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I. OVERVIEW

In the past decade, contributors to the endogenous growth literature have identified a variety

of ways that trade policy might affect long run growth. Among these, Lucas (1993) has argued that

the mechanisms emphasized by Krugman (1987), Stokey (1988 and 1991) and Young (1991)

provide an especially appealing characterization of developing countries: growth is accomplished by

concentrating resources in those goods whose production processes induce learning and knowledge

spillovers.  Hence trade policy, by influencing the mix of production, can affect long run growth

rates.

Despite its appeal, the Lucas/Krugman/Stokey/Young (hereafter LKSY) view remains largely

untested.  To distinguish it convincingly from other theories that relate trade to growth requires

information on product-specific market shares and their evolution, as well as the technological

sophistication and productivity growth rates associated with each product. Comprehensive

product-level data of this kind are rarely available, and they are certainly missing in the relatively

aggregated data sets that the empirical growth literature has focussed upon.1

Nonetheless, by exploiting plant-level panel data, it may be possible to get much closer to

testing the LSKY view than the existing empirical growth literature has done. If particular products

may be associated with particular plants, and if technological sophistication may be associated with

the plant-specific engineer- and technician-intensity of production, these data should provide a

reasonable basis for inference. This paper begins from the premise that they do.

 After reviewing the theoretical models of interest (section II), we devote considerable time to

rendering the concept of a “learning industry” empirically meaningful (section III). We then use

plant- and industry-level data from Colombia and Morocco to characterize rates of movement up

                                                
1 Recent contributions to the empirical literature include Barro and Sali-Martin, 1994; Coe and Helpman, 1995;

Keller, 1995; and Sali-Martin 1997.
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the continuum of products from low-end (little learning potential) to high-end goods (section IV).

Finally, we look for evidence that relatively rapid productivity gains accompany relatively rapid

movement up the goods continuum.

II. THE MODELS OF INTEREST

Most of the models that motivate our empirical work involve learning by doing. That is, in

the process of manufacturing output, managers and workers acquire experience that makes them

more productive. This well-documented phenomenon is typically summarized by a “learning curve”

relating process-specific production costs to cumulative units produced.2 For new processes the

learning curve is downward sloping, but it eventually flattens out as the potential for learning is

exhausted.

If each process is associated with a given product, knowledge accumulation is a non-

decreasing, concave and bounded function of that product’s cumulative output. Hence, when the set

of goods produced is fixed, growth associated with learning is limited by the scope for refinement of

the associated production techniques, and steady- state growth cannot be sustained by learning by

doing. But if there are infinitely many goods subject to learning by doing, some not yet

manufactured, then a shift of production away from goods where learning by doing has been

exhausted toward new goods where no learning has yet occurred induces growth.  So long as new

goods are introduced, growth persists.

Lucas (1988), elaborating on Krugman (1987), provides some structure to this line of

thinking. He supposes that goods exist in infinitely-lived families. Each generation of good requires

                                                
2 See, for example, early work by Alchian (1936) on airframe construction. Since then, many studies have found

corroborating evidence that production experience decreases unit costs. Benkard (1997) provides an excellent recent
contribution and documents partial spillovers from experience producing one generation of wide-body aircraft to
the next generation’s efficiency.  Malerba (1992) provides a recent review of the literature and some evidence of his
own.
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more human capital than the foregoing generation because it inherits the foregoing generation’s

human capital requirements and has some additional needs of its own. Because new generations of

goods are continually introduced, learning by doing within each family is never exhausted. Some

families of goods hold more potential for learning than others, so at any point in time, the aggregate

rate of productivity growth in an economy is a weighted average of the learning rates in different

families, the weights being measures of sector-specific production.

This framework provides one formalization of the infant industry argument: trade protection

drives up the relative demand for industrial goods, accelerating learning there. Once industrial

productivity is sufficiently high relative to productivity in other sectors, the economy has a

comparative advantage in industrial goods, and opening to trade will cement in place specialization

in the high growth sector.

The Krugman (1987) and Lucas (1988) models do not formally describe the process by

which the goods within each family are introduced, refined, and eventually abandoned. But Stokey

(1988) does precisely this. Focusing on a single family of products, she begins by positing an

infinite continuum of produced or potentially producable goods, indexed in ascending order of

technological sophistication. The higher the value of the index, the larger the number of Lancaster’s

(1966) characteristics the good possesses. For example, 133 megahertz laptop computers with CD

ROM are more sophisticated than first generation PCs because they deliver all the useful

characteristics supplied by early PCs, and much more.

As production occurs, all producers become more efficient through knowledge spillovers, but

the effect of these spillovers on efficiency is strongest among relatively sophisticated goods. So over

time these high-end goods drift into the set of goods produced, and eventually drive low-end goods

from the market. Efficiency gains create income growth, which expands the relative demand for high-

end products through Engel effects. Hence sustained growth is possible, and is accompanied by the
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introduction of increasingly sophisticated goods and the discontinuation of relatively primitive

goods.

The model is general enough that growth rates may increase, decrease, or remain constant in

the long run, depending upon one’s assumptions regarding tastes, technology and knowledge

accumulation. Further, when a “traditional” sector without learning effects is added to the model, it

is possible that the economy will be trapped in a no-growth equilibrium, producing only the

traditional good. However, if demand shocks induce at least some manufactured production,

sustained growth begins. In this context, it is possible that trade could drive a country to specialize

in goods without learning potential, thereby preventing growth. So results qualitatively similar to

Krugman’s (1987) and Lucas’s (1988) are attainable with a more complete representation of the

evolving product mix and associated learning processes.3

Focusing more directly on trade, Young (1991) also posits a model where learning by doing

in high-end goods is the source of growth. (Details are provided in Appendix I.) As in Stokey

(1988), learning is bounded on each individual good and has positive spillovers across goods because

learning contributes to aggregate human capital. However, instead of indexing goods by the number

of their characteristics, Young ranks goods in terms of the “sophistication of the technical processes

used” in their production. Experience producing one good reduces the unit cost of producing all

goods with learning potential, and production costs are monotonically increasing in the level of

sophistication. So, goods are introduced in the order of increasing technological sophistication.

Consumers have a strong, but bounded, preference for variety. As more and more

technologically sophisticated goods are produced, consumers purchase a greater variety of them, but

the price to marginal utility ratio for low-tech goods eventually sufficiently high that consumers

                                                
3 As Lucas (1993) notes, however, trade becomes intra-industry when one moves to heterogeneous products and

technologies.
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drop them. Equilibrium here, as in Stokey’s model, is characterized by unbounded growth and a

gradual shift in the product mix toward high-end goods.

To explore the consequences of North/South trade, Young assumes that North is initially

endowed with more human capital than South. This implies that in autarky the most sophisticated

products are produced only in the North, and the most primitive products are produced only in the

South. Moving to free trade generates the usual static gains, but there are also some dynamic effects

that depend upon the relative populations and the initial difference in human capital.

