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Abstract

The paper considers a SUTSE model embedded in a dynamic framework to estimate an energy cost
share model for the Italian economy in an evolutionary environment. This is achieved by alowing
stochastic seasonal and trend components in the long-run specification and constructing an error
correction mechanism to model short-run dynamics. Modelling instability in the structural time series
approach has provided some improvement in the estimates of the elasticities of substitutions and of
the price elasticities with respect to those obtained using deterministic trend and seasona
components. Tests for instability in the cointegrating regresson support the evolutionary
specification adopted.
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Introduction

Recent contributions to equilibrium econometric modelling would seem to point towards a
richer modelling of long-run comovements in economic time series, in which not only the
formulation of the long-run and its evolution, but also the transformation undergone by the economic
environment is taken into account. Granger and Lee (1991) have introduced time-varying parameter
cointegration theory to study situations in which it is the attractor of the system and/or the speed of
adjustment which vary over time. This is to take into account the possible effects of structural
change. Hall and O’ Sullivan (1994) have provided an application, estimating an error correction
model with time-varying speed of adjustment. Harvey (1989) has shown how to include a stochastic
trend components in the error correction term and Harvey and Scott (1994) have embedded a
stochastic seasonal component in the short-run specification of an error correction model. Granger
and Terasvirta (1993) have introduced non-linear cointegration to model situations in which the
strength of attraction of a long-run equilibrium varies according to certain rules, for instance on the
basis of the gap existent between the actua and the long-run states of a process. Finaly, Hal,
Psaradakis and Sola (1995) have employed a finite-state Markov process with unknown transition
probabilities to describe the stochastic shifts between alternative cointegrating regimes.

In the cases considered modified cointegration analysis has been found to yield a superior
performance than conventional coinegration. This result may be also seen in the light of the fact that,
as Clements and Hendry (1995) have pointed out, poor predictions may be the consequence of an
error correction mechanism which is not correcting relative to the appropriate long-run relationship,
a Stuation which may arise, for instance, when structural change has affected the equilibrium
relation, or, as indicated by Engle et al. (1989), when the estimate of the cointegrating vector is
inconsistent. Statistical tools to investigate stability in a cointegrating regression have recently been
introduced (Gregory and Hansen 1996, Hansen 1992a,b, Quintos and Phillips 1993) and these tests
may be of help in discriminating between conventional cointegration and cointegration with regime
shifts,

In this paper an application to the Italian energy market is provided. Quarterly data for the
period 1978q1-1994g4 have been used to estimate a dynamic factor cost share model, set in the
error correction framework. After testing for instability in the cointegrating regression, the seasonal
and trend components have been allowed to vary over time. The results suggest that the evolving
long-run specification is more successful in describing the structural features of the Italian energy
market than the conventional one. This is shown by the estimated pattern of the elasticities of

substitution and of the partial price elasticities which yield values more consistent with the underlying
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economic theory. Some support is also provided by the forecast analysis, although contrasting
outcomes are indicated by the criteria employed. While in fact parameter stability forecast tests
select the structural time series specification as best forecasting model, the generalised forecast error

second moment criterion suggests an opposite conclusion.

1 The model

A neoclassical model of producer behaviour, set in its dua formulation, has been specified
using a trandog functional form. Suppose the aggregate production function is specified with
respect to capital (K), labour (L), energy (E), raw materials (M) and the level of technology (7):

Y=f(K,L,E,M,T) (1)

The energy subsystem can be broken into the four main energy inputs (ail (E,), electricity?
(E.), gas (E;) and cod (E.)). Under the assumption of homothetic weak separability of the

production function in the four primary energy sources and of exogeneity of the factor prices and the

output level (Shephard, 1953) the corresponding cost function in efficiency units may be written as

x P s} o}
C:Céifi,i,_g,£+,&,i,P_M,A,yi @
A, eAd, A, Ag A g A, A, A, 4

where the level of technology is composed of an index A4 of neutral technical progress and a number
of indexes A, representing factor saving technical progress. The optimisation problem may be solved
in two stages (Denny and Fuss, 1975). In the first stage the economic agents optimise with respect to
the fuel mix, while in the second stage the optimisation is concerned with capital, labour, materias
and energy. Since the econometric model studied is concerned with the first stage alone, the
hypothesis of homotheticity of the energy subsector has not been assumed a priori but has been
explicitly tested. That is, total energy production enters as an additional explanatory variable in the

energy model.

1. The electricity primary input is an aggregate input composed largely of hydroelectric, geothermal and nuclear
energy. Nuclear energy is no longer produced internally, but imported from France in the form of electricity.



