6 = .005,b = 48.9, a = 293.3 (which
correspond to the estimate that a 50% reducition in emissions leads to a 1% fall in GWP).

9Note that this amount is the difference in the present discounted value of the stream
of payoffs under the two policies. With a yearly discount factor of e=03 = 97045, a
present discounted value of 450 implies an annual flow of 13.3.
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Table 1: (Expected) steady states under taxes and quotas
€=.2 e=.4 e=.6

1 | 1173, 1158 | 1173, 1112 | 1173, 1025
5 | 1087, 1076 | 1087, 1043 | 1087, 978
30| 914, 909 | 913, 898 | 913, 874

¢
¢
¢

than under quotas. In all cases, the (expected) steady state decreases with
the severity of damages and with the magnitude of uncertainty. Increasing e
leads to a slight fall in the steady state under quotas, but a scarcely percep-
tible fall under taxes.!’ Since we have no estimates of the actual magnitude
of €, this insensitivity is encouraging. Not surprisingly, increasing damages
(¢) decreases the (expected) steady state.

Perhaps the most striking feature of Table 1 is the similarity of the steady
states. The largest number (1173) is only 34% larger than the smallest
number (874), despite a considerable range in parameters (300% for e and
3000% for ¢). If we think that ¢ = 5 and € = 0.4 are reasonable upper bounds
for the parameters, and ¢ = 1, ¢ = 0.2 are reasonable lower bounds, the
results suggest that a target steady state of carbon stock between 1045 and
1175 is optimal. In other words, we should attempt to keep the stock below
150% of its 1990 level. The optimal steady states under severe damages
(¢ = 30) are well below the level (1350) beyond which quotas dominate
taxes. Thus, Table 1 reinforces the conclusion that taxes are a better policy
instrument than quotas.

In the absence of regulation, x = 6 and the steady state is S = 1203.
This non-intervention steady state is approximately 2.5% higher than the
largest steady state in Table 1, and 37% higher than the smallest steady
state. Whether regulation leads to a large change in the outcome depends
on the regulator’s beliefs about the severity of damages.

Given our parameter assumptions, it is obvious that for any S > 800, the
optimal values of both z and = must be less than 6.!! For example, when ¢ =
.2 and ¢ = 1, the optimal control rule under taxes is z = 6.2528 —3.43x1074S.
For S = 800, the optimal expected level of emissions is z = 5.98. At the

10'We rounded to whole numbers, so the slight decrease of the expected steady state
under taxes, due to an increase in €, is usually not perceptible.

UFor § > 800 an increase in stock increases damages. Since abatement costs are
quadratic and are minimized at z = 6, under taxes, and at a value of x < 6 under quotas,
the optimal values of both z and x must be smaller than 6.
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Table 2: Payoff difference under taxes and quotas with additive uncertainty

€=.2 e=.4 e=.6
d=114.6132x1073|1.8452x 1072 | 4.1516 x 10~
=05 |4.6071x1073 | 1.8428 x 1072 | 4.1462 x 1072
6=30| 4.575 x 1073 [ 1.8299 x 1072 | 4.1174 x 10~2

steady state S = 1173, the optimal expected flow of pollution is 5.85. The
corresponding levels under the optimal quota are slightly smaller (x = 5.9 for
S = 800 and = = 5.78 for the steady state S = 1158.) Increasing damages
(¢) or uncertainty (e¢) leads to lower optimal levels of emissions. These
results are driven by the assumption that abatement costs are large relative
to the stock-related damages.'?

For purposes of comparison, we consider the magnitude of the difference in
the value functions under taxes and quotas, when the uncertainty is additive
(rather than multiplicative). That is, suppose that abatement costs are
—(f+ (a+6")z— 22?), where 6" is a zero mean, i.i.d. random variable
with variance var(6*). Using equation (18) in [7], the difference between the
present discounted value of payoff under taxes and quotas is

var(0*)h (1 + %)

(1—73)2b
The parameter p, is the negative root of (9) with v = 1. (Equivalently, p,
is the negative root of equation (17) in [7]). With additive uncertainty the

difference is independent of stock size, increasing in the magnitude of uncer-
tainty, and decreasing in the ratio . If § and 6" have the same distribution,

(18)

so that var(0*) = %, then the differences in payoff under taxes and quotas
for additive uncertainty, for the nine pairs of values of (¢, ¢), are given in
Table 2.

However, allowing 6 and 0" to have the same distribution does not provide
a fair comparison. Under a tax z, the variance in the additional pollution

12The calculations that we report are intended to help in assessing the relative merits of
taxes and quotas. The fact that our stationary model does not take into account changes in
abatement technology, population and income, means that we understate the true optimal
level of abatement (overstate the optimal levels of x and z). The fact that we ignore
adjustment costs tends to cause upward biases in transitional abatement (understate the
optimal levels of x and z), but has no effect on steady state optimal values.
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in a period is (zh)” var(h) when uncertainty is multiplicative, and the vari-
ance is h?var(6*) when uncertainty is additive. Therefore, if we want the
magnitude of uncertainty to be of roughly the same order in the two cases,
it makes more sense to set var(0*) = z2var(0). The equilibrium z is a (de-
creasing) function of S, but since z < 6 for any S > 800, we obtain an upper
bound for the difference in the value functions under additive uncertainty by
multiplying the numbers in Table 2 by 62. For example at € = .2, ¢ = 1, this
upper bound is .166 08, or 166 million 1990 dollars. Table 1 shows that for
all sets of parameter values, taxes dominate quotas. However, the difference
is extremely small. We noted that under the conservative parameter val-
ues with multiplicative disturbances, taxes dominate quotas by 450 billion
dollars. These results suggest that even if the assumptions of additive and
multiplicative uncertainty lead to the same qualitative result (a preference
for taxes) there is likely to be a large quantitative difference. Under the

conservative parameter values, the ratio of these differences is %% =2711..

4 Conclusion

There has been great interest in the effect of economic activity on stocks of
greenhouse gasses, and in the relation between these stocks and global warm-
ing. There is a growing consensus that limiting the stock of greenhouse gasses
is important to human welfare, but there has been little research on the best
means of achieving such a limit. A large body of literature compares taxes
and quotas in the presence of asymmetric information between regulators
and firms, but assumes that damages are related to emissions rather than
stocks. This literature is therefore not directly applicable to the problem of
controlling greenhouse gasses. Previous research that examined the relative
merits of the two policies for stock pollutants assumes that the random vari-
able affects the intercept but not the slope of abatement costs. We extend
this literature by allowing the random variable to enter multiplicatively.

We provide closed form expressions for the difference in value functions
under the two policies. As with additive uncertainty, taxes tend to dominate
quotas when: (i) the slope of the abatement cost is large relative to the
slope of the damage function, (ii) stock effects are unimportant because of
a high discount rate or a high decay rate, or (iii) new information arrives at
short intervals (h is small). However, with multiplicative disturbances, the
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magnitude of uncertainty and the size of the stock also affect the comparison.
The Principle of Certainty Equivalence does not apply, so the expectation of
the optimal level of emissions under the two policies differs.

We use previous estimates of the magnitude of abatement cost and stock
damage to calibrate a quadratic model. The results support the conclusion
that taxes dominate quotas. Quotas may dominate if damages are extremely
high (much higher than any estimates suggest), but even then only when the
stock is substantially above the highest estimates of optimal steady state
levels. With additive uncertainty, taxes dominate quotas but the difference
in expected payoffs is negligible. For the same range of parameter values,
but multiplicative uncertainty, the difference in the present discounted value
of the stream of payoffs is significant; it may amount to several percent of
1990 Gross World Product.
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