To illustrate, suppose North has a greater labor force than South, and initial levels of human

capital imply that there is some overlap in the range of goods produced by the two regions. Then

North’s low-end goods, where learning by doing for North has been exhausted, compete with

South’s high-end goods, where much of South’s learning potential lies. (Simple electronic goods, like

no-frill telephones and radios, might fall in this category.) Trade discourages both regions from

producing this range of middle goods by making cheaper high-end substitutes available in South, and

cheaper low-end substitutes available in North. Consequently, North diverts its workers toward

higher-end goods, where more learning potential is, and South toward lower-end goods, where

learning has been exhausted. North grows faster than in autarky and South grows slower.4

Of course, not all learning is a by-product of experience producing particular goods.

Individuals typically devote some effort to skill acquisition because the returns from doing so can be

partly internalized.  Although Young (1991) rules out this type of activity, Stokey (1991) shows in

a second model that schooling can be substituted for learning by doing without changing Young’s

(1991) conclusions much.  In this model, high-end products are human-capital intensive, so a shift of

                                                
4 Other outcomes are possible but less plausible.  If South is sufficiently larger than North and the human capital

gap sufficiently small, South may overtake North. In this example, South is so large and its technological
handicap so small that before trade it produces all goods produced by North and some lower-end goods.  Trade
causes both to divert resources away from these goods toward higher-end goods, with greater learning potential.
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demand toward these goods spurs investment in education, and accelerates the rate of knowledge

accumulation.5 Thus growth acceleration is still associated with shifts in the product mix toward

high-end goods, and trade liberalization still has the potential to slow growth in developing

countries, which have a comparative advantage in low-end products.  One distinguishing feature of

Stokey’s (1991) schooling model is that production technologies themselves do not evolve with

learning.

To summarize, Young (1991), Stokey (1988, 1991) and Lucas (1993) each attribute

productivity growth to learning processes that make feasible the production of increasingly

sophisticated products, and to the associated knowledge spillovers. The more rapidly learning takes

placeeither through schooling or through learning by doingthe higher the rate at which new high-

end products are introduced, and the higher the rate of productivity growth. (Similarly, the

productivity growth rate is monotonically related to the rate at which low-end products are

discontinued.)  Trade policy influences the relative demand for high-end products, and thus affects

all three of these endogenous variables. A likely, but not necessary, consequence of trade

liberalization in LDCs is that demand for high-end goods is dampened, thereby limiting the amount

of learning and spillovers taking place.

These models capture a fundamental, albeit second best, rationale for infant industry

protection in developing countries. They are distinct from other endogenous growth models because

they link learning directly with product sophistication rather than with product variety (as, for

example, in Romer, 1990, and Keller, 1995), with general improvements in the quality of a fixed set

of goods (as, for example, in quality ladder models like Grossman and Helpman’s, 1991b), or with

                                                                                                                                                                 
But because South has more workers to employ in high-end production, South grows faster than North and faster
than in autarky.

5 Externalities in schooling are necessary to make the rate of knowledge accumulation a positive function of the level
of schooling chosen by each generation.
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the general quality of labor (as, for example, in Lucas’s, 1988, human capital model). Accordingly

they are unique in predicting that productivity growth is associated with continual movement up the

spectrum of product sophistication, and that high-end goods should exhibit more productivity

growth than low-end goods.6 We now look for evidence that they are empirically relevant.

III. WHAT IS A GOOD WITH LEARNING POTENTIAL?

A. How theorists sort goods

The definition of a high-end good varies from model to model. Krugman (1987) and Lucas

(1988) simply assume that in the high-end sectors, productivity is relatively sensitive to the amount

of output they have produced. Since the scope for learning in the production of any particular

product is eventually exhausted, the implicit notion is that sectors are composed of families of

goods, and the family composition is continually shifting toward goods with unexhausted potential

for learning by doing.

More elaborate models explicitly describe the shifting process. This means distinguishing

individual products according to their unexploited learning potential rather than sorting broadly

defined sectors. In Young’s (1991) formulation high-end goods are those introduced recently enough

that some refinements in the production process are still undeveloped. These goods are also

characterized by learning spillovers that help other producers near the high-end of the product

sophistication spectrum to become efficient more quickly. Stokey’s (1988) formulation is similar,

except in that efficiency gains among high-end goods are relatively rapid for any given increment to

the stock of general knowledge.

                                                
6 Stokey’s (1991) model does not carry the implication that productivity growth should be more rapid among the

more sophisticated goods.
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Knowledge accumulation in both Young’s (1991) and Stokey’s (1988) first model is a purely

external byproduct of production.  In contrast, Stokey’s (1991) second model treats knowledge

accumulation as the result of privately optimal schooling decisions on the part of households.  High-

end goods in this formulation are simply those that require relatively high levels of schooling inputs

per unit output.  They are goods with learning potential only in the sense that they induce demand

for schooling, which improves the quality of current generation workers and makes human capital

acquisition easier for future generations through positive externalities.  Unlike in the learning-by-

doing models, the production technologies for these goods exhibits no more tendency toward

efficiency gains than those for goods at the low end of the spectrum.

B. Feasible Empirical Sortings

The unexploited learning potential of a good cannot be directly observed; nor can the effects

of any good’s production on the general stock of knowledge.  Thus, to examine empirically the

growth mechanisms embodied in the models of interest, our first task is to characterize the learning

potential associated with different products using observable data.

We will base our characterizations on comprehensive plant-level panel data sets from

Colombia (1977 through 1991) and Morocco (1986 through 1990). In addition to annual information

on inputs and outputs at each plant, these data include information on the composition of each

producer’s work force, distinguishing technical personnel from others. 7

Unfortunately R&D intensity is not directly observable for either of the sample countries.

However, our data bases do include a number of other variables that should proxy for the amount of

learning going on. The number of technicians and their total wage bill is reported annually for plants

                                                
7 The first version of this paper also treated Chilean data, which did not provide information on technicians, but did

report expenditures related to patents.  These data proved to be poor proxies for technological sophistication (in
the sense that will be discussed shortly) so we have dropped Chile from the analysis.
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in the Colombian panel, and in two years for plants in the Moroccan panel. When information on

technicians is provided, the Moroccan data further disaggregate them into three categories: upper

management, middle management and skilled workers.  From these variables we construct techwork,

upmaemp, mimaemp, and skilemp, which measure the share of technicians, upper management

technicians, middle management technicians, and skilled workers, respectively, in total employment

(Table 1). We also construct techwage, techprod, and techexpe, which measure the cost of

technicians relative to the total wage bill, the total value of output, and total expenditures,

respectively.8

Do our various measure of sophistication correspond to the theoretical notions described by

Stokey (1988, 1991) and Young (1991)?  Each measures the intensity of technical worker use, which

is directly related to the notion of a high-end producer in Stokey’s (1991) schooling model, and

should proxy Young’s (1991) and Stokey’s (1988) earlier notion of a good with learning potential as

well, so long as the production of products that involve learning requires relatively educated

workers. Shortly we will look at correlations of product and firm rankings across proxies and

countries.