Once the aggregate energy price index Z—E is approximated by atranslog cost function and an
E

exponential augmentation form of the type A;, = A"t is sdlected, partia differentiation with

respect to factor prices (Shephard's Lemma) gives the following set of cost share equations

o]
Sut :au +but+aauj|npjt +auE|nEt +uut
J

o]
Set :ae +bet+a aej Inpjt +aeE InEt +uet
J

o
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where a; = -  a;A, by = - & a;b, i,j=o.e,g.c and u, is a disurbance term added
[ [

after differentiation. The restrictions of price symmetry and homogeneity requirea;; = a;; " 1, j

itjandg a;; = 0"1, i,j=o,eg,c, respectively. The adding-up restriction requires that the

J

cost shares must add up to one. This implies a singular disturbance variance-covariance matrix for
the system. Therefore. the share of coal has been omitted and the remaining three cost shares have
been estimated by FIML .2

2 Data analysis
The statistical properties of the series have been assessed by HEGY tests (Engle et al., 1990).
The HEGY test is carried out by estimating the auxiliary regression:

Dlyt = m+ PYie-1 + P2Yot-1 + PaYar-2 + PaYst-1 t & (4)
with

D'y, = (1- BY)y,

ylt = (1+B+BZ+Bs)yt



Vo =+ (1_ B)(1+Bz)yt

y3t =- (1- Bz)yt

and

3
o
m = a0 + a astt + b0t

s=1

The non regjection of the null hypothesis p, = 0O indicates the presence of a unit root at the
yearly frequency. On the other hand, the non regjection of the null hypotheses p, = 0 or
p, = p, = O indicates the presence of a unit root at the seasonal frequency. Fseas is an F-test for

the joint statistical significance of the deterministic seasonal dummies.

As shown in table 1, the results suggest that the cost share equations system should be
modelled as non-stationary, treating all of the series as I(1) processes. In addition, according to the
tests, there is no evidence of stochastic seasonality at the 5% significance level and six series out of

nine show signs of deterministic seasondity (7, S, ,S,,S,,S,, E).3

Table 1: HEGY tests*
S S S S P P P P E

[ e g c o e g ¢
P, -163 -222 -404 -099 -277 -315 -277 -395 -1.17
P, -557 -469 -412 -525 -485 -596 -446 -3.36 -3.38

p,, p, 1284 1759 1255 1511 3336 1833 3120 1302 17.9
Fseas 414 1286 982 281 184 1595 097 008 125

3 Stability analysis of the long-run equilibrium relationship

2: Theuse of ML guarantees that parameter estimates, estimated standard errors, and log-likelihood values are
invariant to the choice of which equation is deleted (Berndt, 1991).

3: For the share of natural gas the null of unit root at the zero frequency is not rejected at the 1% level. For the coal
price series ADF tests conducted on the corresponding yearly series over the period 1960-1994 suggests that a
stochastic trend is an appropriate specification. The works of Shiller and Perron (1985) and Pierse and Snell (1995)
indicate, in fact, that, in general, the power of unit-root tests depends more on the sample size than on the sample
frequency. Then, a conclusion about the order of integration should preferably be drawn by low frequency data
covering a longer time span. The results have been found to be robust to the introduction of a break components to
take into account the fall in the oil price occurred in the mid 1980s.



The Engle and Granger (1987) method consists of two successive steps. In the first stage a
static regression (explaining the long-run) is run and the residuals are tested for stationarity. In this
first stage the weak exogeneity of the regressors is assumed. > In the second stage, the stationary
residuals are plugged in to the error correction system and an estimate of the dynamics and of the
speed of adjustment of the system is obtained. Testing for a structural break in the cointegrating
regression amounts to estimating augmented cointegrating regressions, letting the position of the
break point vary over a portion 0.157-0.857 of the data set. An ADF test (ADF*) is constructed
from the residuals of each cointegrating regression and the null of no cointegration is tested using the
critical values tabulated by Gregory and Hansen (1996). The augmented three share equations static

system in the most general form may be written as

S, =bx, +b'H,x, +a+j ,a" +d+YG,D, +u, t=1...,T (5

where S,d::[Sw S, Sgt], b and b" ae matrices of coefficients of dimenson (3° 5),
x¢=[Inpy INp, Inp, Inp, INE], d is a (3" 1) vector of parameters
corresponding to the linear timetrend 7, a and a” are (3" 1) vectors of intercepts, Y isa (3" 3)

matrix of parameters, Dt¢ = [cs,1 CS, css] iIs a vector of centred seasonals,
ug = [Uyp Uy Ug| with u»IN(OW), H, is a (55 marix such that

_11, for t>[Tt]u

“ 40, for c£[TL]Y and

and G, ae (3°3) marices such that

jtt

_11, for ¢ >[Tt]u

] .Gy =i . Findly, I is the identity matrix and 0 is amatrix of zeros.
10, for t£[Tt]%

Model (5) has been estimated by FIML under the following restrictions on the shift

components:

i) Level shift(C): d = 0,G, = 0,"t,H, = 0, "t;

4. The price and total energy series arein logs.

5. When the parameters of interest are the cointegrating vectors and the error correction coefficients, a necessary and
sufficient condition for a conditioning variable to be weakly exogenous is to be not-error correcting (Johansen 19924,
Urbain 1992). Then, weak exogeneity has been tested via 7-ratio and F tests conducted on the margina models, to
check that the coefficients of the added error correction terms are zero. The null of weak exogeneity for prices and
total energy has been found to be non rejected by the data (see Morana, 1997).

