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Abstract

Positive response density estimation from CV interval data affords efficiency gains which must be

weighed against the risk of introducing potential bias during questions iteration. This study

examines the effect of a eliciting a third response on a set of often-used welfare measures derived

in a conventional parametric setting. It then compares these with distribution-free nonparametric

estimates. A third bound increases censoring probability, introduces welfare estimates sensitivity

to inclusion of a theoretically relevant covariate such as wealth which also affects efficiency gains.

This might well introduce complications that outweigh the expected efficiency gain. This empirical

finding supports and complements previous results obtained via simulation.
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Does a third bound help? Parametric and nonparametric welfare measures

from a CV interval data study.

Introduction

In the practice of contingent valuation (CV) discrete choices are generated by asking

survey respondents take-it-or-leave-it questions concerning their willingness to pay (WTP) a

specified sum for a given change in the provision of a good. This elicitation format originates in

the seminal work of Bishop and Heberlein (1979) but has been substantially extended by

Hanemann (1984) and Hanemann et al., (1991) such that a initial choice response may be

supplemented through asking one or more follow-up discrete choice questions. In a WTP

experiment these work by increasing or decreasing the bid amount presented to respondents in the

initial question such that a respondent who responds positively to the initial ‘first bound’ question

is presented a higher bid in the follow-up ‘second bound’. Similarly a respondent who rejects the

first bound amount will be presented with a lower bid in the second bound question. Under a

given set of behavioral assumptions, the additional information on a respondent’s true WTP

provided by such an approach yields more precise estimation of structural parameters and

associated welfare estimates (Hanemann et al. 1991).

How much of an improvement is delivered by follow-ups under the conventional discrete

choice modeling is an issue of critical importance when making a decision between using single or

multiple bound elicitation formats in a CV survey. While the inclusion of follow-up questions

brings benefits in terms of additional information, they may also increase the number of missing or

incomplete responses. Such sample censoring curtails the inferential power of welfare and
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parameter estimates. Furthermore, the standard assumptions underpinning the validity of discrete

choice CV responses (Hoehn and Randall, 1987) may fail as we move from the first to successive

bounds. For example, such a move may induce changes in the respondents’ perception of the

nature of the contingent market, such that they feel that the probability or cost of provision may

alter (Carson et al., 1994). Follow-ups may also introduce various distortions in the truthfulness

of subsequent responses. For example, the respondent who has initially expressed a positive

response may feel that a bargain has been struck at that response amount, and so be indignant at

the presentation of a subsequent higher bid amount even if it was one which, had it been presented

initially, they would have agreed to pay. Conversely the respondent who refuses an initial bid

amount may feel guilt for not contributing to a good social cause and agree to pay a subsequent

lower amount even though they would have refused such an amount if presented at the first

bound.

While a number of possible strategic behavior and relative biases can be conceived,

empirical evidence for such effects is mixed and inconclusive (Cameron and Quiggin, 1994;

Herriges and Shogren, 1996; McLeod and Bergland, 1997). Monte Carlo simulations run under

the assumption that the sequential responses are indeed generated by a normal bivariate process,

have shown that the bias of the interval-data welfare estimates tends to be low, especially in

models estimated from large samples (Alberini, 1995). Given this then, under an assumption of

either truthful response or that, despite untruthful responses the expected value of the

unobservable component of the latent variable is still zero and  has a given distribution, one could

use an n-bounded response to estimate a series of n differently bounded models. When adequately

designed, this bounding can be expected to improve the efficiency of the parametric estimates
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(Hanemann, et al., 1991). Given the current cost of conducting a state-of-the-art CV survey any

method that delivers a given precision of welfare estimate by relying on a reduced sample size is

worth investigating.

Given the above assumptions, four issues are of general interest in the derivation of

welfare measures from multiple bounded CV data. The first concerns the assessment of the gains

in efficiency of parameter and welfare estimation delivered by increasing the number of bounds

from two to three.  A second issue concerns the effects of deriving welfare measures from

computationally convenient parametric probability estimates as opposed to more robust

nonparametric approaches when using multiple bounded data-set. Third, one must assess the

trade-off between the loss of inferential power derived from missing and incomplete responses

generated by successive bounds and the increase in efficiency due to the “bracketing” of WTP into

tighter  money intervals. Fourth, does the inclusion of theorethically important covariates affect

the welfare estimates magnitude obtained at different bounds?

This paper examines these issues by comparing benefit estimates from a variety of

common parametric specifications and a more robust nonparametric one from a CV study on a

wetland preservation program (discussed subsequently). These benefit estimates are then

compared with previously published results obtained from applying multilevel modelling

techniques to the triple-bounded responses (Langford et al., 1996).

Benefit estimates are derived through two approaches. In the first of these, two commonly

employed, utility-consistent parametric specifications are applied: the linear and log-logistic

models. The maximum likelihood (ML) parameter estimates are obtained and point and interval

estimates of implied welfare measures are computed using standard techniques. Likelihood ratio



Does a third bound help? Parametric and nonparametric welfare measures…

7

tests are conducted to discriminate between the relative fit of the two specifications to the data.

