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A Theory of Endogenous Coalition Structures

Abstract. Consider an environment with widespread externalities, and
suppose that binding agreements can be written. We study coalition for-
mation in such a setting. Our analysis proceeds by defining on a partition
function an extensive form bargaining game. We establish the existence of
a stationary subgame perfect equilibrium for such a game. Our main results
are concerned with the characterization of equilibrium coalition structures.
We develop an algorithm that generates (under certain conditions) an equi-
librium coalition structure. Our characterization results are especially sharp
for symmetric partition functions. In particular, we provide a uniqueness
theorem and apply our results to a Cournot oligopoly.
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1 Introduction

1.1 Background

We study endogenous coalition formation in contexts where individual (and
group) payoffs depend on the entire coalition structure that might form. A
broader objective is to take a step towards the understanding of coalitional
influence in the negotiation process.

Of course, cooperative game theory has been much concerned with this
problem. But the major part of this theory is based on the characteristic
function, which by its very construction assumes away the interesting strate-
gic interactions.

The standard recipe for generating characteristic functions is a minimax
argument: if a coalition wishes to go off on its own, it is then presumed to
fear the worst: that other coalitions will act in such a way as to minimize
the payoffs of the deviant group. This argument creates a set of payoffs for
each coalition, and therefore a characteristic function.1

Given the amount of energy that has been expended on cooperative game
theory from the characteristic function onwards, it is extraordinary that this
conversion has not been subject to serious scrutiny.2 Why would a deviating
coalition necessarily expect that the remaining set of players would act in so
malevolent a fashion, without regard to their own interests?

While this point is easy enough to make and appreciate, it is somewhat
less clear what one puts in its place. What one needs, in short, is a theory
of intercoalitional interaction. While no particular solution is perhaps fully
satisfactory, we proceed without further ado to our point of view on this
matter. Imagine that for some reason (to be endogenized later) that we are
faced with a coalition structure, a partition of the set of players into disjoint
subsets. The partition means, by definition, that players within a subset are
free to write arbitrary binding agreements, while players across subsets are
not. In that case, we may consider the noncooperative game induced across
subcoalitions, by treating each subcoalition as a player with an incomplete

1This particular variant is called the α-characteristic function. There are other ways
to get to a characteristic function as well, with the same associated problems.

2Of course, the point has not passed unnoticed (see Lucas (1963), Thrall and Lucas
(1963), and Rosenthal (1972), among others). But these papers largely restrict themselves
to studying the analogs of well-known solution concepts for characteristic functions, and
do not focus on endogenous coalition formation in this context.
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preference ordering. The set of all payoffs for a given coalition would then
be the set of all payoffs under the Nash equilibrium of this game. See Ray
and Vohra (1997) for details of this conversion, as well as Ichiishi (1981) and
Zhao (1992) in a different context.

Moreover, if the underlying strategic game has interpersonally comparable
utilities, and if side payments can be made across subsets of players, without
affecting the strategic choices of the other players, the set of all payoffs to a
coalition could then be identified with a single number, its worth.

In this way, we arrive at a partition function, one that assigns to each
coalition, and each coalition structure of which that coalition is a member,
a worth, or more generally a set of payoffs. Given this function, we are
then faced with the question: which agreements will be written and which
coalition structure will form? We emphasize the simultaneous determination
of coalition structure and payoff division among players.

1.2 Main Features

Partition functions permit us to get a handle on what might follow a coali-
tional deviation, though there are limitations.3 To see this, consider the
following examples.

Example 1.1. Three Cournot oligopolists produce output at a fixed unit
cost, c, in a homogeneous market with a linear demand curve: p = A − bx.
They are free to form coalitions among themselves, and this includes the
option of forming the grand coalition of all three players. Recall that by
standard calculations, that the Nash profit accruing to a single firm in an
n-player Cournot oligopoly is

(A− c)2

b(n+ 1)2
=

K

(n+ 1)2
,

where K ≡ (A− c)2/b. Now suppose that the three firms in our example are
deciding whether or not to form a cartel. If they do, they will earn monopoly

3For instance, what if the game so constructed has not one Nash equilibrium but many?
For more discussion, see Ray and Vohra (1997). Partition functions also fail to capture
“network relationships” across players, as in Jackson and Wolinsky (1996) and Dutta,
van den Nouweland and Tijs (1995). Finally, there is the question of “separability”:
this approach would be invalid if the outcomes leading up to the partition function were
themselves conditioned in some way on the process of coalition formation. Ray and Vohra
(1997) discuss this issue as well.
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profits, which from the expression above equals K/4. Now it must be the
case that in the proposed agreement between the three at least one of the
firms is earning no more than K/12. What should this firm do?

The α-characteristic function tells us that if this firm breaks off, it should
anticipate whatever it is that the other firms can hold it down to. But
this last number is zero, for it is certainly the case that the other two firms
can flood the market and drive prices down to zero. So the α-characteristic
function predicts that our firm should not object to any nonnegative return,
however small. This is clearly absurd.

On the other hand, suppose that our firm anticipates that in the event of
its defection, the other two firms will play a best response to the defector’s
subsequent actions. This implies that following the deviation, we are in a
duopoly, where the deviant’s return, using the general expression above is
K/9. This exceeds K/12.

Does this mean a deviation from the three-player coalition is then justifi-
able? Not really: there are other considerations. Study the situation facing
the two remaining firms once our deviant leaves. Their total return is K/9
as well, which means, of course, that one of them can be earning no more
than K/18. If this firm were to leave and induce the standard three-person
oligopoly, its return would be K/16. So faced with the irrevocable departure
of one firm from the original agreement, the remaining firms will split up as
well. But in this case, the original deviant gets K/16 too! So each member of
the three-firm coalition should anticipate receiving K/16 as a result of such
a deviation. It follows that the grand coalition in this example is a stable
coalition structure (proposing the joint monopoly outcome with each firm
getting at least K/16).

Example 1.2. Consider the provision of a public good by three symmetric
agents. Describe the partition function in the following intuitive way. Assume
that if the three players get together, they produce a per-capita utility of 1.
If one player leaves, assume that he would get 2 by free-riding on the other
players’ provisions, provided that the other two players stay together. Thus
far this is analogous to the Cournot model. What is different is that we
consider a case where the remaining two players will indeed wish to stay
together. Imagine that by doing so, they can get a per-capita utility of 0.25.
If all three players are on their own, assume that no public good is produced
and that each player gets 0.

In this case, and in contrast to Example 1.1, a single deviant can credibly

3



expect to get 2, simply because faced with this deviation, the remaining
agents will find it in their best interests to cling together. Now we have a
problem, because it is clear that in the grand coalition, at least one player
must get strictly less than 2. We find it difficult, in this case, to avoid an
inefficient outcome.4

These examples illustrate two main features of our analysis. First, as dis-
cussed above, there is the question of intercoalitional interaction that charac-
teristic functions neglect. This interaction is fundamental to our discussion
of coalition structure.5

The second feature is one of consistency or “farsightedness”: a player or
group of players breaking off negotiations must do more than simply pre-
sume that they will be engaged in a noncooperative game with the resulting
complementary coalition. They must attempt to predict the coalition struc-
ture that arises and not just assume that the complement will stay together.
The two examples illustrate two entirely different outcomes, one in which
the “short-run” belief that the complement will be unaffected is indeed vin-
dicated, and another in which it is not.6 As Aumann and Myerson (1988)
observe,

4This statement is fraught with numerous complexities that we have found best to
avoid, in the interests of making some progress on the question of coalition formation.
If any binding agreement can, in principle, be renegotiated, then the outcome should be
efficient. After all, if as in the example above, one player is leaving, the other two can try
to lure him back with the promise of a better offer, as the grand coalition always enjoys the
advantage of superadditivity. But what gives this player a credible bargaining advantage
in the first place, unless he does exercise the option to leave? And what is to guarantee
that once this advantage is relinquished by his voluntary return to the grand coalition,
that it will not indeed pass to someone else? It turns out that these features are not easy
to model, and they possibly involve an explicit accounting for the underlying dynamics.
Once these points are recognized, it becomes clear that the particular approach we follow
in this paper is only one of many.

5In this respect, we follow Bloch (1996), Chwe (1994) and Ray and Vohra (1997). For
other literature on coalition structure, see, for example, Shenoy (1979), Hart and Kurz
(1983), Jackson and Wolinsky (1996) and Dutta, van den Nouweland and Tijs (1995).
But the solution concepts here do not take into account the entire chain of reactions that
might follow the formation of a particular coalition. This is the second main feature of
our analysis (see main text). Ray and Vohra (1996) contains a more detailed discussion
of related literature.

6Related “consistency” or “prediction” issues are studied in Aumann and Myerson
(1988), Bloch (1996), Chakravorti and Kahn (1991), Chwe (1995), Dutta, Ray, Sengupta
and Vohra (1989), Greenberg (1990), Ray (1989), and Ray and Vohra (1997).

4



When a player considers forming a link with another one, he
does not simply ask himself whether he may expect to be better
off with this link than without it, given the previously existing
structure. Rather, he looks ahead and asks himself, ‘Suppose we
form this new link, will other players be motivated to form further
new links that were not worthwhile for them before? Where will
it all lead? Is the end result good or bad for me?’

1.3 A Summary

Our approach to inter-player negotiation is based on Rubinstein (1982) and
Chatterjee et al.7

For us, the partition function is a primitive, with the idea that underlying
this function is a game in strategic form. On this partition function is defined
a noncooperative bargaining game. Proposers offer to form coalitions, and
to divide coalitional worth in particular ways. Responders agree or disagree.
Coalitions form through the course of this bargaining process.

We explicitly recognize that the problem of coalition formation is inti-
mately linked to the problem of which agreements will be written among the
members of a formed coalition.

We consider the stationary (or Markov) subgame perfect equilibrium of
the bargaining game.8 We begin by establishing an existence theorem for such
equilibria (Theorem 2.1). Our theorem requires some mixing in equilibrium,
but at most in the choice of coalitions that a proposer might propose to.
An appendix carefully studies the need for mixing, and shows that mixing is
closely related to unacceptable proposals being made in equilibrium.

Our main results revolve around the fact that we unearth a particular
coalition structure, with the property that such a structure is predicted by a
broad class of equilibria. The analysis for general partition function games is
quite complex. We therefore first present these results for games generated
by symmetric partition functions (Section 3). The general model is then

7For related literature on bargaining, see Binmore (1985), Moldovanu (1992), Okada
(1996), Perry and Reny (1994), Selten (1981) and Winter (1993).

8The game, as described, has a plethora of subgame-perfect equilibria when there are
three or more players, and this is true even for the special case of characteristic functions
(Chatterjee et al. (1993, Proposition 0)). There is no logically convincing way to rule
out such equilibria. Rather, we view Markov perfection (as many other authors do) as an
interesting and perhaps focal mode of behavior, of interest in its own right.
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studied in Section 4. But in principle, it is possible to read Section 4 before
Section 3.

In Section 3 we begin by developing an algorithm that generates a partic-
ular coalition structure from any symmetric partition function (Section 3.1).
We then argue that under every equilibrium in which acceptable proposals
are made at each stage (with positive probability), the coalition structure
given by the algorithm must result (Theorem 3.1). We provide an example
in which there is an equilibrium with unacceptable proposals made, and the
coalition structure of the algorithm does not emerge. In this sense lack of
delay turns out to be fundamental to our predictions.

We provide sufficient conditions for the existence of no-delay equilib-
rium (Theorem 3.2). These are necessary as well for the existence of pure-
strategy no-delay equilibrium (Theorem 3.3). We show by example, however,
that other equilibria (with different coalition structures) might coexist. A
strengthening of the existence condition gives us more: that the coalition
structure predicted by our algorithm is the only one that can arise in equi-
librium (Theorem 3.4). We apply these findings to the Cournot oligopoly.

Section 4 takes up the general case. Our goal here is to develop a parallel
for the main result of Section 3: that no-delay equilibria predict a class of
coalition structures that can be computed in a finite number of steps from
the parameters of the model. While the predictions here are not as sharp
as in the symmetric case (and we explain why), significant progress can be
made (Theorem 4.1).

We acknowledge the insights of Bloch (1996), which is closely related to
the present exercise. His paper is motivated by very much the same questions,
and explicitly studies partition functions as well. Indeed, Bloch makes use of
some of the results presented in an earlier version of this paper (though his
original work is quite independent of ours).

An important difference is that Bloch assumes that coalitional worths are
distributed among the members according to some fixed rule. In contrast, we
make no such assumption but try and deduce both coalitional structure as
well as intracoalitional allocation from the same game. Nevertheless, in the
special case of symmetric games, our results can be viewed as a vindication
of Bloch’s assumptions, though we obtain a somewhat sharper prediction
regarding coalition structure. The general case yields additional insights.
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2 A General Model

2.1 The Bargaining Game and Equilibrium

N = {1, . . . , n} is the set of players. A coalition structure of N is a partition
π of N . Let Π denote the set of all coalition structures. A partition func-
tion assigns to each coalition S in a coalition structure π a worth v(S, π).
Assume that v({i}, π) ≥ 0 for all i ∈ N and π ∈ Π with {i} ∈ π. Let
v ≡ {v(S, π)S∈π}π∈Π.

In our model, players will make proposals to coalitions and respond to
proposals made to coalitions to which they belong. To each coalition S is
assigned an initial proposer ρp(S), in case S is the remaining set of players
in the game, and an order of respondents ρr(S), in case S ∪ {i} is proposed
to by some player i. In the latter case ρr is just a permutation of the players
of S. The collection ρ ≡ {ρp(S), ρr(S)}S⊆N will be referred to as a protocol.
A bargaining game is a collection {N, v, ρ}.