5



ii) Level shift withtrend (C/T): G, = 0,"t,H, = 0, " t;
iif) Regime shift (C/S): d = 0.

In i) the structural break is modelled as a single shift in the intercept, i) is mode (i)
augmented with a linear time trend while iii) is model ii) in which the dope coefficients are alowed

to vary at the time of the break. In table 2 the minimum values of the statistics and the location of
the estimated breakpoints in the sample are reported.

Table 2: Energy cost shares, regime shift tests.

So Se Sg
stat. t-value break t-value break t-value break
C -6.79%** 0.51 -6.35%** 0.35 -6.85%** 0.65
C/T -6.81*** 0.51 -7.18*** 0.35 -7.14%** 0.65
C/S -6.63** 0.51 -6.53** 0.35 -7.14%** 0.25

In table 2 "***" indicates rgjection of the null of no-cointegration at the 1% level, "**" at the
5% level. The critical value for the ADF* statistics are from Gregory and Hansen (1996), Table 1.

The null of no-cointegration is strongly rejected according to al of the statistics. For the
quarterly shares of oil and electricity the ADF* statistics agree on the location of the break point
(198304 and 198701, respectively), while for the share of natural gas the C and C/T models give the
same result (1988ag4). However, for the share of natural gas the values assumed by the ADF*
statistics are almost always greater than the tabulated critical values, so that a clear cut selection of a
single break point is not possible. Since the ADF* dtatistics are powerful against traditional
cointegration as well, the Hansen (1992a) instability statistics should be used to discriminate between
conventional cointegration and cointegration with regime shift. Hansen (1992a) has proposed three
statistics, namely the SupF, the MeanF and the L. statistics, to test the null of cointegration. The
SupF and MeanF tests are a derivation of the sample-split Chow (1960) test and consist of selecting
the largest value and the average value from a sequence of Chow tests, calculated over the portion
T =(015,085) of the data set, respectively. The Lc test is an extension of the CUSUM test and it is
powerful against changes in any of the parameters of the model, not only against instability in the
mean of the series. All of the tests assume the timing of the break as unknown. As in the Chow
(1960) test, the null hypothesis for all of these statistics is parameter constancy. The MeanF and the
Lc statistics test the null against the aternative that the parameters follow a martingale process.
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These statistics have been computed using fully modified estimates of the parameters (Phillips and
Hansen, 1990) while the covariance matrix of the parameters has been calculated using a quadratic

spectral kernel.

Table 3: Hansen (1992a) stability analysis.

stat. So Se Sg
SupF 39.70 16.47 45.88
MeanF 15.52 11.09 20.63
Lc 1.19 1.17 1.81

As is shown above, all of the statistics detect the presence of instability of various degrees.
Instability would seem to be stronger in the share of gas equation than in any of the other two shares.
This result, therefore, would raise the issue of whether a broader concept of cointegration than that

proposed by Engle and Granger (1987) might apply. This hypothesisis investigated in the rest of the
paper.

4 Long-run relationships in a changing environment.

Harvey, Henry, Peters and Wren-Lewis (1986), Slade (1989) and Harvey and Marshal
(1991) have questioned the practice of modelling technical progress using a deterministic time trend,
noticing that it may be too restrictive, since proxying technical progress by a deterministic trend is
equivalent to assuming that technical progress has been growing at an unchanging rate throughout
the span of time covered by the analysis. In particular, this would impede taking into account the
idea that the dynamics of technical progress may change over the business cycle. Following the
structural time series approach, a stochastic structure may be employed to model both a slowly
changing seasonal movement and a change in regime occurring at an unknown point in time. To do
this, a stochastic specification has been employed for the seasonal dummy variables and for the trend

level.

The structural time series approach offers a framework in which the concept of equilibrium
may be interpreted in a more dynamic perspective, since the comovements among economic
variables may be analysed in the context of a dowly changing environment. Since the economic
process is essentidly a transformation process by which, under norma conditions, the economic
system reproduces itself or dowly evolves, an econometric model flexible enough to capture these

evolutionary features could prove to be a better approximation to reality. Stochastic structural



components, therefore, have been employed to model the evolutionary environment, while prices and
total energy have been employed to describe the long-run relationship. Following Harvey and
Marshall (1991), the unrestricted three share eguation system can be written in the seemingly
unrelated time series equation (SUTSE) form as

S =m + g, + BXx, + U, t=1..,N
m=m, +b,,+h (6)
bre = bryy

gt =- gt-l- gt-z' gt-3+Wt
gt-l = gt-Z
gt-z = gt-3

where, S¢ = [S,, S.. S, ], B isamatrix of coefficients of dimension (3" 5) x, isthe vector of

weakly exogenous regressors such that xg = [Inp, Inp, Inp, Inp, InE]

4, U
ug = [Uy U, Uy | isthe vector of irregular components with u»IN(0,S,), g, = D.0is a

8.t

3
stochastic seasonal dummy component with g;, = @ Ge; + W, i=o,e,g, W, »IN(0,S,),
j=1

m=[m. m. me] is the vector of trend components with h»IN(0,S,),

bg, = [bOTt Dore bth] is the vector of drift components. The trend component is, therefore, a

random walk plus drift. The error terms h, w, u driving the unobservable components are assumed

to be mutually uncorrel ated.

