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Abstract : This paper discusses the role of risk communication in macroprudential oversight and of vi-
sualization in risk communication. Beyond the soar in data availability and precision, the transition
from firm-centric to system-wide supervision imposes vast data needs. Moreover, in addition to internal
communication as in any organization, broad and effective external communication of timely information
related to systemic risks is a key mandate of macroprudential supervisors. This further stresses the impor-
tance of simple representations of complex data. The present paper focuses on the background and theory
of information visualization and visual analytics, as well as techniques within these fields, as potential
means for risk communication. We define the task of visualization in risk communication, discuss the
structure of macroprudential data, and review visualization techniques applied to systemic risk. We con-
clude that two essential, yet rare, features for supporting the analysis of big data and communication of
risks are analytical visualizations and interactive interfaces. For visualizing the so-called macroprudential
data cube, we provide the VisRisk platform with three modules: plots, maps and networks. While VisRisk
is herein illustrated with five web-based interactive visualizations of systemic risk indicators and mod-
els, the platform enables and is open to the visualization of any data from the macroprudential data cube.

Keywords: Macroprudential oversight, risk communication, visualization, analytical visualization, in-
teractive visualization, VisRisk

JEL codes: G01, G15, F37, F38, F47
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Non-technical summary

The policy objective of safeguarding financial stability, which is addressed through macroprudential over-
sight of the financial system, is currently being accepted and implemented within governmental authorities
and supervisors. Beyond the soar in availability and precision of data, the transition from firm-centric to
system-wide supervision imposes obvious data needs when analyzing a large number of entities and their
constituents as a whole. As central tasks ought to be timely and accurate measurement of systemic risks,
big data and analytical models and tools become a necessity. While analytics might aid in automated
modeling, one approach to dealing with complex data and modeling problems is to improve end users’
understanding of them in order to tap into their expertise. This points towards means that support
disciplined and structured judgmental analysis based upon policymakers’ experience and domain intelli-
gence. Further, the mandates of macroprudential supervisors have to date been stressing or even limited
to communication, issuing warnings and giving recommendations, which boils down to an emphasis on
broad and effective communication of timely information related to systemic risks.

Systemic risk has commonly been distinguished into three categories: (i) build-up of widespread
imbalances, (ii) exogenous aggregate shocks, and (iii) spillover and contagion. With the aim of mitigating
system-wide risks, macroprudential oversight is commonly comprised into a process, where key tasks
include (i) risk identification, (ii) risk assessment, and (iii) policy assessment, implementation and follow-
up. As a soft policy intervention, risk communication concerns the overall task of spreading broadly and
effectively timely information related to systemic risks, as well as other vulnerabilities concerning the
financial system and its macro-financial environment. Fortunately, policymakers and regulators have
access to a broad toolbox of analytical models to measure and analyze system-wide threats to financial
stability. The tasks of these tools can be mapped to the above listed three forms of systemic risk: (i)
early-warning models and indicators, (ii) macro stress-test models, and (iii) contagion and spillover
models. While the first aids in risk identification, the second and third approaches provide means for risk
assessment. Yet, this points out a mismatch between the current objectives and needs and the available
tools: while a key task is the communication of risks, the toolbox of analytical models lacks a focus on
approaches that support human understanding.

The term visualization has a wide meaning and relates to a number of interdisciplinary topics, in
particular information visualization and visual analytics. The rationale behind the use of visual represen-
tations and their usefulness relates to traits of the human visual system. Visualization can be seen as a
type of cognitive support or amplification, which leads to a focus on strengths and weaknesses of human
perception. This highlights the importance of principles for designing visuals that meet the demands of
the human visual system. Next, the utilized techniques for visualization can be divided into two types:
graphical representations of data and means for interaction. While the former can be summarized in
various categories of visualization techniques, such as per output and data, the latter refer to how the
user can interact with or manipulate the displayed data, such as zooming or panning, which often has
its basis in one or more graphical displays for enabling more flexibility to explore data. This invokes two
questions: 1. (2. how) would tapping into visualization support risk communication in macroprudential
oversight?

This paper discusses the role of visualization in macroprudential oversight at large, especially for
the purpose of risk communication. Risk communication comprises two tasks. Internal communication
concerns spreading information about systemic risks within but at various levels of the organization, such
as among divisions, groups or analysts, whereas external communication refers to the task of disseminating
information about systemic risks to the general public. In this paper, we mainly focus on the background
and theory of information visualization and visual analytics, as well as techniques provided within these
disciplines, as potential means for risk communication. The topic of visualization is in this paper discussed
from three viewpoints: (i) we define the task of visualization in risk communication, (ii) present a so-
called macroprudential data cube and discuss its structure, and (iii) review visualization techniques
applied to systemic risk. This provides an overview of which tasks should be supported by visualization
and the underlying data to be visualized. Eventually, the discussion boils down to two essential, but
to date rare, features for supporting the analysis of big financial data and the communication of risks:
analytical visualizations and interactive interfaces.

For visualizing the macroprudential data cube through analytical and interactive visualization, we
provide the VisRisk platform with three modules: plots, maps and networks. The platform can be ac-
cessed here: http://vis.risklab.fi/. Plots focuses on interactive interfaces for representing large amounts
of data. While maps provides analytical means for representing the three standard dimensions of a data
cube in simple formats, networks aims at visualization of the fourth data cube dimension of interlinkages.
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While VisRisk enables and is open to the visualization of any data from a macroprudential data cube, the
platform is herein illustrated with five web-based interactive visualizations of systemic risk indicators and
models, of which three make use of analytical visualizations. First, we make use of analytical techniques
for data and dimension reduction to explore high-dimensional systemic risk indicators and time-varying
networks of linkages. Second, this paper adds interactivity to not only dashboards of standard risk indica-
tors and early-warning models, but also to the analytical applications. The ultimate aim of VisRisk, and
this paper at large, is to provide a basis for the use of visualization techniques, especially those including
analytical and interactive features, in macroprudential oversight in general and risk communication in
particular.
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“ In the absence of clear guidance from existing analytical frameworks, policy-makers
had to place particular reliance on our experience. Judgement and experience in-
evitably played a key role. [...] But relying on judgement inevitably involves risks.
We need macroeconomic and financial models to discipline and structure our judge-
mental analysis. How should such models evolve?”
– Jean-Claude Trichet, President of the ECB, Frankfurt am Main, 18/11/2010

1 Introduction

Macroprudential oversight refers to surveillance and supervision of the financial system as a whole. As
can be exemplified by recently founded supervisory bodies with the mandate of safeguarding financial
stability, a system-wide perspective to financial supervision is currently being accepted and implemented
as a common objective of governmental authorities and supervisors. To this end, the European Systemic
Risk Board (ESRB) in Europe, the Financial Policy Committee (FPC) in the UK, and the Financial
Stability Oversight Council (FSOC) in the US were founded in the aftermath of the financial instabilities
of 2007=2008. Beyond the soar in availability and precision of data, the transition from firm-centric
to system-wide supervision imposes obvious data needs when analyzing a large number of entities and
their constituents as a whole (see e.g. Flood and Mendelowitz, 2013). As central tasks ought to be
timely and accurate measurement of systemic risks, big data and analytical models and tools become a
necessity. While analytics might aid in automated modeling, one approach to dealing with complex data
and modeling problems is to improve end users’ understanding of them in order to tap into their expertise.
As above noted by Mr. Trichet, we need means supporting disciplined and structured judgmental analysis
based on policymakers’ experience and domain intelligence = and not only models but also means to
understand their output and underlying data. Further, the mandates of macroprudential supervisors have
to date been stressing (or even limited to) communication, issuing warnings and giving recommendations,
which boils down to an emphasis on broad and effective communication of timely information related to
systemic risks.

Financial systems, described by the three pillars of financial intermediaries, markets and infrastruc-
tures, have been shown to be recurringly unstable due to limitations related to market imperfections
(de Bandt and Hartmann, 2002; Carletti, 2008). Underlying systemic risk, while having no unanimous
definition, has commonly been distinguished into three categories (de Bandt et al., 2009; ECB, 2009):
(i) build-up of widespread imbalances, (ii) exogenous aggregate shocks, and (iii) spillover and contagion.
With the aim of mitigating system-wide risks, macroprudential oversight is commonly comprised into a
process, where key tasks include (i) risk identification, (ii) risk assessment, and (iii) policy assessment,
implementation and follow-up. As a soft policy intervention, risk communication concerns the overall
task of spreading broadly and effectively timely information related to systemic risks, as well as other
vulnerabilities concerning the financial system and its macro-financial environment. Fortunately, pol-
icymakers and regulators have access to a broad toolbox of analytical models to measure and analyze
system-wide threats to financial stability. The tasks of these tools can be mapped to the above listed three
forms of systemic risk (e.g., ECB (2010)): (i) early warning of the build-up of widespread vulnerabilities
and imbalances, (ii) stress-testing the resilience of the financial system to a wide variety of exogenous
aggregate shocks, and (iii) modeling contagion and spillover to assess how resilient the financial system
is to cross-sectional transmission of financial instability. While the first approach aids in risk identifica-
tion and the second and third provide in risk assessment, risk communication relates to all of the above
approaches.

Despite macroprudential bodies have only recently been mandated with macroprudential oversight,
central bank communication is far from a new task. As reviewed by Blinder et al. (2008), over the past
20 years central banks have started placing a larger weight on communication and overall become more
transparent. That said, the role of communication related to financial stability and overall macropru-
dential tasks is more recent (e.g., Cihák et al., 2012; Born et al., 2013). Accordingly, this points out
a mismatch between the current objectives and needs and the available tools: while a key task is the
communication of risks, the toolbox of analytical models lacks a focus on approaches that support human
understanding.

The term visualization has a wide meaning and relates to a number of interdisciplinary topics, in
particular information visualization and visual analytics. The rationale behind the use of visual rep-
resentations and their usefulness relates to traits of the human visual system (see, e.g., Ware (2004)).
Card et al. (1999) assert visualization as a type of cognitive support or amplification, which leads to a
focus on strengths and weaknesses of human perception. This highlights the importance of principles for
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designing visuals that meet the demands of the human visual system. Although the computer age has
brought visuals, and even the design of them, to the desks of ordinary people, including policymakers,
the most influential literature on data graphics design still today dates back to work by Tufte (1983) and
Bertin (1983). Rather than an exact theory, Tufte and Bertin provide a set of principles and rules of
thumb to follow. Techniques supporting visualization can be divided into two types: graphical represen-
tations of data and means for interaction. While the former can be summarized in various categories of
visualization techniques, such as per output and data, the latter refer to how the user can interact with
or manipulate the displayed data, such as zooming or panning, which often has its basis in one or more
graphical displays for enabling more flexibility to explore data. This invokes two questions: 1. (2. how)
would tapping into visualization support risk communication in macroprudential oversight?

This paper discusses the role of visualization in macroprudential oversight at large, especially for
the purpose of risk communication. Risk communication comprises two tasks. Internal communication
concerns spreading information about systemic risks within but at various levels of the organization, such
as among divisions, groups or analysts, whereas external communication refers to the task of disseminating
information about systemic risks to the general public. In this paper, we mainly focus on the background
and theory of information visualization and visual analytics, as well as techniques provided within these
disciplines, as potential means for risk communication. The topic of visualization is in this paper discussed
from three viewpoints. First, based upon the needs for internal and external risk communication, we define
the task of visualization in macroprudential oversight. Second, we present the so-called macroprudential
data cube, by discussing the type of available data for identifying and assessing systemic risk, including
their structure and its potential implications for analysis and visualization. Third, we review the current
state of the art in visualization techniques applied to the analysis of systemic risk. This provides an
overview of which tasks should be supported by visualization and the underlying data to be visualized.
Eventually, the discussion boils down to two essential, but to date rare, features for supporting the
analysis of big financial data and the communication of risks: analytical visualizations and interactive
interfaces.