Interpret a bargaining game as follows. The initial proposer ρp(N) starts
the game. She chooses a coalition S (of which she is a member), and then
makes a proposal to this coalition.

Loosely speaking, a proposal is the division of the worth of a coalition
among its members. But given a partition function, a worth is not well-
defined until a coalition structure has formed in its entirety. Therefore a
proposal must consist of a set of conditional statements that describe how
the division of a coalition’s worth occurs in every contingency.

The notion of a contingency here is ambiguous: it could be as minimal
as the simple realization of the coalition’s worth, but in principle, it could
include information such as the process leading up to that worth — the coali-
tion structure formed, the order of coalition formation, and so on. In this
paper we study stationary strategies, those in which active players only con-
dition their actions on the current payoff-relevant state (a precise description
will be provided below). In particular, we will adopt the narrower view of
a proposal simply as a description of worth allocation for every conceivable
coalition structure that finally forms. If some coalitions have already left the
game, then a proposal is conditioned only on those coalition structures that
are consistent with this fact.

To describe this precisely, let Π(S) be the collection of all partitions
of a coalition S. If a collection of coalitions π has left the game, then a
proposal is a pair (S, y), where y ≡ {y(π′)}π′ such that π′ = (π, S, π̂) for
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π̂ ∈ Π(N \ (π ∪ S), and for every such π′, y(π′) ∈ IRS is feasible in the sense
that ∑

i∈S
yi(π

′) = v(S, π′).

Once a proposal (S, y) is made by a proposer i, attention shifts to the
respondents in S, the order of which is obtained from ρr(S) (with i, the
proposer, eliminated from the list). By a response we mean simply an ac-
ceptance or rejection of the going proposal. If all respondents accept, the
players in S retire from bargaining, and the game shifts to the set of players
remaining in the game. If the set of remaining players is T , the next proposer
is ρp(T ).

Insert Figure 1 approximately here.

It remains to describe what occurs in the case of a rejection. In that
case, it is assumed that the first rejector gets to make the next proposal.
In addition, there is assumed to occur (as in Rubinstein (1982)) the lapse
of a certain amount of time, which imposes a geometric cost on all players,
and is captured by a common discount factor δ ∈ (0, 1). After the next pro-
posal is made, the game continues exactly as described above. A schematic
description of the extensive form is provided in Figure 1.

If and when all agreements are concluded, a coalition structure forms.
Each coalition in this structure is now required to allocate its worth among
its members as dictated by the proposals to which they were signatories. If
bargaining continues forever, it is assumed that all players receive a payoff
of zero.

A (stationary) strategy for a player requires her to make a proposal when-
ever it is her turn to propose, where the (possibly probabilistic) proposal is
conditioned only on the current state of the game — the current player set
and the coalitions that have already formed. It also requires her to accept
or reject proposals at every node where she is supposed to respond. Again,
we impose the restriction that this (possibly probabilistic) decision not de-
pend on anything else but the current set of players, the coalitions that have
already left, as well as the identity of the proposer and the nature of the
proposal that she is responding to.9

9Of course, it is only fair to also let her condition her yes-no decision on the identity
and order of the other respondents, but this is already accounted for, because once the
proposer and proposal is given, the protocol fixes the order of respondents.
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A stationary (perfect) equilibrium is defined to be a collection of station-
ary strategies such that there is no history at which a player benefits from a
deviation from her prescribed strategy.

2.2 Existence of equilibrium

Note that our notion of equilibrium allows for mixed (behavior) strategies
in three ways: (a) the proposer may randomly choose a coalition, (b) given
the choice of a coalition, the proposer may randomly choose offers, and (c)
respondents may mix over accepting and rejecting a proposal.

But it turns out that an equilibrium exists with a minimal need to ran-
domize, as described in the theorem below.

Theorem 2.1 There exists a stationary equilibrium where the only source of
mixing is in the (possibly) probabilistic choice of a coalition by each proposer.

Remark 2.1. In the appendix, we show that this theorem cannot be
strengthened to assert the existence of a pure strategy equilibrium without
additional assumptions.

Remark 2.2. While the proof of this theorem (as well as the proofs of all
other results) is postponed to Section 5, the argument may be of intrinsic
interest. The proof relies on an inductive fixed-point argument. At every
subgame, a suitable fixed point (in payoff space) is constructed, and this
fixed point replaces the relevant portion of the game, as we inductively move
to an earlier subgame. To complete the fixed point argument for the ear-
lier subgame, we need an additional continuity argument for the recursively
constructed fixed points, which is where the possibility of mixing makes an
appearance.

Remark 2.3. The existence argument can be readily modified to include
NTU partition function games that are strictly comprehensive; see the re-
mark following the proof.

3 Symmetric Partition Functions

A partition function is symmetric if the worth of a particular coalition in a
given partition depends only on the number of individuals in each coalition
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in that partition. The vector of integers that capture this information may
be referred to as a numerical coalition structure. More formally, let π =
{S1, . . . , Sk} be a coalition structure. With some abuse of notation, the
worth of a coalition Si ∈ π, v(Si, π), can be written as v(si,n(π)). Here
n(π) ≡ (s1, . . . , sk), where sj = |Sj| for all j, is the numerical coalition
structure associated with π.10

We begin the analysis by constructing a particular numerical coalition
structure.

3.1 An Algorithm

Our results make essential use of a simple recursive algorithm which we now
describe.

For a vector n = (ni) of positive integers, define K(n) ≡ ∑
ni. Use the

notation φ to refer to the “zero-dimensional” or null vector containing no
entries, and set K(φ) = 0. Let F be the family of all such vectors (including
φ) satisfying the additional condition that K(n) < n.

We are going to construct a rule t(.) that assigns to each member of this
family a positive integer. By applying this rule repeatedly starting from φ,
we will generate a particular numerical coalition structure, to be called n∗.

Step 1. For all n such that K(n) = n− 1, define t(n) ≡ 1.

Step 2. Recursively, suppose that we have defined t(n) for all n such that
K(n) = m+ 1, . . . , n− 1, for some m ≥ 0. For any such n, define

c(n) ≡ (n.t(n).t(n.t(n)) . . .),

where the notation n.t1. . . . tk simply refers to the numerical coalition struc-
ture obtained by concatenating n with the integers t1, . . . tk.

Step 3. For any n such that K(n) = m, define t(n) to be the largest integer
in {1, . . . , n−m} that maximizes the expression

v(t, c(n.t))

t
. (3.1)

10Whenever we need to emphasize the difference between a coalition and the number of
players in the coalition, we will use upper case letters to denote the coalition and lower
case letters to denote the number of players in it.
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Step 4. Complete this recursive definition so that t is now defined on all of
F . Define a numerical coalition structure of the entire set of players N by

n∗ ≡ c(φ).

This completes the description of the algorithm.
A verbal description may be useful. Given any departed numerical coali-

tion structure n, which we may think of as a substructure, and a remaining
set of players, it is possible to conceive of some final coalition structure that
will form, for every coalition size that may be formed in this situation. [This
“final” structure requires a recursive argument, as described above.]

With this scenario in mind, find those coalition sizes that maximize the
average worth of a coalition, as described in (3.1). If there is more than one
size, choose the largest coalition that achieves the desired outcome.

3.2 Results

3.2.1 A Class of Equilibria that Yield n∗

The departure of some given collection of coalitions induces a stage, defined
as the set of all subgames in which a proposal is to be made, following
the departure of these coalitions. For a stage in which π is the collection
of coalitions that has left the game, we will denote by n(π) the numerical
coalition structure corresponding to π.

For each such stage with numerical structure n, define

a(n) ≡ v(t(n), c(n.t(n))

t(n)
. (3.2)

The results of this section will depend on the following regularity condi-
tion, which will be in force throughout:

For every n such that K(n) < n − 1, there exists s ≤ n − K(n) such that
v(s,n.s.n′) > 0 for all n′ such that K(n.s.n′) = n.

This condition implies that for all n such that K(n) < n − 1, a(n) > 0.
This is the implication that needs to be kept in mind.11

11If we insist on accommodating games with a(n) = 0 for some n, the equilibria that we
identify in the main text continue to be equilibria for such games. However, the uniqueness
of equilibrium cannot be expected, for obvious reasons.
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Theorem 3.1 There exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1), any
equilibrium in which an acceptable proposal is made with positive probability
at any stage must be of the following form. At a stage in which π has left
the game, and n = n(π) belongs to F , the next coalition that forms is of size
t(n) and the payoff to a proposer is

a(n, δ) ≡ v(t(n), c(n))

1 + δ[t(n)− 1]
. (3.3)

In particular, the numerical coalition structure corresponding to any such
equilibrium is n∗.

Theorem 3.1 shows that if acceptable offers are made (with some pos-
itive probability) at every stage, the equilibrium coalition structure of the
bargaining game must yield the same numerical coalition structure as our
algorithm.

Thus the possibility of delay seems to be important in singling out the
coalition structure that we identify. Delay is equivalent to the making of
absurd offers which the proposer knows will be rejected. Why would such
offers ever be made? The answer is that a proposer may wish to pass the
buck to another player, and benefit from possibly higher payoffs in some
subgame. But even if this is so, can’t the theorem be extended to cover such
cases? To answer these questions, consider an example.

The following five-player partition function will be used:12

v(4, 1) = (6, 2), v(3, 2) = (3, 8), v(2, 1, 1, 1) = (0.1, 3, 3, 3),

v(3, 1, 1) = (10, 0, 0), v(π) = 0 for all other π.

By applying the algorithm, it is easy to check that n∗ = (4, 1).

Example 3.1. For all discount factors sufficiently close to unity, there is
an equilibrium with coalition structure (4, 1) in which one player makes an
unacceptable proposal (in the presence of all five players) and the other
four make acceptable proposals to each other. Under this equilibrium, the
intransigent player receives 2δ whenever it is his turn to propose to the grand

12This partition function does not satisfy grand-coalition-superadditivity. But it is pos-
sible to modify the example so that it does satisfy this property and so that all the examples
to be based on it are valid. Details are available from the authors upon request.
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coalition. The others receive only 6
1+3δ

in their roles as proposer. We leave
the details of equilibrium construction to the reader.

It follows that Theorem 3.1 can be strengthened somewhat.13 But it
cannot be strengthened free of charge:

Example 3.2. There is also an equilibrium with coalition structure (3, 2).
It is constructed as follows. Players 1, 2 and 3 make acceptable offers to each
other and the other two make unacceptable offers to player 1. Let x̄i, the
equilibrium payoff to i if i starts the game, be defined as

x̄i =
3

1 + 2δ
for i =1,2,3

x̄j =
8δ

1 + δ
for j=4, 5.

For δ close to 1, players 1, 2 and 3 get approximately 1 while players 4 and
5 get approximately 4. Clearly, player i, i = 1, 2, 3 cannot do better by
including player 4 or 5, since v(4, 1) = (6, 2). Given the strategies of the
others, i cannot do better by making an unacceptable proposal. It is also
easy to see that players 4 and 5 do not have a profitable deviation. Thus,
the above strategies (together with obvious specifications for non-equilibrium
subgames) constitute an equilibrium.

Thus Theorem 3.1 requires some qualification, and this qualification is
associated with the possibility of delay. But this raises the following open
question: is there always some equilibrium that yields the coalition structure
n∗?14

3.2.2 No-Delay Equilibrium

The argument above suggests that it is worthwhile to study in more de-
tail those equilibria in which acceptable offers are made. Can we describe
conditions under which they exist? Can we rule out other equilibria?

Define a no-delay equilibrium to be one in which at every stage, every
proposal that is made is accepted.15

13This possibility is taken further in Ray and Vohra (1996), where a wider class of
equilibria are identified than in Theorem 3.1 here.

14Ray and Vohra (1996, p.15) discuss this issue in more detail.
15This is stronger than the class of equilibria identified in Theorem 3.1, but as we are

after existence and uniqueness here, our results will apply a fortiori to the broader class.
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By Theorems 3.1, we know that for discount factors close to unity, no-
delay equilibria induce n∗.

Recall that

a(n) ≡ v(t(n), c(n.t(n))

t(n)
.

The numbers a(n) can, of course, be directly computed from the primitives
of the model.

Theorem 3.2 If

a(n) ≥ a(n.t(n)) for all n ∈ F such that n.t(n) ∈ F , (3.4)

then there is δ̂ ∈ (0, 1) such that a no-delay equilibrium exists for all δ ∈
(δ̂, 1).

Theorem 3.2 is useful for the following reason: If condition (3.4) of this
theorem holds, there is always an equilibrium under which the coalition struc-
ture n∗ identified by the algorithm must form.

Remark 3.1. It will be clear from the proof of Theorem 3.2 that when
(3.4) holds a pure strategy no-delay equilibrium exists. Indeed there exists
a no-delay equilibrium corresponding to every strategy in which (in every
subgame following the departure of π) player i randomizes across coalitions
of size t(n(π)), making an acceptable proposal in each case. However, the
numerical coalition structure corresponding to any no-delay equilibrium is
n∗.

As Theorem 3.3 indicates, condition (3.4) is fairly tight. It is necessary
for the existence of a no-delay equilibrium in pure strategies.

Theorem 3.3 If there is δ̂ ∈ (0, 1) such that a pure-strategy no-delay equi-
librium exists for all δ ∈ (δ̂, 1), then (3.4) holds.