To investigate the appropriateness of the stochastic specification, three different models were
estimated by the Kalman filter method. The first model is the most unrestricted one and allows for
both stochastic seasonal and trend (stochastic level, fixed sope) components; the second model
allows only for stochastic seasonals, finaly, the third model is the most restricted one, and
corresponds to the conventional static model, with fixed dummies and deterministic linear time trend.
The selection of the most appropriate specification has been decided on the basis of specification and
misspecification tests and of goodness of fit criteria. The equation standard error, the ratio of the

prediction error variance and the mean deviation (pev/imd), the Bayes-Schwarz information criterion



(BIC) and the coefficient of determination (R3)8 have been used to compare the goodness of fit and
the appropriateness of the specification across the estimated models. The estimated residuals have
been tested for serial correlation, heteroscedasticity and normality.

Table 3 reports the outcome of the specification tests and goodness of fit analyses, while
table 4 reports the estimated standard deviations and the signal/noise ratios of the residuals driving
the unobservable components. In square brackets the p-value for the Box-Ljung, heteroscedasticity
(Harvey, 1989) and Doornik-Hansen normality test are reported. For the Durbin-Watson test "*"

indicates rejection of the null of no serial correlation at the 5% significance level.

Table 3: Diagnostic checking and goodness of fit analysis.’

So Se Sg

variable mod. 1 | mod.2 || mod.3 || mod.1 mod.2 mod.3 || mod.1 || mod. 2 mod. 3
std. err. 00169 |0.0181 [0.0184 [00172 [00178 [0.0175 [0.0119 [0.0120 |[0.0128
Normality 45[.11] |21[.34] [[06[.75 |10 [.01] || 1.0[.61] [|0.9[.62 |1.0[.60] [[0.1[.09 [3.4[.18]
Heterosc. 05[.93] |05[.95] [1.3[.25] [0.6[.86] ||0.7[.82] [[0.7[.78] [[0.5[.93] [[0.7[.82] [ 0.9[.60]
DW 1.95 1.01* 1.14* 1.81 1.11* 1.10* 1.7 1.5 1.6
Ljung-Box || 7.9[.35] |22 [.00] [20 [.00] [ 11 [.17] ||14 [.05] |14 [.04] |15 [.03] [[13 [.08] | 20 [.00]
R’s 0.71 0.66 0.65 0.62 0.60 0.61 0.67 0.66 0.62
pev/md 1.17 1.20 1.11 1.27 1.16 1.19 1.14 1.08 1.24
BIC3/BICi 1.1087 1.062 1(-5.81) |[1.1363 1.0744 1(-5.92) (| 1.1027 1.040 1 (-6.55)

Table 4: Estimated standard deviations (g-ratio) of the residuals of the components.

So Se Sg
comp. mod. 1 | mod.2 || mod.3 | mod.1 mod.2 || mod.3 || mod.1 | mod.2 mod. 3
Irreg. .006 (.48) |[.018 (1.0) [|.020(1.0) | .008(.64) |l.019(1.0) |f.019(1.0) | .008(2.3) [.011(1.0) |l.014(1.0)
Level .012 (1.0) - - .013 (1.0) - - .004 (1.0) - -
Seasonal .005 (.37) || .003(.16) - .002 (.17) | .001 (.05) - .004 (1.0) || .003 (.28)

Asis shown in table 4, for the shares of oil and electricity, the estimated standard deviations
of the residuals of the level components are much larger than those relative to the seasonal
components, and approximately of the same size for the share of natural gas. From table 3 it appears
that the more the model is restricted then the lower is the non-normality of the residuals, yet higher is
their serial correlation and standard errors. In particular, for the share of oil, model 2 (fixed level,
stochastic seasonals) is the least satisfactory model, showing the clearest failure of the seria

correlation and normality tests. As far as the share of electricity is concerned models 2 and 3 would

6. RS2 =1- SSE/SSDSM , where SSE is the residual sum of squares and SSDSM is the sum of sgquares of first
differences around the seasonal means. See Harvey, 1989.



show amost the same performance, consistent with the very low estimated standard deviations of the
seasonal component residuals. It also fails the serial correlation tests more strongly than model 3,
which suffers from non-normal residuals. Finally, model 2 performs best for the share of natural gas,
showing normal residuals and failing the serial correlation tests less strongly than any of the other
models. Interestingly, for the share of natural gas, the most restricted model performs worst of al.
As far as the goodness of fit is concerned, as it is indicated by the R? statistics and the ratios of the
BIC statistics (Schwartz (Bayes) information criteria) for model 3 over models 1 and 2, in general,
the less restricted is the model the better is the fit. Lastly, the pev/md (prediction error
variance/prediction error mean deviation (sgquares)) ratio is quite close to one for al of the models.
The plots of the smoothed estimated structural components for the most unrestricted models are

reported in figure 1.