For visualizing the macroprudential data cube through analytical and interactive visualization, we
provide the VisRisk platform with three modules: plots, maps and networks.1 Plots focuses on interactive
interfaces for representing large amounts of data, but does not make use of analytical techniques for re-
ducing complexity. While maps provides analytical means for representing the three standard dimensions
of a data cube in simple formats, networks aims at visualization of the fourth data cube dimension of
interlinkages. As VisRisk enables and is open to the visualization of any data from a macroprudential
data cube, we aim at providing a basis with which systemic risk indicators and models can be widely
communicated. It is herein illustrated with five web-based interactive visualizations of systemic risk
indicators and models, of which three make use of analytical visualizations. First, we make use of ana-
lytical techniques for data and dimension reduction to explore high-dimensional systemic risk indicators
and time-varying networks of linkages. Second, this paper adds interactivity to not only dashboards of
standard risk indicators and early-warning models, but also to the analytical applications. The ultimate
aim of VisRisk, and this paper at large, is to provide a basis for the use of visualization techniques,
especially those including analytical and interactive features, in macroprudential oversight in general and
risk communication in particular.

The present paper is organized as follows. While Section 2 discusses macroprudential oversight and
risk communication, Section 3 focuses on information visualization and visual analytics. In Section 4, we
present an overview of visualization techniques in risk communication and macroprudential oversight and
the macroprudential data cube. Section 5 introduces VisRisk as a general platform for visualizing the
macroprudential data cube, and illustrates it with five web-based interactive visualizations of systemic
risk indicators and models, of which three make use of analytical visualizations. Section 6 concludes.

2 Macroprudential oversight and risk communication

Since the date when the still ongoing global financial crisis broke out, the notion of a macroprudential
approach to safeguarding financial stability has grown consensus among the academic and policymaking
communities alike. Yet, it is by no means a new concept. The Bank for International Settlements (BIS)
applied the term to describe a system-wide orientation of regulatory frameworks already in the 1970s, and
the term appeared in publicly available material in the mid-1980s (see BIS (1986) as discussed in Borio

1The VisRisk platform for interactive and analytical applications can be found here: http://vis.risklab.fi/
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risk communication. The figure is adapted from ECB (2010).

Figure 1: The macroprudential oversight process.

(2011)). The series of recently established macroprudential supervisory bodies obviously also motivates
understanding and disentangling their specific tasks and functions.

This section attempts to provide a holistic view of a so-called macroprudential oversight process. As
mentioned in the introduction, the starting point ought to be acknowledging the existence of underlying
market imperfections, which might cause systemic risks in the financial system. This section discusses
the tasks within the process, and relates the concept of risk communication to macroprudential oversight.

2.1 The macroprudential oversight process

The previously described market imperfections, and thereby caused systemic risks, are a premise for
macroprudential oversight. Accordingly, the above described three analytical approaches aim at signaling
these systemic risks at an early stage. In terms of a process, Figure 1 puts forward the steps of the process
that a macroprudential supervisory body follows. As described in ECB (2010), macroprudential oversight
can be related to three steps: (i) risk identification, (ii) risk assessment, and (iii) policy assessment,
implementation and follow-up, as well as giving risk warnings and policy recommendations. The process
in Figure 1 deviates from that in ECB (2010) by explicitly introducing a fourth task of risk communication
and its feedback loop. In the figure, the red components represent risks and vulnerabilities, the green
components represent the need for risk identification and assessment, the gray components represent
policy assessment and implementation, as well as risk warnings, policy recommendations and follow-up,
and the blue components represent overall risk communication. Moreover, following Bundesbank (2013),
we can distinguish the final instruments into different levels of organization: (i) soft (communication),
intermediate (warnings and recommendations) and hard (interventions).

In the first step of the supervisory process, the key focus is on identifying risks to stability and
potential sources of vulnerability. The vulnerabilities and risks could exist in any of the three pillars
of the financial system: financial intermediaries, financial markets and financial infrastructure. The
necessary analytical tools to identify possible risks, vulnerabilities and triggers come from the set of
early-warning models and indicators, combined with the use of market intelligence, and expert judgment
and experience. This involves ranking risks and vulnerabilities as per intensity, as well as for assigning
probabilities to specific shocks or future systemic events.

In the second step of the process, the rankings and probabilities may be used to assess the identified
risks. Beyond market intelligence, as well as expert judgment and experience, risk assessment makes
use of analytical tools mainly from the set of macro stress-testing models and contagion models. In
macro stress-testing, simulations of most plausible risk scenarios show the degree of impact severity on
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the overall financial system, as well as its components. Contagion models, on the other hand, might be
used through counterfactual simulations to assess the impact of specific failures on the entire financial
system and individual institutions. The first and the second step of the process should not only provide
a list of risks ordered according to possible severity, but also contain their materialization probabilities,
losses given their materialization, and real losses in output and welfare, as well as their possible systemic
impact. Hence, these two initial steps in the process aim at early risk identification and assessment and
provide means for safeguarding financial stability.

The third step of the process involves the assessment, recommendation and implementation of policy
actions as early preventive measures. Based upon the identified and assessed risks, a macroprudential
supervisory body can consider giving a wide variety of risk warnings and recommendations for other
parties to use policy instruments, as well as implementations of policies given the instruments at hand.
To steer their decisions, the policy assessment step can make use of the same analytical tools used for
risk identification and assessment. Likewise, analytical tools may support assessment prior to issuing risk
warnings and giving policy recommendations. While the use of policy tools is beyond the mandate of
some macroprudential supervisory bodies, actions tailored to the needs of a system-wide orientation are
becoming a key part of financial regulation and supervision.2 As illustrated in Figure 1, policies have an
impact on not only the assessment of policy and identification and assessment of risks, but obviously also
directly on market imperfections and the accumulation of systemic risks.

The fourth step, while not always being the last task to be performed, concerns risk communication,
and its own feedback loop, which is a central part of this paper and is thus the topic of the following
subsection.

2.2 Risk communication

The above discussion untangled overall risk communication as a separate step in the macroprudential
oversight process. Although the tasks of overall risk communication is inherently different, a integral part
of warnings, and policy recommendations and implementations also makes use of the communication
channel, in which the overall task concerns disseminating information. The above subsection positioned
risk communication within the macroprudential oversight process, yet did not provide a detailed discus-
sion. This subsection brings up the role and possible forms of risk communication.

Risk communication describes the task of disseminating broadly and effectively timely information
related to systemic risks and other vulnerabilities of the pillars of the financial system. Moreover, macro-
financial imbalances and risks at the sector level (i.e., household, corporate, foreign and government).
From the viewpoint of risk communication of a macroprudential supervisory body, Figure 2 simplifies
the macroprudential oversight process into three key steps: risk identification, risk assessment and risk
communication. The simplification refers to a focus on the soft type of intervention. However, with only
the three distinct steps, the figure enables a more detailed description of tasks. Following the discussion
thus far, the figure also summarizes the key tasks and available tools in each of the process steps. Building
upon Figure 1, where risk communication was shown to feed into both underlying systemic risks and the
tasks of risk identification and assessment, Figure 2 disentangles the two types of feedback depending
on whether one communicates internally or externally. Internal communication concerns spreading infor-
mation about systemic risks within, but at various levels of, the organization, such as among divisions,
groups or analysts, whereas external communication refers to the task of disseminating information about
systemic risks to the general public. As shown in Figure 1, it is worth to note that the information to
be communicated might derive directly from the risk identification or assessment steps or then feed back
only after recommendations, warnings and implementations in step three.

Internal communication refers to a range of activities at different levels of the organization. Despite
that communication of macroprudential supervisors like central banks commonly refers to disseminating
information externally, Mohan (2009) stresses that they, particularly policy and research wings, ought to
pay attention to and play a pro-active role in the dissemination and effective communication of policy
and analysis to internal staff. Borrowing from Mitchell (2001), this necessitates to “sell the brand inside”.
This is further exemplified by Mohan, as ”internal communication could act as a conduit for external
communication”, where staff oftentimes play a key role as ambassadors of the institution.

2For instance, as interest rate policy may be a too blunt and powerful tool with material impact on other parts of
the economy, the policies could take the form of tighter standards – e.g., requirements on capital adequacy, provisioning,
leverage ratios, and liquidity management – for individual financial institutions with larger contributions to systemic risk
and calibrated to address common exposures and joint failures. Macroprudential regulation and tools may also be used for
accumulating buffers or reserves in good economic times to be used during worse times.
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Figure 2: Risk communication in macroprudential oversight.

We relate internal communication to three levels of organization. At the lowest level, it relates to the
use of means for communicating information to support individual analysts, which in the information age
mainly relates to human-computer interaction (see, e.g., Dix et al. (2004)). In this case, communication
relates to the interaction between a computer and interface with an analyst or policymaker overall.
The second level of organization concerns the task of communicating among and within smaller groups,
teams or divisions. Within the limits of a small, specialized audience, this involves not only supporting
knowledge crystallization, but also supporting the dissemination of knowledge. While the former relates to
communication within groups of analysts and policymakers, the latter concerns communicating the results
or insights of one member or team to another. At the final, third level of an organization, communication
relates to disseminating the information gathered within the specialized teams, groups or divisions to
high-level management or the rest of the organization. As the audience becomes broader, the means for
disseminating information, as well as the information itself, need also to be of a more general nature for
the message to be digestible. At each of these levels, while the means for internal communication are
various communiqués and announcements, a policymaker can tap into the tools and expertise, such as
analytical models, market intelligence and expert judgment and experience, available at the supervisory
body.

Beyond stressing the importance of it, Mohan (2009) pinpoints four suggestions that support internal
communication: (i) arranging internal seminars in all regional offices and training colleges after external
policy announcements and report publications (ii) the publication of FAQs (frequently asked questions)
on the internet and intranet on each policy matter, as well as the provision of educational resources,
(iii) the publication of a working paper series with a clear disclaimer that ascribes research findings and
overall opinions to the authors, and (iv) internal notes of various divisions should be easily accessible for
the entire organization, as they are of immense analytical value.

External communication refers to conveying information about systemic risks to the general public,
including other authorities with responsibility for financial stability and overall financial-market par-
ticipants, such as laymen, professional investors and financial intermediaries. An obvious difference in
relation to internal communication relates to a comparatively larger heterogeneity in the audience. Yet,
while a voluminous literature supports internal communication within organizations, one needs to look
to a different direction in order to answer why a macroprudential supervisory body ought to commu-
nicate risk externally. Paraphrasing the role of communication in monetary policy, Born et al. (2013)
argue that communication aims at (i) improving credibility of central banks (relating communication to
transparency and reputational purposes), (ii) enhancing effectiveness of policy (relating communication
to financial stability contributions), and (iii) to make central banks accountable (relating to explicit
communication of identified risks and vulnerabilities).

By means of an example, a key channel for such communication is through quarterly or biannual
Financial Stability Reports, a recent phenomenon that has quickly spread to a large number of central
banks. With the aim of understanding the overall purpose of communication, a survey among central
bankers by Oosterloo and de Haan (2004) pinpoints three main reasons for publishing Financial Stability
Reports: (i) to contribute to overall financial stability, (ii) to increase the transparency and accountability,
and (iii) to strengthen co-operation between authorities with financial stability tasks. At the same time,
Allen et al. (2004) were consulted to study the effectiveness of communication related to financial stability
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at Sveriges Riksbank, the first central bank to publish a Financial Stability Report in 1997. Their external
evaluation focused on Financial Stability Reports in 2003 and overall analytical framework and other
work on financial stability. This resulted in ten recommendations, such as having and making objectives
explicit and precise in the Financial Stability Reports, also covering other sectors than banks, such as
the insurance sector, and making charts and underlying data easily downloadable. Although the case
study focuses solely on the Riksbank, its conclusion of ”the Riksbank is doing a very good job in fulfilling
its financial stability responsibilities” seems justified, as they were indeed forerunners in the tasks at that
point in time. Further, Cihák (2006) systematically reviews Financial Stability Reports, and documents
a considerable increase in sophistication over time and improvements in not only their scope, but also
the analytical tools with which analysis is conducted.