Theoretical consistency is investigated by considering whether a measure of the respondents’

wealth has a positive effect on the estimated probability of a yes response. Finally we investigate

truncation point bias under two common selection rules.

Since parametric estimates rely on quite strict and untestable a-priori assumptions, their

implied welfare measures are inconsistent under misspecification. For this reason our second

approach extends the interval data analysis by employing a ML nonparametric estimator for the

survival curve of a positive response to bid levels. Survival curves, that is, the estimated

Pr(Yes|x), are then employed to derive estimates of median and expected WTP which are

compared to their parametric counterparts. The nonparametric estimator employed here is the

generalized self-consistent algorithm (GSCA) of An and Ayala (1996), which is a generalization

of the Turnbull estimator for interval-censored data able to deal with across-interval censored data

such as those characterizing this study (Turnbull, 1974,1976). This is a ML estimator yielding  a

lower bound, conservative estimate of  welfare change.

Does a third bound help? Analytical methodology

Under the set of assumptions that underlie the interval data approach, it is natural to

question whether successive iterations can be expected to be beneficial in the overall economy of

the estimation exercise.  A similar question was investigated by Cooper and Hanemann (1995)

who employ Monte Carlo techniques to conclude that, while a second bound is worthwhile,

simulation results indicate that a third bound does not deliver justifiable efficiency gains.

Although Monte Carlo studies are informative, these findings are often specific to the given data
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generating process employed. The present study employs an empirical approach to the same issue,

but our final conclusions are similar.

Because the prevailing reason to carry out CV studies is welfare evaluation we have

framed our analysis around this issue. In particular we find it useful to focus attention on the

differences between point and interval estimates of conventional welfare measures obtained from

both parametric and nonparametric models.

Depending on the choice of model specification and the purpose of the analysis, the

economic analyst can have an interest in different welfare measures.  Using the established

notation in the literature (Hanemann, 1984, 1989) we define the following :

•  the median, C* = A* s.t. Pr(Yes|A) = 0.5

•  the mean, C+ = ∫
∞

∞−

dAAYes )|Pr(

•  the mean over the non negative orthant, C
.
 = ∫

∞

0
)|Pr( dAAYes

•  the non-negative truncated mean, C
~ = ∫

max

0
)|Pr(

A
dAAYes

It is noteworthy that C
. 

= C+ for the log-logistic model and that C*= C+ for the linear-

logistic, while C
.
 bounds from above all the C

~
 measures. The measure C

~
 is of particular interest

in cost-benefit analysis (Duffield and Patterson, 1991) because it is robust to the fat tail problem

which often arises when the logistic specification is employed. It also excludes a-priori the

possibility of negative WTP for the assessed program, which is unlikely to share the same error

structure as the positive WTP, given the asymmetry often perceived between WTA and WTP.

Furthermore, like the C+ measure, C
~ 

allows for aggregation across the relevant population of
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interest to derive aggregate benefit measures. However, C
~ 

is clearly sensitive to the choice of

upper tail truncation point Amax. For this reason in this paper we investigate two different decision

rules for the selection of truncation points.

The first decision rule is “no extrapolation”. This corresponds to assuming that the

stochastic specification of choice holds only along the empirical support of A. It is therefore

truncated above by available income on a per annum basis. However, when bids are smaller than

income, as in the case of most CV studies, the highest observed bid Amax represents the upper limit

of the relevant range. In our study these value are £500, £1000 and £2000 for the SB, DB and

TB. For comparative purposes across differently bound interval data we also provide estimates of

C
~
 for Amax = £1000 and Amax = £2000 for the SB and DB data, even though for the SB Amax =

£500 and for DB Amax = £1000. Hence for these models some truncation points are beyond the

range of observed data. The second truncation point rule is “upper percentile limited

extrapolation”. This is equivalent to assuming that the estimated survival curve can be

extrapolated with confidence only up to a defined upper percentile of the probability distribution.

Here we use arbitrarily defined amounts of  1, 5 and 10 percent.

Both rules have decision making relevance. For example, if an application shows that the

empirical probability at Amax is proximate to zero, then one might reasonably assume to have

identified the choke price for the program. This would allow the use of measure C
.
. Conversely,

one might find relatively high empirical density of a positive response at Amax, and hence think

plausible that the estimated survival curve approximates well the way probability dies out on the

upper tail, and so rely on an upper percentile limited extrapolation rule. This correspond to using

the measure C
~
 where Amax is chosen to be an upper percentile of the distribution. Finally, one may



Does a third bound help? Parametric and nonparametric welfare measures…

10

hold a conservative stand and decide that no extrapolation is warranted off the support of the

investigated bid range. In this case the truncation of the mean at the highest bid value used in the

survey would be a plausible choice to make, an approach adopted by, amongst others, Bishop and

Heberlein (1979) and Sellar, Chavas and Stoll (1985).