Figure 1: Smoothed stochastic components (fixed interval smoother).

Z0 X0
Trend=_ ... Eeas
1 . a8
a5~ .84
a a
- .85 - .34
-1 1 1 1 — .88 PR | 1 1
8@ 85 9@ 93 8@ BS 96 95
e ie
Trend=_ ... Eeas
1.88 . a2
1.85
1.82 a
99
B L Y 4
8@ 85 9@ 93
ing ing
Trend=_ ... Eeas
.06 . 36
.52 I B - &Y
.ag |- a
caaf -.e3|
4 1 1 1 — .85 PR | 1 1
8@ 85 9@ 93 8@ BS 96 95

7: Normality = ¢*(2); Heteroscedasticity = F(22,22), Ljung-Box = ¢?(7), Durbin-Watson: lower bound value = 1.26,
upper bound value = 1.939.
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As can be noticed from the graphs, the trend component is very close to a deterministic linear
trend for the share of natural gas. For the other two series, especially for the share of electricity, the
smoothed estimates show a clear fall in the level component. This is located around the years of the
1985 oil countershock and over time, it seems to shift back to its original level only for the share of
oil. Asfar as the seasonal component is concerned, a owly evolving movement is quite evident for
the shares of oil and natural gas. For the share of electricity the change in the seasona behaviour
seems to be more similar to alevel shift which would have taken place at the beginning of the 1990s,

although after 1985 the amplitude of the seasonal movement would seem to have increased as well.

The outcome of the structural time series analys's, therefore, would seem to support the less

restricted specification (mod.1), which allows for stochastic seasonal and trend components.

Following Anderson and Blundell (1982), the economic restrictions of price homogeneity and

symmetry have been imposed on a dynamic version of the model. The three share equation system

DSt = é. GiDSt-i +é. Pijt-j +A[St-1_ m-l_ gt-l+bit-1] +ut (6)

i=1 j=0

has  been estimated by FIML, where Dsg=[Ds, Ds, Ds,],

.
ng::[DInpw Dinp,, Dlnp, Dinp, DInE,], G; and P; are matrices of parameters of
dimension (3" 3) and (5 3), respectively, and contain zeros since the set of regressors is not
common across equations, A isa (3" 3) feedback matrix, ut¢=[uw u, ugt] with u » IN(0,W).
e, =[ﬁ1w_1 m, , fng[_l] and g¢, :[Qw_l 9., Qg[_l] are the estimated smoothed trend and

seasonal components, b isa (3" 4) matrix of long-run parameters, S¢, :[Sw_ 1 Se1 Syl isa

vector of shares, and i¢:[ln(pw/pc,) In(p,, / p..) In(pgt/pc,) InE,] with b_ = b

oe eo’

Doy = Byor by = bye. The adding up restriction implies that each column of the coefficient

og gor Deg
matrices G,, P, and A adds up to zero, that is idG, =0, i, =0 and i®A = 0. In particular, the
restriction i¢A =0 implies that in the case of a diagonal system each share has to adjust at the same
Speed.

Since the adding-up restrictions strongly constrain the selection of dynamics, | have preferred
to let the data determine the adjustment process, by constraining the feedback matrix only. The

11



adding-up restrictions as the other economic restrictions (price homogeneity and symmetry),
however, have been imposed on the long-run structure of the model. This would guarantee that the

estimates of the long-run parameters are invariant with respect to which share equation is deleted.®

The reduction of the econometric model has been achieved sequentially, testing the statistical
significance of the deleted variables by Likelihood-Ratio (LR) tests, and by taking into account the
effect of the omitted regressors on the properties of the residuals. In al of the cases the adjustment
process could be taken as not interrelated, so that the adjustment in each share equation depends
only on the gap between the actual and long-run values of each corresponding share and the
feedback matrix is diagonal. The adding-up restriction would require, then, the same speed of
adjustment for the three shares. The likelihood ratio tests for the hypothesis of a diagonal feedback
matrix (a;; =0 i=1...3j=1...3i! j) and for the hypothesis of equal adjustment speeds

(ay = a, = ay), ae c*(6)=4.96[055 and c?(2)=040[082], respectively. Finally, the

economic restrictions of price symmetry has not been rejected by the data ( ¢ *(3) = 541 [014]).

Table 5: Quarterly econometric model (FIML estimates).

