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Taxes versus quotas for a stock pollutant1

by Michael Hoel2 and Larry Karp3

Abstract

We compare the effects of taxes and quotas for an environmental problem in
which the regulator and polluter have asymmetric information about abatement costs,
and the environmental damage depends on the stock of pollution. We thus extend to a
dynamic framework previous studies in which environmental damages depend on the
flow of pollution. As with the static analysis, taxes are more likely to dominate
quotas the greater is the curvature of the abatement cost function relative to the
environmental damage function. However, in the dynamic model, an increase in the
discount rate, the stock decay rate, or either the regulator’s or the firms’ ability to
make adjustments, all increase the likelihood that taxes dominate quotas. An empirical
illustration of these results suggests that taxes dominate quotas for the control of
greenhouse gasses.
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1. Introduction

Asymmetric information plays an important role in environmental regulation. Often

the polluter knows more about the abatement cost function than the regulator. In this

situation, the first-best optimum can seldom be reached by using emission taxes or quotas.

The first-best optimum equates the marginal abatement costs of the pollutants and the

marginal environmental damage. When the regulator does not have complete knowledge of

the abatement cost functions, neither an emissions tax nor an emissions quota achieve the

first-best level.

Weitzman (1974) compared the expected payoff, under asymmetric information, for

these two policy instruments. He assumed linear marginal costs, uncertainty only about the

level of the marginal cost curves, and not their slopes, and no correlation between the

uncertainty of the abatement cost and the environmental cost. Under these assumptions, an

emission tax dominates a quota if and only if the marginal abatement cost curve is steeper

than the marginal environmental cost curve.

Subsequent contributions to this topic fall into two categories: (a) modifying the

assumptions in Weitzman’s analysis1, and (b) considering a richer class of policy tools than

only an emission tax and a direct specification of the emission level2. More complex

policies can reduce the potential loss in social welfare associated with asymmetric information

about abatement costs. However, in practice, policy-makers have not used these more

sophisticated methods of environmental regulation.

1 See e.g. Yohe (1977), Watson and Ridker (1984), and Stavins (1996).

2 See e.g. Dasgupta et al. (1980), Kwerel (1977), McKitrick (1997), and Roberts and
Spence (1976).
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Somewhat surprisingly, almost all of the literature assumes that the environmental

damage comes from theflow of emissions.3 However, for several important environmental

problems, damages depend on thestock, and not the flow, of the pollution. Examples of such

problems include climate change (due to atmospheric concentration of greenhouse gases),

depletion of the ozone layer (due to cumulative emissions of CFCs), deterioration of soil and

water quality (due to acid rain resulting from sulfur nitrogen oxides), and the pollution of

rivers, lakes and oceans from emissions of organic material.

We revisit the problem originally posed by Weitzman, replacing the flow pollutant

with a stock pollutant. Section 2 presents the basic model. In section 3 we analyze the case

in which the entire trajectory of the emissions tax or quota must be determined at the initial

time (the open-loop policy). Section 4 studies the opposite extreme, where the quota or tax

can be adjusted in light of new information (the feedback policy). Section 5 provides an

empirical illustration, which suggests that taxes dominate quotas for the control of greenhouse

gasses.

2. The Model

We use a discrete time formulation, in which each stage lasts for h units of time; units

of time are arbitrary. The parameter h is the maximum of two numbers: the number of units

of time between realizations of a random variable that affects firms’ marginal benefits, and

the number of units of time that must elapse before a firm can change its decision. Thus, h is

a measure of the frequency with which new information arrives, or the frequency with which

3 The exception is Staring’s (1995) thesis, which studies the open loop ("non-flexible")
model in section 3, but does not consider the case where policies can be revised in the light
of new information.
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firms are able to use new information. Suppose, for example, that units of time are months.

If marginal benefits change randomly every six months, but firms are able to change their

output only at yearly intervals, then h = 12. In this case, firms’ limited flexibility is a

constraint. If marginal benefits change randomly every six months but firms are able to

change their output every three months, h = 6. Firms have no incentive to make changes

unless they obtain new information. To avoid an uninteresting taxonomy, we hereafter

assume that the two numbers are equal, and interpret h as both a measure of firms’ flexibility

and the frequency of arrival of new information.