Given a choice of welfare measure, although it is plausible to expect changes in magnitude

of the estimates across SB, DB and TB because of the additional information that each extra

bound provides, however, observing large differences in magnitude within a given bound due to

small changes in model specification is at odd with theoretical expectation.

Parametric estimation is not necessary to derive welfare measures, but it does allow an

investigation of the structural parameters of the underlying theoretical construct. Comparison with

parametric estimators is provided through application of the An and Ayala GSCA approach to

yield a non-parametric, robust estimates of the probability of a yes response from the interval

data. From these estimated probability masses we integrate discretely over the non-negative bid

space to find C
~
 and identify the interval within which falls C*. The only a priori constraint

imposed on this probability step function is for it to be non-increasing on the bid.

All the welfare measures obtained are then compared across models, decision rules and

interval-data bounds.

The data

The data-set is from a large sample CV study employing  face-to-face survey techniques to

ask respondents for their WTP in respect of a saline flooding prevention program in the Norfolk

Broads, a major freshwater wetland area of National Park status located in the East Anglian
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region of the UK  (a detailed description of the study is given in Bateman et al., 1995). The

survey collected discrete choice responses which were iterated three times, to produce the triple-

bounded dataset. Here, when the respondent was initially presented with a bid-amount A the

subsequent amounts were doubled if the obtained response was positive, else it was halved. The

third iteration was carried out only for those respondents who replied Yes,Yes or No,No to the

first two iterations in which case the bid amount was either doubled or halved from the second

bound level as appropriate. However Yes,No and No,Yes responses were included in both the DB

and TB estimations, hence the observed sample censoring is exclusively due to incomplete

responses. Due to the random assignment of initial bids and respondents being a-priori unaware

of the iterated design, the discrete choice dataset offers the possibility of deriving welfare

estimates by using SB, DB and  TB interval-data analyses.

Out of a total of 2070 interviews, after a standard treatment for outliers and missing data,

there are 1727 useable responses to the SB, 1660 for the SB and 1217 for the TB. This implies

censoring due to non-response of  16.6%, 19.8% and 41.2% respectively. It is notable that, while

censoring  increases by only approximately 3% when going from the SB to DB, it rises by 20%

when going from the DB to TB. This might have non-trivial consequences in inference and must

be accounted for when choosing a multiple bound survey design. In particular this effect must be

weighted against the potential efficiency gains afforded by successive bounds.

Choice of model specification and estimation.

A conventional parametric specification is the linear-logistic model. The latent variable

determining the Yes-No response is assumed to have the following structure:
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y = ββ’x + u

where ββ is a vector of parameters to be estimated and x is a vector of variables (including a

constant) determining the respondent’s choice. The vector ββ’x can be interpreted as the

underlying valuation function (Cameron, 1987) or as the utility difference function (Hanemann,

1984). In either case the statistical properties of the model are the same, with the exception that

the valuation function can conceptually accommodate a larger set of conditioning variables than

the utility difference function.  To achieve identification this specification must be “closed” by

assuming a distribution for the unobserved component u. Many CVM studies derive welfare

measures from model estimates based on the assumption that the unobservable component of the

alternative utility states is i.i.d. extreme value type I, and hence u is i.i.d. logistic. Given the

general lack of theoretical guidance, this assumption is no worse than others and affords quite

convenient computational properties. For these reasons we invoke this assumption throughout our

parametric estimation. Given this, the conditional probability of a Yes response given x is

therefore:

Pr(Yes|x) = Λ(∆v≥u|x) = Λ(ββ’x) = [1+exp(-ββ’x)]-1.

Let αα(ββ-A,x-A) be the inner product between all the conditioning variables with the exception of

the bid A and its relative coefficient vector ββ-A . We now focus our attention on two familiar

logistic models:

a) the linear-logistic model where ∆v =ββ’x = αα + βA as  detailed by Hanemann

(1984,1989), and;

b) the log-logistic model ∆v = ββ’x = αα + βln(A), first used by Bishop and Heberlein,

(1979).



Does a third bound help? Parametric and nonparametric welfare measures…

13

Notice that both these models can be derived from a random utility model (Hanemann and

Kanninen, 1996) and that they are consistent with maximization of economic preferences. For the

sake of parsimony and without loss of generality for our analysis, we narrow down the choice of

dependent variables to bid amount (A) and a wealth index (INC) derived from respondents’

reported levels of annual gross household income. The role of covariates is not essential for

probability density estimation, and income and bid amount are arguments of both the indirect

utility and demand functions as conventionally treated in microeconomic theory (Mas-Colell et al.,

1995). They are also used in that they are likely to be the major determinants of willingness-to-

pay as measured by equivalent variation, which is the relevant measure of welfare change in this

study. In the one case   x-A is equal to the unity vector (constant term), while in the other it also

includes our wealth proxy INC.