To see how condition (3.4) works, consider

Example 3.3. In the five-player partition function introduced earlier, recall
that n∗ = (4, 1). So a(φ) = 1.5 < 2 = a(t(φ)), so that (3.4) fails. By
Theorem 3.3, there is no pure strategy no-delay equilibrium for discount
factors close to unity. Indeed, no-delay equilibria fail to exist as well. To
prove this, suppose, on the contrary, that such an equilibrium exists along
a sequence of discount factors tending to unity. Then, by Theorem 3.1, a

14



proposer receives 6
1+3δ

, and makes an offer to some four-player coalition. A

responder receives 6δ
1+3δ

.
Fix any δ ≥ δ∗ such that δ[0.5 + 6δ] > 6. Now observe that there is

some pair of individuals i and j such that if it is j’s turn to propose, an
offer is made to i with probability no more than 3/4. If individual i deviates
by making an unacceptable offer to j, then the present value of i’s payoff is
bounded below by δ[3

4
6δ

1+3δ
+ 1

4
2], while by sticking to equilibrium policy, he

obtains 6
1+3δ

. Comparing these two expressions under the given restriction
on δ, it can easily be checked that a deviation is profitable. This completes
the argument.

At the same time, (3.4) does not exclude the possibility that there may
be other equilibria yielding entirely different coalition structures. To see this,
consider

Example 3.4. Modify the five-player partition function so that v(4, 1) =
(6, 1). Again, t(φ) = 4. But now a(4) = 1 < a(φ) and it is easy to see that
condition (3.4) holds. So there exists a no-delay equilibrium with the coali-
tion structure (4, 1). However, the non-symmetric equilibrium of Example
3.2, with the coalition structure (3, 2), is an equilibrium here as well.

Example 3.4 makes it clear that uniqueness needs more than condition
(3.4). In view of Remark 3.1 it is also clear that no such strengthening of
(3.4) can rule out mixed strategy no-delay equilibria. To state this additional
requirement, we extend the definition of t(n).

For each n ∈ F , and each positive integer ` ∈ {1, . . . , n−K(n)}, define

τ`(n) ≡ arg max
t∈{1,...,`}

v(t, c(n.t))

t
. (3.5)

In words, t ∈ τ`(n) solves the same maximization problem as described in the
algorithm, except that maximum size is restricted by `. Because of possible
nonconvexities, this maximum restriction can be binding even if ` /∈ τ`(n)16

The utility of introducing this construction is brought out in

Theorem 3.4 Suppose that for each n ∈ F and each positive integer ` ∈
{1, . . . , n−K(n)},

a(n) ≥ a(n.t) for all t ∈ τ`(n). (3.6)

16Of course, t(n) ∈ τ`(n) whenever ` ≥ t(n).
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Then there is δ̂ ∈ (0, 1) such that for all δ ∈ (δ̂, 1), every equilibrium must be
no-delay, and therefore generate the numerical coalition structure n∗.

Okada (1996) shows that in superadditive TU games, equilibria with de-
lay can be ruled out by modifying the bargaining game such that the proposer
is chosen at random. In the context of a partition function game, superad-
ditivity is a very restrictive assumption. However, it is easy to show that it
implies uniqueness of no-delay equilibria in the present context, even without
requiring proposers to be chosen at random.

A game is said to be superadditive with respect to c if for any coalition
structure π = (t1. . . . tk)

v(ti + tj, c(t1 . . . ti−1.ti + tj)) ≥ v(ti, π) + vi(tj, π) for all i, j ∈ {1, . . . k}, i < j

Theorem 3.5 Suppose a game satisfies superadditivity with respect to c.
Then there exists δ̂ ∈ (0, 1) such that for all δ ∈ (δ̂, 1), every equilibrium
is a no-delay equilibrium, and therefore generates the numerical coalition
structure n∗.

We end this section by observing that the conditions outlined in this
section can be checked in models of economic interest. An example based
on the Cournot model satisfies (3.6) (see below), and so is the public goods
model studied in Ray and Vohra (1996).

3.3 A Cournot Oligopoly

We apply our results to an example of a symmetric Cournot oligopoly. Sup-
pose that n oligopolists produce a quantity x of a homogeneous product,
the price P of which is determined by a linear demand curve: P = A − bx.
Assume that there is a fixed unit cost of production, given by c.

Normalize the parameters so that (A−c)2

b
= 1. Using the formula for

Cournot-Nash equilibrium (already presented in Example 1.1), we may con-
struct a partition function for this symmetric game. Suppose that a numerical
coalition structure n forms. Consider a coalition structure of size s in this
structure. Then, using our normalization, and denoting by q the number of
coalitions in n,

v(s,n) =
1

(q + 1)2
.

16



The Cournot example is quite telling in one respect. Notice how the partition
function is independent of the coalition concerned, but depends entirely on
the overall coalition structure. This feature highlights how partition functions
might radically differ from characteristic functions, where all the interesting
action comes from variation in coalitional worth.

The calculations in this example will draw heavily on Bloch (1996). As-
suming equal division of coalitional worth, Bloch constructed an equilibrium
coalition structure for this model. In doing so he used an algorithm similar to
ours17, by applying Ray and Vohra (1996, Theorem 6.3) (currently condition
[2] of Theorem 3.2). As we shall see, much more can be said about equilibria
in this model by appealing to our results on symmetric games. We will show
that this model also satisfies condition (3.6) and, therefore, our algorithm
yields the only possible equilibrium coalition structure. Moreover, (approx-
imately) equal division for high discount factors is a result rather than an
assumption.

Theorem 3.6 (generalization of Bloch (1996)) All equilibria in a Cournot
oligopoly with n firms are no-delay equilibria. Moreover, there is a unique
numerical equilibrium coalition structure. It consists of L singleton firms and
a single cartel of size n−L, where L is the smallest nonnegative integer such
that

n− L < (L+ 2)2 + 1.

Thus our results predict full cartelization in this example whenever there are
4 firms or less, and imperfect cartelization thereafter.

This observation can be quickly established using the algorithm of Section
3.1, and then checking that the uniqueness condition (3.6) of Theorem 3.4
is indeed satisfied. While the reader should consult the proof for details,
it is easy to provide some intuition. To do so, we invoke an important
observation due originally to Salant, Switzer and Reynolds (1983): If several
firms are already out of a potential cartel, and the number of firms left is
“small enough”, then the remaining firms will not find it advantageous to
form a cartel. Intuitively, the gain in market concentration does not justify
the profit-sharing that will be needed. Applying this idea recursively to the

17In some cases, he obtains two equilibrium coalition structures whereas our algorithm
yields a unique numerical coalition structure.
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remaining number of players, we can find a threshold at which the average
payoff to the remaining players, if they stay together, is approximately the
same as when a player quits, sparking off a cartel collapse.

Summarizing so far, we see that at this threshold, firms would rather stay
together than break up. But knowing this is so, those firms in excess of this
threshold will disagree to form a cartel as well, predicting correctly that the
remaining firms will stay together. This creates an equilibrium outcome with
one large cartel and several singleton firms.

4 The General Case

The focus of the analysis for symmetric games is the identification of a par-
ticular (numerical) coalition structure, n∗, which is generated by a “broad”
class of equilibria. In particular, we showed that if an equilibrium satisfies the
no-delay requirement, then it must generate n∗ as the equilibrium coalition
structure.

It is natural to ask if a corresponding observation applies in the general
case. That is, can we identify a particular coalition structure, or a class of
structures, such that a no-delay equilibrium will generate a coalition structure
within this class? This is the task which we set ourselves in the current
section.18

We reiterate what we mean by the “identification of a particular [class
of] coalition structure[s]”. It must be possible to take the parameters of the
model, and compute, in a finite number of steps, the relevant structure[s].
The work then lies in proving that the structures are the outcome of certain
equilibria.

In attempting such a generalization, three points must be noted at the
very outset, and each of these stands in sharp contrast to the symmetric case.
First, there is no hope of finding, in general, a single (numerical) coalition
structure as the predicted outcome. Second, the predicted structure may well
depend on the bargaining protocol. Third, the assumption of equal division
(as in Bloch (1996)) may be unacceptably restrictive in general models. All
these points may be illustrated by means of a single example.

18It should be pointed out that the analysis involves a number of subtle details, and the
results are not as clear-cut. It may be worth skipping this section at a first reading, and
absorbing the proofs for the symmetric case instead.
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Example 4.1. We use the special case of a characteristic function. N =
{1, 2, 3}. Worths are given as follows: v({12}) = 3, v({123}) = 4, while
v(S) = 0 for all other S. Direct computation easily verifies that there is
a unique stationary equilibrium, and it involves no delay. For the discount
factor close enough to unity, a bargaining game started by players 1 or 2 will
result in the formation of the coalition structure ({12}, {3}), where players
1 and 2 “produce” and player 3 is left out. On the other hand, if player 3
begins the game, the single coalition {123} will form, with players dividing
this worth unequally within this coalition (even as δ → 1). This observation
makes three points: [1] There may be more than one equilibrium coalition
structure, [2] The structure that arises may well depend on the protocol, and
[3] the assumption of equal division within formed coalitions may be seriously
restrictive in non-symmetric cases. These new features are incorporated in
the analysis that follows.

We begin, then, by describing an algorithm that generates a class of
coalition structures. The main theorem then ties no-delay equilibrium to the
generation of these structures. Several steps are involved in the description
of the class.

4.1 A Class of Coalition Structures

4.1.1 Some Observations on Characteristic Functions

It will be convenient to begin with some observations for characteristic func-
tions. The analysis in this subsection extends a construction introduced in
Chatterjee et al. (1989).

Let S be a finite set of players. A (TU) characteristic function w assigns
a number w(T ) (normalized to be nonnegative) to every coalition T of S.

We continue to use lower case letters s, t, tk,... to denote the cardinalities
of coalitions S, T , Tk,...

Our task in this subsection is to allocate, to each player i ∈ S, a number
ai(w), as well as a set of coalitions, Ci(w).19

19It is useful to note the analogous construction in the symmetric case, which was
embodied in the algorithm in Section 3.1. There each player was assigned the same number,
as well as the same set of coalitions (those of maximal size among those maximizing
“average worth”).

19



Step 1. Consider the problem

A1 ≡ max
T⊆S

w(T )

t
. (4.7)

For each coalition T that solves (4.7), let

∆(T ) ≡ −A1 t− 1

t
,

and define S1 to be the collection of all T that minimize ∆(T ), subject to
the constraint that they solve (4.7). If A1 > 0, clearly, this means: include
T in S1 if and only if it solves (4.7) and there is no other T ′ that solves (4.7)
and is of larger size (there is no need for T ′ to be a superset of T ).

Let ∆1 be the value of ∆(T ) in this class.
Define U1 to be the union of all players who belong to coalitions that

belong to S1: i.e., U1 ≡ {i ∈ S|i ∈ T for some T ∈ S1}. Define

ai(w) ≡ A1 for all i ∈ U1, (4.8)

and a set of coalitions, for each i ∈ U1, by

Ci(w) ≡ {T ∈ S1|i ∈ T}. (4.9)

If U1 = S, end here. Otherwise go on to Step 2.

Step 2. Recursively, suppose that the values (A1, . . . , Ak; ∆1, . . . ,∆k) and
the coalitions (U1, . . . , Uk) have been defined for some integer k ≥ 1, and
that S \ ∪kj=1Uj ≡ S ′ 6= ∅.

Consider the problem

Ak+1 ≡ max
T≡T1∪...∪Tk+1

w(T )−∑k
j=1 A

jtj

tk+1

, (4.10)

where the maximization takes place over coalitions of the form T1∪ . . .∪Tk+1,
subject to the constraint that Tj ⊆ Uj for all j = 1, . . . , k, and ∅ 6= Tk+1 ⊆ S ′.

For each coalition of the form T = T1 ∪ . . . ∪ Tk+1 that solves (4.10), let

∆(T ) ≡ −
∑k
j=1 tj(∆

j + Aj)

tk+1

− Ak+1 tk+1 − 1

tk+1

.

Define Sk+1 to be the collection of all coalitions that minimize ∆(T ), subject
to the constraint that they solve (4.10). As in Step 1, this implies a selection
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(based on size) from the set of solutions to (4.10), but has no direct connection
with maximal coalitions, as in that Step.

Let ∆k+1 be the value of ∆(T ) in this class.
Define

Uk+1 ≡ {i ∈ S ′|i ∈ T for some T ∈ Sk+1}.
Let

ai(w) ≡ Ak+1 for all i ∈ Uk+1, (4.11)

and a set of coalitions, for each i ∈ Uk+1, by

Ci(w) ≡ {T ∈ Sk+1|i ∈ T}. (4.12)

If S \ ∪kj=1Uj = ∅, end the recursion here. Otherwise repeat Step 2.

As already indicated, this construction assigns to each individual i in the
player set S, a number ai(w) as well as a set of coalitions Ci(w), depending
on the characteristic function w defined on S.

4.1.2 Rules of Coalition Formation

Let N be the player set of the original game. Denote by Π◦ the collection of
all coalition substructures of N ; i.e., the collection of all coalition structures
of every strict subset of N .20 For each π ∈ Π◦, let T (π) be the collection of
all coalitions formed from the remaining set of players (not included in π).

A rule of coalition formation (RCF) is a map R : Π◦ → T (π). In words,
given any substructure, R assigns a fresh coalition from the set of players
not in that substructure.

Given any RCF, a substructure can be “completed” into a full coalition
structure of N in the obvious way, by recursively applying the RCF starting
from that substructure until no players are left. This induces a completion
map from Π◦ to the set Π of (full) coalition structures of N . Call this map
c(., R); it depends on the RCF R. It will be notationally useful to define
c(π,R) ≡ π for all (full) coalition structures π.

4.1.3 Characteristic functions induced by an RCF

Consider a substructure π of Π◦ with the property that there is a nonempty
set of players S(π) not included in π. Given some RCF R, a characteristic

20As in the symmetric case, the “empty structure” φ is also an element of Π◦.
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function wRπ is induced on S(π) in the following way:

wRπ(T ) ≡ v(T ; c(π.T,R)), (4.13)

for all nonempty T ⊆ S(π).