Let x(t) be the constant flow of pollutant during the stage beginning at time t, so x(t)h

is the contribution to the stock during that stage. The stock,S(t), decays at a constant rateδ,

so ∆ ≡ e-δh is the fraction of the stock remaining in the next stage, in the absence of additional

pollution. With additional pollution x(t)h, the stock at time t+h is

(1)S(t h) ∆S(t) x(t)h .

An increase in pollution is equivalent to a decrease in abatement, and thus provides a

cost savings. This flow of cost savings, i.e. the benefit, is given by the quadratic function

B(x,θ):

(2)B B x(t), θ(t) f a θ(t) x(t) b
2

x(t)2

wheref, a andb are positive parameters, andθ(t) is the realization of a random variable. The

random variableθ(t) is independently and identically distributed, with mean 0 and variance



4

σ2(h). As in Weitzman’s model, uncertainty affects the level but not the slope of marginal

benefits. Since B is a rate, the total benefit obtained in the stage beginning at time t is

B(x(t),θ(t))h. Our formulation ignores discounting and decay within a period.

We can think ofθ as being the sum of many iid random variables, so that the variance

of θ depends on h. For example, the level of marginal benefits depends on the accumulation

of many small events that occur over the length of a period. At the beginning of a period the

firm observes the sum of the random events that occurred during the previous period. With

this interpretation,σ2(h) is proportional to h:σ2 = kh, where k is a constant. Our analysis

does not depend on the precise form ofσ2(h), but we recognize that there is a relation

between the value ofσ2 and h. In order to consider limiting cases when h→ 0, we adopt

Assumption 1:σ2 is of the same order of magnitude as h or smaller, i.e.σ2(h) ∼ 0(h).

The regulator chooses either a quantity restriction or a tax. In the former case the

regulator chooses an upper limit on x(t), and in the latter case he chooses a tax, p(t), per unit

of pollution. In the next two sections we compare the two policies under different

assumptions about the regulator’s flexibility. Firms are competitive and myopic. They

observe the realization ofθ(t) and then make their decision at time t. The regulator does not

observe the value ofθ(t).4

We assume that if the regulator uses a quota, it is always binding. This assumption

requires that the support ofθ be sufficiently small. Thus, when the regulator chooses quantity

restrictions, dS≡ S(t+h) - S(t) is nonstochastic, and the expectation of the flow of benefits is f

4 With taxes, the regulator can infer the value ofθ(t) after observing the firm’s current
output, but given the assumption thatθ is iid, this inference provides no information on future
values ofθ.
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+ ax - bx2/2 (since Eθ = 0). With quotas, both dS and E{B(·)} are independent ofσ.

If the regulator uses a tax, p(t), firms choose x to maximize [B(·) - p(t)x]. The first

order condition is a +θ(t) - bx(t) = p(t), which we rewrite as

(3)x(t) a p(t)
b

θ(t)
b

≡ z(t) θ(t)
b

.

Choosingp(t) is equivalent to choosingz(t), the expectation of the flow of pollution.

Hereafter, we treat a regulator who uses taxes as choosing z(t). From (2) and (3), the

regulator’s expectation of benefits at stage t is

(4)E B x(t),θ(t) h E







B 







z(t) θ(t)
b

,θ(t) h 







f az(t) b
2

z(t)2 σ2

2b
h

where the expectation is taken at any time s < t. Using equation (3) and (1), the variance of

dS is (σh/b)2.

With taxes, uncertainty affects both the expectation of the flow of benefits and the

variance of dS. The model with taxes has two obvious but important characteristics, which we

summarize in

Remark: (1a) The effect of uncertainty on both the expectation of single-stage benefits

(σ2h/2b) and on the variance of dS (σ2h2/b2) is independent of z, and thus of the tax.

(1b) The ratio of the two effects of uncertainty per unit of time depends on the length

of the stage.