The ML estimates were obtained with Limdep v.7.0 using the log-likelihood functions

described in Table 1 and yielded the estimates in Table 2. We also estimated a specification

including the Box-Cox transformation of A and its relative coefficient λ. Although likelihood ratio

tests of the adequacy of the linear versus the logarithmic specification (adjusted for the number of

observations) are inconclusive at the conventional significance levels, the log-linear specification

estimates produce log-likelihood values much lower and closer to those of the Box-Cox

transformation than those of the linear specifiation. As shown in Table 2, we find λ estimates that

are very close to zero for all models, which corroborates the assumption of a logarithmic

specification. We conclude that the log-linear specification tends to fit the data better in all cases.

However, we report both linear and logarithmic estimates in the light of results from Monte Carlo

experiments conducted by Alberini and Cooper (1995) where they conclude:
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“that postulating that utility is a linear function of log income is a “high risk”
assumption, in the sense that, should that assumption not be valid, highly biased
estimates of welfare would be obtained. A linear-in-income specification of utility
appears to be a somewhat safer choice”

(Alberini and Cooper, 1995, page 320).

We then test the Ho that the correct specification includes the proxy for wealth in both

log-logistic and linear-logistic forms. In the SB and DB models the inclusion of  INC always

improves the fit as shown by the decrease in the per-observation likelihood function values, these

improvement are not, however statistically significant in likelihood ratio tests. In the TB models

the per-observation likelihood function values are higher in the models with INC showing that the

censoring due to attrition (incomplete third bound responses) introduces some structural problem.

For example, when we estimate the model without INC from the same sample (N=1172) we find

a per-observation log-lik. value of  -2.25, while the one with INC gives a -2.17, the value for the

entire set of complete TB responses instead (N=1217) is -1.67, providing a much better fit

without income.

Estimation of welfare measures and choice of truncation point.

From the ML parameter estimates of the linear-logistic and log-logistic models we derived

point and interval estimates of the following four well known welfare estimates:

a) C* , that is the median WTP, which is computed using the observation that if ∆v = αα + βA then

the value setting ∆v  = 0 can be derived by solving for A where ∆v = 0, which leads to C* = – αα/β.

Analogously, for ∆v = αα + βlnA then C* = exp(– αα/β.). These are the results presented by

Hanemann (1984) and they apply to every linear specification when the expected value of the

error term is zero and its distribution is symmetric;
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b) C+, the expectation of WTP over the real line, which is equal to C* = – αα/β for the linear

logistic model and which, when |β| ≥ 1, is defined in closed-form as follows:

C+ = exp(– αα/β) Γ(1+1/β)Γ(1-1/β) = exp(– αα/β) π/β [sin(π/-β)]-1= C* π/β [sin(π/-β)]-1

Notice that this quantity, when defined, is always greater than C* since π/β [sin(π/-β)]-1 ≥ 1.

c) C~, the expectation over the non-negative orthant of the real line, truncated at some upper

value Amax. While this quantity can only be numerically approximated in the log-logistic case, it

can be expressed in closed-form for the linear logistic specification as follows (Hanemann, 1989,

eq. 10):

C~ = 1/β ln(1+exp(α))(1+exp(α +β Amax).

d) C
.
, which is the untruncated expectation over the entire non-negative orthant of the real line,

and it is equal to C+ for the log-logistic model, for which lnA spans [0, infinity), while it is defined

as 1/β ln(1+exp(α)) for the linear-logistic model (Hanemann, 1989, eq. 11).

Interval estimates were derived by resampling 10,000 times the estimated asymptotic

distribution (Krinsky and Robb, 1986) of the ML parameters, which is known to be normal

centered on the population parameters, and with variance-covariance matrix ΩΩ, which we

approximate with their respective ML estimates ββML and ΣΣML. Cooper, (1994) shows via

simulation that this method tends to underpredict the true confidence intervals of various data

generating processes, particularly those derived from large samples. Although it is not known how

general this result is, such a finding does suggest that we should be cautious about the interval

estimates reported here and treat them as lower bound estimates of the real confidence intervals.



Does a third bound help? Parametric and nonparametric welfare measures…

16

Nonparametric welfare measure  from GSCA probability estimates

Survival curves for censored and interval grouped data can also be estimated using

nonparametric techniques. This avoids the strong assumptions concerning distribution and model

specification inherent in parametric approaches and thereby yields relatively robust estimates of

WTP. However, nonparametric estimates are relatively sample inefficient and depend heavily

upon the choice of intervals between bids (McFadden, 1994), a property which can cause

problems where sample size is small. Computationally, nonparametric estimates can be derived by

means of various estimators. The first step of the process is the estimation of a survival function

which defines the probability of a positive response at a given bid amount.

Some theoretical restrictions are normally included, such as weak monotonicity. This

simply incorporates the intuitive fact that, the probability of a positive response will not increase

as the bid amount rises. One algorithm that ensures this property is the so called PAVA (pool-

adjacent-violator-algorithm), by which all the bids at which the sample frequency is higher than

the one recorded for the adjacent lower bid are pooled in a unique bid group and their frequency

is assigned at the lowest of the two bids.