REM #H##So HH##Se ###Sg
variable Coeff. S.E. Coeff. S.E. Coeff. S.E.
HH#So 1 -0.2068  .0928
HH#Se 1 -0.2353  .1044
HH#Se 2 0.3030 .0679 -0.2942 .0588
HH#Sg 1 -0.3302 .0984

H##H#Sg 2 0.8054  .1107 | -0.3034  .0935 || -0.5530 .0748
HHHInE 0.1287  .0309 | -0.3010 .0289 0.1711  .0199
H###HInPo 02784  .0321 | -0.0985 .0306 | -0.1438 .0196

baiazs 0.1075  .0264 -0.1057  .0230
InPo_2

baiazs -0.1539  .0374 0.1931  .0380

InPe_1

###InPg | -0.0786 .0310 | -0.1040 .0293 0.1943  .0192
baiazs -0.1014  .0250 0.0797  .0218
InPg 2

###InPc | -0.0457  .0169

ECT 1 -0.3101  .0941 | -0.3101 .0941 | -0.3101  .0941

Table 6: Quarterly econometric model, properties of the residuals. °

8: The dynamic model was estimated also with the adding-up restrictions fully imposed. The estimated speed of
adjustment parameters did not show any significant difference with respect to the estimates reported.

9: AR 1-8 (Doornik and Hendry, 1994) = F(8,39); Normality (Doornik and Hansen, 1994) = c2(2); ARCH 4 (Engle,
1982) = F(4,39); Heteroscedasticity (White, 1980) = F(30,16).
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HH#So HHHSe HH#Sg
s 0.0203 0.0199 0.0122
AR 1-8 1.88[0.09] 1.80[0.11] 1.36 [0.24]
ARCH 4 1.27 [0.30] 1.83[0.14] 0.90 [0.47]
Normality 0.75[0.69] 0.76 [0.68] 1.94[0.38]
Heterosc. 0.48 [0.96] 0.80[0.71] 0.28 [1.00]

The estimated long-run parameters from the corresponding solved dynamic model are

reported below.

Table 7: Quarterly econometric model, solved long-run.

long-run So Se Sg Sc

variable Coeff. Coeff. Coeff. Coeff.
InE 0.1165 -0.2588 0.1201 0.0221
InPo/Pc 0.2424 -0.1142 -0.0883 -0.0444
InPe/Pc -0.1142 0.1734 -0.0550 -0.0042
InPg/Pc -0.0838 -0.0550 0.1359 0.0029

5 The bias of technical progress
Harvey and Marshall (1991) have shown that an estimate of the biases of technical progress
(Z,) for the generic ith share (.S, ) may be obtained by rewriting the definition of Binswanger (1974)

such as

7;[ = 100[&:/1\7 - i:f‘}t-llN]/*S'it (7)

where m,,, is the smoothed estimate of the corresponding trend component. In figures 2a-2c the

annual averages of the estimated biases of technical progress for each share are plotted.

Figure 2a: Share of oil, bias of technical progress, annual average.
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Figure 2b: Share of electricity, bias of technical progress, annual average.
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Figure 2c: Share of natural gas, bias of technical progress, annual average.
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Figure 2d: Share of coal, bias of technical progress, annual average.
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From the plots above it emerges that over the period 1979-1994 the biases of technical
progress would have shown some variation. However, in general, apart for the period of the oil
price countershock, the biases for natural gas and electricity are positive while for oil the bias is
negative. On the other hand, for coal the bias is positive up to 1986 and negative thereafter. The
mean rates of technical progress over the time span considered are 0.51% for electricity, 0.61% for
natural gas, -0.33% for oil and -0.06% for coa. Therefore, according to the estimates above, over
the period 1979-1994 technical progress in Italy would have biased towards using natural gas and

electricity and saving oil and coal.

6 The process of energy substitution
The estimated parameters from the structura time series specification have been used to
obtain estimates of the Allen partia easticities of substitution and partial price elasticities. The

average share over the sample has been used as the point of approximation. Substitution (s) and

price eladticities (e) have been calculated by the formulas

$ :(b’+ A’) it $ —(B”JF%Z_ S) ®)
g Sl ; u Siz
. (B,+58) . [baesz-s)
U:SJSU: SA' ll] € =S = SA' (9)

A

where i,j=o0,e,g,c, b, are the estimated parameters of the price variables and §1~ are the

estimated energy shares taken at their average values. In table 9a and 9b estimates obtained in a
previous study (Morana, 1997) using a deterministic specification for the trend and seasonal
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components from both quarterly (197891-1994g4) and yearly (1960-1994) data are reported for

comparison.