Remark (1a) follows from the linear-quadratic structure with additive errors. Remark (1b) is
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useful for understanding the importance ofh in comparing the two policies. We can re-state

this remark using the definitionΓ ≡ (σ2/2b)/(σ2h/b2) = b/2h; Γ is the ratio of the effects ofθ

on the current payoff and on the variance of dS. This ratio depends on h, the number of units

of time between the arrival of new information (which equals the number of units of time

between changes in firms’ decisions). The parameterΓ is, of course, independent of units of

time5 and it is also independent ofσ2(h).

The flow of damages during the stage beginning at time t is

(5)D D S(t) cS(t) g
2

S(t)2

where c and g are positive parameters. The total damage during the stage is D(S(t))h. The

instantaneous discount rate is r, so the discount factor isβ ≡ e-rh. We now have all of the

elements of the model. The regulator’s payoff is the present discounted value of the

expectation of the stream of benefits minus costs, [B(x,θ) - D(S)]h, where the equation of

motion is given by (1).

With quantity restrictions, where the evolution of the state is nonstochastic and the

expected payoff within each period is also independent ofσ2, the regulator’s problem consists

5 For example, suppose that the length of a stage is one year. If we let one unit of time
equal one year, then h = 1. If wechange units of time to equal months, but hold constant the
length of a stage, then h = 12. However, since we have measured benefits as a function of
the flow of pollution, we need to replace b with 12b. Thus, changing units of time from years
to months does not changeΓ.
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of the payoff

(6)
∞

i 0

βi 







f ax(t ih) b
2

x(t ih)2 cS(t ih) g
2

S(t ih)2 h

and the constraint, equation (1). With taxes, the regulator wants to maximize

(7)E
∞

i 0

βi 







f σ2

2b
az(t ih) b

2
z(t ih)2 cS(t ih) g

2
S(t ih)2 h

subject to the constraint

(8)S(t h) ∆S(t) z(t)h θ(t)h
b

.

We obtain equation (8) by using equations (1) and (3). In taking expectations of the payoff

we use Remark 1a and the assumption thatθ is iid to replace E{θ2/2b} by σ2/2b. The

expectation in equation (7) is taken with respect to the evolution of S.

The nature of the problem changes fundamentally as h changes, as Remark 1b

suggests. The smaller is h, the more frequently firms adjust their decisions. Since damages

are convex in S, uncertainty about the evolution of S increases expected damages (by Jensen’s

inequality) and reduces the regulator’s expected payoff. However, uncertainty increases the

expected flow of benefits because each firm’s output is positively correlated with its marginal

benefits (equation (3)) under taxes. The parameterΓ provides a measure of the effect of

uncertainty on expected benefits relative to its effect on expected damagesper unit of time.
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The expected payoff under quotas is independent of the amount of uncertainty (σ).

Therefore, the ranking of taxes and quotas depends on the ratio between the benefit and the

cost caused by uncertainty under taxes. SinceΓ is decreasing in h, the more frequently firms

adjust their decisions (i.e., the more frequently they receive new information about marginal

benefits), the greater is the expected benefit relative to the expected cost caused by

uncertainty. This ratio of benefits to costs (measured byΓ) becomes infinite as h becomes

small. Consequently, for sufficiently small h, taxes dominate quotas, as we show in the next

two sections.

Before turning to the comparison of taxes and quantity restrictions, we note that if

damages depend on the flow of pollution rather than the stock (e.g., D(x) = cx + gx2/2), our

model is equivalent to Weitzman’s. For that model, Weitzman shows that taxes are preferred

to quotas if and only if 1 > g/b. In our model (with stock dependent damages) the parameters

g and b have different units, so their ratio is not unit-free (unlike the number 1). Therefore

g/b cannot provide a criterion for ranking policies in the dynamic model. Nevertheless, the

ranking is related to this ratio.