Once these survival curve estimates are derived, expected WTP is computed by

integrating discretely under the curve. Since only the probability mass at each given bid can be

estimated, any interpolation between these points is arbitrary. Kriström (1990), for example, uses

linear interpolation while Scarpa et al. (1998) use a weaker concept of local continuity and

implemented with kernel estimation. Conversely, Carson et al. (1992) produce conservative,

lower-bound estimates of WTP by  placing the probability mass at the lower bid amounti.
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In a CV study the first bound discrete response provides a left or right-censored

observation on the underlying WTP of the respondent. Given a bid amount bi a positive response

will place WTPi≥Ai; while a negative one will place WTPi<Ai. Given a positive first bound

response then the second bound bid amount A”
i further restricts the latent variable WTPi to either

the interval [Ai, A”
i) in case of a Yes-No sequence, or to WTPi≥A”

i in the case of a Yes-Yes

sequence, where A”
i>Ai. Similarly, an iteration following a negative first bound response further

restricts WTPi to the interval [A”
i,Ai) for the No-Yes sequence or it places WTPi<A”

i for a No-No

sequence, where A”
i<Ai. Consequently the DB design yields WTP observations which are left or

right-censored (as in the SB case) as well as interval-censored.  The latter can be further divided

into two groups of observations. The first case is when the sequence of responses is designed so

as to perfectly partition the final WTP range into non overlapping intervals. Alternatively, these

intervals may not be a perfect partition of the bid space and the sequence of responses may imply

for some WTP to be within intervals that include other bid amounts. In this case some

observations are across-interval-censored, that is, the censoring takes place somewhere within one

of the overlapping intervals within which the bid support is partitioned.ii

When the grid of bids is designed so as to obtain a perfect partitioning of the sequence of

responses into non-overlapping WTP intervals, then the algorithms proposed by Turnbull

(1974,1976) provide ML self-consistent probability estimates of the survival curve without

recourse to any parametric specification. This approach uses a reallocation mechanism to reduce

the multiple-censored problem to a single-censored one, to which the Kaplan-Meier (1958)

estimation technique can be applied to obtain consistent and readily tractable probability

estimates. However, when we are faced with a choice of bids that do not define a complete
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partitioning of the bid range, then the strict inequality conditions upon which the Turnbull

reallocation algorithms rely no longer apply (Ayala, 1995). The An and Ayala (1996) GSCA

algorithm overcomes this limitation to yield readily computed ML estimates. However, this

approach does not permit the estimation of standard errorsiii. Nevertheless, the ease of

computation of An and Ayala’s GSCA is particularly rewarding when dealing with large datasets,

such as the one employed in this study, where sample size ranges from 1217 to 1727.

Results

Tables 3 and 4 present welfare measure estimates for our linear and log-logistic models

respectively across all three bounds while Table 5 presents Turnbull probability estimates and

associated welfare measures for our nonparametric models again across all three bounds. Figures

1 to 3 illustrate the estimated survival curves for each bound for the linear-logistic, log-logistic

and nonparametric models respectively. Consideration of these results shows that estimates of any

given welfare measure decrease as one moves from SB to DB formats. This result is consistent

across all parametric and nonparametric measures and models. As we move form SB to DB we

also register a marked tightening of the 95% confidence intervals across all measures and models.

Changes in the width of 95% confidence intervals around the point estimates of these welfare

measures are reported in Table 6.

Moving from DB to TB format brings about a further decrease for all welfare measures,

except the nonparametric GSCA mean WTP, for which differences are small and therefore likely

to be insignificant. Notice that in this case the confidence interval around the TB point estimates

of  the welfare measures is not much tighter than in the DB case for the welfare measures
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estimated from the model which uses only bid as a conditioning variable, indicating that most of

the efficiency gains are realised by a DB specification, in accordance to the results of Cooper and

Hanemann (1995). For TB welfare estimates derived from models that also used INC as a

covariate we report an efficiency loss in the linear-logistic estimates, as illustrated by the widening

of the c.i. with respect to those registered in the DB case. This is not the case for the TB

estimates from the log-logistic with wealth case, for which we do observe the expected efficiency

gains. This, however gave welfare estimates much lower than the remaining set.

Across the various model specifications and bounds, welfare measures are reasonably

stable for our linear-logistic models but vary substantially for our log-logistic specifications. For

the latter, it appears that the estimated C+ is implausibly high. This suggests that, although the log-

logistic specification fits the data better according to log-likelihood tests, derived welfare

measures should be treated with caution. As shown in Figure 2, this problem is due to a

particularly fat tail in the log-logistic density (Figure 1 shows this not to be a particular problem

for the linear-logistic models). In this case the truncated means C
. and C~

 are certainly more

reasonable than the mathematical expectation C+. Furthermore, the choice of truncation point

seems to matter. For example, an upper percentile extrapolation yields estimates that are

implausibly high, while the expectations truncated at the maximum bid in the range (shown in bold

in Tables 4 and 5) are within £40 across different interval-bounds. Inspection of these results

suggests that measures based upon extrapolations beyond the range of available data are not

advisable, particularly in log-logistic specifications and where conservative estimates are required.