Table 8: Allen elasticities of substitution and partial price elasticities (structural model).

average Elasticities of substitution || Partial price elasticities ||
share 0 e g c 0 e g c
0 -0.02 0.12 0.01 -0.37 -0.01 0.03 0.00 -0.02
e -0.13 -0.51 0.69 0.07 -0.03 -0.08 0.04
g 0.23 132 0.01 -0.12 0.04 0.08
c -2.78 -0.21 0.17 0.20 -0.02

Table 9a: Allen elasticities of substitution and partial price elasticities, quarterly estimates.

average Elasticities of substitution || Partial price elasticities ||
share 0 e g c 0 e g c
0 011 0.25 -0.10 -0.85 0.01 0.06 -0.02 -0.05
e 0.16 -0.36 -2.01 0.14 0.04 -0.05 -0.12
g -0.06 255 -0.06 -0.08 -0.01 0.15
c 9.42 -0.47 -0.48 0.39 0.55

Table 9b: Allen elasticities of substitution and partial price elasticities, yearly estimates.

average Elasticities of substitution || Partial price elasticities ||
share 0 e g c 0 e g c
0 -0.14 021 0.25 -0.39 -0.07 0.02 0.06 -0.01
e -0.13 0.02 -1.09 011 -0.04 0.00 -0.07
g -2.14 145 0.13 0.01 -0.22 0.09
c 6.71 -0.20 -0.35 0.15 0.40

As shown in the table above, the elasticities estimated using the structural time series
specification are rather different from those calculated using a deterministic specification for both the
trend and seasonal components. Firstly, the own price elagticities for oil, eectricity and cod are of
the appropriate negative sign. Only for natural gas the estimates indicate a violation of the concavity
assumption at the selected point of approximation. Secondly, a different pattern of substitution
among the energy inputs is suggested. According to the estimates, coa is a complement for oil while
gas and eectricity are a substitute for oil and coal and a complement for eectricity. The only
common features between the two quarterly models are the substitutability of gas and coa and of oil
and dectricity and the complementarity of coal and oil and of electricity and gas. On the contrary,

the pattern of substitution indicated by the structural model replicates amost exactly the one
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suggested by the annual estimates.l®© The fact that the pattern of substitution suggested by the
structural model mirrors that obtained from the annual model can be taken as evidence in favour of
the appropriateness of the structural specification. 11 However, the superiority of the structural
specification with respect to the conventional quarterly model should be established aso on the basis
of the relative forecasting performance of the error correction models embodying the different long-

run specifications.

7 Forecasts analysis

The econometric models have been estimated over the period 197991-198904 and static
forecasts have been computed for the period 199001-199404, that is the difference in shares have
been forecast over a horizon of 20 periods. In assessing the forecasting performance of the models,
two main criteria have been used, that is, 1-step ahead (static) forecasts have been evaluated by
parameter constancy-based and mean squared forecast error (M SFE)-based criteria (GFESM). These
two typologies of criteria offer complementary information, since parameter constancy evaluates the
empirical model against the post sample realisation of the data used to estimate the model, while the
MSFE evauates the empirica model against alternative models.

Parameter constancy forecast tests are devised to test the null hypothesis of no structural
change in any of the parameters between the horizon over which the model is estimated and the
horizon over which it is forecast. Two statistics have been employed to test for predictive failure at

the system level (Doornik and Hendry, 1994), namely

H e

hy, = (nH) '@ G, W Q,,, » F(nH,T - k) (10)
i=1
i .

h, = (nH)'q 4$..Y ., 0, » F(nH,T - k) (11)

i=1

where i,,, isa (3" 1) vector of forecast errors at time T+i (DS,,, - DS,,,), W is the variance

covariance matrix of the residuals calculated from in sample information (¢ =1,...,T), \?m is the

10: The only difference is that according to the quarterly structural model electricity is a complement for gas and a
substitute for coal.

11 na previous study (Morana, 1997) the yearly model has been found likely to provide a more reliable description
of the long-run than the quarterly conventional model. This is aso on the basis of the super exogeneity properties of
the yearly model.
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variance-covariance matrix for the forecast errors at time 7'+, n is the number of equation in the
model (» = 3) and H isthe length of the horizon over which the model is forecast ( # = 20).

The h, datistic, differently from the h, statistic, ignores parameter uncertainty, that is the

fact that the parameters of the models are not known but have to be estimated. It yields a measure of

numerical parameter constancy. On the other hand, the h, statistic can be interpreted as model

specification test and it is suitable to be used in model selection.

The generalised forecast error second moment (GFESM) (Clements and Hendry, 1993) is the

determinant of the complete (stacked) forecast error second moment matrix, that is

GFESM = |E[in

(12)

A A A A

where i¢= [ﬁu’m Byrg ygag o Boreg Borey ﬁg,m,] is a (nH " 1) vector of forecasts

errors, that is a vector constructed by stacking the forecast errors from the » (n = 3) equations for
each point in time (7 +1,...,T+ H) in a single vector. The GFESM criterion for one-step ahead
forecasts may be calculated as the determinant of the estimated M SFE matrix. In the case at hand the
estimated MSFE matrix is a (3° 3) symmetric matrix, with the element on the main diagonal
calculated as

H
o]

1 . 2
MSFE, =~ 8 (os,.,., - DS, ,..) 13)

i=1

and the off-diagonal terms as

(DSJHTH ) D§1,T+i)(DSk,T+i - D‘§k,T+i) (14)

Qox,

MSFE , = E
H

1l
=

with j,k =o0,e,g j' k.