4.1.4 Consistent Rules of Coalition Formation

Recall that for every characteristic function w defined on some set of players
S, we have assigned a number ai(w) and a set of coalitions Ci(w) to every
player i ∈ S.

Say that a rule of coalition formation R is consistent if for every sub-
structure π ∈ Π◦,

R(π) ∈ Cj(wRπ), (4.14)

where j is the first proposer assigned by the bargaining protocol when the
set of active players is S(π).

By simply working backwards from substructures π such that S(π) is a
singleton, it is elementary to check that a consistent RCF always exists.

It is important to note that our description of a consistent rule of coali-
tion formation depends only on the parameters of the model.21 Moreover,
the description is finite, in the sense that given any partition function and
a bargaining protocol, every consistent RCF can be identified by using a
bounded sequence of computations.

4.2 No-Delay Equilibrium and Consistent RCFs

Just as in the special case of symmetric games, a no-delay equilibrium is one
in which at every stage, every proposal that is made is accepted.

Theorem 4.1 There exists δ∗ ∈ (0, 1) such that if δ ∈ (δ∗, 1), every no-
delay equilibrium must generate a coalition structure given by some consistent
rule of coalition formation. Formally, given a no-delay equilibrium, there
exists a consistent RCF R such that at every stage indexed by π ∈ Π◦, with
the proposer given by the bargaining protocol, the coalition that is formed
corresponds to R(π). In particular, the coalition structure that emerges in
equilibrium is given by c(φ,R), where φ corresponds to the null substructure.

21Unlike the case of symmetric games, we are forced here to include dependence on the
bargaining protocol as well.
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Theorem 4.1 generalizes the corresponding results obtained for symmetric
games. To see this, it is sufficient to note that in symmetric games satis-
fying the assumption that a(n) > 0, every consistent RCF yields the same
numerical coalition structure, and that structure is precisely n∗. We leave
the details of the argument to the reader.

In general, of course, there may well be several coalition structures gen-
erated by the class of consistent RCFs. This is certainly true if we alter
bargaining protocols (Example 4.1), and may even be true for a given pro-
tocol.

The careful reader will have noted that in the main building block of
our algorithm (Section 4.1.1 on characteristic functions), not only is a max-
imization problem solved (the problem described in (4.10)), but a further
refinement of the set of maximizing coalitions is needed (this is the addi-
tional selection involved in minimizing ∆(T ): see the discussion following
(4.10)). In symmetric games, there is no direct analog to this (except requir-
ing that the coalition maximizing “average worth” be as large as possible).
The following example is designed to explain this additional restriction, as
well as to point out that the choice of “largest” coalitions does not carry
through to the general case. Again, the example only needs a characteristic
function in order to make the point.

Example 4.2. Consider the following four-person characteristic function:
N = {1, 2, 3, 4}, v({1}) = 1, v({12}) = 2, v({123}) = 2.8, v({1234}) = 3.6,
v(S) = 0 for all other coalitions S. Let us compute {ai} and {Ci} for this
game. Because no partition function is involved, this is simple.

Begin with Step 1 in Section 4.1.1. We see that A1 = 1. Two coalitions —
{1} and {12} achieve this outcome. The refinement following (4.7) dictates
that the smaller coalition be discarded. This is reminiscent of symmetric
games. We thus see that U1 = {12}. For future use, note that ∆1 = −1

2
.

Now we compute U2. By carrying out the maximization problem in (4.10),
with (A1, U1) given, we see that the maximizing coalitions are T ≡ {123} and
T ′ ≡ {1234}. Moreover, A2 = 0.8. Now observe that

∆(T ) = −2(1− 0.5)

1
− 0.8

0

1
= −1,

while

∆(T ′) = −2(1− 0.5)

2
− 0.8

1

2
= −0.9.
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Our criterion of minimizing ∆ therefore requires us to discard the larger
coalition {1234} in favor of the smaller coalition {123}. Thus U2 = {3}.
This leaves the singleton, {4}, which must obviously solve the remaining
problem (nothing of interest to report here).

Thus the algorithm predicts that the coalition {123}, and not the grand
coalition, will form if player 3 is to start the game, despite the fact that the
grand coalition also solves the relevant maximization problem.

Direct computation of the stationary equilibrium verifies that this is in-
deed the case. It is easy enough to see that for δ close enough to unity,
a1(δ) = a2(δ) = 2

1+δ
, a3(δ) = 2.8− 4δ

1+δ
, and a4(δ) = 3.6− 2.8δ− 4δ(1−δ)

1+δ
, com-

prise the unique solution to (5.46). It can also be checked that C3(δ) = {T}
for δ sufficiently close to unity.

It might be argued that for “generic” games, the maximization exercise
described in Section 4.1.1 will have unique solutions, and therefore the ad-
ditional restrictions will usually not be needed. If by genericity we mean
a random (nonatomic) draw from the space of partition functions, this is
certainly the case: we do have a generically unique prediction of coalition
structure for any given bargaining protocol. At the same time, we hesitate
to impose such genericity concepts. For example, symmetric games form an
important special case, in our opinion. Yet are they “generic”?

Indeed, with issues of “genericity” neglected, it should be pointed out that
the description achieved in Theorem 4.1 is not strong enough (in general).
More delicate characterizations can be used to refine the predicted set even
further. We omit the details.

5 Proofs

Proof of Theorem 2.1. It will be useful to develop some additional
notation. Use the notation −S or −π to denote the set of players that
are left in N after the players in S or π have left. When a subcoalition
S leaves the game, this defines a new bargaining game (−S, v̄, ρ̄), where
v̄ = {v(T, (S, π))T∈π}π∈Π(N\S)) and ρ̄ is the restriction of ρ to N \ S. We
will denote such games simply as (−S, v, ρ). In a similar manner we can also
define a game (−π, v, ρ) corresponding to a situation in which coalitions π
have left the game.

Recall that we assume that v({i}, π) ≥ 0 for all i ∈ N and π ∈ Π such that
{i} ∈ π. This implies that the equilibrium payoff (if there is one) to every

24



player is bounded above by a non-negative number m = max(v(S, π)S∈π)π∈Π.
In our search for equilibrium payoffs, we may, therefore, restrict the feasible
payoff profiles to lie in X, the cube in IRN

+ with vertex 0 and length m.
The proof is by induction on the number of players. Suppose an equi-

librium exists for every game with less than n players. For the one-player
model, this assumption is trivially satisfied.

In particular, the hypothesis implies that an equilibrium exists for every
subgame (−S, v, ρ) for every non-empty coalition S. For each such subgame
fix one equilibrium strategy profile for the players of that subgame. Our goal
is to describe equilibrium strategies for all the remaining nodes in the larger
game, that will be grafted on to the fixed strategies for the subgames.

We begin by invoking the assumption that the protocol assigns a unique
continuation to the game after S has formed, regardless of how S came to
be. By using the given equilibrium strategies after S forms, we may generate
two objects: (i) a probability distribution βS over Π(−S), and (ii) a vector
of expected equilibrium payoffs for all the players in −S, to be denoted by
uj(S), for j ∈ −S.

Now consider the overall game. Let Ni be the set of all non-empty coali-
tions containing player i and let4i denote the set of probability distributions
over Ai = (Ni, ({j})j∈N\{i}). Recall that i can only make proposals to coali-
tions in Ni. It can also make an unacceptable proposal to player j (there is
no loss of generality in assuming that it cannot make unacceptable proposals
to other coalitions). Now αi will denote player i’s choice concerning coali-
tions to form or other players to whom an unacceptable offer is made. More
precisely, we will interpret αi(S) to be the probability with which i chooses
to make an acceptable proposal to S ∈ Ni and αi({j}) to be the probability
with which i chooses to make an unacceptable proposal to player j.

Define 4 ≡ ∏i∈N 4i. Fix a vector α ∈ 4, and a vector x ∈ X, the latter
to be interpreted below as the vector of expected equilibrium payoffs that
each player receives in the game, if i is the first proposer. Consider player i.
The following options are available.

First, i can name a coalition S in Ni, and make a proposal y(S, π) con-
ditioned on each π ∈ Π(−S). This will be interpreted in the sequel as an
acceptable proposal. Consider the problem:

max
y

∑
π∈Π(−S)

βS(π)yi(S, π) (5.15)
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subject to the constraints∑
π∈Π(−S)

βS(π)yj(S, π) ≥ δxj, for all j ∈ S, j 6= i, (5.16)

∑
j∈S

yj(S, π) ≤ v(S, (S, π)) for each π ∈ Π(−S). (5.17)

Denote by gi(S, x) the maximum value so attained. It is easy to see that

gi(S, x) =
∑

π∈Π(−S)

βS(π)v(S, (S, π))− δ
∑

j∈S;j 6=i
xj

which is clearly a continuous function of x, and is independent of α.
Second, i might make an unacceptable proposal to j.
Both these cases can be considered together in the following way. What

we will do is compute a particular present value payoff to i, in a situation
where (x, α) ∈ X × 4 is given. We will show thereafter that i’s attempt
to maximize this value, with respect to his choice of proposal probabilities,
yields an equilibrium response. For a fixed i, define a collection {vji (x, α)}j∈N
in the following way:

vji (x, α) = Bj
i + δ

∑
k 6=j

αj({k})vki (x, α)

for all j and k, where
Bi
i ≡

∑
S∈Ni

αi(S)gi(S, x),

and for j 6= i,

Bj
i ≡ δxi

 ∑
S∈Nj ;i∈S

αj(S)

+
∑

S∈Nj ;i6∈S
αj(S)ui(S).

We may interpret vji as the value that player i receives when player j proposes
at this stage. Note, for future use, that the value is taken to depend on i’s
best payoff gi(S, x) from making an acceptable proposal to each coalition S,
as well as the entire vector α.

The set of simultaneous equations defining the vector Vi = (vji ) can be
written in matrix form as CVi = Bi, where Bi = (Bj

i ) and C is the n ×
n matrix with 1’s on the diagonal and −δαj{k} as the jk-th off-diagonal
element. Note that the sum of the off-diagonal elements in any row lies in
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the half open interval (−1, 0] and C is therefore non-singular. It is now easy
to see that vji is continuous in x and α for all j.

Now define a function on X ×∆×∆i by

vi(x, α, α
′
i) ≡

∑
S∈Ni

α′i(S)gi(S, x) + δ
∑
j 6=i

α′i({j})vji (x, α), (5.18)

and maximize this function with respect to α′i ∈ ∆i.
Let φ1

i (x, α) denote the maximum value of this problem, and let φ2
i (x, α)

denote the set of maximizers. It is easy to see, using the maximum theo-
rem and the fact that vi(x, α, α

′
i) is continuous, that φ1

i (x, α) is a continuous
function and that φ2

i (x, α) is a convex-valued, upper hemicontinuous corre-
spondence. Since v({i}, π) > 0 for all i and π ∈ Π, it follows that for all
(x, α) ∈ X ×4, φ1

i (x, α) ≥ 0 for all i. Thus
∏
i φ

1
i maps from X ×4 into X.

Therefore the correspondence

φ ≡
∏
i

φ1
i ×

∏
i

φ2
i : X ×4 7→ X ×4

satisfies all the conditions of Kakutani’s fixed point theorem and has a fixed
point (x̄, ᾱ).

We shall now use this fixed point to construct an equilibrium. Let σ
denote the strategy profile such that:

(i) When the player set is N , player i as a proposer makes proposals ac-
cording to ᾱi. To every coalition S ∈ Ni such that αi(S) > 0, she
proposes y(S, π) which solves the problem defined by (5.15), (5.16) and
(5.17). To every j 6= i such that ᾱi({j}) > 0, she offers, for every pos-
sible partition containing the coalition {i, j}, less than δx̄j (possibly
negative). This yields player i a payoff of x̄i.

(ii) Suppose the player set is N , player i is a respondent to a proposal
y(S, π) and every respondent j to follow i is offered an expected payoff
at least δx̄j, i.e.,

∑
π∈Π(−S) β

S(π)yj(S, π) ≥ δx̄j for all respondents j
that follow i. Then i accepts the proposal if and only if∑

π∈Π(−S)

βS(π)yi(S, π) ≥ δx̄i.

(iii) Suppose the player set is N , and player i is a respondent. From (ii)
we know that if there is exactly one respondent to follow i, say player
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j, such that j is offered an expected value less than δx̄j, then j will
reject the proposal. Player i’s decision will now depend on the present
value of the payoff to i resulting from j rejecting the offer and making
a proposal as in (i). In fact this value is precisely δvji (x̄, ᾱ). Player i
accepts the proposal if and only if

δvji (x̄, ᾱ) ≥ δx̄i.

Note that this inequality might hold even though we know from the con-
struction of vii and the fact that (x̄, ᾱ) is a fixed point, that δvji (x̄, ᾱ) ≤
x̄i. Now consider a proposal made to respondents {1, . . . , r}, in the
given order . Inductively, suppose we have computed in the decisions
of all respondents i + 1, . . . , r. Player i’s decision is then obtained by
considering the decision of the next responder, say j, who rejects the
proposal. Player i accepts the proposal if and only if δvji (x̄, ᾱ) ≥ δxi.
In this way we obtain a complete description of the actions of all re-
spondents of a proposal.

(iv) If the player set is not N , it must result from some collection of coali-
tions π having left the game. The strategies of the remaining players are
defined according to the preselected equilibrium of the game (−π, v).