 Returning to the linear-logistic models, while welfare measures are relatively stable within

bounds, they vary considerably across bounds such that in some cases SB models yield estimates
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which are more than £100 higher than those derived from DB models. While the latter models do

provide a good approximation to their corresponding nonparametric estimates, this instability

across bounds is cause for some concern.

Considering our parametric models, the general effect of the wealth proxy INC is to

reduce the size of the implied welfare measures. This is as expected. However, the observed

reduction in measures for the TB case is quite sizable in both models, but particularly for the log-

logistic model, which suggests that these common parametrizations may fail to adequately capture

some substantive feature of the probability density of a positive response and to be particularly

sensitive to variable choice in model specification at the third bound.

If one takes the nonparametric measures described in Table 5 as conservative benchmarks,

one would expect the population expected WTP to lie somewhat above £120. In this case the C* ,

C~  and C
.
 measures of the DB linear-logistic (and to a somewhat lesser degree the log-logistic)

model all perform quite well.

Previous published work on this data yields a number of interesting comparisons with the

present results. Many of the SB discrete choice models estimated by Kerr and Graham (1996) are

not comparable to ours as they trim the sample of responses over various bid levels (£100, £200

and £500) to simulate the effect of using restricted bid vectors. However, the comparable

untrimmed parametric medians do not differ from ours. A similar conclusion can be drawn

contrasting our results with those obtained via the multi-level modelling approach adopted by

Langford et al., (1996) and Bateman et al (forthcoming). This uses a log-logistic link function

without a wealth proxy variable to produce  estimates of  median WTP falling from £103 to £94
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as we move from the first to the third bound. Hence, results from our present study seem to fall in

the general range predicted by previous work.

Conclusions

How many bounds are enough? This study tends to support in an empirical setting what

Cooper and Hanemann (1995) found in a Monte Carlo simulation context, which is that the costs

of a third bound may well exceed its benefits. In this sample, the third bound is accompanied by a

20% increase in censoring probability due to incomplete responses. This per se substantially

curtails the inferential power of the model estimates. This cost is not counter-balanced by the

relatively low increase in efficiency of the parametric welfare estimates produced by the linear and

log-logistic specifications using only bid as covariate. In fact, the estimated confidence intervals

around the parametric welfare estimates are quite tighter in the DB than in the SB models (Table

3), while no significant reduction in their width is noticed when moving from DB to TB. When a

proxy for wealth is included the efficiency gains are negative in the linear-logistic model and still

sizeable in the log-logistic, but accompanied by a marked change in the magnitude of the

estimates of welfare measures. So, TB data do not produce robust estimates of welfare measures

with respect to inclusion of theoretically important wealth variable. A similar argument holds for

the third bound effect in the nonparametric probability and welfare estimates, which, while

altering substantially between the first and second bound, are relatively similar between the second

and third bound.
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In conclusion, the addition of a third bound brought a substantial increase of censoring

probability and a sizeable sensitivity of estimates of welfare measure to variable inclusion. The

expected increase in efficiency was also sensitive to model specification and choice of covariate.

 Judged by the standard of nonparametric estimates, the third bound parametric welfare

measures were either too conservative in the models with the wealth proxy, or conservative and

unstable across choice of welfare measure in the case without this covariate. These empirical

results can be added to previous, simulation based arguments (Cooper and Hanemann, 1995) in

supporting the use of no more than two bounds in the application of CV discrete choice studies

with follow-up questions.
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Endnotes

                                                       
i Haab and McConnell (1995) note that such an approach also remedies the so called

“fat-tail” problem of survival functions based on common parametric specifications, which

tends to produce high welfare estimates when the integration is extrapolated beyond the

bid vector.
ii An example from the data-set at hand is the following: the interval between 5 and 10

pounds has interval censored observations because all three bounds identify observations

in this interval. However, the interval between 20 and 50 pounds contains across-interval-

censored data, because the second bound adds three more intervals 20-25, 25-40 and 40-

50. This is visible from Table 4.
iii These can be approximated using bootstrapping techniques, although these are not

applied here.



Tables

Table 1. Likelihood functions

 Single Bound  Double Bound  Triple Bound

πi
y = 1– F(β’x)

πi
n  = F(β’x)

πi
yy = 1– F(β’xu)

πi
yn = F(β’x u) – F(β’x)

πi
ny = F(β’x) – F(β’xd)

πi
nn = F(β’xd)

πi
yyy = 1– F(β’xuu)

πi
yyn = F(β’ xuu) – F(β’xu)

πi
yn = F(β’ xu) – F(β’x)

πi
ny = F(β’x) – F(β’xd)

πi
nny = F(β’ xd) – F(β’xdd)

πi
nnn = F(β’xdd)

F (.) is the c.d.f.;  subscripts u and d refer to an increase (up = u) or decrease (down = d) in bid values; π
indicates the contribution of a observation to the likelihood function and its superscripts refer to the
various possible sequence of discrete responses (where y = ‘yes’ response and n = ‘no’ response).