3. Non-Flexible Tax or Quota

In this section we consider the case in which the trajectories of the tax and the quota

must be determined att = 0. Here we fix the amount of firms’ flexibility, parameterized by

h, and assume that the regulator has no flexibility. Once he has chosen his policy trajectory,

it is written in stone.6

6 The regulator is able to announce a time-varying policy, and in that sense does have
flexibility. We define the inflexible regulator as one who has to choose a trajectory at time 0
and then follow it. We could specialize our model to consider the "inflexible" regulator as
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We noted that when quotas are used, the expectation of the payoff is independent ofσ

and the evolution of S is nonstochastic. We define Q(S(0)) as the maximized value of the

payoff in (6), subject to (1). We define T(S(0);σ) as the maximized value of the payoff in

(7), subject to (8) under an open-loop policy. When there is no uncertainty, the two policies

obviously have the same payoff: Q(S(0))≡ T(S(0);0). We will also use the following

Remark 2: The optimal quota trajectory {x*i }
∞
i =0 is identical to the expected pollution

trajectory under optimal taxes, {z*i }
∞
i =0 (i.e., x*i = z*i for all i).

This fact is another consequence of the linear-quadratic structure with additive errors.

We calculate expected damages under a tax by using equation (8) to obtain

In view of the quadratic form of damages, we can write the expectation of damages as

(9)
S(ih) ∆iS(o) h z((i 1)h) ∆z((i 2)h) ∆i 1z(0)

h
b

θ((i 1)h) ∆θ((i 2)h) ∆i 1θ(0) .

(10)ED(S(ih)) D(ES(ih)) g
2

E(S(ih))2 (ES(ih))2 .

Equations (9) and (10) imply

(11)ED(S(ih)) D(ES(ih)) gh2σ2

2b 2

1 ∆2i

1 ∆2
.

We already noted that uncertainty increases the single period expected benefits (when

one who must choose a constant policy, but this would not change our results.
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a tax is used) by the amount hσ2/2b (see equation (7)). Using equations (7) and (11), and

Remark 2, we can write T(S(0);σ) - Q(S(0)) as

(12)T(S(0);σ) Q(S(0))
∞

i 0

βi











σ2h
2b

gh2σ2

2b 2

1 ∆2i

1 ∆2
h

which we simplify to obtain

(13)T(S(0);σ) Q(S(0)) σ2h
(1 β)2b











1 gh2β
b(1 β∆2)

.

Equation (13) implies that an emission tax is superior to a quota (i.e., T[S(0)] > Q[(S(0))] if

and only if g/b <φ1, where

(14)φ1 ≡ 1 β∆2

βh 2

(1 β∆2) /h
βh

.

For small h,β ≈ 1-rh andβ ∆2 ≈ 1-(r+2δ)h. Using these approximations and equation (14),

we obtain an approximation forφ1, which we denote asφa
1 ("a" for approximation):

(15)φ1 ≈ φa
1 ≡ r 2δ

h
.

From (14) or (15) we see that taxes are more likely to dominate quotas the larger the
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discount or depreciation rate, or the smaller is the slope of marginal damages relative to

marginal benefits. An increase in the firms’ flexibility, i.e. the frequency with which they

receive and act on new information about marginal costs (1/h), also makes the use of taxes

more attractive. Thus, provided that h > 0, taxes are certainly preferred to quotas when h is

sufficiently small. The criterion for ranking the policies is independent of the initial stock,

S(0).

Under Assumption 1, the amount by which taxes are preferred to quotas approaches 0

as h→ 0. In the limit as firms are able to respond infinitely frequently, taxes and quotas are

equivalent. In order to establish this, we can use the approximations ofβ andβ∆2 to rewrite

equation (13) as

(13’)T(S(0);σ) Q(S(0)) ≈ σ2(h)
2br









1 gh(1 rh )
b(r 2δ)

.

Provided thatσ2 is of the same order of magnitude as h (or smaller), T(S(0);σ) - Q(S(0))

converges to 0 as h→ 0. In the limit, taxes and quotas are equivalent, although for

sufficiently small but positive h taxes are preferred to quotas.