Table 1:  Technological Sophistication Indicators
Country/Years Variable Definition

Colombia, 1977-1991 techwork number of technicians/total employees
techwage technicians' wage bill/total wage bill
techprod technicians' wage bill/total output
techexpe technicians' wage bill/total expenditures

Morocco, 1986 and 1990 upmaemp upper management technicians/total employees
mimaemp middle management technicians/total employees
skilemp skilled workers/total employees

C. Correlations across indicators, countries, time

                                                
8 In the Moroccan surveys, the categories of employees changed somewhat between 1986 and 1990. Further,

consistency checks revealed that the labelling of certain worker types in Morocco was inconsistent between these
two years.  Appendix II discusses the measures we took to recover the correct labels.
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Before using our proxies for technological sophistication to rank industries and firms, it is

worth exploring their empirical properties. We would like to know if they are stable through time at

the industry level, as the Lucas and Krugman theories presume. (At the firm level, rankings may

change if the potential for learning is exhausted among some producers.) Further, if our sectoral

rankings are to provide a basis for generalization, we require that they be stable across countries.

Finally, it would be comforting to find that our rankings are consistent with earlier work on product

sophistication in the literature, which has focussed on R&D.

relation to R&D

Addressing the last issue first, we compare the industry rankings implied by our various

measures in Table 1 to industry rankings based on R&D expenditure data from the United States.9

The United States data are reported at a level comparable to the 2 digit ISIC level, so we aggregate

our plant-level data from Colombia and Morocco up to that level, and take averages of all variables

in Table 1 over time.

Our findings are reported in Table 2.  Even if technician intensity were an excellent proxy for

R&D activity, we would expect imperfect correlations because of cross-country differences in

product mixes within each industry, and variations in production techniques for given products.

Nonetheless,  a strong ( greater than 0.75) correlation between both techwage, mimaemp and U.S.

R&D expenditures appears to exist.  There is also a high (greater than  0.65) correlation between

both techwork and upmaemp and US R&D. Clearly, the high-end sectors in terms of R&D intensity

in the U.S. appear to also be the high-end sectors in terms of technician-intensity in Colombia and

Morocco. If R&D reflects learning, this is support for our use of  the technician-intensity variables

to rank products.

                                                
9 The U.S. data describe the period 1981-91. The R&D data are from Science & Engineering Indicators−1993., p.

368.
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Table 2:  Correlation Coefficients Between
Technological
                Sophistication Indicators and R&D Expenditures

Colombia Morocco
Technological
Sophistication
Measure

Correlation
Coefficient
(p-value)

Technological
Sophistication
Measure

Correlation
Coefficient
(p-value)

techwork 0.6500 upmaemp 0.6833
(0.1476) (0.1802)

techwage 0.7667 mimaemp 0.8500
(0.0791) (0.0351)

techprod 0.4000 skilemp -0.2333
(0.2909) (0.3801)

techexpe 0.3833
(0.3000)

Stability of rankings

Next, we wish to know whether product rankings based on the variables in Table 1 are stable

over time. If we cannot associate a given class of products with a given position in the ranking, a

basic premise of the LKSY framework is wrong, and it makes little sense to proceed. Individual

firms, however, can be expected to drift up or down in the ranking as the nature of their products

changes and goods enter or exit the population.

Table 3:  Cross-Time Rank Correlations of Firms’Technological Sophistication
Colombia (inital year 1977) Morocco (inital year 1986)

Correlation
after:

techwork techwage techprod techexpe upmaemp mimaemp skilemp

4 years 0.5030 0.5128 0.5010 0.5020 0.4130 0.3153 0.1618
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

7 years 0.4642 0.4737 0.4645 0.4531 n.a. n.a. n.a.
(0.0001) (0.0001) (0.0001) (0.0001)

10 years 0.4245 0.4339 0.4233 0.4143 n.a. n.a. n.a.
(0.0001) (0.0001) (0.0001) (0.0001)

13 years 0.4002 0.4127 0.3994 0.3971 n.a. n.a. n.a.
(0.0001) (0.0001) (0.0001) (0.0001)

Table 3 reports cross-time Spearman correlations of firms’ sophistication rankings, for each
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of the technological sophistication indicators we consider. The results suggest that most of our

technological sophication rankings are stable from period to period. As expected, the persistence of

the rankings weakens over time; nonetheless it remains positive and significant for most

sophistication measures.  For example, the correlation coefficient for techwork is 0.50 for 1977 and

1981, but declines to 0.40 for 1977 and 1990 (the full time span).  The same pattern emerges for the

other indicators of technological sophistication, excepting skilemp in Morocco.

Cross-country stability

Finally, are the rankings stable across countries? If so, this suggests that technological

factors, rather than local conditions, dictate the nature of production processes.  If not, the results

are unlikely to provide a basis for generalization to other countries.

 Given that both the Moroccan and the Colombian rankings correlate strongly with U.S.

R&D-based  rankings, it is not surprising that they correlate well with each other (Table 4a). At the

two digit level, the Colombian indicators techwork and techwage are highly correlated (i.e., ρ >

0.675) with the Moroccan indicators upmaemp and mimaemp.  And in 1986 all are significant at the

5% level or below.  In 1990, the correlation weakens somewhat, suggesting that technologies have

been diverging in the two economies (figures not reported).

Disaggregating  introduces more scope for country-specific products and technologies.

Nonetheless, correlations remain strong at the three digit level (Table 4b). In 1986, techwage and

techwork are significantly correlated with all of the Moroccan indicators of technician intensity. And

skilemp is significantly correlated with all of the Colombian indicators of technician intensity. In

1990, upmaemp and mimaemp are significantly correlated with all of the Colombian indicators of

technician intensity (figures available upon request).

At the four-digit level in 1986, all indicators of Colombian technician intensity and

Moroccan technician intensity are significantly correlated (Table 4c). The strongest correlations are
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between i) techwork and both upmaemp and mimaemp and ii) techwage and both upmaemp and

mimaemp.  In 1990, only upmaemp is a significant correlate of the Colombian indicators of

technician intensity (figures not reported). None of the Chilean measures of product sophistication

is associated with Colombian or Moroccan measures at this level of disaggregation.
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Table 4a:  Cross-Country Correlation
                  Coefficients, 1986

upmaemp mimaemp skilemp
2-digit rankings

techwage 0.7167 0.6333 0.0500
(0.0298) (0.0671) (0.8984)

techwork 0.7667 0.4167 0.2333
(0.0159) (0.2646) (0.5457)

techprod 0.0833 0.0667 0.3833
(0.8312) (0.8647) (0.3085)

techexpe 0.2333 0.3167 0.2333
(0.5457) (0.4064) (0.5457)

3-digit rankings
techwage 0.6254 0.5562 0.0677

(0.0008) (0.0039) (0.7478)
techwork 0.6408 0.5423 0.0300

(0.0006) (0.0051) (0.8868)
techprod 0.3546 0.1969 0.1800

(0.0820) (0.3454) (0.3892)
techexpe 0.5223 0.2446 0.1777

(0.0074) (0.2386) (0.3955)

4-digit rankings
techwage 0.4394 0.4116 -0.0304

(0.0002) (0.0005) (0.8059)
techwork 0.4691 0.4195 0.0127

(0.0001) (0.0004) (0.9181)
techprod 0.1752 0.2693 0.1508

(0.1530) (0.0264) (0.2198)
techexpe 0.1855 0.2705 0.1314

(0.1298) (0.0257) (0.2856)

summary

In sum, two Colombian technician intensity indicators, techwork and techwage , and two

Moroccan indicators, upmaemp and mimaemp , are strongly correlated across countries.  Moreover,

these indicators yield industry rankings closely related to those based on U.S. R&D intensity, and

are quite stable over time. For all of these reasons we will hereafter focus on  techwork, techwage,

upmaemp and mimaemp in our analysis.