Table 2: Estimated logistic models.
Linear-logistic Box-Cox Log-logistic

A only A and wealth A only A and wealth A only A and wealth

Single Bound

N 1726 1660 1726 1660 1726 1660

L-Lik./obs. -0.450 -0.440 -0.396 -0.386 -0.396 -0.386

Constant
1.9589

(0.0813)
1.3274

(0.1919)
5.7105

(0.6413)
5.4080

(0.7398)
5.1892

(0.2549)
4.7290

(0.3129)

A or ln(A)
-0.0081
(0.0004)

-0.0086
(0.0004)

-1.3394
(0.3437)

-1.4653
(0.3752)

-1.0484
(0.0547)

-1.0936
(0.0578)

Income –––––
0.1316

(0.0356) –––––
0.1231

(0.0372) –––––
0.1255

(0.0379)

λ ––––– –––––
-0.0597
(0.0623)

-0.0710
 (0.0622) ––––– –––––

Double Bound

N 1660 1660 1660 1660 1660 1660

L-Lik./obs. -1.417 -1.409 -1.166 -1.158 -1.169 -1.161

Constant
1.6898

(0.0814)
0.9979

(0.1681)
4.6219

(0.3213)
3.8810

(0.3640)
5.3359

(0.1655)
4.6308

(0.2181)

A or ln(A)
-0.0128
(0.0003)

-0.0129
(0.0003)

-0.8565
(0.1302)

-0.8581
(0.1298)

-1.2144
(0.0386)

-1.2285
(0.0387)

Income –––––
0.1380

(0.0286) –––––
0.1506

(0.0284) –––––
0.1485

(0.0284)

λ ––––– –––––
0.0853

(0.0362)
0.0877

 (0.0361) ––––– –––––

Triple Bound

N 1217 1172 1217 1172 1217 1172

L-Lik./obs. -1.678 -2.173 -1.373 -1.375 -1.378 -1.380

Constant 1.5513
(0.0888)

-0.9324
(0.1748)

4.5081
(0.2941)

-0.7507
(0.1220)

5.3165
(0.1677)

-0.6635
(0.1155)

A or ln(A) -0.0147
(0.0003)

-0.0123
(0.0002)

-0.8525
(0.1208)

-0.7724
(0.0464)

-1.2609
(0.0402)

-0.9066
(0.0333)

Income
–––––

0.4870
(0.0469) –––––

0.9501
(0.0184) –––––

0.9365
(0.0461)

λ
––––– –––––

0.0982
(0.0348)

0.0624
 (0.0458) ––––– –––––



Table 3. Estimates of welfare measures from linear-logistic models (£/household/year).

 Single Bound  Double Bound  Triple Bound

Welfare Measures A only A and wealth A only A and wealth A only A and wealth

C*= C+ 241.84

221.64-265.77

234.21

214.49-256.77

131.35

122.71 -139.80

132.36

123.74- 140.83

104.85

95.83-113.39

32.55

18.59-45.91

C
. 258.13

237.30-284.04

248.76

228.19-272.69

144.51

137.74-151.35

145.06

138.33 -151.97

117.84

111.08-124.45

74.22

66.30- 82.34

C
~
, (0, Amax=0.01q)

256.88

236.57-281.39

247.59

227.56-270.35

143.7325

137.00-150.47

144.29

137.56 -151.13

117.15

110.45 -123.75

73.39

65.62- 81.38

C
~
, (0, Amax=0.05q)

248.41

232.71-271.84

242.80

224.47-262.76

140.53

134.04-147.00

141.11

134.58-147.70

112.61

107.67-120.59

70.04

62.80-77.45

C
~
,  (0, Amax=0.10q)

241.97

227.56-261.55

236.51

220.18-253.77

136.32

130.05-142.51

136.95

130.73 -143.19

108.99

104.16-116.53

65.65

58.99-72.32

C
~
, (0, Amax=500)

241.87

227.48-261.40

237.50

220.89-255.14

143.83

137.09- 150.58

144.40

137.66-151.26

115.87

110.88-124.25

73.95

66.08- 82.02

C
~
, (0, Amax=1000)

254.31

237.15-283.30

248.59

228.13-272.34

144.50

137.73-151.33

145.05

138.32-151.96

116.05

111.07- 124.44

74.20

66.29-82.33

C
~
, (0, Amax=2000)

254.51

237.29-284.03

248.75

228.18-272.69

144.50

137.75-151.19

145.05

138.32-151.96

116.05

111.07 -124.44

74.21

66.29-82.33



Table 4. Estimates of welfare measures from log-logistic models (£/household/year)

 SB  DB  TB

A only A and wealth A only A and wealth A only A and wealth

C* 141.12

124.40-161.23

137.50

120.98-156.56

80.95

74.33-88.39

81.49

74.71-88.98

67.79

61.87-74.31

8.13

7.37-8.90

C+= C
. 2925.97

871.62-36502.01

1486.92

150.30-1810.09

397.65

294.66-621.57

377.75

290.43-632.82

279.07

213.87-396.08
Non convergent

C
~
, (0, Amax=0.01q)