4. A Flexible Tax or Quota

This section studies the case where the regulator has the same degree of flexibility as

firms. At the beginning of each stage, the regulator observes the current value of the stock,

but not the current realization ofθ, and chooses the current policy level. Here the regulator

uses a feedback rule. The previous section considered the case where the regulator had to

commit to a tax or quota trajectory at the initial time, i.e., he used an open-loop policy. The
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two cases thus represent two extreme assumptions about the regulator’s flexibility.

The regulator’s increased flexibility has no value if he uses a quota. Equation (1)

shows that under a quota the development of the stock is nonstochastic, so the regulator

learns nothing from observing it.7 Therefore, nothing is gained by postponing the decision of

x(t) until t, rather than choosing the entire emission path at the initial time: the open-loop and

feedback policies are identical and give the same payoff. In addition, the random variableθ

does not affect the expectation of the current payoff. (The payoff in equation (6) is

independent ofσ2.) The value of the regulator’s program under a flexible quota is Q(S),

defined in the previous section.

If the policy is an emission tax, the flow of pollution and thus the evolution of the

stock is stochastic (equation 8). In this case, flexibility in setting the tax increases the

regulator’s payoff. The optimal emission tax at any time depends on the stock of the

pollutant at that time. When the tax path must be chosen at timet = 0, it is not possible to

achieve the first best outcome, because at time 0 the regulator is not certain of the stock at

time t > 0. Denoting the optimal value of regulator’s program under a flexible tax as T˜ (S;σ),

it is clear that T˜ (S;σ) ≥ T(S;σ). In general, the inequality is strict. When there is no

ambiguity, we suppress the second argument of T(·) and T˜ (·).

The flexible regulator is more likely to prefer taxes over quotas. There exist

parameters such that the regulator would prefer a quota rather than a tax under an open loop

policy, but allowing the regulator to use a feedback policy reverses the ranking. This

7 Since, by assumption, the quota is binding in every state, the regulator does not even
learn past values ofθ. In any case, becauseθ is iid, information on past realizations would
be worthless.
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conclusion holds because we know that when g/b >φ1, the "inflexible regulator" prefers the

quota, i.e. Q(S) > T(S), and that in general T˜ (S) > T(S). Therefore, for some parameter

values T̃(S) > Q(S) > T(S). The rest of this section derives the criterion for a tax to be

preferred to a quota when policies are flexible.

We note that forσ = 0, T̃(S;σ) ≡ T(S;σ) ≡ Q(S). We use dynamic programming to

determine the function T˜ (S;σ), and then show how this function is related to Q(S) forσ > 0.

The single period expected payoff in equation (7) isλh, with λ ≡ [f + az - bz2/2 + σ2/2b - cS

- gS2/2]. Using this definition ofλ and equation (8), we write the Dynamic Programming

Equation (DPE) under the flexible tax as

(16)T̃(S) max
Z

λ(z,s)h βE
θ
T̃ 








∆S zh θh
b

The method of solving the DPE (16) is standard, so we merely sketch the steps. We

know that the value function is quadratic: T˜ (S) = ρo + ρ1S + ρ2S
2/2. We substitute this "trial

solution" into equation (16), and use the first order condition to find the optimal control rule

as a function of the state S, the known parameters, and the unknown parametersρi.

Substituting this control rule into (16) gives the maximized DPE, which is a quadratic

equation in S. Equating coefficients of S0, S and S2 (in the maximized DPE) gives

expressions for the equilibrium values ofρi. The equilibrium values ofρ2 andρ0 satisfy

(17)ρ2











(∆βρ2)
2

b βhρ2

g h β∆2ρ2
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and

(18)ρ0











f
(a βρ1)

2

2(b βρ2h)
h βρ0

σ2h
2b











1
βρ2h

b
.

The parameterσ affects the constant term (f +σ2/2b)h in the expected payoff flow and

the variance of the additive error (hσ/b)2 in the stock evolution. Therefore, in view of well-

known properties of the linear-quadratic control problem with additive errors,σ affects only

the equilibrium value ofρo; the values ofρ1 andρ2 are independent ofσ. In addition, from

equation (18),σ interacts withρ2 but not withρ1. Consequently, in order to determine howσ

affects the value function, do not need to know the value ofρ1, and we therefore do not

include the equation that determines that parameter.