In a recent study focusing on communication, the overall finding by Born et al. (2013) was that
Financial Stability Reports, as well as ad hoc speeches and interviews, affect financial markets by creating
news (i.e., co-occurring jumps in stock returns) and reducing noise (i.e., decreasing market volatility).
Further, Ekholm (2012) – the Deputy Governor of the Riksbank – notes that there is a strive for not
only openness and transparency, but also clear external communication. In particular, Ekholm notes
that during times of crisis ”a “negative” but reliable announcement can [...] be better for confidence than a
“positive” but uncertain announcement”. Along these lines, the means for external communication concern
the use of not only Financial Stability Reports published at regular intervals, but also risk warnings and
recommendations communicated through various ad hoc public announcements. A recent addition to the
toolbox of communication approaches is the publication of a risk dashboard, which essentially involves
developing and publishing a set of indicators to identify and measure systemic risk.3 Like in internal
communication, a policymaker communicating externally also ought to tap into not only analytical models
and tools at hand, but also market intelligence and expert judgment and experience when representing
and judging the current state of risks and vulnerabilities. The latter becomes an obvious input when
drafting any types of textual policy communiqués.

Thus far, we have taken the analytical models as given – both those used in risk identification and
assessment and those used in risk communication. Yet, whereas analytical tools have clearly been designed
to address the tasks in risk identification and assessment, they are in no, or little, explicit focus in the
task of risk communication. In particular, there is a clear lack of integration of tools for the common
objective of a macroprudential supervisory body, whose one key focus is to communicate identified and
assessed risks. This paper asks the question: is there something to be gained by tapping into the fields of
information visualization and visual analytics when communicating systemic risk?

3 Information visualization and visual analytics

The visualization of complex data has lately emerged as one of the key aids to support exploratory data
analysis (EDA), though the task of EDA dates back to Tukey’s early work in the 1970s (e.g., Tukey
(1977)). Whereas advanced visual representations of data are common in a wide range of disciplines
and domains, the use of these types of representations are rare in the communication of macroprudential
bodies or supervisory authorities at large. The key aim of this section is to discuss the rationale behind
the usefulness of visual representations, how visuals should be designed to meet the demands of the
human visual system and categorizations of approaches to visualization. At a higher level, this section
covers the discipline of information visualization – and its more recent derivative, visual analytics – in
order to support a later discussion of their merits in macroprudential oversight.

Information visualization as a discipline has its origin in the fields of human-computer interaction,
computer science, graphics and visual design. A more precise definition of it is “the use of computer-
supported, interactive, visual representations of abstract data to amplify cognition” (Card et al., 1999),
which highlights improving human understanding of data with graphical presentations or graphics. Tools
for information visualization are mainly and best applied for EDA tasks, and most commonly aim at
browsing a large space of information. While being in a highly common and general setting, Lin (1997)
lists browsing to be useful when: (i) there is a good underlying structure and when related items can
be located close by; (ii) users are unfamiliar with the contents of the collection; (iii) users have little
understanding of the organization of a system and prefer to use a method of exploration with a low

3While the risk dashboard of the European Systemic Risk Board has been published since September 2012, the European
Banking Authority published its first risk dashboard in October 2013.
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cognitive load; (iv) users have difficulty in articulating or verbalizing the specific information need; and
(v) users search for information that is easier to recognize than describe.

The above list relates to situations when visualization is useful, yet we still need to discuss the
elements of information visualization in-depth. The rest of this section focuses on three subtopics of
information visualization – human perception and cognition, data graphics design and visualization tech-
niques – in order to end with a discussion of visual analytics, which combines analytical models with
visual representations.

3.1 Human perception and cognition

Much attention is given to the design of visual representations of data. While being important, a dis-
cussion about information visualization cannot start from the colors, shapes and other features used for
representing data. Instead, a starting point to visual communication ought to be to understand and
acknowledge the capabilities and limits of the human information and visual system. The visual system
comprises the human eye and brain, and can be seen as an efficient parallel processor with advanced pat-
tern recognition capabilities (see, e.g., Ware (2004)). The focus of human perception is the understanding
of sensory information, where the most important form is visual perception. The final intelligence am-
plification of information visualization can be viewed as a type of cognitive support. The mechanisms
of cognitive support are, however, multiple. Hence, visualization tools should be targeted to exploit
advantages of human perception.

Mostly, arguments about the properties and perception capabilities of the human visual system rely
on two grounds: (i) information theory (Shannon and Weaver, 1963), and (ii) psychological findings.
Information theory states that the visual canal is best suited to carry information to the brain as it is the
sense that has the largest bandwidth. Ware (2004) asserts that there are two main psychological theories
for explaining how to use vision to perceive various features and shapes: preattentive processing theory
(Triesman, 1985) and gestalt theory (Koffa, 1935). Prior to focused attention, preattentive processing
theory relates to simple visual features that can be perceived rapidly and accurately and processed
effectively at the low level of the visual system. Whereas more complex visual features require a much
longer process of sequential scanning, preattentive processing is useful in information visualization as it
enables rapid dissemination of the most relevant visual queries through the use of suitable visual features,
such as line orientation, line length or width, closure, curvature and color (Fekete et al., 2008). At a higher
cognitive level, gestalt theory asserts that our brain and visual system follow a number of principles when
attempting to interpret and comprehend visuals (for brevity, a more formal description of these can be
found in Appendix A.1).

The principles of gestalt theory can easily be related to some more practical concepts. For instance,
most projection methods, when aiming at visualizing data, may be seen to relate to the proximity prin-
ciple, as they locate high-dimensional data with high proximity close to each other on a low-dimensional
display, whereas others are pushed far away. Likewise, a time trajectory may be paired with continuity.
More related to the cognition of visualization, Fekete et al. (2008) relate the core benefit of visuals to
their functioning as a frame of reference or temporary storage for human cognitive processes. They assert
that visuals are external cognition aids in that they augment human memory, and thus enable allocating
a larger working set for thinking and analysis. In the above stated definition of information visualization
by Card et al. (1999), visuals are presented as a means to “amplify cognition”. The same authors also list
a number of ways how well-perceived visuals could amplify cognition: (i) by increasing available memory
and processing resources; (ii) by reducing the search for information; (iii) by enhancing the detection of
patterns and enabling perceptual inference operations; (iv) by enabling and aiding the use of perceptual
attention mechanisms for monitoring; and (v) by encoding the information in an interactive medium.

Not to disturb legibility of this section, examples of the five ways to amplify cognition are given
Appendix A.1. Yet, while visualization provides ample means to amplify cognition, it is also worth
looking into matters concerning human perception and cognition that may hinder, disturb or otherwise
negatively affect how visualizations are read. An essential part of visualization is to take into account
the deficiencies and limitations of human perception. More detailed exemplifications are provided in
Appendix A.2. Accordingly, an understanding of the functioning of the human visual system aids in
producing effective displays of information, where emphasis is on presented data such that the patterns
are likely to be correctly perceived.
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3.2 Data graphics design

Based upon features of the human visual system, and avenues for supporting perception and cognition,
the literature on data graphics design has its focus on the principles for visual representations of data.
Herein, the focus is on the early, yet still today influential, work by Tufte (1983) and Bertin (1983). Their
works, while being principles for graphics design, are also valid for overall computer-based visualization.
Tufte’s set of principles are called a theory of data graphics, whereas Bertin’s work is most often denoted
a framework of the planar and retinal variables. Yet, rather than an exact theory, Tufte and Bertin
provide a set of rules of thumb to follow.

The following overview is included to provide concrete guidelines, in addition to the higher-level
discussion of perception and cognition. Herein, we will only focus on the key components of frameworks
and theories by Bertin and Tufte. We start from Bertin’s (1983) framework called the Properties of the
Graphic System, which consists of two planar and six retinal variables. The two planar variables are the
x and y dimensions of a visual, whereas the six retinal variables describe the following visual marks on
the plane: size, value, texture, color, orientation and shape. Each variable is defined to have specific
perceptual properties. We refer to Appendix A.3 for an in-depth discussion of the variables, as well as
their properties.

A complement to Bertin’s framework is the Theory of Data Graphics by Tufte (1983), which consists
of a large number of guidelines for designing data graphics. The two key, broad principles are graphical
excellence and graphical integrity.

Tufte (1983) defines graphical excellence as a graphic that ”gives to the viewer the greatest number of
ideas in the shortest time with the least ink in the smallest space”. The principle of graphical excellence
summarizes a number of his guidelines that encourage graphical clarity, precision, and efficiency: (i)
avoid distortions of what the data have to say; (ii) aid in thinking about the information rather than
the design; (iii) encourage the eye to compare the data; (iv) make large data sets coherent; (v) present
a large number of data in a small space; (vi) reveal data at multiple levels of detail ranging from a broad
overview to fine detail; (vii) and closely integrate statistical and verbal descriptions of the data. The
second of Tufte’s (1983) principles, graphical integrity, relates to telling the truth about data. To follow
this principle, Tufte provides six key guidelines: (i) visual representations of numbers should be directly
proportional to the quantities which the visuals represent; (ii) clear and detailed labeling should be used
to avoid ambiguity; (iii) show data variation, not design variation; iv) deflate and standardize units when
dealing with monetary values; (v) the number of dimensions depicted should not exceed the number of
dimensions in data; and (vi) data should not be showed out of context. The overall aim of principles
related to graphical integrity is to avoid deception and misinterpretation. This provides a brief overview
of Tufte’s rules of thumb, whereas interested readers are referred to Appendix A.3 as well as the original
sources.

Bertin’s and Tufte’s principles provide a guiding set of rules of thumb to follow when spanning the
space of two-dimensional visualizations. Yet, visualizations, not the least interactive visualizations, go
beyond a static two-dimensional space by including additional visual variables, such as depth and time.
This highlights requirements on the visualization techniques and tools, where interaction is essential.

3.3 Visualization techniques and interfaces

The literature has provided a long list of techniques for creating visual representations and interfaces,
with the aim of supporting human perception and cognition. This subsection focuses mainly on a rough
overview, as well as a brief and simple taxonomy, of methods, rather than a detailed survey. Obviously, a
key issue of information visualization is what formats and features the methods will help to organize and
visualize, as well as how that relates to the use of the capabilities of the human visual system. Techniques
supporting information visualization can be divided into two types: graphical representations of data and
interaction techniques. The former type refers to the visual form in which the data or model is displayed,
such as standard bar and line charts. Yet, visualization may often refer to the use of manipulable graphical
displays of data. The latter type of techniques refer to how the user can interact with or manipulate
the graphical displays, such as zooming or panning. These oftentimes have their basis in one or more
graphical displays such that they enable more freedom and flexibility to explore the data.