568.71

445.92-653.60

496.39

396.00-600.41

230.20

203.13-263.89

226.33

199.97-257.81

178.87

157.55-204.38

51.31

42.83-61.60

C
~
, (0, Amax=0.05q)

386.64

329.28-428.25

349.77

301.11-397.08

174.88

160.20-191.64

173.18

158.86-189.35

139.04

127.06-152.56

29.99

26.72-33.59

C
~
,  (0, Amax=0.10q)

303.79

268.98-329.97

279.84

250.09-308.80

145.53

135.76-156.24

144.68

135.01-155.15

117.14

108.91-125.91

21.89

20.02-23.88

C
~
, (0, Amax=500)

211.82

195.36-225.25

207.34

191.60-222.62

146.07

136.22-156.89

145.91

136.06-156.62

126.85

117.02-137.59

39.63

34.23-45.79

C
~
, (0, Amax=1000)

288.01

256.96-311.79

277.23

248.07-305.69

178.92

163.46-196.72

178.07

162.82-195.45

151.05

136.54-167.71

48.03

40.48-57.06

C
~
, (0, Amax=2000)

368.27

316.41-406.21

348.19

299.94-395.06

208.38

186.64-234.61

206.63

185.34-231.76

171.88

152.56-194.92

57.07

46.89-69.81



Table 5. Turnbull probability estimates and relative Mean and Median (Bold) WTP estimates

A Pr(Yes|A) (SB) A Pr(Yes| A) (DB) A Pr(Yes| A) (TB)

0 1.000 0 1.000 0 1.000

1 0.977 0.5 0.999 0.5 0.999

5 0.940 1 0.999 1 0.995

10 0.906 2 0.977 2 0.991

20 0.698 2.5 0.977 2.5 0.981

50 0.592 5 0.972 4 0.950

100 0.423 10 0.924 5 0.932

200 0.217 20 0.822 10 0.890

Mean 176.368 25 0.815 12.5 0.824

St.Error 9.440 40 0.641 20 0.819

50 0.641 25 0.648

100 0.462 40 0.622

200 0.252 50 0.534

250 0.252 80 0.405

400 0.067 100 0.313

500 0.067 125 0.197

1000 0.005 200 0.197

Mean 116.610 250 0.057

400 0.056

500 0.016

800 0.015

1000 0.005

Mean 118.173



Table 6. Width of confidence intervals in double bound and third bound estimates as percent of
single bound interval estimates.

Linear-logistic w/o wealth Linear-logistic with wealth

Percent of SB c.i. Percent of SB c.i.

Welfare measure DB TB Difference DB TB Difference

C*= C+ 38.84% 39.91% -1.07% 40.42% 64.62% -24.20%

C
. 28.96% 28.45% 0.51% 30.65% 36.04% -5.39%

C
~
, (0, Amax=0.01q) 30.61% 30.23% 0.39% 31.71% 36.83% -5.12%

C
~
, (0, Amax=0.05q) 34.11% 34.00% 0.11% 34.09% 38.06% -3.98%

C
~
,  (0, Amax=0.10q) 37.76% 37.48% 0.27% 37.09% 39.68% -2.59%

C
~
, (0, Amax=500) 39.68% 39.32% 0.35% 39.71% 46.54% -6.83%

C
~
, (0, Amax=1000) 29.57% 29.07% 0.50% 30.85% 36.28% -5.43%

C
~
, (0, Amax=2000) 28.60% 28.45% 0.15% 30.64% 36.04% -5.39%

Log-logistic w/o wealth Log-logistic with wealth

Percent of SB c.i. Percent of SB c.i.

Welfare measure DB TB Difference DB TB Difference

C* 38.65% 33.06% 5.59% 40.11% 4.30% 35.81%

C+= C
.

0.92% 0.51% 0.40% 20.63% N.A. N.A.

C
~
, (0, Amax=0.01q) 29.33% 22.60% 6.73% 28.30% 9.18% 19.11%

C
~
, (0, Amax=0.05q) 32.32% 25.25% 7.07% 31.77% 7.16% 24.61%

C
~
,  (0, Amax=0.10q) 37.04% 31.48% 5.56% 34.30% 6.57% 27.73%

C
~
, (0, Amax=500) 70.00% 66.67% 3.33% 66.28% 37.27% 29.01%

C
~
, (0, Amax=1000) 61.82% 56.36% 5.45% 56.63% 28.77% 27.85%

C
~
, (0, Amax=2000) 54.44% 45.56% 8.89% 48.80% 24.10% 24.71%



Figure 1: Estimated probabilities of a positive response from logistic models
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Figure 2: Estimated probability of a positive response from log-logistic models
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Figure 3: Estimated probabilities of a positive response from Turnbull self-consistent 
algorithm 
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