From (18) we see that quotas are preferred to flexible taxes if and only if the

equilibrium value ofρ2, which we denote asρ̂2 (= T̃′′), is less than -b/βh. In Weitzman’s

static problem, the ranking of taxes and quotas depends on the curvature of the benefits

function (b) relative to the curvature of the damage function (g). In the dynamic problem

with stock pollution, the ranking depends on the curvature of the benefits function relative to

the curvature of the value function (ρ2).

Rearranging equation (17) and dividing by h, we can writeρ̂2 as the unique negative

root of m(ρ2) = 0, where

(19)m(ρ2) ≡ βρ2
2









gβh b(1 β∆2)
h

ρ2 gb .
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We want to know whetherρ̂2 is greater or less then −b/βh. Sincem(0) < 0, m(ρ̂2) = 0, and

m′(ρ̂2) < 0, we know thatρ̂2 < -b/βh if and only if m(–b/βh) < 0. (See figure 1.)

Using equation (19) to evaluatem(-b/βh) gives

(20)m







b
βh

2b 2











2 β∆2

2βh 2

g
b

.

Equation (20) and the previous remarks imply that quotas are preferred to taxes if and

only if g/b exceeds a critical value, denotedφ2, given by

(21)φ2 ≡










2 β∆2

2(1 β∆2)











1 β∆2

βh 2
≡ γφ1

with γ ≡ (2 - β∆2)/2(1 - β∆2) > 1 andφ1

Figure 1 Graph of m(ρ2) when 2 < b/βh.

defined in equation (14). The function

φ2 is increasing inr, δ, andh. A higher

discount or decay rate or a more flexible

firm, makes taxes more attractive. In

addition,φ2 approaches infinity as h

approaches 0, so for sufficiently small

(but positive) h, taxes are certainly

preferred to quotas. However, for the limiting value of h = 0, taxes and quotas are equivalent.

This conclusion follows becauseρi approach limiting (finite) values as h→ 0, and from
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equation (18) we see that in the limitρ0 is independent ofσ2.8 We noted that even for the

inflexible regulator, taxes and quotas are equivalent in the limit as h→ 0. (See the

discussion of equation (13’) in Section 3.) Finally, sinceγ > 1, φ2 > φ1, so giving the

regulator flexibility increases the set of parameter values for which he prefers to use a tax.

To summarize, we have

Proposition: For the quadratic model with additive uncertainty about abatement costs,

increased flexibility, either on the part of the firm or the regulator, makes it more

likely that the regulator prefers to use a tax rather than a quota. If the firm is

sufficiently flexible, the regulator prefers to use taxes. However, the difference in the

regulator’s payoff under the two policies approaches 0 in the limit as the firm is able

to change its plans arbitrarily quickly. There are two critical values for the relative

curvature of the damage and benefit functions, g/b. These values areφ1 ≡ (1 -

β∆2)βh2 and φ2 ≡ (2 - β∆2)/2βh2. For g/b < φ1 inflexible taxes are preferred to

quotas. Forφ1 < g/b < φ2, flexible taxes are preferred to quotas, which are preferred

to inflexible taxes. Forφ2 < g/b, quotas are preferred to both flexible and inflexible

taxes.

As in Section 3, we can approximate the critical valueφ2. Expanding the formula in

8 This conclusion requires only thatσ2(h) be of a smaller order of magnitude than 1/h,
which is obviously a weaker condition than Assumption 1.
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equation (21) yields the approximationφa
2:

(22)
φa

2 ≡
r 2δ 1

h
2h

.

We noted thatφ2 > φ1. Since e-(r+2δ)h < 1, a necessary condition for the approximation in

equation (22) to be valid is 1 > (r+2δ)h. When this inequality holds, we also haveφa
2 > φa

1.

Both approximations have the comparative statics properties described in the Proposition.