We can now show that a strategy profile σ satisfying (i)-(iv) is a station-
ary equilibrium. Consider such a strategy, and deviations that a single player
i can contemplate. By construction, x̄i = vi(x̄, ᾱ, ᾱi) = max vi(x̄, ᾱ, .). This
means that it is not possible for i as a proposer to receive a higher payoff than
x̄i by making a one-shot deviation from ᾱi. This implies that no other strat-
egy can yield i a higher payoff than x̄i. The action prescribed in (i) achieves
x̄i and, therefore, cannot be improved upon. Suppose i is a respondent and
all respondents to follow i are offered at least δx̄i, which by hypothesis they
will accept. By rejecting the proposal i gets a present value of δx̄i. Clearly,
then the action prescribed in (ii) cannot be improved upon. Suppose i is a
respondent who is followed by a respondent j who, based on σ, will reject the
proposal. Accepting the proposal yields vji (x̄, ᾱ) to player i while rejecting
it yields at most δx̄i. Thus the action described in (iii) cannot be improved
upon. A similar argument applies to the description in (iii) of i’s actions in
the other cases when i is a responder. Finally, note that when some players
have left the game, the actions in (iv) are obviously unimprovable. Thus, σ
is a stationary equilibrium.
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Remark. The existence argument can be modified to include NTU partition
function games that are strictly comprehensive. Let V (S, π) ⊆ IRS denote
the utility set of a coalition S, under the coalition structure π. Condition
(5.17) in the proof of Theorem 2.1 will now have to be changed to

y(S, π) ∈ V (S, (S, π)) for each π ∈ Π(−S)

If V (S) is closed and strictly comprehensive, it is easy to check that gi(S, .)
is well-defined and, by the maximum theorem, a continuous function. (Of
course, it can no longer be written in the simpler form used in the proof of
Theorem 2.1). The rest of the proof remains unchanged. It is not possible
to weaken strict comprehensiveness to comprehensiveness. If the utility sets
are not strictly comprehensive, it is possible that conditions (5.16) and an
appropriately modified version of (5.17) cannot simultaneously be satisfied,
i.e., gi(S, x) need not be well-defined. Moreover, even if problem of maxi-
mizing the expression in (5.18) is defined only to cover those cases in which
gi(S, x) is well-defined, the maximum value need not be continuous. In fact,
an equilibrium may not exist; see Example 2.6 of Bloch (1996).22

To prove Theorem 3.1 our first task is to fix δ∗. This is done by the help
of the following result.

Lemma 5.1 There exists δ∗ ∈ (0, 1) such that for any δ ∈ (δ∗, 1), and any
n ∈ F , t(n) is the unique integer in the set {1, . . . , n−K(n)} that maximizes

v(t, c(n.t))

1 + δ[t− 1]
. (5.19)

Proof. For n such that K(n) = n − 1, the statement is trivially true. Fix,
therefore, some n ∈ F such that K(n) < n− 1 and consider a sequence {δq}
in (0, 1) such that δq → 1. Let µ(n, δq) denote the set of maximizers (in t) of
the expression in (5.19) corresponding to δq. By the maximum theorem, this
correspondence is upper hemicontinuous. Since the set of maximizers belong
to a finite set (the integers between 1 and n−K(n)), this implies that there
exists δn such that

µ(n, δq) ⊆ µ(n, 1) for all δq ≥ δn.

22While Bloch considers only pure strategy equilibria, it can be shown that in this
example there do not exist any mixed strategy equilibria either.
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Since the number of players is finite, F is a finite set. Therefore, we can find
δ∗ such that for every n ∈ F ,

µ(n, δq) ⊆ µ(n, 1) for all δq ≥ δ∗.

Now observe that µ(n, 1)) is precisely the set of integers that maximize (3.1)
(recall Step 3 of the algorithm). This means that if δ ≥ δ∗, then for every n,
if t∗ maximizes the expression in (5.19) (i.e., t∗ ∈ µ(n, δ)), then

v(t∗, c(n.t∗))

t∗
=
v(t(n), c(n.t(n)))

t(n)
≡ a(n). (5.20)

That is, t∗ maximizes the expression in (3.1) as well.
It remains to be shown that if δ ≥ δ∗, then µ(n, δ) contains only one such

t∗, and that it is the largest integer maximizing “average worth” in (3.1), i.e.,
µ(n, δ) = {t(n)}. Suppose not. From the construction of t(n), this means
that for some δ ≥ δ∗ and for some t∗ ∈ µ(n, δ), we have t∗ < t(n) ≡ t̂.
Therefore

1− δ
t̂

+ δ <
1− δ
t∗

+ δ.

Using this and the fact that a(n) > 0, we see that

t̂a(n)

1 + δ[t̂− 1]
>

t∗a(n)

1 + δ[t∗ − 1]
,

and recalling the definition of a(n) from (5.20), we may conclude that

v(t̂, c(n.t̂))

1 + δ[t̂− 1]
>
v(t∗, c(n.t∗))

1 + δ[t∗ − 1]
.

But this contradicts the fact that t∗ maximizes the expression in (5.19).

We now establish a lemma that is useful for proving subsequent results.

Lemma 5.2 Consider a stage in which π has left the game and S is the
set of active players. Let n ∈ F denote the numerical coalition struc-
ture corresponding to π, and let (xi)i∈S denote the equilibrium payoffs to
each active player if he is the proposer at this stage. Suppose that for any
t ∈ {1, . . . , n − K(n)} the numerical coalition structure following (n.t) is
c(n.t). Then, if i makes an acceptable proposal to coalition T ∗ with positive
probability,

[1] j ∈ T ∗, j 6= i and xk < xj implies k ∈ T ∗,
[2] xi ≤ xk for all k ∈ S.
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Proof. Since i makes an acceptable proposal to T ∗ with positive probability,
and the resulting coalition structure is c(n.t∗), it follows that

xi = v(t∗, c(n.t∗)− δ
∑

j∈T ∗;j 6=i
xj

≥ max
T⊆S;i∈T

[v(t, c(n.t))− δ
∑

j∈T ;j 6=i
xj]. (5.21)

Part [1] is an immediate consequence of (5.21). Suppose [2] is false, i.e.,
xk < xi for some k ∈ S. Using the hypothesis that the coalition structure
following (n.t) is c(n.t) it follows that if k /∈ T ∗, then k can form the coalition
(T ∗ \{i})∪{k} and receive the same as xi, a contradiction. Suppose k ∈ T ∗.
Then

xk ≥ v(t∗, c(n.t∗))− δ
∑

j∈T ∗;j 6=k
xj

= v(t∗, c(n.t∗))− δ
∑

j∈T ∗;j 6=i
xj + δxk − δxi,

which implies, using (5.21), that xk ≥ xi. but this is a contradiction.

Proof of Theorem 3.1. Fix an equilibrium as described in the statement
of the theorem, and let δ ∈ (δ∗, 1), with δ∗ as in Lemma 5.1. We proceed
by induction on the cardinality of the set of active players, following the
departure of any collection of players. If there is one active player left, then
there is nothing to prove. Inductively, suppose that the theorem is valid at
every stage with K(n(π)) = m+ 1, . . . , n− 1 for some m ≥ 0.

Consider, now, a stage with K(n(π)) = m. Let S be the set of active
players, and let {xj}j∈S denote the vector of equilibrium payoffs to player j
if j is the proposer at this stage. Let T ∗ be a coalition that forms at this
stage (with cardinality t∗), and let i be the proposer. We need to prove that

t∗ = t(n(π)). (5.22)

Since every player in S makes an acceptable proposal to some coalition with
positive probability, it follows immediately from the induction hypothesis
and [2] of Lemma 5.2 that xj = xi = x for all i, j ∈ S. It follows from the
induction and the optimality of the proposal that

x = v(t∗, c(n(π).t∗))− δ(t∗ − 1)x ≥ v(t, c(n(π).t)− δ(t− 1)x,
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for all t ∈ {1, . . . , n−K(n(π))}.
But this observation implies that x must also be the maximum value of

the expression in (5.19), as t varies over the set {1, . . . , n−K(n(π))}. Using
Lemma 5.1, we may conclude that t∗ = t(n). Of course, the payoff to a
proposer is a(n, δ).

Lemma 5.3 There exists δ̂ ∈ (δ∗, 1) such that for all n ∈ F and positive
integers t1, . . . , tk with n.t1. . . . tk ∈ F , the relationship

a(n) ≥ a(n.t1. . . . tk) (5.23)

implies the relationship

a(n, δ) > δa(n.t1. . . . tk, δ) for all δ ∈ (δ̂, 1), (5.24)

where a(n, δ), it will be recalled, is defined in (3.3).

Proof. Observe from (5.20) and (3.3) that for each n ∈ F , a(n, δ)→ a(n) as
δ → 1. It follows that for each n such that strict inequality holds in (5.23),
there exists δn ∈ (0, 1) such that for all δ ∈ (δn, 1), (5.24) holds with a strict
inequality. We focus on the case where equality holds in (5.23).

We proceed by differentiating both sides of (5.24) and examining their
comparative magnitudes at δ = 1. If we can show that

d

dδ
a(n, δ)|δ=1 <

d

dδ
δa(n.t1. . . . tk, δ)|δ=1, (5.25)

then, in light of the fact that equality holds in (5.23), we will be able to
conclude that there exists δn ∈ (0, 1) such that for all δ ∈ (δn, 1), (5.24)
holds with strict inequality. The proof of the lemma is then complete by
noting that F is a finite set, so that the required δ̂ can be obtained by
choosing the maximum of the values δn over n, and δ∗.

It remains, then, to establish (5.25) in the case where (5.23) holds with
equality. To simplify the notation, let t ≡ t(n), t′ ≡ t(n.t1. . . . tk), and a ≡
a(n) = a(n.t1. . . . tk) > 0 (note that K(n) < n−1 since n.t1 . . . tk ∈ F). Then
recalling the definition of a(n) from (5.20) and noting that c(n) = c(n.t(n)),
it is clear that

a(n, δ) =
at

1 + δ(t− 1)
,
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while

δa(n.t1. . . . tk, δ) =
δat′

1 + δ(t′ − 1)
.

Simple computation now reveals that

d

dδ
a(n, δ)|δ=1 = −a(t− 1)

t

while
d

dδ
δa(n.t1. . . . tk, δ)|δ=1 = a− a(t′ − 1)

t′
.

Because a > 0, it follows right away from these two expressions that (5.25)
must hold.

The proof of the lemma is completed, as already described, by letting
δ̂ ≡ max{δ∗,maxn∈F δ

n}.
Proof of Theorem 3.2. Assume (3.4). Pick any δ ∈ (δ̂, 1), where δ̂ is given
by Lemma 5.3.

Consider any stationary strategy σ as follows: In every subgame following
the departure of π, player i makes a proposal to a coalition of size t(n(π)).
He offers to each partner a payoff δa(n, δ) in the event that the numerical
coalition structure c(n) is formed, and any other payoff division otherwise.
All such offers are accepted by respondents (other responses are described in
the obvious way: for a description, see (ii) and (iii) in the proof of Theorem
2.1). We will show that σ is an equilibrium.

To this end, consider any stage described by π. Along the proposed
strategy profile σ a proposer receives a(n(π), δ). Therefore, the only way
that a proposer can possibly deviate gainfully is by making an unacceptable
proposal. Given the strategies of the other players, this will result in the
formation of coalitions of cardinalities t(n), t(n.t(n)), and so on. Thus the
deviant proposer will ultimately receive a payoff that is bounded above by
δa(n.t1. . . . tk, δ), where t1. . . . tk is a finite string of the form t(n).t(n.t(n))...
. Applying (3.4) repeatedly, we see that

a(n) ≥ a(n.t1. . . . tk).

But then, by Lemma 5.3 and the fact that δ > δ̂, we conclude that (5.24)
holds. This means that the deviation cannot be profitable.

It is now easy to see that as a responder, a player cannot gainfully deviate
from σ. Consequently, σ is an equilibrium.
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Proof of Theorem 3.3. Suppose, on the contrary, that there is δ̂ ∈ (0, 1)
such that for all δ ∈ (δ̂, 1) there exists a pure strategy no-delay equilibrium
but (3.4) fails. This means that there exists n ∈ F such that n.t(n) ∈ F as
well, and such that a(n.t(n)) > a(n). It follows that there exists δ̄ ∈ (0, 1)
such that

δa(n.t(n), δ) > a(n, δ) for all δ ∈ (δ̄, 1). (5.26)

Consider any δ > max{δ̂, δ̄}, and fix a pure strategy no-delay equilibrium σ.
Consider any subgame where π has left, where n(π) = n. Let i be the first
proposer in this subgame. Since σ is a pure strategy no-delay equilibrium,
and δ ≥ δ̂ ≥ δ∗, i makes an acceptable proposal to some determinate coalition
of size t(n). Because n.t(n) ∈ F , there must exist a player j who is not
included in the proposal by player i, and thereafter picks up a present value
of a(n.t(n), δ) in the very next stage.

Now consider another subgame (in the same stage) so that exactly the
same set of players have left (and in the same structure), but j is the first
proposer instead of i. Because σ is pure strategy no-delay, j is also supposed
to make an acceptable proposal to a coalition of size t(n), picking up a(n, δ).
However, suppose that he deviates by making an unacceptable offer to i. By
stationarity, we are then in the precise situation of the preceding paragraph,
with a delay of one unit of time. Thus by making an unacceptable proposal
to player i, j receives a present value of δa(n.t(n), δ). By (5.26) this deviation
is profitable. This contradicts the fact that we have an equilibrium.