IV. EVOLUTION OF THE S ECTOR-LEVEL TECHNOLOGICAL S OPHISTICATION
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With a means to describe the learning potential associated with each industryindeed, each

firmwe can now proceed to ask whether the manufacturing sectors in our sample countries have

been getting increasingly sophisticated.  There are two senses in which this might occur.  One, which

is predicted by the LKSY product spectrum models, is by continually shifting resources toward

high-end products.  The other is through a general increase in the intensity of skilled input use

among all types of products. This is the kind of human capital deepening that provides an engine for

growth in models that do not distinguish a spectrum of products in terms of their potential to

generate learning (e.g., Barro and Sali-Martin, 1995, Chapter 5; Lucas, 1988).

A. Inter-industry shifts

To distinguish these two types of increases in the sophistication of production, we begin by

writing the growth rate of manufacturing-wide technological sophistication, e, between t-1 and t as

the sum of two components:

(1)
∆et

et −1

=
∆e jt

j =1

J

∑ θ j + ∆θ jt
j =1

J

∑ e j

et −1

 .

Here e is the total number of technicians in manufacturing, expressed as a share of total

manufacturing employment. Subscripts j and t indicate the industry and time period, respectively, θ j

is the jth industry’s share in manufacturing-wide employment, an overbar indicates the simple

average over the two time periods, and ∆ is the difference operator for the period t-1 to t. The same

expression can be used, mutatis mutandis, to decompose changes in manufacturing-wide technician

wages as a share of some manufacturing-wide normalizing variable (either total wages, expenditures,

or production).
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The first term in the numerator on the right hand side captures the change in manufacturing-

wide technological sophistication due to within-industry deepening of technician intensity, and the

second term represents the reallocation of workers across industries. If the second term is positive,

then the technician-intensive industries are growing relatively rapidly, indicating the type of

resource reallocation consistent with LKSY-type productivity growth.  In contrast, if all of the

change in aggregate technician intensity comes from intra-industry deepening, there is no evidence of

this type of broad resource reallocation.  Nonetheless, it may still be case the case that within

particular 3-digit or 4-digit industries, resources are being shifted toward high-end products, in

which case further disaggregation is needed to detect the LKSY growth mechanism.

Table 5:  Change in Technological Sophistication:  Decomposition
Country Period Measure of

Technological
Sophistication

Total Growth Deepening Effect Share Shifting
Effect

(t-1)−t     ∆e/et-1        = Σ∆eθ/et-1     + Σ∆θe/et-1

Colombia 77−91 techwork 0.6159 0.6253 -0.0094
78−86 0.1765 0.1780 -0.0146
82−89 0.2054 0.2154 -0.0099
77−91 techwage 0.0543 0.0338 0.0206
78−86 -0.0241 -0.0593 0.0353
82−89 0.0720 0.0759 -0.0039

Morocco 86−90 upmaemp 0.8846 0.9581 -0.0735
86−90 mimaemp 0.3895 0.4835 0.0940
86−90 skilemp 2.4135 2.3113 0.1022

Table 5 implements equation (1) for each of the sophistication measures in Table 1,

distinguishing industries at the 3-digit level.  For Colombia we report three sub-periods to control

for business cycle effects:  the entire sample period (1977-91), the trough-to-trough period (1978-

1986), and the peak-to-peak period (1982-1989). Moroccan manufacturing output expanded during

the entire sample period so this exercise was not feasible. Note also that in Morocco the definition

of a skilled worker changed somehow between 1986 and 1990, rendering skilemp useless as a

measure of the total increase in technological sophistication.
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The message conveyed by table 5 is striking. Clearly, although technological sophistication

generally increased from period to period,  this was almost entirely attributable to upgrading within

industries, rather than a reallocation of market share toward more technologically sophisticated

industries.  So, at this very broad level, aggregate technological sophistication appears to increase

because of a deepening of technological sophistication in all industries, not because high-end sectors

grew relative to other industries.

It is somewhat surprising that inter-sectoral shifts are not more important. Other studies

have documented a systematic shift of production away from simple manufactured products as the

development process unfolds (e.g., Chenery and Syrquin, 1986).  One interpretation is that our time

periods are relatively short, and much of the temporal variation is due to the major contractions and

recoveries associated with the debt crisis and its aftermath. Nonetheless, we find evidence that

production became more technician-intensive in the aggregate during all subperiods, so the data do

reflect long-term forces.

Interestingly, similar decompositions have been done for a wide range of developed countries

to address the issue of whether pervasive skill-biased technical change explains the globally rising

wage gap between skilled and unskilled labor. The findings, summarized in Behrman, Machin and

Bound (1996), suggest that most of the rise in the skill intensity of production is due to skill

deepening within industries, rather than shifts in the product mix toward skill-intensive sectors.

However, with a few exceptions, they also find a role for product mix shifts toward skill-intensive

industries.10 So, assuming that the level of disaggregation is sufficient, one might argue that during

                                                
10 Between 1980 and 1990, Behrman, Machin and Bound (1996) report that 73 percent of the skill deepening in the

U.S. was due to within-industry effects, 143 percent in Luxembourg, 59 percent in Sweden, 99 percent in
Australia, 121 percent in Japan, 87 percent in Denmark, 79 percent in Finland, 73 percent in Austria, 94 percent
in the U.K., and 49 percent in Belgium.  The level of disaggregation they use is roughly comparable to our 3-
digit ISIC results.
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the 1980s, whatever movement toward high-end products took place was concentrated in the

industrialized economies.