From the viewpoint of the underlying data, rather than the formats of visual displays, Zhang et al.
(2012) categorize visualization techniques into four groups: numerical data, textual data, geo-related
data and network data. Yet, a categorization of visualization techniques as per the types of data does
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not differentiate all possibilities of techniques. While being some years old, Keim and Kriegel (1996)
provide a five-category grouping of techniques by the visualization output that still today holds merit:
geometric, icon-based, pixel-oriented, hierarchical, and graph-based techniques. In addition, Keim and
Kriegel also illustrate the existence of a wide range of hybrids that make use of multiple categories. While
a description of each category and examples of techniques can be found in Appendix A.4, it only highlights
the large number and wide variety of available techniques. The categorization of visualizations as per
data and display, while highlighting challenges in choosing the correct technique for the data and the
task at hand, provides guidance in the choice. For instance, one obvious factor to define the nature of the
chosen visualization technique is the properties of the data, such as the form of data, dimensionality of
data, data structures and size of data. Further, another factor is the expected output and purpose of use,
such as predictive vs. exploratory, temporal vs. cross-sectional, and univariate vs. multivariate analysis
and similarity vs. dissimilarity matching, as well as other purposes related to a focus on geo-spatial
visualization and network relationships, for instance. While there obviously is no one way to choose
the correct technique, considering the two dimensions of data and display, as well as other restrictions,
demands and needs for the task, provides an adequate basis.

Given a technique, a critical factor of information visualization is, however, the possibility to interact
with the visuals. A common guideline for interactions with visualizations is the visual information
seeking mantra (Shneiderman, 1996): ”Overview first, zoom and filter, then details-on-demand”. Whereas
Shneiderman (1996) characterizes the mantra with seven abstract tasks, we focus only on the following
four explicitly mentioned ones: First, a user should gain an overview of the entire collection through
a high-level representation. Second, users should have the possibility to zoom in on a portion of items
that are of particular interest. Third, there should exist the possibility to filter out or to eliminate
uninteresting and unwanted items, such as allowing users to specify which items to display. Fourth, the
user should have the option to select an item or group of items to get further details-on-demand, such as
clicking a group or individual items to browse descriptive information.

This provides a starting point to data visualization and user interaction, but does still not address
the role of analytical techniques in visualization. The next step is to combine graphical representations
of data and interaction techniques with analytical methods.

3.4 Visual analytics

A recent, rapidly growing discipline is that of visual analytics. By adding analytics to the ingredients of
information visualization, we end up with the original definition of visual analytics (Thomas and Cook,
2005): ”the science of analytical reasoning facilitated by interactive visual interfaces”. Hence, the field
of visual analytics has strong roots in information visualization. Likewise, visual analytics is obviously
strongly related to overall data analytics. The term visual data mining descends from the integration of the
user in the data mining (or analytics) process through visualization techniques and interaction capabilities
(see, e.g., Keim (2001)). This has taken visual analytics to be applied in areas with challenging problems
that were unsolvable using standalone automatic or visual analysis (see, e.g., Keim et al. (2009)). In
particular, while automated computational processing enables scaling to larger and more challenging
tasks, humans exhibit traits that enable a deeper understanding (Risch et al., 2008). This highlights the
importance of coupling the strengths of computational and human information processing. When also
including the interaction with analytical parameters, visual analytics is not only helpful in applications
involving large, complex data, but also those involving complex analytical processes requiring monitoring
and interaction.

Since we derive visual analytics from three above presented concepts – graphical representations
of data, interaction techniques and analytical techniques – there is no need to repeat the discussion of
each component. Further, the above presented information seeking mantra only mentions visualization,
yet does not integrate it with analytics. Keim et al. (2006) propose combining an analytics process
and the information seeking mantra for a visual analytics mantra: ”Analyze first, show the important,
zoom, filter and analyze further, details on demand”. The authors exemplify the visual analytics mantra
with analysis of large network security data. As graphical representations of raw data is infeasible and
seldom reveals deep insights, the data need to first be analyzed, such as by computing changes and
performing intrusion detection analysis. Then, the outcome of the automated analysis is visualized. Out
of the displayed results, the user filters out and zooms in to choose a suspicious subset of all recorded
intrusion incidents for further, more careful analysis. Thus, the mantra involves automated analysis
before and after the use of interactive visual representations. Following the mantra, the visual analytics
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Figure 3: The visual analytics process.

process discussed in Keim et al. (2010) is presented in Figure 3. The key steps in the process are
data preparation, visual and automatic analysis, and knowledge consolidation. After the step of data
preprocessing and transformations, the user selects between visual or automatic analysis methods. The
user might prefer to start from whichever of the two tasks, and might then iterate multiple times in
between the two components of data visualization and interaction and automatic analysis. Finally, after
alternating between visual and automatic methods, the thus far gained knowledge is not only gathered,
but also transferred through a feedback loop to support future analysis.

To be more general, the viewpoint we take on visual analytics relates more to human-computer
cooperation. Relying on data as an input, this concerns the combination of various forms of computa-
tional and human processing, in order to support the knowledge crystallization process. Beyond aids for
visualization and interaction, which support the development of a mental model, this includes advanced
analytical techniques as a means to rigorous formal models. It is the interplay between formal and mental
models that is the basis for knowledge creation, including tasks ranging from sensemaking to reasoning
to decisionmaking.

4 Visualization in macroprudential oversight

The discussion thus far has concerned macroprudential oversight, in particular the role of risk commu-
nication, and the visualization of data, in particular the fields of information visualization and visual
analytics. It is obvious that what follows now is their coupling: how can visualization be used to support
macroprudential oversight in general and risk communication in particular?

This section starts by defining the task of visualization in internal and external risk communication.
Then, we turn to a discussion about the type of available data for measuring and assessing systemic risk
in macroprudential oversight. Finally, we relate the above discussed topics in visualization to the tasks
of macroprudential oversight, including current use of various categories of visualizations as per the three
types of systemic risk models.

4.1 Visual risk communication

Data visualization can serve multiple purposes in macroprudential oversight overall and risk communica-
tion in particular. As was already discussed in Section 2, visual representations can generally be classified
to serve the purpose of communicating information to two audiences: (i) internal and (ii) external.

The purpose of use in internal communication relates to enhancing the understanding of policymak-
ers on various levels. Accordingly, it is key to account for the fact that various stakeholders have different
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information needs, and thus only cater to their specific demands. One obvious task is to support analysts
themselves, and within other groups of active participants in the process of collecting data and deriving
indicators and analytical models. This particularly concerns human-computer interaction, as visual inter-
faces are used as interactive tools to better understand complex phenomena with no one known message
to be communicated. Whereas the more common setting is likely to involve collecting data and deriving
indicators, which could be supported by information visualization, there is also a focus on analytical ap-
proaches and understanding derived models, which points more towards visual analytics. This provides
input to two purposes: data analysis and decisionmaking. An essential part of data analysis, particularly
predictive analytics, involves data understanding and preparation, which indeed benefits from the use of
visual interactive interfaces. Likewise, visualizing the output of data analysis provides ample means to
support in making better decisions. This provides a range of internal communication tasks.

Beyond supporting individuals, one may want to communicate to other involved parties, for which
visuals would be used to communicate a particular message or result to entire divisions, the the man-
agement and even at the level of the entire organization. At the lower level, the key task is to provide
means for interaction with visuals in order to amplify cognition, which supports a better understanding
and modeling of the task at hand. As above noted, the case of data analysis by low-level analysts is a
standard setting, and mainly involves the task of human-computer interaction. In the context of low-
level internal communication of systemic risk modeling, Flood and Mendelowitz (2013) note that data
exploration is an area where visualization tools can make a major contribution. They point to the fact
that certain tasks of classification, analysis and triage can be automated, whereas many require a human
analyst, such as the difficulty to train a well-performing machine to analyze anomalous financial market
activity. This follows the very definition of visual analytics. At the higher level, the focus is more on
reporting and presentation of information by means of visuals. An example could be the dissemination of
identified risks by a risk identification division for further analysis at a risk assessment division, or even
to the board or president of an organization. Moreover, disseminating results of analytical models within
and among divisions provides scrutiny, which is likely to improve either model credibility or quality.

In the use of visuals, a key issue is to strike an adequate balance between the complexity and volume
of visual for specific audiences. An excessive use of visualizations or over-complexified representations
may only function as a communication hinder or otherwise have unintended effects. Issues may relate to
triggers of information overload or deter stakeholders from carefully analyzing the visuals. For example,
laymen are likely to require different visuals and type of information than other categories of stakeholders.
Thus, to sum up, a major concern is how results of the risk identification and assessment tasks are
communicated to a wide range of stakeholders in easily understandable formats, with the ultimate aim
of achieving transparency and accountability at an internal level.

A possible criticism is that visual inspection of complex data leaves room for human judgment,
particularly when used for the support of decisionmaking. Contrary to the concept of economic ”ratio-
nality”, human adjustment is asserted to make visual analysis prone to a so-called personal forecast bias,
which has been associated with traits like prejudice, undue conservatism and unfounded optimism, as
among others postulated by Armstrong (1985): ”Don’t trust your common sense.” Yet, it is more than
common sense that every policy decision relies at least partly on judgment, which might or might not be
biased. And it is also worth noting that the decisions are not made by statistical models, but rather by
humans, who are also eventually accountable for them. A number of works have, however, shown that
judgmental adjustments to macroeconomic model-based forecasts improve accuracy more often than not.
For instance, McNees (1990) shows that judgmental adjustments to macroeconomic forecasts resulted in
a 15% improvement in accuracy.

On a more general note, which points towards all levels of organization, Mohan (2009) suggests that
central banks can do much more to improve internal communication due to ”the increasing availability
of electronic communication at low cost”. Mohan further stresses the importance of innovative ways as
means to accomplish this, as the management’s time to devote to these issues is unavoidably limited.
Contrasting lengthy written reports, turning to Information Visualization and Visual Analytics can be
seen as supportive means for internal communication. While the former supports spreading knowledge,
the latter has a focus better aligned with creating knowledge.

External communication, on the other hand, refers to conveying information to other authorities
with responsibility for financial stability and overall financial-market participants, such as laymen, pro-
fessional investors and financial intermediaries. So, how do visual means aid in the task? Along the lines
of the conclusions in Born et al. (2013), even though they rely on effects of mainly textual communication,
providing improved means for communication is expected to increase effectivity and certainty of financial
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markets, particularly through adjustments in stock returns (i.e., creating news) and reductions in mar-
ket volatility (i.e., reducing noise). Whereas this mainly relates to communication of readily processed
and finalized data products, such as on the higher levels of internal communication, it obviously is a
comparatively more challenging task due to the large heterogeneity in the audience.

A direct example of such communication is Financial Stability Reports, which indeed can, and
already to some extent do, make use of visual representations to communicate the state of financial
stability. Relating to the study of the Riksbank’s financial stability work by Allen et al. (2004), the last
exemplified recommendation highlighted the importance of providing the underlying data and making
charts easily downloadable. Beyond transparent data and visuals, the discussion also stresses overall
guidelines in presenting data in a graphical fashion and overall communication through visuals. Most
importantly, the authors highlight that Financial Stability Reports do and should contain a wealth of
data and indicators, the data ought to be presented through graphical means and the graphical means
ought to be presented in an easily accessible and understandable fashion, which is not ”too busy”. This
somewhat paradoxical conclusion may also be seen as a call for interaction techniques, with which large
amounts of data can be explored but filtered in ways that support understanding.

The most common representation of multidimensional data, yet not interactive, is based upon work
by International Monetary Fund (IMF) staff on the Global Financial Stability Map (GFSM) (Dattels et al.,
2010), which has sought to disentangle the sources of risks by a mapping of six composite indices with a
radar-chart visualization. The aim of the GFSM coincide well with those of external risk communication:
”a summary tool for communicating changes in the risks and conditions [...] in a graphical manner [...] to
improve the understanding of risks and conditions [...] and ultimately to warn policymakers and market
participants about the risks of inaction.” Relating to the use of judgment, the GFSM not only leaves it
to the eyes of the beholder, but goes even further by making use of judgment and technical adjustment
to the data prior to visualization. Again, one key task is to achieve transparency and accountability, but
obviously this time at an external level. Relating to Information Visualization and Visual Analytics, the
task of external communication clearly focuses on spreading rather than creating knowledge, and is hence
better aligned with the former approach to visualization.