Proof of Theorem 3.4. Fix δ̂ as given in Lemma 5.3, and any equilibrium.
We will show that it must be no-delay. The proof is by induction on the
cardinality of the set of active players. At every stage when there is only
one active player left, the subgame equilibrium is trivially no-delay. Now
suppose that for any π such that K(n(π)) ≥ m + 1, . . . , n − 1, for some
m ≥ 0, the subgame equilibrium is no-delay. Consider a stage described by
a structure of departed players, π, with the property that K(n(π)) = m.
Let n ≡ n(π). Let S be the set of active players. Let {xi}i∈S denote the
vector of equilibrium payoffs to each player, if he is the proposer at this stage.
Without loss of generality, number the players such that x1 ≤ . . . ≤ xs.

Because of the regularity condition that guarantees a(n) > 0, some player
must make an acceptable proposal with positive probability. From Lemma
5.2 it follows that there is no loss of generality in assuming that player 1 does
so to coalition T ∗ = {1, . . . t∗}.

Since player 1 makes an acceptable proposal to T ∗, it must be the case
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that for any t ≤ n−m,

x1 = v(t∗, c(n.t∗))− δ
t∗∑
j=2

xj ≥ v(t, c(n.t))− δ
t∑

j=2

xj for all j ∈ S. (5.27)

We claim that

v(t, c(n.t))

t
≤ v(t∗, c(n.t∗))

t∗
for all t ≤ t∗. (5.28)

Suppose not. Then there exists t̂ < t∗ such that v(t̂,c(n.t̂))

t̂
> v(t∗,c(n.t∗))

t∗ .
From Lemma 5.3, and given our choice of δ, it follows that

â ≡ v(t̂, c(n.t̂)

1 + δ(t̂− 1)
> a∗ ≡ v(t∗, c(n.t∗)

1 + δ(t∗ − 1)
,

or,

v(t̂, c(n.t̂))− δ(t̂− 1)â > v(t∗, c(n.t∗))− δ(t∗ − 1)a∗.

Since â > a∗, we may combine this inequality with (5.27) and rearrange
terms to see that

(t∗ − t̂)â >
t∗∑

j=t̂+1

xj,

which permits us to conclude that

â > xj for all j = 1, . . . , t̂. (5.29)

However, (5.29) implies that

v(t̂, c(n.t̂))− δ
t̂∑

j=2

xj > v(t̂, c(n.t̂))− δ(t̂− 1)â = â > x1,

a contradiction to (5.27). This completes the proof of (5.28).
Suppose, now, that the theorem is false, i.e., there exists a player who

makes an unacceptable offer. By Lemma 5.2, there is no loss of generality in
assuming that this is player s. Notice that s /∈ T ∗, otherwise his expected
payoff would be δxs rather than xs. By the induction hypothesis, the coalition
structure following t∗ is c(n.t∗) ≡ (n.t∗.t2 . . . tm). Suppose s belongs to Tk,
where 2 ≤ k ≤ m. Applying the induction hypothesis again,

xs ≤ δa(n.t∗ . . . tk−1, δ). (5.30)
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Using (5.28) and condition (6) it follows that a(n.t∗ . . . tk−1) ≤ a(n).
Combining this observation with Lemma 5.3 and (5.30), we conclude that

xs ≤ δa(n.t∗ . . . tk−1, δ) < a(n, δ) = a. (5.31)

Since a+ δ(t(n)− 1)a = v(t(n), c(n)), (5.31) implies that

v(t(n), c(n))− δ
t(n)∑
j=2

xj > x1,

which contradicts (5.27).

Proof of Theorem 3.5. Suppose the theorem is false. Proceed, by induc-
tion, exactly as in the proof of Theorem 3.4, using the same notation, leading
up to condition (5.30), i.e.,

x1 ≤ . . . ≤ xs ≤ δa(n.t∗ . . . tk−1, δ).

Of course, δtka(n.t∗ . . . tk−1, δ) < v(tk, c(n.t
∗)), which implies that

δtkxs < v(tk, c(n.t
∗)). (5.32)

By superadditivity, we know that a coalition of t∗ + tk can obtain at least
the sum of the worths of coalitions t∗ and tk, i.e.,

v(t∗ + tk, c(n.t
∗ + tk)) ≥ v(t∗, c(n.t∗)) + v(tk, c(n.t

∗)),

which means that

v(t∗+tk, c(n.t
∗+tk))−δ

t∗+tk∑
j=2

xj ≥ [v(t∗, c(n.t∗))−δ
t∗∑
j=2

xj]+[v(tk, c(n.t
∗))−δ

t∗+tk∑
j=t∗+1

xj].

Since xj ≤ xs for all j, it follows from (5.32) that the last term is positive.
But then we have

v(t∗ + tk, c(n.t
∗ + tk))− δ

t∗+tk∑
j=2

xj > v(t∗, c(n.t∗))− δ
t∗∑
j=2

xj,

which implies that player 1 receives more than x1 by making an acceptable
offer to players 2, . . . , t∗ + tk, a contradiction.
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Proof of Theorem 3.6. We begin with a description of the function t(.).
For each n ∈ F , let R(n) denote the number of coalitions in n and let
m(n) ≡ n−K(n). Following the arguments in Bloch (1996) it can be shown
that

t(n) =


1 if m(n) < (R(n) + 1)2

m if (R(n) + 1)2 ≤ m(n) < (R(n) + 2)2 + 1
1 if m(n) ≥ (R(n) + 2)2 + 1.

(5.33)

Given this description of t(.), we first verify that n∗ is of the form described
in the statement of the theorem. Starting at φ, t(.) dictates that singletons
must form (so that t(n) = 1 and R(n) equals the number of elements of n
for all such n) until we reach the first nonnegative integer L such that

n− L < (L+ 2)2 + 1. (5.34)

Given (5.33), it remains to show that L also satisfies the inequality

n− L ≥ (L+ 1)2.

Suppose not. Then n−L < (L+1)2. This means that L is a positive integer,
so that L′ ≡ L− 1 is a nonnegative integer. But then, n−L′ > (L′+ 1)2 + 2,
which contradicts the definition of L in (5.34).

To complete the proof, we verify that condition (3.6) holds. To do so,
we note that starting from any n, (5.33) guarantees that larger coalitions
always form later than smaller coalitions. It immediately follows that [2] of
Theorem 3.2 is met.

Now suppose t(n) = 1. Then it is clear that t`(n) = 1 and (3.6) is that
same as [2] of Theorem 3.2, we which we know is satisfied.

It remains to consider the case in which t(n) = m(n) > 1. In this case,
we may conclude from (5.33) that m(n) < (R(n) + 2)2 + 1. Because (as a
result of this inequality) we have m(n)−1 < ({R(n)+1}+1)2, we may infer
that for any n′ with n ⊂ n′, t(n′) = 1.

It follows that for any alternative choice t′ < t(n),

c(n.t′) = (n.t′.1. . . . 1).

Moreover, the same logic tells us that if we consider the structure n′′ derived
from c(n.t′) with t′ removed, t(n′′) = 1 as well. This implies, in particular,
that for all t′ < t(n),

v(t′, c(n.t′))

t′
=
v(t′, (n.t′.1. . . . .1))

t′
< v(1, (n.1. . . . .1)) = v(1, c(n.1)) (5.35)
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and this tells us right away that t`(n) = 1 for any ` < t(n). (5.35) also
contains the information that

a(n.t`(n)) = v(1, c(n.1)). (5.36)

On the other hand, we know that

a(n) =
v(t, c(n.t))

t
≥ v(1, c(n.1)). (5.37)

Combining (5.36) and (5.37), we see that (3.6) is verified. The result that n∗

is the unique numerical coalition structure now follows from Theorem 3.4.

Proof of Theorem 4.1. The proof is broken up into several steps. Fix
any characteristic function w on a player set S and recall the construction in
Section 4.1.1 (see (4.7)–(4.12)). Our first observation is

Lemma 5.4 Ak ≥ Ak+1 for all k.

Proof. Suppose not. Consider the first integer k for which the inequality
is violated. Using (4.10), we see that if T = T1 ∪ . . . ∪ Tk+1 solves the
maximization problem there, then

tk+1A
k+1 + tkA

k = w(T )−
k−1∑
j=1

Ajtj,

(where the empty sum by convention is assumed to give zero value). But
because Ak < Ak+1 and tk+1 > 0, this implies that

Ak <
w(T )−∑k−1

j=1 A
jtj

tk + tk+1

,

which contradicts the construction of Ak, since T is certainly an admissible
set in the maximization problem defining Ak.

Lemma 5.5 For any characteristic function w on a player set S, {ai(w)}i∈S
is a solution to the following two requirements:

ai(w) = max
T⊆S;i∈T

[v(T )−
∑

j∈T\{i}
aj(w)]. (5.38)

and for every i ∈ S,

For some Ti that solves (5.38), aj(w) ≥ ai(w) for all j ∈ Ti. (5.39)

Moreover, there are no other solutions satisfying (5.38) and (5.39).
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Proof. Use Lemma 5.4 along with the definitions of {ai(w)} (given by (4.8)
and (4.11)) to see that

ai(w) = max[v(T )−
∑

j∈T\{i}
aj(w)], (5.40)

where the maximum is taken over only those sets T such that T ⊆ S,
i ∈ T , and j ∈ T implies aj(w) ≥ ai(w). for all i. We need the stronger
implication (5.38), which imposes less restrictions on the maximizing set T .
To see that this is automatically implied, suppose, on the contrary, that there
is a coalition T such that

ai(w) < v(T )−
∑

j∈T\{i}
aj(w). (5.41)

Given the property (5.40), this can only be the case if for some j ∈ T ,
aj(w) < ai(w). Let k be the index in T such that ak(w) is the smallest.
Then, rearranging (5.41), we see that

ak(w) < v(T )−
∑

j∈T\{k}
aj(w).

But this contradicts the property (5.40) for the index k, because aj(w) ≥
ak(w) for all j ∈ T . So (5.38) is established, and (5.40) assures us that (5.39)
is satisfied as well.

Finally, we must show that there are no other solutions to (5.38) and
(5.39). We adapt an argument from Chatterjee et al. (1993, proof of Propo-
sition 1). Suppose, contrary to the claim, that there are distinct solutions
{ai} and {bi} to (5.38) and (5.39). Let Ω ≡ {i ∈ S|ai 6= bi}. Choose k ∈ Ω
such that (without loss of generality)

ak = max{z|z = ai or z = bi for i ∈ Ω}. (5.42)

Using (5.39), we may pick a coalition Tk such that

ak = v(Tk)−
∑

j∈Tk\{k}
aj (5.43)

and such that
aj ≥ ak for every j ∈ Tk. (5.44)
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Because {bi} satisfies (5.38), we have

bk ≥ v(Tk)−
∑

j∈Tk\{k}
bj. (5.45)

Because of (5.42) and (5.44), it must be the case that bj ≤ aj for all j ∈ Tk.
But then, combining this information with (5.43) and (5.45), we see that
bk ≥ ak. This contradicts (5.42).

Lemma 5.6 For each characteristic function w with player set S and each
δ ∈ (0, 1), there exists a unique vector of numbers {ai(w, δ)}i∈S such that for
every i ∈ S,

ai(w, δ) = max
T⊆S;i∈T

[v(T )− δ
∑

j∈T\{i}
aj(w, δ)]. (5.46)

Moreover
lim
δ→1

ai(w, δ) = ai(w), (5.47)

where {ai(w)}i∈S is defined in (4.8) and (4.11).

Proof. The first part of the lemma, that establishes the uniqueness of the
vector {ai(w, δ)}i∈S, is proved in Chatterjee et al. (1993, Proposition 1). To
prove the limit result asserted in the second part, consider any limit point
{ai} of {ai(w, δ)}. Choose a subsequence of δ such that ai(w, δ)→ ai for all
i as δ → 1 along this subsequence. By passing to the limit in (5.46), we see
that {ai} must satisfy (5.38).

Next, consider any coalition Ti(δ) that attains the maximum in (5.46).
By Lemma 2 in Chatterjee et al. (1993), we have aj(w, δ) ≥ ai(w, δ) for all
j ∈ Ti(δ). Let Ti be some limit point of Ti(δ) as δ → 1 along the subsequence
of the previous paragraph. Then Ti solves the maximization problem implicit
in (5.38). And certainly, aj ≥ ai for all j ∈ Ti. We have therefore proved
that every limit point of {ai(w, δ)} (as δ → 1) must satisfy (5.38) and (5.39).

However, Lemma 5.5 tells us that {ai(w)}, as defined by (4.8) and (4.11),
is the only solution to (5.38) and (5.39).

Our next step contains the heart of the argument. We first construct a
finite collection of characteristic functions as follows. For each coalition T in
the given player set, consider the finite set of real numbers f(T ) given by

f(T ) ≡ {v(T, π)|π is a coalition structure of N and T ∈ π}.
Now letW be the collection of characteristic functions with the property the
player set is S ⊆ N and for each coalition T of S, w(T ) ∈ f(T ). Observe
that W is a finite set.
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Lemma 5.7 Pick any characteristic function w inW (with player set S) and
δ ∈ (0, 1). By Lemma 5.6, there exists a unique vector {ai(w, δ)} satisfying
(5.46). For each i, define Ci(w, δ) by the collection of coalitions that achieve
the maximum in (5.46).

Then there exists δ∗ ∈ (0, 1) such that for all δ ∈ (δ∗, 1) and all w ∈ W,

Ci(w, δ) ⊆ Ci(w), (5.48)

where Ci(w) is defined in (4.9) and (4.12).

Proof. Pick any characteristic function w in W (with player set S). Define
Ci(w, δ) for each i as in the statement of the lemma. Because the set W is
finite, it will be sufficient to show that there exists a threshold δ(w) ∈ (0, 1)
such that for all δ ∈ (δ(w), 1), Ci(w, δ) ⊆ Ci(w). The result then follows by
considering the maximum threshold δ(w), over w ∈ W .