B. Intra-Industry Shifts

We now look at changes within industries and ask whether sector-level technological

sophistication increased because all firms became more sophisticated, or because of intra-industry

market share reallocations toward more sophisticated firms. To do this we decompose each ∆e jt

term in equation (1) into the effect of intra-plant changes in technician intensity, and the effect of

changes in the allocation of workers across plants.  This exercise is basically the same as our sectoral

decomposition, however it is complicated by extra terms to deal with the entry and exit of

producers over the sample period. Our expression becomes:

(2)
∆ejt

e jt −1

=
α j ∆eijt

c

i= 1

I

∑ θ ij + ∆θ ij
c

i =1

I

∑ eij
 
  

 
  

e jt −1

+
∆α j ej

c −
e j

b + e j
d

2

 

  
 

  

e jt −1

+
(e j

b − e j
d)(1− α j )

e jt −1

Here c, b and d indicate continuing, entering (beginning) and exiting (dying) firms, respectively and i

subscripts refer to individual producers.  αj is the share of continuing plants in total employment

within industry j. (The other symbols are as before.)  The first ratio on the right-hand side resembles

equation (1).  Its numerator disaggregates changes in technician intensity among incumbent

producers into two subcomponents:  one is incumbent upgrading, and the other is shifts in market

share among incumbents.  The second ratio measures the effect of changes in the market share of

incumbent firms, or equivalently, changes in the turnover rate. This term indicates that when

incumbents are more intensive in technicians than entering and exiting plants, then reductions in the

amount of turnover (increases in αj ) will increase industry-wide technology intensity. Finally, if

entering plants are more technician-intensive than the exiting plants they replace, ongoing producer



19

turnover will also increase industry-wide technology intensity. This replacement effect is described

by the third ratio.

Note that a positive value for any of these four effects except incumbent upgrading

corresponds to resource reallocation toward high-end producers. To the extent that individual firms

manufacture the same product or products over time, these cross-firm resource reallocations can be

interpreted as cross-product shifts, reflecting the LKSY growth mechanism.  Of course, if the

movement toward higher-end products takes place mainly within plants, rather than by high-tech

plants displacing more primitive plants, the associated increase in technician intensity will show up

as incumbent upgrading and we will fail to isolate it with our decomposition.

We summarize the findings using weighted-averages of the industry-specific findings in

Table 6.11 Interestingly, unlike in the cross-industry results (Table 5), here we do find evidence of

systematic cross-product resource reallocation toward high-end plants.  It is not due to market share

reallocations toward incumbents who are technician-intensive; rather it reflects the ongoing

replacement of dying, low-end plants by entering higher-end plants.  Although the magnitudes of

these figures vary with the country, time period, and measure of sophistication, the general pattern

is remarkably stable. Finally, it is worth noting that there is tremendous cross-industry variation in

the change in total technological sophistication and its components. (Industrry-by-industry figures

are available upon request.)

                                                
11 The weights are the shares of each industry in total employment.
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Table 6:  Sources of Intra-Industry Change in Technological Sophistication
                 (Weighted Averages of Industry-specific Results)
Country Period Measure of

Technological
Sophistication

Total
Change

Incum-
bent

Effect

Market
Share Shifts

among
Incumbents

Incumbent
Upgrading

Changes in
firm

Turnover
Rate

Replacing
Exiters with

Entrants

(1) (2) (2a) (2b) (3) (4)
Colombia 77−91 techwork 0.8153 0.5197 0.0171 0.5026 -0.0099 0.3054

78−86 0.2936 0.2159 0.0221 0.1938 0.0096 0.0681
82−89 0.3370 0.2631 -0.0103 0.2734 -0.0034 0.0773
77−91 techwage 0.1944 0.1638 0.0092 0.1546 -0.0057 0.0363
78−86 0.0870 0.0937 0.0326 0.0611 0.0071 -0.0138
82−89 0.2147 0.1722 -0.0054 0.1776 0.0042 0.0385

Morocco 86−90 upmaemp 1.0684 0.8781 0.0278 0.8503 0.0462 0.1476
86−90 mimaemp 0.6568 0.4849 -0.0008 0.4857 0.0179 0.1582
86−90 skilemp 2.4539 2.0838 0.0014 2.0824 -0.0138 0.3764

V. IS PRODUCTIVITY GROWTH CONCENTRATED AMONG HIGH-END GOODS?

Thus far we have seen evidence that our sample countries have increased the intensity with

which they use technicians, and that this is partly (although not mainly) due to intra-industry shifts

in their product mixes toward high-end producers.  If the these producers manufacture goods that

hold the most potential for learning and productivity growth, then the LKSY growth mechanism is

present.  In this section we empirically address this key final link.

A. R&D & Productivity: The Literature

The notion that invention and technical change are central to productivity growth is not new.

It has attracted considerable attention from applied researchers. Several basic findings have emerged.

First, firm-level data suggest that the elasticity of output with respect to the stock of firm R&D

capital is sizable and significant.12 Second, a number of studies find evidence of significant R&D

spillovers. In his literature survey, Griliches (1992) concludes that, “taken individually, many of the

                                                
12 Griliches and Jacques Mariesse (1984) find this relationship in the cross-sectional dimension of a sample of more

than 100 U.S. manufacturing firms. In the time dimension, however, the collinearity of key variables makes it
difficult to isolate a positive relationship. Using a panel of French firms, Cuneo and Mariesse (1984) find that the
elasticity of value added with respect to the stock of firm R&D capital in both the cross-sectional and time
dimensions is large and significant. Similarly, Fikkert (1996) finds large and significant effects of R&D on
productivity in a panel of Indian firms.
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studies are flawed and subject to a variety of reservations, but the overall impression remains that

R&D spillovers are both prevalent and important.”

These studies simply suggest that the return to R&D is positive. But the LKSY mechanism

requires a link between product sophistication and rates of learning-based productivity growth.

Given that R&D-intensive firms produce relatively sophisticated products, there is some evidence

to support this phenomenon as well. For example, Clark and Griliches (1984) regress total factor

productivity growth on R&D intensity and find a positive, significant relationship.

B.  What we find in our data

Does the link between product sophistication and productivity carry over to the developing

world? If so, is there evidence that productivity growth is accomplished there by shifting the

product mix toward high-end goods? Are spillovers in evidence?

We approach these questions at two levels. First, at the level of the firm, we investigate

whether technician-intensive firms are relatively productive and/or exhibit relatively high

productivity growth. Then, at the level of the industry, we ask whether technologically

sophisticated industries exhibit relatively rapid productivity growth, and whether they accomplish

this by shifting market shares toward high-end firms and/or exploiting spillover effects.

Our productivity measure is based on estimates of a constant returns Cobb-Douglas

production function relating gross output to primary factor inputs:

(3) y i = α + β * ki + (1− β)* l i + ε i

Here overbars denote cross-year averages of the associated variables, i indexes plants, and  y, k and l

are the log of output, capital stock and labor, respectively.13 We measure labor in efficiency units,

so l  is a relative wage-weighted-sum of the different types of labor. This ensures that productivity
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will not appear to improve when a high-skilled worker is employed unless that worker’s

employment increases real output more than it increases the cost of labor inputs to the firm. Using

the estimates from (3), we obtain firm level primary factor productivity estimates residually from:

(4) PFPit = yit − α
^

− β
^

⋅ kit − (1− β
^

) ⋅lit

Appendix 4 provides further details.

Firm-level correlations Table 7 reports our findings at the firm level. The first column

reveals a strong relationship between contemporaneous technician intensity and productivity levels

in both countries, and the second column reveals a weaker but still significant correlation between

lagged technician intensity and productivity levels. These results are similar to the finding that high-

R&D firms are more productive in industrialized countries. But here it does not simply mean that

there is a positive return to replacing unskilled workers with highly paid technicians. Since we have

used a wage-weighted average of worker types to construct our measure of the labor input, the

implication is that technicians generate more in revenue than they add to cost. (Appendix 2 provides

details.) That is, conditioning upon capital stocks, gross revenue per unit cost is higher among

technician-intensive producers.