4.2 Macroprudential data

To arrive at the data used for macroprudential oversight, we need to recall that Section 2.1 related
analytical tools in macroprudential oversight to risk identification and assessment. Along these lines,
Borio (2009) illustrates how a macroprudential approach to financial regulation and supervision is best
thought of as consisting of two respective dimensions: the time and cross-sectional dimensions. First,
the time dimension refers to how systemic risk evolves over time and relates to the procyclicality of the
financial system. Second, the cross-sectional dimension refers to how systemic risk is distributed in the
financial system at a given point in time and relates to common exposures across financial intermediaries
and the systemic risk contribution of each institution. This relates data needs to entities and time.
Moreover, early-warning exercises most often also make use of a wide range of indicators, measuring
various dimensions of risks, vulnerabilities and imbalances. In particular, macroprudential data can be
related to three different categories of indicators: (i) macroeconomic data, (ii) banking system data, and
(iii) market-based data.

Generally, the key three sources of macroprudential data measure the behavior of three low-level
entities: households, firms and assets. By grouping data for the entities, we may produce data on various
levels of aggregation. While firm-level data may be of interest in the case of systemically important
financial institutions, data for macroprudential analysis oftentimes refers to high-level aggregations of
three kinds (see, e.g., Woolford (2001)): macroeconomic, banking system, and financial market behavior.
Accordingly, the low-level entities may be aggregated as follows: from data on individual households’
actions to the macroeconomic, from data on banks to the banking system, and from data on individual
assets to the financial market. For instance, an entity could be a country, which would be described
by country-level aggregates of macroeconomic, banking system, and financial market behavior. Despite
the importance of the banking sector, sectoral aggregation may likewise be defined in broader terms (e.g.
financial intermediaries in general) or some other type of financial intermediaries (e.g., insurers or shadow
banks). It is still worth to note that a system-wide approach does not always necessitate aggregation, as
a system may also be analyzed from the viewpoint of its more granular constituents, such as character-
istics of a network of entities and the overall emergence of system-wide patterns from micro-level data.
For instance, Korhonen (2013) links the importance of micro-level data in macroprudential analysis to
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Figure 4: A macroprudential data cube.

a number of possibilities, such as flexibility and information to determine appropriate subsectors, time-
lier pre-assessment of impacts, more granular composition of different exposures and different scopes of
consolidation based upon the same data.

Though we have concluded that we have three dimensions in data, entities, time and indicators, the
discussion thus far has provided little structure on the form and complexity of the data. Independent of
the aggregation level, macroprudential oversight is most commonly utilizing structured data that come
from a so-called macroprudential data cube (henceforth data cube). Yet, rather than three, the data
cube in Figure 4 is described by four dimensions: (i) entities (e.g., countries); (ii) time (e.g., years); (iii)
indicators (e.g., credit-to-GDP gap); (iv) links (e.g., debt and equity exposures). Each cell is hence defined
by a specific entity, a specific time unit and a specific variable, as well as its specific set of interlinkages.
The value for each cell is the value for that particular variable and the related vector of links. Yet, this
representation specifies little about the size of the dataset. Beyond the hazy notion of ’big data’, this
gives at hand a common setting with large-volume (cf. entities), high-dimensional (cf. indicators) and
high-frequency (cf. time) data, where overall size of data is mostly limited by the detail level at which
each dimension of the data cube is explored. Hence, for the three more standard dimensions of the cube,
a big data problem may arise from increases in size in any of the dimensions. Likewise, the size of the
fourth dimension largely follows entities, time and variables, where entities refer to the number of nodes,
time to time-varying networks and variables to multi-layer networks.

Following the four dimensions, the data cube can be described according to four types of slices. First,
a multivariate cross section (red side) provides a view of multiple entities described by multiple variables
at one point in time. Second, a cross section of time series (blue side) is a univariate view of multiple
entities over time. Third, a multivariate time series (green side) provides a view of multiple variables over
time for one entity. Finally, the fourth view is a cross section of interlinkage matrices (black edges) that
represent links between multivariate entities at one point in time. While links oftentimes refer to direct
linkages and exposures between entities, it is also common to estimate links from interdependence in the
variable dimension (e.g., stock returns). By means of a simple example of a macroprudential dataset
in the data cube representation, the four dimensions could be defined as follows: countries as entities,
quarterly frequency as time, indicators of various sources of risk and vulnerability as variables, and equity
and debt exposures between economies as links.

This provides a starting point to data visualization, as it ought to be viewed from the viewpoint of
the underlying data.
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4.3 Macroprudential visualization: A review

This section provides first a brief overview of used visualization tools for the above discussed three types
of analytical tools: (i) early-warning models, (ii) macro stress-testing models, and (iii) contagion and
spillover models. Whereas the first type deals with the time dimension (i.e., risk identification), the
second and third types deal with the cross-sectional dimension (i.e., risk assessment). To conclude the
section, we discuss a categorization of visualization methods based upon the needs for macroprudential
oversight.

First, standard early-warning indicators and models may be complemented by the use of visualization
tools for amplifying cognition. Due to the complexity of financial systems, a large number of indicators
are often required to accurately assess the underlying risks and vulnerabilities, and these are oftentimes
compressed into a single vulnerability measure of an early-warning model. As with statistical tables,
standard two- and three-dimensional visualizations have, of course, their limitations for high dimensions,
not to mention the challenge of including a temporal or cross-sectional dimension or assessing multiple
countries over time. In particular, capturing the time dimension of systemic risk is a key aim of early-
warning models (e.g., Borio, 2009). Although composite indices of leading indicators and predicted
probabilities of early-warning models enable comparison across countries and over time, these indices fall
short in describing the numerous sources of distress.

Some recent approaches make use of techniques for multidimensional visualization to assess sources
of risk and vulnerability. To start with the GFSM, it falls short in reducing dimensionality of the problem,
as similarity comparisons of high-dimensional observations is left to be performed by the human eye. In
addition, familiar limitations of radar charts are, for example, the facts that area does not scale one-to-
one with increases in variables and that the area itself depends on the order of dimensions. This can
be illustrated by means of an example, where two countries have an equal amount of aggregated risk in
three subdimensions, but one has these as neighboring axes and the other a risk in every second axis.
In this case, the former has a significantly (or infinitely) different size but the same aggregate risks (i.e.,
mean value). Indeed, the GFSM comes with the following caveat: “given the degree of ambiguity and
arbitrariness of this exercise the results should be viewed merely illustrative”.4

Mapping techniques with the aim of data reduction and dimension reduction have also been used to
represent these complex data. In terms of Fuzzy c-means (FCM) clustering, a combination of clustering
models and the reasoning of fuzzy logic have been introduced to the early-warning literature by finding
risky clusters and treating relationships in data structures as true or false to a certain degree (Marghescu
et al., 2010). Beyond signaling a crisis in a timely manner, this type of analysis has the benefit of signaling
the type and degree of various sorts of financial imbalances (in terms of memberships to clusters). In an
exploratory study, Arciniegas Rueda and Arciniegas (2009) found, with the help of the Self-Organizing
Map (SOM), strong associations between speculative attacks’ real effects and 28 indicators, yet did neither
focus on visualizing individual data nor on early-warning performance.

Turning to SOM based papers focusing on visualization, Sarlin (2010) presents the first exploratory
study of the SOM as a display of crisis indicators with a focus on the Asian currency crises in 1997–1998.
Sarlin and Marghescu (2011) extend the work by using the SOM as an early-warning model, including an
evaluation in terms of predictive performance, and with a larger sample of indicators. In Sarlin (2011),
the SOM is applied to a wide range of indicators of sovereign default. Further, Sarlin and Peltonen (2013)
create the Self-Organizing Financial Stability Map (SOFSM) that lays out a more general framework of
data and dimension reduction for mapping the state of financial stability, and visualizing potential sources
of systemic risks. As an early-warning model, the SOFSM is shown to perform on par with a statistical
benchmark model and to correctly call the crises that started in 2007 in the United States (US) and the
euro area. All of these works highlight the usefulness of the SOM for the task.

Second, macro stress-testing models, to the best of my knowledge, make no use of advanced vi-
sualization techniques for representing the results of the tests, including the processing of data at the
input, interim and output stage. Visualization seldom goes beyond a framework or schematic structure
for the designed transmission mechanisms in the model and plots of loss distributions in various formats.

4The use of adjustment based on market and domain intelligence, especially during crises, and the absence of a systematic
evaluation gives neither a transparent data-driven measure of financial stress nor an objective anticipation of the GFSM’s
future precision. The authors state that the definitions of starting and ending dates of the assessed crisis episodes are
somewhat arbitrary. The assessed crisis episodes are also subjectively chosen. Introduction of judgment based upon
market intelligence and technical adjustments are motivated when the GFSM is “unable to fully account for extreme events
surpassing historical experience”, which is indeed an obstacle for empirical models, but also a factor of uncertainty in terms
of future performance since nothing assures manual detection of vulnerabilities, risks and triggers.
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Obviously, standard visualization techniques from graph theory may be used in representing networks, if
such are used in the models. For instance, the macro stress-testing model by Boss et al. (2006), which
integrates satellite models of credit and market risk with a network model for evaluating default probabil-
ities of banks, enable one to make use of concepts from graph theory in visualizing the network structure.
Network visualizations are, however, more common in contagion models.

As said, the third group of contagion and spillover models commonly make use of concepts from
graph or network theory to visualize the structure of linkages in the models (see, e.g., Estrada (2011)).
This provides means to represent entities as nodes (or vertices) and their links as edges (or arcs). The
combination of nodes and edges provide all constituents for a network, where the edges may be directed
vs. undirected and weighted vs. unweighted. However, rather than a visualization, a network is a data
structure. The interpretability of networks has been enhanced by the means of various methods. For
instance, positioning algorithms, such us force-directed layout methods, are commonly used for locating
nodes with similar edges close to each other, as well as ring and chord layouts for more standardized posi-
tioning. Yet, the so-called hairball visualization, where nodes and edges are so large in number that they
challenge the resolution of computer displays, not to mention interpretation, is not a rare representation
of complex financial networks (see, e.g., Bech and Atalay (2010)). By including dynamics, there exists
also work on visualizing how shocks cascade in networks, which directly relates to the contagion litera-
ture (e.g., von Landesberger et al., 2014). It is worth noting that recent advances in financial network
analysis, particularly software, hold promise in bringing aesthetics and the ease of use of visualizations
into the financial domain. An additional essential feature, not the least to deal with hairballs, is the use
of interaction techniques with visualizations.

4.4 The need for analytical and interactive visualizations

This section has so far defined the task of visualization in risk communication, the structure and properties
of macroprudential data and visualizations used to date to represent systemic risk. Beyond the indications
of previous works and standards in the policymaking community, as highlighted in the state-of-the-art
overview, the notions of risk communication and the underlying data highlight the need for two features:
(i) interactive and ii) analytical visualizations. While analytical techniques enable the visualization of
big data, interactivity answers the needs set by communication as it enables extracting large amounts of
information through the interaction with a graphic.

The need for analytical techniques refers to the complexity of data used in systemic risk measurement.
Visual analytics refers often to the coupling of visual interfaces to analytics, which supports in building,
calibrating and understanding models (e.g., early-warning models). Yet, the notion of an analytical
technique for visualization differs by rather using analytics for reducing the complexity of data, with the
ultimate aim of visualizing underlying data structures. These techniques provide means for drilling down
into the data cube. For instance, mapping techniques provide a projection of high-dimensional data into
two dimensions through dimension reduction, whereas clustering methods enable reducing the volume of
data into fewer groups (or mean profiles). Likewise, the analysis of time might also be supported by the
use of analytical techniques, as compressing the temporal dimension would enable representations of only
relevant points in time.