Suppose, on the contrary, that there is some i, a subsequence δm con-
verging to one, and a coalition T such that T ∈ Ci(w, δm) for all m, but
T 6∈ Ci(w). Let i ∈ Uk+1 for some k ≥ 0 (see construction in Section 4.1.1).
Indeed, take the smallest value of k for which this is so.

Now, there are two cases to consider.

Case 1. T is not a solution to the maximization problem defining Ak+1 in
(4.10). Write T in the form T1∪ . . .∪Tk+1, where T` ⊆ U` for all ` = 1, . . . , k,
and Tk+1 ⊆ S \ ∪k`=1U`. Note that Tk+1 is nonempty, because i ∈ T and
i ∈ Uk+1 by assumption. It follows that

Ak+1 >
w(T )−∑k

`=1 A
`t`

tk+1

,

or equivalently, that

Ak+1 > w(T )−
k∑
`=1

A`t` − (tk+1 − 1)Ak+1. (5.49)

Because T ∈ Ci(w, δm) for all m, we have

ai(w, δ
m) = w(T )− δm

∑
j∈T\{i}

aj(w, δ
m)

for all m. Using the decomposition T1 ∪ . . . ∪ Tk+1 introduced above, this is
the same as stating that

ai(w, δ
m) = w(T )− δm[

k∑
`=1

∑
j∈T`

aj(w, δ
m) +

∑
j∈Tk+1\{i}

aj(w, δ
m)]. (5.50)
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Now we make four observations. First, note that by Lemma 5.6 (see
(5.47)), limm→∞ aj(w, δ

m) = aj(w) for all j ∈ S. Second, if 1 ≤ ` ≤
k and j ∈ T`, then aj(w) = A` by construction. Third, because i ∈
Uk+1, it is also true that ai(w) = Ak+1. Finally, by Lemma 2 in Chat-
terjee et al. (1993), aj(w, δ

m) ≥ ai(w, δ
m) for all j ∈ Tk+1 \ {i}. So

limm→∞ aj(w, δ
m) ≥ limm→∞ ai(w, δ

m) = Ak+1. However, this last inequality
cannot hold strictly, because Tk+1 ⊆ S \ ∪k`=1U`, and because of Lemma 5.4.
Thus limm→∞ aj(w, δ

m) = Ak+1 for all j ∈ Tk+1 \ {i}. Combining these four
observations and passing to the limit as m→∞ in (5.50), we conclude that

Ak+1 = w(T )−
k∑
`=1

A`t` − (tk+1 − 1)Ak+1.

But this last equality directly contradicts (5.49). This means that case 1 is
impossible. This leaves as the only remaining possibility

Case 2. T = T1 ∪ . . . ∪ Tk+1 is a solution to the maximization problem
defining Ak+1 in (4.10), but fails to minimize ∆(T1 ∪ . . . ∪ Tk+1).

For any function f : (0, 1] 7→ R define h(f(δ)) ≡ f(δ)−f(1)
δ−1

for δ ∈
(0, 1). If f possesses a left-hand derivative at δ = 1, denote this by f ′ ≡
limδ→1 h(f(δ)). We make the following

Claim. Suppose that there exists some δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1)
and for all i ∈ ∪ks=1Us, Ci(w, δ) ⊆ Ci(w). Then for all such i, ai(w, δ) has a
left-hand derivative at δ = 1, a′i(w) = ∆s, where i ∈ Us.
Proof. The proof is by induction on s. Begin with the inductive step,
assuming that the lemma is true for all indices s = 1, . . . , `, for some ` < k.
Pick any i ∈ U`+1. Suppose δ ≥ δ̄. Pick some sequence δ ↑ 1 and a coalition
T ∈ Ci(w, δ) ⊆ Ci(w) along this sequence. Let T be of the form T1∪. . .∪T`+1,
where Ts ⊆ Us for all s = 1, . . . , `+ 1, and i ∈ T`+1. Then

ai(w, δ) = w(T )− δ
∑̀
s=1

∑
j∈Ts

aj(w, δ)− δ
∑

j∈T`+1\{i}
aj(w, δ).

This can be rewritten as

∑
j∈T`+1

aj(w, δ) = w(T )− δ
∑̀
s=1

∑
j∈Ts

aj(w, δ)− (δ − 1)
∑

j∈T`+1\{i}
aj(w, δ).
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Subtracting from both sides of this equation the corresponding expression
evaluated at δ = 1, and using the fact that ai(w, 1) = As for i ∈ Ts, we get∑

j∈T`+1
[aj(w, δ)− A`+1] = −[

∑`
s=1

∑
j∈Ts aj(w, δ)−

∑`
s=1 tsA

s]

−(δ − 1)
∑`
s=1

∑
j∈Ts aj(w, δ)

−(δ − 1)
∑
j∈T`+1\{i} aj(w, δ).

Dividing both sides by (δ − 1)t`+1 we have

h

(∑
j∈T`+1

aj(w,δ)

)
t`+1

= −
h

(∑`

s=1

∑
j∈Ts

aj(w,δ)

)
t`+1

−
∑`

s=1

∑
j∈Ts

aj(w,δ)

t`+1
−
∑

j∈T`+1\{i}
aj(w,δ)

t`+1

(5.51)

By the induction hypothesis, the limit of the first term on the right-hand side

of (5.51) is −
∑`

s=1
ts∆s

t`+1
. The limit of the second term is clearly −

∑`

s=1
tsAs

t`+1

and that of the third term is − (t`+1−1)A`+1

t`+1
. Thus, the limit, as δ → 1 of the

left-hand side of (5.51) is well-defined and

lim
δ→1

h(
∑
j∈T`+1

aj(w, δ))

t`+1

= −
∑`
s=1 ts[A

s + ∆s] + (t`+1 − 1)A`+1

t`+1

= ∆`+1.

(5.52)
By Lemma 1 of Chatterjee et al. (1993), aj(w, δ) ≥ ai(w, δ) for all δ and

for all j ∈ T`+1. Moreover, ai(w, δ) and aj(w, δ) converge to the same limit
A`+1. It follows that

h(ai(w, δ)) ≥
h(
∑
j∈T`+1

aj(w, δ))

t`+1

for all δ < 1.

This, along with (5.52), yields,

lim inf
δ→1

h(ai(w, δ)) ≥ lim
δ→1

h(
∑
j∈T`+1

aj(w, δ))

t`+1

= ∆`+1. (5.53)

Since i ∈ U`+1 was arbitrary, and T`+1 ⊆ U`+1, we may conclude that (5.53)
holds for every j ∈ T`+1, i.e.,

lim inf
δ→1

h(aj(w, δ)) ≥ lim
δ→1

h(
∑
j∈T`+1

aj(w, δ))

t`+1

= ∆`+1 for all j ∈ T`+1. (5.54)
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But this must mean that for every j ∈ T`+1, the left hand side of (5.54) is
the limit of h(ai(w, δ)) as δ → 1, i.e.,

a′i(w) ≡ lim
δ→1

h(ai(w, δ)) = ∆`+1, for all j ∈ T`+1.

This completes the inductive step of the proof.
The first step (which may be identified with ` = 0 in the argument above)

is proved in exactly the same way. Note that all sums of the form
∑`
s=1 are

zero, so that all reliance on induction can be dispensed with in this step.

Now return to the main proof. Recall that we presumed that the desired
result was false, and that k is the smallest index such that there is i ∈ Uk+1

where the result fails. Therefore (in case k ≥ 1), the conditions of the Claim
apply, and we may take it that a′i(w) = ∆s for all i ∈ Us, and s ≤ k. If
k = 1, then no such restriction is needed in the argument below.

Because T solves i’s problem for δm, we see that

ai(w, δ
m) = w(T )− δm

k∑
s=1

∑
j∈Ts

aj(w, δ
m)− δm

∑
j∈Tk+1\{i}

aj(w, δ
m).

This can be rewritten as

∑
j∈Tk+1

aj(w, δ
m) = w(T )− δm

k∑
s=1

∑
j∈Ts

aj(w, δ
m)− (δm − 1)

∑
j∈Tk+1\{i}

aj(w, δ
m).

By the Claim, and the kind of argument used in its proof, it is now easy to
see that

lim
δ→1

h(
∑
j∈Tk+1

aj(w, δ))

tk+1

= −
∑k
s=1 ts[A

s + ∆s] + (tk+1 − 1)Ak+1

tk+1

= ∆(T ) > ∆k+1

where the last inequality holds by assumption, because we are in Case 2.
Using the fact that aj(w, δ

m) ≥ ai(w, δ
m) for all j ∈ Tk+1 \ {i}, we can assert

that
lim inf
δ→1

h(ai(w, δ)) ≥ ∆(T ) > ∆k+1.

As Case 1 has shown been shown to be impossible, a similar argument can
be used to show that

lim inf
δ→1

h(aj(w, δ)) > ∆k+1, for every j ∈ Uk+1. (5.55)
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Now pick any coalition T ∗ = T ∗1 ∪ . . . ∪ T ∗k+1 in Ci(w). Define

bi(w, δ) ≡ w(T ∗)− δ
k∑
s=1

∑
j∈T ∗s

aj(w, δ)− δ
∑

j∈T ∗
k+1
\{i}

aj(w, δ).

Clearly, for all m,
ai(w, δ

m) ≥ bi(w, δ
m).

On the other hand, note that both ai(w, δ
m) and bi(w, δ) converge to the same

limit Ak+1. Combining these two pieces of information, we may conclude that

lim inf
δ→1

h(bi(w, δ)) ≥ lim inf
δ→1

h(ai(w, δ)). (5.56)

Now return to the expression that defines bi(w, δ), and construct the
expressions used in defining the derivative, using the Claim and the fact that
a′i(w) = ∆s for all s ≤ k. This yields

lim infδ→1 h(bi(w, δ)) = −∑k
s=1 t

∗
s[A

s + ∆s]− (t∗k+1 − 1)Ak+1

− lim supδ→1

∑
j∈T ∗

k+1
\{i} h(aj(w, δ))

= t∗k+1∆k+1 − lim supδ→1

∑
j∈T ∗

k+1
\{i} h(aj(w, δ))

< t∗k+1∆k+1 − (t∗k+1 − 1)∆k+1,

where the last inequality follows from (5.55). Thus,

lim inf
δ→1

h(bi(w, δ)) < ∆k+1. (5.57)

But (5.55), (5.56), and (5.57) are mutually contradictory, so that Case 2 is
impossible as well.

The proof of the theorem can now be completed with the use of a simple
inductive argument. Fix δ∗ as given by the previous lemma, consider any
discount factor δ ∈ (δ∗, 1), and a no-delay equilibrium at that discount factor.

First consider all substructures π ∈ Π◦ such that S(π) is a singleton. In
this case, the subgame equilibrium must entail the formation of that singleton
coalition. It is also clear that for any RCF R, R(π) = S(π) in this case, so
that in particular, equilibrium coalition formation is in agreement with some
consistent RCF.

Inductively, suppose that the result is true for all substructures π such
that S(π) is of cardinality k or less, for some k ≥ 1. That is, on this subspace
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is defined an RCF R, the coalitions prescribed by which correspond to the
equilibrium formation of coalitions. Pick some substructure π ∈ Π◦ such that
|S(π)| = k + 1. At this stage, denote by xi the equilibrium payoff to player
i ∈ S(π), were he to be the proposer.

Define a characteristic function wRπ with player set S(π), just as we did
in (4.13):

wRπ(T ) ≡ v(T ; c(π.T,R)),

for all nonempty T ⊆ S(π). Now follow the line of reasoning in the proof of
Theorem 2.1. It is clear that given the valuations {xj} defined in the previous
paragraph, the maximum payoff that i can hope to achieve by making an
acceptable offer is

xi = max
T⊆S(π);i∈T

[wRπ(T )− δ
∑

j∈T\{i}
xj]. (5.58)

By Lemma 5.6, this simply means that xi = ai(wRπ, δ) for all i ∈ S(π).
Moreover, i will make the offer to a coalition Ti in Ci(wRπ, δ). By Lemma
5.7, Ti must lie in the set Ci(wRπ) as well.

Now pick the first proposer assigned by the bargaining protocol to S(π);
say individual j. Pick the coalition Tj, and repeat this process for every
substructure π such that |S(π)| = k+ 1. This extends the RCF R to the set
of all substructures π with S(π) of cardinality at least k + 1, and completes
the inductive step.

Once the induction is completed, we indeed have a consistent RCF that
corresponds to equilibrium coalition formation at every stage, for R(π) ≡
Tj ∈ Cj(wRπ), as shown above.

Appendix: Non-Existence of a Pure Strategy Equilib-
rium

The purpose of this section is to show that Theorem 2.1 cannot be strength-
ened to assert the existence of a pure strategy equilibrium. To this end we
construct an example of a three-player game in which there is no pure strat-
egy equilibrium. The mixed strategy equilibrium of this game will also serve
to illustrate the notion of the mixed strategy equilibrium used in Theorem
2.1. Finally, this example also makes the point that every equilibrium might
involve a delay with positive probability.

Consider a three-player game in partition function form. We will de-
note by v(π) the aggregate payoff to each of the coalitions in π. Thus
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v(S, S ′) = (x, y) means that if the coalition structure is (S, S ′), then coalition
S gets an aggregate payoff of x and coalition S ′ gets y. Consider the specific
description:

v(N) = 0, v({1}, {2}, {3}) = (0.9, 0, 0), v({1, 2}, {3}) = (0, 0),

v({1}, {2, 3}) = (0, 0.3), v({1, 3}, {2}) = (1, 0.1),

Proposition A.1 Suppose 1 > δ > (8/9)1/3. Consider any protocol such
that if player 2 leaves the game, then the next proposer is player 3 (if still
active). Then there is no pure strategy, stationary equilibrium in this game.
However, there does exist a mixed strategy equilibrium (which also follows
from Theorem 2.1).