                                                                                                                                                                 
13 The data sets are unbalanced panels; so estimate (3) using weighted least squares. The weight for the ith

observation is the number of years for which the ith firm reports data.



23

Table 7:  Firm Level Productivity and Technological Sophistication
Firm Level Correlations

Country
Year

(PFPt,TSt) (PFPt,TSt-1) (∆ln(PFP),ln(TSt)) (∆ln(PFP),ln(TSt-1)) (∆lnPFP,∆lnTS)

Morocco 0.2067* 0.0725* 0.0338 0.0015 0..0465
86-90 (0.0000) (0.0004) (0.3030) (0.9691) (0.4488)

Colombia 0.0858* 0.0094 -0.0029 0.0205 -0.0058
77-91 (0.0003) (0.6948) (0.9324) (0.5564) (0.3353)

Colombia 0.1671* 0.0709* -0.0477 0.0618 -0.0267
78-86 (0.0000) (0.0011) (0.1328) (0.0513) (0.5374)

Colombia 0.1380* 0.0552* -0.0582 0.0511 -0.1608
82-89 (0.0000) (0.0177) (0.0798) (0.1242) (0.0002)

Colombia 0.1802*
Average (0.0000)
For Morocco, TS = upmaemp; for Colombia, TS = techwage.
* Significant at the 95% level of confidence.

This pattern is encouraging, and consistent with previous work. But it does not speak

directly to the LKSY hypothesis, which posits that productivity growth is relatively rapid among

high-end goods. To look for evidence of this phenomenon, we examine the correlation between firm

productivity growth rates and technician intensity levels (columns 3 and 4). Neither initial

technician intensity (TS t-1) nor ending technician intensity (Tst) correlates significantly productivity

growth rates. Hence, although technician intensity is clearly related to the level of productivity,

there is no evidence that the firms with high-skilled workers generate rapid productivity growth.

More puzzling is the lack of association between growth in technician intensity (∆lnTS) and

growth in productivity (∆lnPFP). This is simply a growth form of the relationship described by

column 1. One interpretation is that the association between technological sophistication and

efficiency gains is a loose one. Productivity growth does not immediately kick in when new

technicians are hired, nor is it automatic after a gestation period. Hence timing lags and uncertainty

make the number of technicians a noisy measure of the flow of efficiency-enhancing services, and
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the bias due to this noise is most severe when we identify the correlation parameter using only

temporal variation in the data.14

Industry-level correlations: Presuming that we may associate products with plants, the

absence of a plant-level correlation between technological sophistication and productivity growth is

inconsistent with models in which high-end goods exhibit relatively rapid efficiency gains. But it

does not rule out all growth models based on product shifting. For example, if the gains from

learning quickly diffuse throughout a sector, then the technician-intensive plants at which learning

originates may not exhibit unusual productivity growth, even when the LKSY growth mechanism is

present.15 Also, if all of the shifting toward high-end goods takes place by low-end plants shutting

down and high-end plants replacing them (as Table 6 suggests), turnover can sustain productivity

growth even if individual plants exhibit constant productivity during their lifetime.

To address these possibilities, we must look at industry-level patterns of technician use and

performance. Specifically, using our industry-specific decomposition of growth in technician

intensity (equation 2), we distinguish intra-plant upgrading from inter-plant share reallocation

effects. Then we regress our industry-level productivity growth rates on these two sources of

technician intensity growth to determine if share reallocations are associated with productivity

growth spurts (columns 1 and 2). Also, we regress productivity growth on the sum of these

components, that is, the industry-wide rate of technological sophistication.

                                                
14 Panel data estimators that rely on temporal variation for identification are well known to exacerbate measurement

error bias (Griliches and Hausman, 1986).

15 Although this would mean that producers did not internalize all of the returns to hiring technicians, we have seen
that technicians pay off in a static sense by generating higher output levels.
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Table 8:  Sector Level Productivity and Technological Sophistication
(Dependent Variable = %∆PFP)

Equation 1 Equation 2
Within-Plant
Deepening

With-Industry
Share shifting

Total Increase in Technological
Sophistication

Morocco -0.4422 0.8804 -0.0520
86-90 (0.3027) (0.6440) (0.1090)

Colombia 0.1097 -0.1240 0.0015
77-91 (0.0683) (0.1952) (0.0133)

Colombia 0.3202* -0.4860 0.0609
78-86 (0.1409) (0.4025) (0.0722)

Colombia 0.2819* -0.0512 -0.0316
82-89 (0.0850) (0.2429) (0.0547)
    Standard errors are in parentheses.
*  Significant at the 95% level of confidence.

The results of this exercise are reported in table 8.16 Notably, there is still no evidence that

changes in technician intensity are related to productivity growth in Morocco. However in

Colombia, there is a fairly strong relationship between productivity growth and increases in

technician intensity due to intra-plant upgrading (column 1). That is, the sectors that become

increasingly reliant on technicians are also the ones that exhibit the most rapid productivity growth.

On the other hand, increases in technician intensity due to market share reallocations are not

significantly associated with productivity gains (column 2). Finally, simple regressions of TFP

growth on the rate of growth in technician intensity reveal no significant associations (column 3).

This Colombian pattern is intriguing. It suggests, first, that industries do not typically

sustain productivity by shifting market shares toward plants that produce high-end products. This

is evidence against the LKSY vision of successful development, although shifts toward high end

goods may take place within  multi-product plants rather than across plants, remaining invisible to

the measure of reallocation effects described by equation (2).

                                                
16 The results are similar across the various measures of technological sophistication so, for Morocco, we report only

the results for upmaemp and, for Colombia, techwage.
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There is a second message in the Colombian results. We have already seen in Table 7

(column 5) that there is no tendency for plants that increase their technician intensity relatively

quickly to exhibit relatively rapid productivity growth. Yet Table 8 tells us that this link between

growth in technician intensity and productivity growth exists at the industry level for the same

plants and time periods. One interpretation is that spillovers are indeed important, and that the

returns to learning at the plant of origin are less than the industry-wide returns. Such spillovers are

central to endogenous growth models with learning, not just of the LKSY variety.17 So if this

interpretation is correct, it constitutes an important piece of evidence in favor of these models’

relevance.

Are other interpretations plausible? We initially thought our results might imply that the

link between technician intensity and productivity growth is only present among large producers.

This would explain why simple cross-plant correlations don’t pick much up, but weighted averages

at the industry level do. But limiting the sample to producers with at least 50 workers and repeating

the correlations in table 7, we still found no evidence that productivity growth was related to growth

in technological sophistication. (The results are reported in Appendix 3.) A third view is that the

measurement error bias one encounters when using firm level data is reduced when the noise is

“averaged out” by aggregating across firms. This remains a possibility.

A final message of Table 8 is that the relation between technician intensity varies across

countries. None of the industry-level correlations we find in Colombia appear in Morocco. An

important, yet unanswered question is why the correlation patterns are unstable.