The coupling of visual interfaces with interaction techniques goes to the core of information visu-
alization and visual analytics. This has largely been overlooked in the policymaking community. One
key task of macroprudential supervisors has been to publish risk dashboards, such as that of the ESRB,
yet none of these have been truly interactive. For instance, the sixth issue of the dashboard was a
static 30 page document, in addition to 11 pages of annexes. While the initiative has merit in that it
promotes transparency and knowledge among the general public, it is not clear why the dashboard is
lacking interactivity and true data sharing in an age when the single most used distribution channel
is digital format.5 Even though one could argue that formal reports, such as Fed’s Annual Report to
Congress, require static visuals to support transparency, accountability and record-keeping, the property
of exporting a static screenshot is a common property of interactive interfaces. To the other extreme, if
accountability and common knowledge is of utmost importance and limits the design of reports, then one
could ask whether any visuals should be utilized. Another example is when a systemic risk model (e.g.,
early-warning model) has been built and calibrated. It would be an intuitive first step to circulate it (at
least internally) with possibilities to explore all examples of potential interest, rather than only being

5It is still worth to note that ESRB’s risk dashboard has been paired with the ECB Statistical Data Warehouse. Yet,
data for far from all indicators is shared in the data warehouse.

ECB Working Paper 1768, March 2015 18



presented with cases selected by its authors. While this could function as a type of review or scrutiny
at an early development stage, this would also support transparency, and thus possibly credibility, of
internally developed approaches to identify and assess systemic risk. Further, relating to the previous
topic, a natural extension to analytical visualization techniques would obviously be means to interact
with them.

5 Visualization applications and the VisRisk platform

This section moves from previous abstractions to concrete applications. With the two features pinpointed
in the previous section and the macroprudential data cube in mind, this section provides a range of
examples both relating to analytical and interactive visualizations in macroprudential oversight. First, we
make use of analytical techniques for data and dimension reduction to explore high-dimensional systemic
risk indicators and time-varying networks of linkages. Second, we add interactivity to not only dashboards
of standard risk indicators and early-warning models, but also to the analytical applications. Hence, we
illustrate applications of three analytical visualizations and five interactive web-based visualizations to
systemic risk indicators and models. From the viewpoint of the data cube in Figure 4, we provide visual
means to explore all four dimensions.

Beyond the applications herein, it is worth remembering that the ultimate aim of the paper is to
provide a platform or basis for the use of visualization techniques, especially those including analytical
and interactive features, in macroprudential oversight in general and risk communication in particular.
Hence, we end this section by presenting the VisRisk platform that enables and is open to the visualization
of any data from the macroprudential data cube.

5.1 Analytical visualizations

This subsection presents three cases where data and dimension reduction techniques are used for represent-
ing large-volume and high-dimensional data in simpler formats. Further, we also present an application of
a force-directed layout algorithm to the visualization of network data. Even though we address systemic
risk, it is a deliberate choice not to make use of data that would be overwhelmingly extensive along any
of the dimensions of the data cube. This is mainly due to the illustrative nature of the examples, as the
main function of this section is to demonstrate the usefulness of analytical and interactive visualizations
in macroprudential oversight. Nevertheless, the applications make use of real-world data targeted at
systemic risk.

The problem setting described in Section 4.2, particularly the combination of large-volume and high-
dimensional data, has been addressed in machine learning, a subfield of computer science. One common
approach to reducing large-volume data (i.e., many high-dimensional observations) is to represent a set
of points P by a smaller, but representative, set of equidimensional points A. These representative
points constitute partitions or clusters and may be called reference vectors, mean profiles or cluster
centroids, mostly with an aim to approximate the probability density functions of data. Data reduction
is a necessity, and thus common practice, in application areas like speech recognition, computational
linguistics, and computational genomics, and is addressed by means of clustering algorithms, or so-called
data reduction techniques (see, e.g., Jain (2010)). While both P and A still live in the high-dimensional
space Rn, machine learning also provides approaches for reducing the dimensionality of data. Dimension
reduction provides low-dimensional overviews of similarity relations in high-dimensional data, where data
are represented in two dimensions such that similar high-dimensional data are nearby and dissimilar
distant. The task of projecting observations pj ∈ Rn to an equisized set of lj ∈ R2 goes also by the name
of manifold learning, embedding and mapping (see, e.g., Lee and Verleysen (2007)), but can as well be
considered to cover force-directed layout algorithms for positioning nodes of networks. A recent focus
has been to also involve the third dimension – time. This refers to the task of visual dynamic clustering,
where clustering refers to reducing data, visual refers to reducing dimensionality and dynamic refers to
changes in clusters over time. Hence, it provides means for visualizing how cross-sectional structures (i.e.,
clusters) evolve over time.

Financial Stability Map

This part describes the application of the (Self-Organizing) Financial Stability Map (FSM), as originally
described in Sarlin and Peltonen (2013). The underlying data come from the three standard dimensions
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is performed. By pooling the cross-sectional and temporal dimensions, the red side represents a multivariate cross section over time,
in which the blue side represents time-entity observations and the green side common indicators.

Figure 5: Creating the Financial Stability Map.

of the data cube: quarterly observations for a global set of 28 economies from 1990–2011 and 14 macro-
financial indicators. The FSM is based upon the Self-Organizing Map (SOM), which has two aims: (i)
to reduce large amounts of high-dimensional data to fewer mean profiles, and (ii) to provide a low-
dimensional representation of the high-dimensional mean profiles. As described in Figure 5, using a
pooled panel data (i.e., time is not taken into account) in step (i), the FSM follows two subsequent steps:
(ii) to group high-dimensional observations to a smaller set of equidimensional mean profiles based upon
similarity, and iii) to project the mean profiles to an equisized but low-dimensional grid such that similar
profiles are located close by.

In this application, the motivation for using the SOM for mapping financial stability over alternative
techniques relates mainly to the following properties (for a further discussion see Sarlin (2014a)): (i)
its simultaneous clustering and projection capabilities, (ii) the pre-defined grid structure for linking
visualizations, (iii) computational efficiency, and iv) flexibility for missing data. For a description of the
technical details, readers are referred to Appendix B.1 and Kohonen (1982, 2001).

The procedure described in Figure 5 creates the FSM, and provides hence a low-dimensional basis
or display with two tasks: (i) to function as a display for visualizing individual data concerning entities
and their time series, and (ii) to use the display as a basis to which additional information can be linked.
As the nodes of the grid are high-dimensional mean profiles, the high-dimensional observations can be
located with their most correct position using any similarity measure. In Figure 6, we illustrate the
evolution of macro-financial conditions (14 indicators) for the United States and the euro area (2002–
2011, first quarter), and a cross section of macro-financial conditions in key advanced and emerging
market economies in 2010Q3. As the figure shows, the map captures a so-called financial stability cycle
for both economies. It is true that Europe is classified to be tranquil in midst of the European crisis, but
it is worth remembering that this, as most other early-warning models, are built for boom-bust phases,
not prolonged periods of financial stress, which might be transmitted from other types of risks (e.g. from
banking sector to sovereign). Beyond these temporal and cross-sectional applications, the FSM could
be paired other approaches and applications, such as aggregated data (e.g., world conditions), scenario
analysis by introducing shocks to current conditions, assessing linkages by connecting linked economies
with edges, etc. (see Sarlin (2014b) for further examples).

Yet, this map does not provide means for understanding how the cross sections change over time.

Financial Stability Map over Time

To understand how cross sections are evolving, we need to tap into approaches for visual dynamic clus-
tering. The recently introduced Self-Organizing Time Map (SOTM) (Sarlin, 2013b) is unique in that it
provides means for visualizing how cross-sectional structures (i.e., clusters) evolve over time. Although
the only difference to the above approach is the addition of a time dimension to the mapping, it provides
an approach that truly represents the three dimensions of the data cube. Hence, it addresses large-volume
data by reducing the number of entities to clusters and high-dimensional data by reducing dimension-
ality the clusters, as well as represents changes in clusters over time. Based upon the SOTM, this part
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Figure 6: Evolution in the US and euro area and a cross section on the FSM.

describes the application of the Financial Stability Map over Time (FSM-t), as originally described in
Sarlin (2013a). In contrast to the above application, we do not pool the panel data, but rather follow the
first three steps as described in the upper part of Figure 7: (i) starting from a multivariate cross section,
(ii) high-dimensional observations are grouped to a smaller set of equidimensional mean profiles and (
iii) the mean profiles projected to a one-dimensional grid such that similar profiles are close by. Next, as
this concerns only an individual point in time, steps (iv) and (v) in the lower part of Figure 7 describe
performing the three former steps on all time points, including a number of initialization techniques to
preserve orientation, in order to create a two-dimensional grid representing the spaces of both time and
data. For technical details on the SOTM, readers are referred to Appendix B.2 and Sarlin (2013b).

The procedure described in Figure 7 creates the FSM-t. Although the FSM-t can also function as
a display for visualizing individual data concerning entities and their evolution, its key task is to focus
on how the high-dimensional structures are evolving over time. In Figure 8, the upper figure illustrates
the evolution of macro-financial conditions (i.e., 14 indicators) in the cross section from 2005Q3–2010Q4.
In terms of all 14 indicators, similarity in the mean profiles is represented by similarity in color (from
blue to yellow). Further, as the nodes of the grid are high-dimensional mean profiles, one particularly
interesting view is to explore how individual variables have evolved in the cross section over time. The
lower part of Figure 8 shows how leverage is increasing over time, even after the crisis of 2007–2008, and
the increases in government deficits after the first wave of the crisis. The FSM-t can also be created and
exploited in various different ways, such as focusing on cross-sectional changes before, during and after
crises (e.g., t− 8, t− 7, ..., t+ 8) and by projecting individual economies on top of it.

Now, we have tackled the three standard dimensions of the data cube, but what about the linkages?

Bank Interrelation Map

Like high-dimensional risk indicators, networks constitute an inherently complex source of information.
Network analysis, or link analysis, can be seen as the exploration of crucial relationships and associations
between a large set of objects, also involving emergent properties, which may not be apparent from
assessing isolated data. Networks of relationships are mostly expressed in matrix form, where the link
between entities g and l in a matrix A is represented by element agl. The matrix is of size n2, where n is
the number of entities. Matrices of directed graphs can be read in two directions: rows g of A represent
the relationship of g to l and columns l of A represent the relationship of l to g. Each entity g is thus
described by its relationship to each other entity l, and hence g ∈ Rn. Yet, except for the rare completely
connected networks, dense networks comprise for each node an edge number close to the total number of
nodes. On the contrary, the nodes in sparse networks comprise only a low number of links, which can also
be called scale-free networks if their degree distribution follows a power law. The latter type of networks
are predominant in the real world, where the network structure is formed through natural processes and
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Figure 7: Creating the Financial Stability Map over Time.
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Figure 8: A SOTM of the global financial crisis.
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Figure 9: A bank co-occurrence network from financial discussion.

central hubs naturally emerge. In the vein of the above defined task of dimension reduction, this describes
the challenge of drawing low-dimensional graphs from complex networks.

There is a range of approaches for visualizing network data. One popular category is that of force-
directed layout algorithms. They provide means for representing network centrality and connectivity (i.e.,
dependency structures) in low dimensions, by optimizing node positions according to some of the following
criteria, among others: few crossing edges, straight edges, long enough edges and uniform edge length for
non-weighted networks. Based upon work in Rönnqvist and Sarlin (2014b), this part describes the use of
financial discussion for creating bank interrelation maps. Most analysis of interdependencies among banks
has been based on numerical data. By contrast, this study attempts to gain further insight into bank
interconnections by tapping into financial discussion. The approach is illustrated using a case study on
Finnish financial institutions, based on discussion in 3.9M posts spanning 9 years in an online discussion
forum belonging to a major Finnish web portal dedicated to financial and business information. Based
upon these data, co-occurrences of bank names are turned into a network, which can be visualized. For
the purpose of data exploration, particularly visualization, the usage of textual data holds an additional
advantage in the possibility of gaining a more qualitative understanding of an observed interrelation
through its context.