The advantage given by this determinantal measure is that it takes into account the
correlation existent among forecast errors at a given point in time. According to this criterion the
ranking across models is attained by preferring the model with smallest GFESM. In the table below
model C is the econometric model which embodies the conventional long-run specification while

model S embodies the structural long-run specification.
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Table 10: 1-step (ex post) forecast
analysis 90 (1) to 94 (4).12

1-step C S
h1 1.40 [.14] |1.36 [.17]
h2 1.16 [.32] |1.10 [.39]
GFESM 3.567 4.897

From the table above it can be seen that no clear cut evidence is provided by the forecast
analysis. In fact, according to the parameter constancy forecast tests, model S offers a superior

performance than model C. However, the GFESM criterion would suggest an opposite conclusion.

8 Concluding remarks

The analysis carried out in this paper has provided some evidence of the presence of a slowly
evolving seasonal movement in the Italian energy series, not detected by conventional HEGY tests,
which a deterministic dummy specification may fail to capture appropriately. As shown by Engle,
Granger and Hallman (1989), using a deterministic seasona specification in such a situation may
result in inconsistent estimates of the long-run parameters. Moreover, some instability in the trend
component in the quarterly share models has been indicated as well. Modelling instability in the way
described has given some improvement in the estimates of the elasticities of substitution and of the
price elasticities, providing results which are more consistent with economic theory than those
obtained using the conventional methodology. The structural time series approach, by alowing the
detection and modelling of instability in long-run relations, would seem to be a powerful tool for

long-run economic modelling. Further research in this direction should be encouraged.

12 h , h =F(60,36). The GFESM figures reported are the original figures multiplied by 10%.
1 2
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Appendix

A1 Data construction

Energy Prices
Source: OECD (IEA): Energy Prices and Taxes
Frequency: Quarterly (seasonally unadjusted): 197801-199404. Y early: 1960-1994.

Definition: Industry end-user prices (MTOE) in national currency.

Po: oil industry price; the seriesis aweighted average of the HFOIP (heavy oil fuel industry
price)and LFOIP (light oil fuel industry price) series, with weights calculated from the Quarterly Oil
Statistics and Energy Balances (OECD).

Pg: natural gasindustry end-user price
Pc: steam coal industry end-user price

Pe: electricity industry end-user price

Energy Quantities:
Source: OECD (IEA): Quarterly Oil Statistics and Energy Balances and Energy Balances of OECD

Countries.
Frequency: Quarterly (seasonally unadjusted): 1978q1 199404. Y early: 1960-1994.
Definition: Quantities are expressed in million tons of oil equivalent (MTOE), and refers to primary
energy supply.
Qc: cod
Qo: ail
Qg: natural gas
Qe: electricity; the series includes the generation of eectricity from hydro/geothermal,

nuclear, and the provision from electricity (net) trade.
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A2 Stability analysis (graphs)

Figure 2a: Quarterly share of oil: Gregory and Hansen (1996) ADF* statistics.
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Figure 2b: Quarterly share of electricity: Gregory and Hansen (1996) ADF* statistics.
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Figure 3a: Quarterly shares of oil: Hansen (1992a) SupF statistic.
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Figure 3b: Quarterly shares of electricity: Hansen (1992a) SupF statistic.
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Figure 3c: Quarterly shares of natural gas: Hansen (1992a) SupF statistic.
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AS Kalman filter estimation
The state-space form of the long-run structural model! is

S,=Z,a,+u, t=1..,N (A1)
a, =Ta, ; +Ru,

where Z, isa (3" 30) matrix partitioned as
2=l Iy Iy 0y (IAxg) (A2)
ag=[me b¢ o¢ g¢, 9¢, B, B, B (A3)

where B, i =1,2,3 isthe ith row of matrix B

é 13 I3 0(3' 6) 0(3’ 6) 0(3’ 6) 0(3' 6)3
20(3' 3 I, 0(3' 6) 0(3’ 6) 0(3’ 6) 0(3' 6) (]
&, 0. -1 -1 -1 0. .0
T=é (373 (373 3 3 3 (3 15)(1 (Ad)
dsg a9 L Oy Ogy 05y
o9 Y9 Oy L Oy Oy
éo(g' 3) 0(9' 3) 0(9' 3) 0(15' 3) 0(15' 3) L g
R = §0(3' 3) 0(3' 3) 0(3' 3) 0(3' 21) u (A5)
90(3' 3) 0(3' 3) I 0(3' 1) Y
S a
é) (21 3) 0(21' 3) 0(21' 3) 0(21' 1)
Ut¢: [h,¢ 0(1 3) W;¢ 0(1 3) 0(1 3) 0(1 5) 0(1 5) 0(1 5) (A6)

with u, » IN(0,W).

Following Harvey (1989), once the model is set in the state-space form, ML estimation of the
unknown hyperparameters (variance parameters) of the system matrices can be carried out via the
Kaman filter and the prediction error decomposition. Finally, smoothed estimates of the state vector
conditional on all of the sample information have been calculated by the fixed interval smoother.
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