5. An Empirical Illustration

We apply the results of the previous sections to rank taxes and quotas in controlling

CO2, the major "greenhouse" gas. The control of greenhouse gasses is among the most

important, or at least most hotly debated current environmental issues.

Even our parsimonious model stretches the limits of available data. We use two

estimates for the slope of marginal damages,g: Falk and Mendelsohn’s (1993; hereafter, FM)

"high" estimate, and Reilly’s (1992) estimate which we adapted by converting units from

parts per million to tons. We used data from Nordhaus (1991) to estimate the parameterb,

under a variety of specifications. All of these specifications led to estimates with similar

orders of magnitude. We chose the specification which produced the smallest estimate ofb

[= 2.97E(-8)], thus biasing the results in favor of the use of quotas. Table 1 summarizes the

estimates ofg and the ratiog/b. The appendix discusses the data more fully.
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Table 1: Estimates of g/b*

FM Reilly

estimate of g 8.12E(-13) 1.19E(-12)

estimate of g/b 2.73E(-5) 4E(-5)

* Using the estimate of b = 2.97E(-8).

We chose one unit of time equal to one year and set the discount rate r = .03 and the

decay rateδ = .005. A review of the literature suggests thatδ = .005 is widely accepted as a

point estimate for the decay rate for greenhouse gasses (FM and Nordhaus). Reilly usesδ =

.0083 in a study which focuses on CO2. The values we chose for both the discount and decay

rate are therefore plausible but conservative (i.e. small), thus tending to bias the results in

favor of quotas.

We have no way of estimating the parameterh, but for units of time equal to one

year,h = 1 andh = 10 are reasonable bounds. Table 2 presents the critical valuesφi and

their approximationsφa
i , for h ranging from .1 to 100.

Table 2: Critical Values of g/b*

h φ1 φa
1 φ2 φa

2

.1 .4004 .4000 50.350 50.2

1 .0404 .04 .535 .52

10 .0044 .004 .00897 .007

100 .00197 .004 .00199 .00025

* r = .03, δ = .005

Even though we chose parameter values from the plausible range in such a way to

makeg/b large andφi small (thus making it more likely that quotas dominate taxes) our
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calculations indicate that taxes lead to higher welfare (g/b << φi). This conclusion arises

because of the extremely small estimate for the slope of the marginal damages. However,

even if the larger (based on Reilly) estimate ofg is too small by a factor of 1000, so that the

actual value ofg/b is approximately .04, taxes would still dominate quotas if the firm and the

regulator were "reasonably flexible" (h = 1). If the estimate ofg is too small by a factor of

100, taxes would still dominate quotas even if the firm and the regulator are inflexible (h =

10). Consequently, in spite of the data limitations, our results provide moderately strong

support for the use of taxes rather than quantity restrictions to control greenhouse gasses.

6. Conclusion

Previous literature ranked a tax and quota policy when abatement costs and

environmental damages both depend on the flow of pollution, and the polluter has better

information than the regulator concerning abatement costs. In that case, for linear-quadratic

functions with additive uncertainty, the quota dominates the tax if and only if the slope of the

marginal damage function is steep, relative to the slope of abatement costs. We studied the

situation where environmental damages depend on the pollution stock rather than the flow. In

this circumstance, a direct comparison of the two slopes is not meaningful, since the units of

the two are not the same.

The intuition provided by the static model continues to hold, insofar as greater

convexity of the damage function, or less concavity of the benefits function, make it more

likely that a quota is preferred. However, when environmental damages depend on pollution

stocks, the ranking of the two policies also depends on the discount and stock decay rates.

Higher discount and/or higher decay rates increase the importance of current flows relative to
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future stock effects. The chief advantage of the quota is that it makes it possible to control

exactly the evolution of the stock. Since a higher discount rate and a higher decay rate both

decrease the importance of future stock effects, they also decrease the value to the regulator

of exact control of the evolution of the stock. Consequently, higher discount and decay rates

make it more likely that a tax is preferred.