Figure 9 shows a bank interrelation map (BIM) based upon a co-occurrence network from financial
discussion. The network depicts counts of bank names co-occurring in forum posts for the entire period
2004–2012. Node size is proportional to the individual bank occurrence count, while connection darkness
is logarithmically scaled to co-occurrence count. Nodes are positioned by the Fruchterman-Reingold
algorithm (Fruchterman and Reingold, 1991). The message of the figure is that the largest nodes in
the center of the graph are also the most centrally connected in the network. Yet, textual data being a
rich data source, there is plenty of descriptive information to be explored behind the linkages and nodes,
something that could easily be conveyed through interaction possibilities.

Further relating to the limits of a single, static overview is the shortcoming of force-directed layout
algorithms when processing large-volume data. Not only are they computationally costly, but they also
often find locally optimal solutions. While there is a range of solutions to decrease computational cost,
such as multilevel (Hu, 2006) and parallel (Tikhonova and Ma, 2008) extensions, the problem of local
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optima derives from the complexity of projecting high-dimensional data to low-dimensional displays.
One cure may, however, be the possibility to interact with node positions, as well as other techniques
improving representation, which takes us to the following topic.

5.2 Interactive interfaces

This section, while still exemplifying visualizations in macroprudential oversight, shifts the focus towards
interaction with the visual interfaces. Rather than an ending point, the visual interface or visualization
is a starting point for data exploration, to which interactivity is an ideal support. Beyond interactive
interfaces, it is worth noting, as above discussed, that screen captures (i.e., pdf, svg and png formats) and
URL outputs (i.e., a permalink with chosen parameters) are available to support common-information
sharing.6

Following Shneiderman’s (1996) visual information seeking mantra of ”Overview first, zoom and
filter, then details-on-demand”, the visualization provides merely a high-level overview, which should be
manipulated through interaction to zoom in on a portion of items, eliminate uninteresting items and
obtain further information about requested items. To this end, a large share of the revealed information
descends from manipulating the medium, which not only enables better data-driven communication of
information related to risk, but also facilitates visual presentation of big data.

Risk dashboard

In recent years, risk dashboards have become essential tools for both internal and external risk com-
munication among macroprudential supervisors. While central banks commonly have their own internal
risk dashboards, supervisory bodies like ESRB and EBA publish dashboards also available for external
assessment of prevailing risks and vulnerabilities. As an alternative to static documents, this part intro-
duces an interactive data-driven document (D3) based risk dashboard of 14 systemic risk indicators. The
dashboard includes quarterly data for a global set of 28 economies and ranges from 1990 to 2011. The
dataset is based upon that in Sarlin and Peltonen (2013), of which further details are available in Sarlin
(2014b), and which to a large extent descends from Lo Duca and Peltonen (2013).

The dashboard in Figure 10 focuses on time series of univariate indicators for a cross section. As
an overview, it presents a time-series plot for one chosen indicator and all economies, where the indicator
and its transformation can be chosen from the drop-down menu and radio buttons, respectively. The
transformation scales the indicators to country-specific percentiles, which enables a view of the data
in relation to their own economy’s distribution. Zooming and filtering involves highlighting individual
economies by hovering, showing only one individual economy by selection (which highlights their events),
dropping an economy from the graph by deselecting it, and choosing a time span to be shown. More
details can be obtained about the historical occurrence of crises in economies, more precise information
about highlighted data points (value, year and country) and through any of the zooming or filtering
options as the entire graph (x and y axes) adapts to changes. Moreover, with the same functionality, the
dashboard also allows for focusing on country-level time-to-event plots, which illustrates crisis dynamics
for all economies.

While this provides an interface to time series of a large number of indicators, these are oftentimes
combined into a single composite indicator through various analytical techniques, which likewise would
benefit from a visual interface.

Early-warning model

This risk dashboard of 14 systemic risk indicators provides a view of individual indicators and their
percentile transformations. These indicators could, however, be an input to an early-warning model,
to which a visual interface would provide ample means for better understanding the performance and
characteristics of the model. Visual means also allows for better scrutiny, which is likely to impact model
credibility.

In this part, we provide a similar interface as that for the risk dashboard, but instead visualize the
output of an early-warning model with the previously explored early-warning indicators as an input. The
overview illustrates how systemic risk or vulnerability has evolved in all economies over time. While the

6Interested readers can explore the interactive and analytical applications online: http://vis.risklab.fi/.
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Notes: The interactive risk dashboard can be found here: http://vis.risklab.fi/. In the screenshot, credit growth is shown for
economies selected in the left panel and hovering over the label of the euro area dims the time series for all other economies. The
time brush below the figure is used to focus on a specific time span, whereas a drop-down list of events is chosen to be shown from
the event line between the two displays, which also adds a vertical line to the above plot. The data are shown in non-transformed
format.

Figure 10: An interactive risk dashboard.
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Notes: The interactive early-warning model can be found here: http://vis.risklab.fi/. In the screenshot, estimated probabilities
of systemic risk are shown for the euro area for a specific time span, as is selected in the left panel and the below time brush,
and hovering over a specific data point shows that the contribution, variable category and time point are 0.23, credit and asset
imbalances and 2006Q1, respectively. The event for the euro area are chosen to be shown from the event line above the time brush,
which also adds a vertical line to the above plot. The data are shown in non-transformed format.

Figure 11: An interactive early-warning model.

percentile transformation aids in interpreting the severity of the measure in its historical distribution, we
can make use of the same features for zooming and filtering and retrieving more details on demand to
better understand the aggregate risk measure. As is shown in Figure 11, a further interaction capability is
that the line graph is changed into a stacked graph when a single economy has been chosen, which shows
the contribution of three variable groups: domestic macroeconomic and credit and asset imbalances and
global imbalances.

The importance of visualizing these types of analytical models derives from their complexity and
lack of transparency, as they are often the result of extensive computations, within which it might not
always be easy or possible to track the quality of the output. While not being a substitute for more formal
evaluations of signaling quality and other quantitative performance measures, this provides a means for
a more detailed and general exploration of model outputs. Moreover, one essential task ought to be
to improve transparency of analytical projects and models within an organization, by enabling other
analysts, groups and divisions to interact with derived models, which could function as an internal model
audit.

Early-warning models do not, however, provide a more detailed view of what is driving results and
where in a financial stability cycle an economy might be located. They give a mere probability of a crisis,
which turns our attention to the FSM and the potential to interact with it.

Financial Stability Map

Building upon the above presented FSM application that uses analytical techniques for visualization, this
subsection brings interactivity into the picture. An interactive implementation of the FSM can be found in
Figure 12. The implementation uses the same map as an overview, but goes beyond Figure 6 by enabling
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Notes: The interactive Financial Stability Map can be found here: http://vis.risklab.fi/. In the shown screenshot, the states of
financial stability are shown by location on the map for economies highlighted in the right panel, and hovering over the label of
the euro area dims the time series for all other economies. The time brush below the figure is used to visualize trajectory for the
chosen economies. The left-hand side class legend and scale refer to the financial stability states (or clusters) and the distribution
of values for individual indicators, respectively. These indicators can be used for coloring through the drop-down menu on the right
side.

Figure 12: An interactive Financial Stability Map.

various forms of interaction. Zooming and filtering refers to choosing the labels and trajectories to be
plotted, including both the cross-sectional (adjusted through right-side panel) and the time dimensions
(adjusted through time brush and left/right arrows), rather than showing all labels at once. More over,
hovering labels highlights chosen economies and their trajectories. Further details on demand is provided
by the possibility to use the underlying dimensions or layers of the map for coloring. Through the drop-
down menu (and up/down arrows), the graph shows the distribution of an indicator or the probability of
being a member of one of the financial stability states with heatmap color coding.

This illustrates the state of individual countries, but how can we understand the evolution of the
entire cross section?

Financial Stability Map over Time

The FSM-t, as above shown, provides means for exploring the evolution of the cross section, yet it would
undeniably benefit from similar interaction. The visualization design presented herein is based upon an
implementation of alluvial diagrams for representing the SOTM (see Rönnqvist and Sarlin, 2014a). As
an overview, the alluvial SOTM goes beyond the previous representation by encoding cluster size by node
height, depicting transitions between clusters from a cross section to the next through links and using a
planar visual variable (y-axis) to encode structural changes in data. Figure 13 shows this combined view,
where (a) shows a standard grid representation and (b) distorts positioning along the vertical dimension.

The implementation supports interaction through various means. Beyond possibilities to zoom in
on an important or dense part and panning for moving to areas of interest, zooming and filtering is
supported through the possibility to drag nodes to better understand linkages between overlapping or
closely neighboring nodes. Also, selecting individual economies provides means for a more focused view of
individual transitions paths. Further details on demand is provided when hovering over transition links,
which provides a list of all switching economies. One could also see moving from (a) and (b) as a an
approach to move from a baseline representation to further details on structural changes.

Now we have provided means for exploring and interacting with the three more standard dimensions
of the data cube, but how could we interact with graphics of network data?
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Notes: The interactive Financial Stability Map over Time can be found here: http://vis.risklab.fi/. In chart (a), we illustrate a
SOTM in a standard grid representation and in (b) we distort positions to represent changes in cluster structures. Further, both
charts also show a list of economies staying in cluster 1 between 2006Q1 and 2006Q2, as well as the path for the euro area.

Figure 13: An interactive Financial Stability Map over Time.
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Notes: The interactive Bank Interrelation Map can be found here: http://vis.risklab.fi/. In the shown screenshot, a network of
bank co-occurrences is drawn with the Fruchterman-Reingold algorithm. Location on the map represents centrality and overall
dependency structure. Highlighting nodes provides on the left-hand side statistics measuring the share of discussion relating to
risks and distress. The time brush above the figure is used to choose the time span that the network refers to, as well as to support
exploration of temporal evolution. The red circles indicate distressed banks during the current crisis (Glitnir, 2008; Sofia; 2010).

Figure 14: An interactive Bank Interrelation Map.

Bank Interrelation Map

Interaction with network models is an inherently important task. Despite the popularity of stand-alone
force-directed layout algorithms, coupling them with interaction possibilities, while oftentimes missing,
is essential for not only better data exploration, but also possible remedies for improving sub-optimal
solutions. Moreover, given the rarity of reaching a global optima, pulling nodes from equilibria, only to
let them migrate back to a new sub-optimal position, increases our understanding of network properties.

The overview of the bank interrelation map is shown in Figure 14. Zooming and filtering is supported
by possibilities to zoom in on an important or dense part and panning enables moving to areas of interest,
whereas dragging nodes enables both to adjust the current optimum of the layout algorithm and to alter
the orientation of the graph and to better understand linkages to overlapping or closely neighboring
nodes. Moreover, a time brush enables also varying the time span to range from all years to one year and
exploring the evolution of the network over time. Further, the up-down arrow keys enable filtering out
the linkages and re-running the algorithm with a random initialization. The variation caused by different
initial values highlights the importance of interaction, as two suboptimal solutions may significantly differ.
While the richness of textual data would enable a wide range of various further queries, in this application
we showcase the feature of details on demand by coupling highlighting of nodes with a panel on the left
side showing the share of discussion relating to risks and distress.