Proof: It will be useful to begin by making a couple of observations.

(1) Suppose there is an equilibrium in which xi is the equilibrium payoff to
i when i begins the game. Then, if, in equilibrium, player i makes an
acceptable proposal to a coalition containing player j, it follows that
xj ≥ xi; see Lemma 2, Chatterjee et al. (1993).

(2) If in equilibrium, player i makes an unacceptable proposal to player
j, then this must result in player j leaving the game with a coalition
that does not contain i. Clearly, in equilibrium, player i will not make
an unacceptable proposal to player j only to then accept a proposal
from j. The claim then follows from the fact that in equilibrium there
cannot be a chain of unacceptable proposals from i1 to i2 . . . , to ik to
i1. Moreover, if i makes an unacceptable proposal to j who makes an
unacceptable proposal to k, then i 6= j, k, is better off saving one unit
of time and making an unacceptable proposal to k rather than to j.

Let xi be the expected equilibrium payoff to i if i starts as the first
proposer. Clearly, 0 ≤ xi ≤ 1 for all i. Since the protocol calls for 3 to
make a proposal if 2 leaves, it follows that if player 2 leaves the game, then
player 3 will offer 0.9δ to player 1, which will be accepted and, therefore,
player 2 can obtain 0.1 by leaving the game. Thus, x2 ≥ 0.1. However, it
is easy to see that players 1 and 3 will get 0 if either one of them leaves the
game unilaterally (if player 1 leaves the game, players 2 and 3 will form a
two-person coalition).

47



Claim A.1 As a proposer, player 2 will either leave the game or make an
acceptable proposal to player 3, i.e., x2 = max(0.1, 0.3− δx3).

Proof: As we have just observed, player 2 can receive 0.1 by leaving the
game. If he makes an unacceptable proposal to player 1, by (2), it must be
the case that player 1 will leave either alone or with player 3. In fact, player 1
will not leave alone since making an acceptable proposal to player 3 will yield
1− δx3 > 1− x3 ≥ 0 whereas leaving alone will yield 0. But if 1 leaves with
3, player 2 gets 0.1δ. Thus player 2 will not make an unacceptable proposal
to player 1. Making an unacceptable proposal to 3, by (2), will mean that
player 2 gets 0 or 0.1δ, both which are dominated by 0.1. Clearly, leaving
alone dominates making an acceptable proposal to player 1. The only other
possibility is to make an acceptable offer to player 3 and receive 0.3 − δx3.
Thus, x2 = max(0.1, 0.3− δx3) and player 2 will leave only if δx3 ≥ 0.2 and
will make an acceptable offer to 3 only if δx3 ≤ 0.2.

Claim A.2 As a proposer, player 1 will either make an acceptable proposal
to player 3 or make an unacceptable proposal to player 2, i.e., x1 = max(1−
δx3, 0.9δ

2α), where α is the probability with which player 2 leaves the game.

Proof: If player 1 leaves the game, he gets 0 (because 2 and 3 will then
form a two-person coalition). If he makes an unacceptable offer to player 3,
by (2), either 3 leaves the game followed by 2, or 3 leaves with 2. Clearly,
then 3 must leave with 2, which will result in player 1 getting 0. If 1 makes
an acceptable proposal to player 2 he cannot get more than 0. He can make
an acceptable offer to player 3 and get 1− δx3 > 0, which dominates all the
other possibilities considered so far. The only remaining possibility is for him
to make an unacceptable offer to player 2 and get 0.9δ2α.

Step 1. Suppose that α = 1. It follows from Claim A.1 that δx3 ≥ 0.2 and
x2 = 0.1. Consider player 1’s equilibrium strategy. Since δ > (8/9)1/3, we
have 0.9δ2 > 0.8 ≥ 1 − δx3. From Claim A.2, it now follows that player 1
will make an unacceptable offer to player 2 and x1 = 0.9δ2. Now consider
player 3’s strategy. If he leaves the game he gets 0. By observation (1),
it cannot be the case that he makes an acceptable offer to player 2 (since
x3 > 0.2 > 0.1). Since player 1 makes an unacceptable offer to player 2, by
observation (2), player 3 will not make an unacceptable offer to player 1. If
he makes an unacceptable offer to player 2 he gets δ(1 − 0.9δ). If he makes
an acceptable offer to player 1 he gets 1− 0.9δ3 > δ(1− 0.9δ). Thus, player
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3’s equilibrium strategy is to make an acceptable offer to player 1 and get
x3 = 1− 0.9δ3 < 0.2. But this contradicts the presumption that δx3 ≥ 0.2.

Step 2. Suppose that α = 0. Then by Claim A.1, it follows that δx3 ≤ 0.2
and x2 = 0.3− δx3. Since α = 0, Claim A.2 implies that player 1 will make
an acceptable offer to player 3 and get 1− δx3 > 0. Now consider player 3’s
strategy. Since players 1 and 2 are making acceptable proposals to player 3,
it follows from observation (2) that player 3 will either make an acceptable
proposal to player 1 to receive 1

1+δ
or make an acceptable proposal to player 2

and receive 0.3
1+δ

. Clearly, then x3 = 1
1+δ

and δx3 = 1
1+1/δ

. Since δ > (8/9)1/3,

we get δx3 >
1

(9/8)1/3+1
> 0.2, a contradiction.

Step 3. From steps 1 and 2 it follows that α ∈ (0, 1). This proves that
there is no pure strategy equilibrium in this game. Moreover a mixed strat-
egy equilibrium, with 0 < α < 1, must be such that x2 = 0.1 and x3 = 0.2

δ
.

Consider player 1’s strategy. By Claim A.2, x1 = max(1 − δx3, 0.9δ
2α) =

max(0.8, 0.9δ2α). Thus x1 ≥ 0.8 > x3 (since δ > (8/9)1/3). But now obser-
vation (1) implies that player 1 will not, in equilibrium, be making an offer
to player 3. Thus player 1 will make an unacceptable offer to player 2 and
x1 = 0.9δ2α. Finally, consider player 3’s strategy. From the arguments in
step 2 it follows that player 3 must make an acceptable offer to player 1 and
x3 = 1− 0.9δ3α. Since δx3 = 0.2, this yields

α =
δ − 0.2

0.9δ4
.

To summarize, then, a mixed strategy equilibrium must be one in which
x1 = 0.9δ2α, x2 = 0.1, x3 = 0.2

δ
, where player 2 leaves with probability

α = δ−0.2
0.9δ4 and makes an acceptable offer to player 3 with probability 1− α.

Player 1 always makes an unacceptable offer to player 2 and player 3 always
makes an acceptable offer to player 1. It can be checked that this is in fact
an equilibrium.

We shall end this section by showing that the conclusions derived from
the above example remain valid even with a natural, weak form of superaddi-
tivity. When we consider a game in partition function form, our motivation
comes from the supposition that such partition functions are “reduced ver-
sions” of games in strategic form. One of the most important restrictions
that this imposes is the requirement of grand-coalition superadditivity. This

49



means that the grand coalition should be able to achieve, in terms of ag-
gregate worth, at least the sum of what is achievable under any coalition
structure.

It turns out that one cannot impose, in general, any more than this
final requirement on the grand coalition. That is, the superadditivity of
subcoalitions is not implied by games in strategic form.23 To verify this as-
sertion, consider the Cournot example (Example 1.1) from the introduction.
The two-person coalition, confronted with a single opponent, can achieve
strictly less than the sum of what two individuals can achieve in the three-
person game.

So in what follows, we will impose superadditivity at the level of the
grand coalition but nowhere else. It should be emphasized, however, that
our general results do not depend on making this assumption.

Consider a four-person version of this example, where the idea is that
players 1 and 4 are interchangeable in the game. The partition function is
as follows:

v({1}, {2}, {3}, {4}) = (0.9, 0, 0, 0.9),

v({42}, {3}, {1}) = v({12}, {3}, {4}) = (0, 0, 1),

v({13}, {2}, {4}) = v({43}, {2}, {1}) = (1, 0.1, 5),

v({1}, {23}, {4}) = (0, 0.3, 0), v({1234}) = 7,

and all other partitions have a zero vector of worths.
The protocol is as follows. Players 1 or 4 begin the game, but if there is

any other player set S left with 3 ∈ S, then player 3 is the first proposer in
that set.

Notice that if player 1 (or 4) chooses to leave the game, then according
to the unique mixed strategy equilibrium derived in the earlier version of the
example, the remaining coalition structure will be ({34}, {2}) (or ({13}, {2})
if player 4 leaves), which yields the first leaving player a payoff of 5. On the
other hand, if player 1 (or 4) does not leave and does anything else, then in
no equilibrium can she get any return that is at least as high as 5. Therefore
she will leave in equilibrium. This means that the equilibrium must involve
some mixing (though the mixing is not observed on the equilibrium path).

23This is not to say that further restrictions are not implied; only that it is not obvious
what they are.

50



References

Aumann, R., and Myerson, R. (1988), “Endogenous Formation of Links be-
tween Players and of Coalitions: An Application of the Shapley Value,”
in The Shapley Value: Essays in Honor of Lloyd Shapley, ed., A. Roth,
Cambridge University Press, Cambridge, 175–191.

Bloch, F. (1996), “Sequential Formation of Coalitions with Fixed Payoff
Division,” Games and Economic Behavior 14, 90–123.

Binmore, K. (1985), “Bargaining and Coalitions,” in Game Theoretic Mod-
els of Bargaining (A. Roth, Ed.), Cambridge: Cambridge University
Press.

Chakravorti, B., and Kahn, C. (1991), “Universal Coalition Proof Equilib-
rium,” mimeo, University of Illinois, Champaign.

Chatterjee, K., Dutta, B., Ray, D., and Sengupta, K. (1989), “A Theory of
Noncooperative Coalitional Bargaining,” mimeo., Division of Manage-
ment Science, Pennsylvania State University.

Chatterjee, K., Dutta, B., Ray, D. and Sengupta, K. (1993), “A Noncoop-
erative Theory of Coalitional Bargaining,” Review of Economic Studies
60, 463–477.

Chwe, M. (1994), “Farsighted Coalitional Stability,” Journal of Economic
Theory 63, 299–325.

Dutta, B., van den Nouweland, A., and Tijs, T. (1995), “Link Formation in
Cooperative Situations,” Discussion Paper, CentER, Tilburg Univer-
sity.

Dutta, B. Ray, D., Sengupta, K., and Vohra, R. (1989), “A Consistent
Bargaining Set,” Journal of Economic Theory 49, 93–112.

Greenberg, J. (1990), The Theory of Social Situations, Cambridge: Cam-
bridge University Press.

Jackson, M., and Wolinsky, A. (1996), “A Strategic Model of Social and
Economic Networks,” Journal of Economic Theory 71, 44–74.

51



Hart, S., and Kurz, M. (1983), “Endogenous Formation of Coalitions,”
Econometrica 51, 1047–1064.

Ichiishi, T. (1981), “A Social Coalitional Equilibrium Existence Lemma,”
Econometrica 49, 369–377.

Lucas, W. (1963), “On Solutions to n-Person Games in Partition Function
Form,” Ph.D. dissertation, University of Michigan, Ann Arbor.

Moldovanu, B. (1992), “Coalition-Proof Nash Equilibria and the Core in
Three-Player Games,” Games and Economic Behavior 4, 565–581.

Okada, A. (1996), “A Noncooperative Coalitional Bargaining Game with
Random Proposers,” Games and Economic Behavior 16, 97–108.

Perry, M., and Reny, P. (1994), “A Non-Cooperative View of Coalition
Formation and the Core,” Econometrica 62, 795–817.

Ray, D. (1989), “Credible Coalitions and the Core,” International Journal
of Game Theory 18, 185–187.

Ray, D., and Vohra, R. (1997), “Equilibrium Binding Agreements,” Journal
of Economic Theory , 73, 30–78.

Ray, D., and Vohra, R. (1996), “A Theory of Endogenous Coalition Struc-
ture,” mimeo, Boston University.

Rosenthal, R. W. (1972), “Cooperative Games in Effectiveness Form,” Jour-
nal of Economic Theory 5, 88–101.

Rubinstein, A. (1982), “Perfect Equilibrium in a Bargaining Model,” Econo-
metrica 50, 97–109.

Salant, S., Switzer, S., and Reynolds, R. (1983), “Losses from Horizontal
Mergers: the Effects of an Exogenous Change in Industry Structure on
Cournot-Nash Equilibria,” Quarterly Journal of Economics, 93, 185–
199.

Selten, R. (1981), “A Noncooperative Model of Characteristic Function Bar-
gaining,” in Essays in Game Theory and Mathematical Economics in
Honour of Oscar Morgenstern (V. Bohm and H. Nachtkamp, Eds.),
Mannheim: Bibliographisches Institut.

52



Shenoy, P. (1979), “On Coalition Formation: A Game Theoretic Approach,”
International Journal of Game Theory 8, 133–164.

Thrall, R., and Lucas, W. (1963), “n-Person Games in Partition Function
Form,” Naval Research Logistics Quarterly 10, 281–298.

Winter, E. (1993), “Mechanism Robustness in Multilateral Bargaining,”
Theory and Decision 40, 131–47.

Zhao, J. (1992), “The Hybrid Solutions of an N -Person Game,” Games and
Economic Behavior 4, 145–160.

53



Figure 1: Schematic Description of the Bargaining Process.

54



S

S'

TimeTimeTime

Time
passes (δ)

Time
passes (δ)

ρp(N) ρp(N-S)

ρp(N-S')Rejector
proposes

proposal

proposal

rejected

rejected

accepted

accepted