The ranking of the two policies also depends on the amount of flexibility that the

regulator and the firm have. A firm’s flexibility increases if it wants to and is able to change

its emissions more frequently. An increase in the firms’ flexibility always increases the

relative attractiveness of the tax policy, regardless of whether the regulator uses an open loop

or feedback policy. The regulator has more flexibility with feedback rules, where its policy

depends on the current value of the pollution stock. An increase in the regulator’s flexibility

increases the expected payoff under a tax and has no effect on the expected payoff under a

quota. Therefore, an increase in the regulator’s flexibility also makes the tax a more

attractive policy instrument.

The generality of our conclusions is limited by the restrictive functional forms and the

restrictive assumptions about the random term. However, these assumptions play the same

role in the dynamic as in the early static models: they enable us to identify the fundamental

considerations that determine the ranking of policy. The simplifying assumptions are also

extremely useful for empirical work. It is very difficult to estimate the slopes of marginal

abatement costs and marginal damages. Even the simple linear-quadratic model strains the

existing data base.

We used the theoretical results, together with estimates of marginal benefits and
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damages, to compare taxes and quotas in the control of greenhouse gasses. The point

estimates suggest that taxes strongly dominate quotas. In order to overturn this ranking, we

would need to adjust key parameters by a factor of more than 1000.
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Appendix

We surveyed the literature on damage and abatement costs associated with greenhouse

gasses. The volumes by Bruce et al. (1996), Cline (1992) and OECD (1992) and the papers

by Barnes et al. (1993) and Manne (1993) provide background material and summarize

previous estimates.

Falk and Mendelsohn (FM, 1993) use data from Nordhaus (1991) to estimate a linear

marginal damage function, which provided our first estimate of the parameterg. Reilly

(1992) estimates damages as a function of the concentration of greenhouse gasses (ppm). In

1990 the concentration of greenhouse gasses was 441 ppm and the stock of CO2 was 800

billion tons. We used these quantities and the assumption of a linear relation between

concentration rate and stock to convert Reilly’s estimate, obtaining a second estimate ofg.

The two estimates differ by a factor of approximately two, which we regard as small, given

the imprecision of all these numbers.

To get an idea of the range of plausible estimates of the slope of marginal damages,

Table 3 reports estimates of the cost to the world (in billions of 1990 dollars) resulting from a

doubling of the atmospheric stock of CO2. Where the original study estimates the cost of

damages for the US economy only, we assumed for the rest of the world the same ratio

between damages and GDP as in the US. Using this ratio and data on world GDP we can

then estimate the economic cost of damages for the world Thus, we can compare estimates

across the studies.
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Table 3 Damage Estimates In Billions of 1990 Dollars
Resulting from a Doubling of Tons of Carbon in Atmosphere

Cline (1992) Fankhauser
(1995)

FM (1993) Maddison
(1995)

Nordhaus
(1991)

Nordhaus
(1993)

220 260 50 (low)
400 (high)

300 50 266

These estimates vary by a factor of 8. Thus, it seems unlikely that estimates of g

based on these studies (if such estimates were possible to construct) would vary by a factor of

more than 1000. We noted in the text that the ranking of taxes over quotas would survive a

thousand-fold increase ing.

Nordhaus (1991) reports estimates of total and marginal costs associated with different

percentage reductions in greenhouse gasses. We converted these percentages to tons of

greenhouse gas at 1990 levels, thus obtaining 15 "observations" of abatement and associated

marginal and total costs. We used these data to estimate marginal abatement costs under a

variety of specification (e.g., regressing total costs against abatement and (abatement)2 with

and without an intercept; regressing marginal costs against abatement with and without an

intercept). Our estimates ofb ranged from 2.97E(-8) to 4.2E(-8). We used the smallest value

of b in our calculations, in order to make it more likely that quotas would be preferred.

Maddison (1995) estimates a cubic abatement cost function, using percentages rather

than absolute level. We converted his estimates to levels and fit a quadratic function through

the resulting curve. The resulting estimate ofb was of the same order of magnitude as the

estimates we obtained using Nordhaus’s data.
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