VI. S UMMARY AND CONCLUSIONS

                                                
17 Jones (1995) provides an illuminating summary of the role of knowledge spillovers in endogenous growth

models.
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Many policy makers know in their hearts that they can induce learning-based productivity

growth by promoting technologically sophisticated products. They have cited this article of faith for

at least 40 years as a justification for infant industry protection, and the growth models to back

them up have been belatedly contributed by Krugman (1987), Lucas (1993), Stokey (1988, 1991)

and Young (1991). This paper looks for evidence of its empirical relevance using plant-level panel

data from Colombia and Morocco.

To link productivity growth with product sophistication, it was necessary to develop an

observable proxy for the latter. We used the share of technicians in total employment because this

measure yielded stable plant rankings across time, and stable industry rankings across time and

countries. Further, it proved highly correlated with industry rankings from U.S. data based on R&D

intensity. (R&D was not observable in our panels.)

Next, using this product sophistication measure, we documented the extent and nature of

shifting going on in our sample countries. We found that Colombia and Morocco both became

significantly more technician-intensive over their respective sample periods, but most of this was

due to increases in technician intensity within plants rather than increases in the market share of

technician-intensive producers. To the extent that the latter took place, it was mainly due to the exit

of low-tech plants and their replacement by more sophisticated entrants.

Although our sample countries did not rapidly shift market shares toward high-end

producers, it seemed quite possible that the shifts which did take place were generating productivity

growth. To investigate this possibility, we constructed plant-specific productivity trajectories for

the firms in our sample and looked at the patterns of correlation between technician intensity and

efficiency gains. As in other studies based on data from industrialized countries, we found that high-

tech plants were more productive; so much so that the productivity gains more than offset the extra

cost of hiring technicians. However, there was no evidence in the data that productivity growth rates
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were above average in the high-end plants. Hence a key link in the argument that promoting high-end

goods increases productivity growth was not supported by the data.

Interestingly, however, we also found that in Colombia the industries undergoing rapid intra-

firm growth in technician intensity were also improving their productivity relatively rapidly. Since

the individual plants that were acquiring more technicians were not experiencing unusually rapid

growth, it appears that they may have been generating positive spillovers for their competitors by

increase the general knowledge stock. If this interpretation holds up to closer scrutiny, the

Colombian data appear to confirm one key link in learning-based endogenous growth models.

Further work is needed to pursue this important possibility, but the preliminary evidence is quite

strong.
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 Appendix I:  Young’s (1991) model

Young (1991) begins by sorting potentially producable goods according to their technological

sophistication. Positions in the ranking are indexed by s∈ [B,∞], with higher s indicating greater

sophistication. Also, at time t, all goods for which learning possibilities have been exhausted have

indicies s < Tt, and all goods with further learning potentional have indicies, s >Tt.

Producing a unit of good s at time t requires α( , )s t  units of labor and nothing else. For

closed form solutions, Young assumes:

α(s,t) =
α (s) if s ≤ Tt

α (T)e s− T if s ≥ Tt

 
 
 

where α(s)=αe− s . This ensures that the greater the sophistication of the good, the greater potential

efficiency, once learning effects are exhausted.  Further, among goods with unexhausted learning

possibilities, labor requirements are positively related to their sophistication, as depicted below.

 
           α ( , )s t

                                                                                  α ( )s

                                                                                    s
                                      Tt
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Finally, among goods with learning, Young assumes that efficiency improves at the common

rate: 
∂ ln α

∂ t
= −2

dT

dt
 The rate of efficiency growth among goods with unexhausted learning potential

is then directly related to the amount of labor employed in the learning sectors:

dT

dt
= L(s,t)ds

T

∞

∫ ,    so

∂ ln α(s,t)

∂ t
=

−2
dT

dt
= − 2 L(v,t)dv ∀ s > t

T

∞

∫

0 ∀ s ≤ t

 

 
  

 
 
 

where L(s,t) is the amount of labor being used to produce good s at time t. These expressions imply

that the locus of production costs drifts rightward as experience producing the high-end goods

accumulates.  Hence, for any T0 < T1 :

    α
                                                       α ( )s

                                                                           α ( )s

                                      T0              T1                                   s

The returns to knowledge creation through learning cannot be internalized, so given the

constant returns technology, pricing is competitive: Ps = wα(s,t) . Given perfect foresight regarding

these prices and economy-wide income, consumers maximize the present value of their

instantaneous utility, V = ln[C(s) + 1]ds
B

∞

∫ , where C(s) denotes instantaneous consumption of good
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s. There is no storage, so at each point in time consumers spend all their income and the conditions

for static utility maximization apply. Among all goods consumed, the usual condition holds,

MUS

MUS'

=
CS' +1

CS +1
=

PS

PS '

=
α (s)

α (s' )
 , but some goods are so expensive relative to the utility they generate

that they aren’t consumed at all.  Call the low-tech good on the margin between zero and positive

consumption good M, and the high-tech good on this margin good N.  Then, 
1

CS + 1
=

PS

PM

=
α (s)

α (M)
,

orα(s)Cs = α (M) −α (s) . In autarky, this means that labor devoted to the production of each good

consumed is the vertical distance to the horizontal line at height α(M) :

                                                                α ( )s

                                                                                 α ( )s

                                                                                    s
                 M                    T                       N

The rate of change in T is L/2, and this is also the rate of growth in GDP per capita.

Now suppose that trade is opened up with a country that is further along (larger T) and has

a higher wage w w* = ω .  Then the menu of alternative goods available in the South will be as

diagrammed below. (Other configurations are possible, depending upon relative size and tech. gap.
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                                                               α ( )s                 ωα *( )s

                                                                                                                ωα ( )s

                                                                           α ( )s

                       M             T                      T*                      N

Note that the LDC high-end goods are undercut by the more advanced DCs, so trade shifts the LDC

labor force toward goods with no learning potential, and less spillovers take place. Growth slows in

the LDCs.  In the DC s, production of the low end goods is undercut by the low-wage LDC.  So

there, labor is shifted toward goods with high learning potential and spillovers.



APPENDIX II: MOROCCAN WORKER TYPES

The table below provides the primary and alternative mappings of 1986

Moroccan worker types to 1990 worker types.  The primary mapping was used

throughout this chapter.  Many results were also obtained (not reported) under the

alternative mapping and were nearly identical to those obtained under the primary

mapping.

Table 3.A.1:  Mapping of 1986 and 1990 Moroccan Worker Types

1986 1990

Primary Mapping Alternative Mapping
Non-paid workers n.a. n.a.
Administrative upper management High level administrative staff High level administrative staff
Technical upper management Technical staff Technical staff
Middle management (technical) Intermediate technical staff Intermediate level administrative

staff
Mastership agents and similar

positions
Skilled and specialized workers Skilled and specialized workers

Skilled workers and specialists Intermediate level administrative
staff & Office workers

Office workers

Office employees Unskilled workers Unskilled workers
Manual and unskilled labors Other workers Other workers
Total Total workers Total workers
n.a. n.a. Intermediate technical staff



APPENDIX 3:  CORRELATIONS OF CROSS-COUNTRY RANKINGS

Table 3.a:  Cross-Country Correlation Coefficients, 2-digit ISIC, 1990
Morocco

upmaemp mimaemp skilemp
Colombia techwage 0.3000 0.0667 0.0333

(0.4328) (0.8647) (0.9322)
techwork 0.1000 0.2167 0.1500

(0.7980) (0.5755) (0.7001)
techprod 0.0667 0.5500 0.3167

(0.8647) (0.1250) (0.4064)
techexpe 0.4833 0.1833 -0.1500

(0.1875) (0.6368) (0.7001)
Table 3.b:  Cross-Country Correlation Coefficients, 3-digit ISIC, 1990

Morocco
upmaemp mimaemp skilemp

Colombia techwage 0.3508 0.4115 0.0439
(0.0856) (0.0410) (0.8351)

techwork 0.2415 0.2454 -0.0200
(0.2448) (0.2371) (0.9244)

techprod 0.0400 0.1700 0.3685
(0.8494) (0.4165) (0.0699)

techexpe 0.0739 0.1708 0.2800
(0.7257) (0.4144) (0.1752)

Table 3.c:  Cross-Country Correlation Coefficients, 4-digit ISIC, 1990
Morocco

upmaemp mimaemp skilemp
Colombia techwage 0.3075 0.0862 -0.0726

(0.0127) (0.4948) (0.5657)
techwork 0.2671 0.1189 -0.1510

(0.0315) (0.3456) (0.2300)
techprod 0.1607 0.1310 0.1822

(0.2009) (0.2982) (0.1463)
techexpe 0.1557 0.1377 0.1494

(0.2156) (0.2740) (0.2349)



APPENDIX 4: MEASURING PLANT-SPECIFIC PRODUCTIVITY

Productivity Concepts

In an earlier study, experimentation with the Chilean and Colombian panels

revealed that total factor productivity (TFP) measures are quite sensitive to the

exchange rate (Liu and Tybout, 1996).  This is because the cost of imported inputs

increases dramatically when major devaluations take place, and the effects are

concentrated at plants that use imported inputs intensively.  (Since plant-specific price

deflators are unavailable, we cannot construct pure measures of input quantities.)

Measures of primary factor productivity (hereafter PFP), which describe output per

unit bundle of capital and labor, do not suffer from this shortcoming and are much more

stable (Liu and Tybout, 1996). Further, under the assumption that intermediate inputs

are used in fixed proportion to output, they are equivalent to total factor productivity.

For these reasons, we base our productivity analysis on PFP.

Estimation techniques

To construct PFP measures, one must somehow aggregate capital and labor usage

into a scalar measure of primary input usage. We did this by estimating a constant-

returns-to-scale Cobb-Douglas production function relating gross output to capital and

labor. This appendix provides the details of how the estimates were constructed and

how both capital and labor were measured.



Because large plant-level panel data sets, were available, a number of estimation

techniques were feasible.  Some, like the “within” or dummy variable estimator and the

“difference” estimators, are based solely on temporal variation in the data.18  The

advantage of these estimators is that they sweep out serial correlation due to unobserved

plant characteristics that persist over time.  They also eliminate simultaneity bias due to

correlation of these unobserved effects with the explanatory variables.19  However,

when one of the explanatory variables exhibits transitory measurement error, estimators

based on temporal variation can be biased, and evidence suggests the problem is quite

important when panel data are used to estimate production functions (Westbrook and

Tybout, 1994). Between estimators are much less sensitive to measurement error bias;

further, since they are based purely on cross sectional variation, serial correlation is not

an issue.20  Hence, so long as simultaneity bias is not a serious problem, between

estimators are an attractive way to estimate production technologies.

Previous work suggests that the bias is indeed minor, so we use between

estimators here (Tybout and Westbrook, 1996). Specifically, letting overbars denote

                                                
18 A simple within estimator is computed by using firm-specific dummy variables to capture

unobserved firm specific effects.  The number of observations will be equal to the number of firms
times the number of time periods.  Simple difference estimators are constructed by performing
ordinary least squares on the data after all variables have been converted to changes.

19 In the current context, this correlation might be present because high-productivity firms tend to have
relatively large market shares, and therefore employ relatively large amounts of capital and labor.

20 The simple between estimator is obtained by averaging all of the years of data on each variable,
plant by plant, then using the resulting plant-specific mean values in an ordinary least squares
regression. The number of observations will be equal to the number of firms in the sample.



cross-year averages of the associated variables, we fit the following constant-returns-to-

scale Cobb-Douglas production function:

(A1) y i = α + β * ki + (1− β)* l i + ε i

where i indexes plants, y, k and l are the log of output, capital stock and labor efficiency

units.  The data sets are unbalanced panels; we account for this in our estimation by

weighing each observation by the number of years for which we have firm data.

Finally, using the estimates from (A1), we obtain firm level primary factor

productivity estimates residually from:

(A2) PFPit = yit − α
^

− β
^

* kit − (1− β
^

)* lit

Aggregating up from the plant-level using weighted averages, we obtain the industry

specific productivity levels and productivity growth rates reported in Table 3.A.2 at the

end of this appendix.

The capital stock series for all three countries were constructed using the

perpetual inventory method with a five percent depreciation rate.  For a precise

description of how the Colombian series was constructed see Roberts (1996), and for

the Chilean series see Liu and Tybout (1996).  The Moroccan series were constructed

by essentially following the method described in Sullivan (1996). However, to maximize

the number of observations and to allow for firm entry, the base year was allowed to

vary across plants.  Recall we focus our attention on 1986 and 1990, the years for which



data on technician intensity are reported;  using 1985 and only 1985 as our base year.

This means that in order for a firm to be included in our sample, it must have reported

data in both 1985 and 1986, or  in both 1985 and 1990.  Thus with 1985 as the base

year, firms entering between 1985 and 1990 are excluded from our sample.  By using

other base years, we introduce some of the error we hoped to reduce by using the

perpetual inventory method, but we do not exclude entering firms from our sample.

To take into consideration cross-plant variation in the quality of workers, we

measure labor’s contribution to output using labor efficiency units.  The following

equation documents how the labor efficiency units (LEUs) were calculated.

(A3) LEUi = Eiu + Eil * Wil / Wiu
l=1

L

∑

where i denotes firm, u unskilled or blue collar labor, l the category of labor, E the

number of workers, W average wage paid to workers in its sector.  (Under the

assumption that workers are paid the value of their marginal products, relative wages

provide the correct aggregation weights.)  The labor categories for each country are:

Table 4A: Worker Types
Morocco Colombia Chile

u = Unskilled Workers Unskilled Workers Blue Collar Workers
l = Administrative Upper Management Management White Collar Workers

Technical Upper Management Skilled Workers
Technical Middle Management Local Technicians
Mastership Agents and Similar
Positions

Foreign Technicians

Skilled Workers and Specialists Apprentices