The use of layout algorithms, while providing means to low-dimensional representations of complex
data, is no panacea for visualization. In particular, they lack general-purpose solutions to representing
densely connected networks and populated areas. To move beyond the exploration features that are en-
abled by interaction, layout algorithms can be coupled with other approaches. Entirely different methods
may in some cases provide better features for simple representation. For instance, Minimum Spanning
Trees provide a simplified skeleton of large networks. Other approaches facilitating the representation of
cluttered networks include node and dimension grouping and filtering (see, e.g., Ma and Muelder, 2013),
circular and chord diagrams with hierarchical edge bundling (see, e.g., Holten, 2006) and edge lenses and
magnifiers (see, e.g., Wong et al. (2003)). Likewise, if that data can be split into smaller and meaning-
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Table 1: The applications in relation to the platform and analytical and interactive visualizations

Analytical visualization Interactive visualization

plots 1. Risk dashboard
2. Early-warning model

maps 3. FSM
4. FSM-t

3. FSM
4. FSM-t

networks 5. BIM 5. BIM

ful groups, the Hive Plot (Krzywinski et al., 2012) provides ample means for a pure representation of
relationships between entities, as well as in communicating system-wide connectedness.

5.3 VisRisk: A visualization platform for macroprudential analysis

So far, this section has presented applications of analytical and interactive visualizations. Now, we move
one step further by putting forward a general platform for visualizing the macroprudential data cube.
Consisting of analytical and interactive visualizations, the VisRisk platform comes with three modules:
plots, maps and networks.7 Plots focuses on interactive interfaces for representing large amounts of data,
but does not make use of analytical techniques for reducing complexity. While maps provides analytical
means for representing the three standard dimensions of a data cube in simple formats, networks aims
at visualization of the fourth data cube dimension of interlinkages. In this section, we have illustrated
applications of five web-based interactive visualizations to systemic risk indicators and models, of which
three make use of analytical visualizations. First, we made use of analytical techniques for data and
dimension reduction to explore high-dimensional systemic risk indicators and time-varying networks of
linkages. Second, we added interactivity to not only dashboards of standard risk indicators and early-
warning models, but also to the analytical applications. This spanned the spectrum of the three modules:
plots, maps and networks. Table 1 summarizes the relations of the applications to the modules and
analytical and interactive features. Interested readers can explore the above illustrated applications,
among many others, in the VisRisk platform.

From the viewpoint of the data cube in Figure 4, VisRisk’s three modules provide visual means to
explore all four dimensions. The tasks of the modules can be described as follows:

1. plots: To make use of interactive interfaces to standard two-dimensional graphs for representing
large amounts of data from the macroprudential data cube without the use of any analytical ap-
proaches for reducing complexity.

2. maps: To couple analytical data and dimension reduction techniques with interactive visualizations
for reducing complexity of the three standard dimensions of the macroprudential data cube, in order
to represent large-volume, high-dimensional and/or high-frequency data in simpler formats.

3. networks: To couple analytical data and dimension reduction techniques with interactive visualiza-
tions for reducing complexity of the fourth, network dimension of the macroprudential data cube,
in order to represent large-volume, multi-layer and/or time-varying networks in simpler formats.

Beyond the applications herein, the ultimate aim of this paper is to provide VisRisk as a platform and
basis for the use of visualization techniques, especially those including analytical and interactive features,
in macroprudential oversight in general and risk communication in particular. Hence, the platform
enables and is open to the visualization of any data from the macroprudential data cube. This aims
at supporting the understanding and value of analytical and interactive visualizations, in addition to
which the consolidation of systemic risk indicators and models can be seen as a support for assessing and
comparing systemic risk indicators and models. Possibilities to graphically explore and compare a wide
variety of risk measures strives to broadly support macroprudential analysis and the development of new
measures.

7Interested readers can explore the VisRisk platform for interactive and analytical applications here: http://vis.risklab.fi/.
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6 Conclusions

Macroprudential oversight concerns surveillance and supervision of the financial system as a whole. This
paper has brought the topic of visualization to the discussion of risk communication in macroprudential
oversight. Communicating timely information related to systemic risks broadly and effectively is a key
mandate of macroprudential supervisory bodies. Likewise, while the mandate of multiple macroprudential
supervisors imposes a need to analyze a large number of entities and their constituents as a whole, the
soar in availability and precision of data further stresses the importance of simple representations of
complex data.

To address tasks of big data and communication in macroprudential oversight, it becomes evident
that visual interfaces hold promise as a means for supporting policymakers. Indeed, visual interfaces
are already today essential in supporting everyday decisions, ranging from visuals in human-computer
interaction to the standard set of two-dimensional graphs of statistics used in external communication.
This paper takes a step further by matching the tasks of a macroprudential supervisor with visualization
techniques available today, to achieve maximum usefulness of available data. To support the use of big
data and analytical tools for timely and accurate measurement of systemic risk, one essential ingredient
to dealing with complex data and modeling problems is to improve end users’ understanding of them. A
particular benefit relates, as noted by Jean-Claude Trichet, to the support of disciplined and structured
judgmental analysis based upon policymakers’ experience and domain intelligence. Further, the mandates
of macroprudential supervisors most often stress, or are even limited to, issuing risk warnings and policy
recommendations, as well as overall communication. This highlights the importance of communicating
broadly and effectively timely information about systemic risks.

This paper has discussed the fields of information visualization and visual analytics, as well as
techniques provided within them, as potential means for risk communication. Particularly, a common
thread throughout the paper has been to draw upon the visualization literature, in order to better support
the tasks of macroprudential oversight. We have concluded that two essential features for supporting the
analysis of big data and communication of risks are analytical visualizations and interactive interfaces.

For visualizing the macroprudential data cube through analytical and interactive visualization, this
paper has provided the VisRisk platform with three modules: plots, maps and networks. We have
illustrated the platform and its modules with five web-based interactive visualizations of systemic risk
indicators and models, of which three make use of analytical visualizations. As VisRisk enables and is
open to the visualization of any data from a macroprudential data cube, the work in this paper aims
at providing a basis with which systemic risk indicators and models can be widely communicated. The
illustrative applications highlight the usefulness of coupling analytical and interactive visualizations with
systemic risk indicators and models, which VisRisk brings into web-based implementations to supplement
the static view of today’s notion of a document. The aim is to change this view, by advocating the use
of interactive data-driven documents and analytical visualization techniques – both with an ultimate aim
of improved means for disseminating information.
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Appendix A: Information visualization and visual analytics

This appendix provides supplementary information regarding topics in information visualization and
visual analytics.

Appendix A.1: How visuals amplify cognition

Ware (2004) summarizes as follows the principles that our brain and visual system follows when attempt-
ing to interpret and comprehend visuals:

Proximity: Items close together are perceptually grouped together.

Similarity: Elements of similar form tend to be grouped together.

Continuity: Connected or continuous visual elements tend to be grouped.

Symmetry: Symmetrical elements are perceived as belonging together.

Closure: Closed contours tend to be seen as objects.

Relative size: Smaller components of a pattern tend to be perceived as objects.

Card et al. (1999) present visuals as a means to amplify cognition and list five ways how well-
perceived visuals could amplify cognition. They can be exemplified as follows.

Examples of the first way to amplify cognition, the increase in available resources, are parallel
perceptual or visual processing and offloading work from the cognitive system to the perceptual system
(Larkin and Simon, 1987). Second, visuals facilitate the search procedure by the provision of a large
amount of data in a small space (i.e., high data density) (Tufte, 1983) and by grouping information used
together in general and information about one object in particular (Larkin and Simon, 1987). Third,
abstraction and aggregation aid in the detection of patterns and operations for perceptual inference
(Card et al., 1991). Fourth, perceptual monitoring is enhanced, for instance, through the use of pop-out
effects created by appearance or motion (Card et al., 1999). Likewise, Card et al. (1999) exemplify the
fifth way to amplify cognition, the use of a manipulable medium, by allowing the user to explore a wide
range of parameter values to interactively explore properties of data.

Appendix A.2: The visual system and correctly perceived graphics

Visual representations, while providing means to amplify cognition, also constitute a large set of issues
that may hinder, disturb or otherwise negatively affect how visualizations are read. A key starting point
is to take into account the deficiencies and limitations of human perception. Preattentive processing,
for instance, becomes a deficiency if visuals are not designed properly. Patterns a user is supposed to
identify quickly – or give visual but not conscious attention to – should hence be made distinct from
the rest by using features that can be preattentively processed. Likewise, visual attention functions as
a filter in that only one pattern is brought into working memory (Baddeley and Logie, 1999). Hence, if
provided with multiple patterns, we only see what we need or desire to see by tuning out other patterns.
It is also important to note differences in visual features, as others are perceived more accurately, such as
color vs. position, where perception of the latter dominates over the former. Ware (2005) also mentions
the fact that humans process simple visual patterns serially at a rate of one every 40–50 msec. and a
fixation lasts for about 100–300 msec., meaning that our visual system processes 2–6 objects within each
fixation, before we move our eyes to visually attend to some other region. In addition, one important
factor to account for is how perception of visuals is affected by properties of the human eye, such as
acuities, contrast sensitivity, color vision, perception of shape or motion with colors, etc. Another aspect
of crucial importance is obviously to pay regard to human perceptions of shapes in visuals, such as
distances, sizes and forms. Cognitive deficiencies should also be accounted for when designing visuals,
such as the limited amount of working memory. For instance, Haroz and Whitney (2012) show that the
effectiveness of information visualization is severely affected by the capacity limits of attention, not the
least for detecting unexpected information. Hence, an understanding of the functioning of the human
visual system aids in producing effective displays of information, where data are presented such that the
patterns are likely to be correctly perceived.
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Appendix A.3: A framework of the planar and retinal variables

Bertin (1983) describes the plane, and its two dimensions (x, y), as the richest variables. They fulfill
the criteria for all levels of organization by being selective, associative, ordered and quantitative. The
retinal variables, on the other hand, are always positioned on the plane, and can make use of three types
of implantation: a point, line, or area. First, size is ordered, selective but not associative, and the only
quantitative retinal variable. Second, value is the ratio of black to white on a surface, according to the
perceived ratio of the observer, and is also sometimes called brightness. The usage of value in this case
is close to that in the HSV (hue, saturation and value) color space, which is a cylindrical-coordinate
representation of points in an RGB (red, green and blue) color space. It is an ordered and selective
retinal variable. Third, texture represents the scale of the constituent parts of a pattern, where variation
in texture may occur through photographic reductions of a pattern of marks. That is, it may range
from null texture with numerous but tiny elements that are not identifiable to large textures with only
few marks. Texture as a retinal variable can be ordered and is both selective and associative. Fourth,
variation may occur in color. The variation of two marks with the same value or brightness is thus more
related to changes in hue of HSV. Color as a retinal variable is selective and associative, but not ordered.
Fifth, the orientation variable enables variation in the angle between marks. In theory, this opens up
an infinite set of alternatives of the available 360 degrees, whereas Bertin (1983) suggests the use of four
steps of orientation. The orientation variable is associative and selective only in the cases of points and
lines, but has no direct interpretation of order. Finally, the sixth variable of shape, while being a retinal
variable on its own, also partly incorporates aspects of size and orientation. It is associative, but neither
selective nor ordered.

The eight variables can be categorized according to the following levels of organization, or so-called
perceptual properties:

1. Associative (≡): If elements can be isolated as belonging to the same category, but still do not
affect visibility of other variables and can be ignored with no effort.

2. Selective (6=): If elements can immediately and effortlessly be grouped into a category, and formed
into families, differentiated by this variable, whereas the grouping cannot be ignored.

3. Ordered (O): If elements can perceptually be ordinally ranked based upon one visually varying
characteristic.

4. Quantitative (Q): If the degree of variation between elements can perceptually be quantified
based upon one visually varying characteristic.

When having an understanding of the four levels of organization, we can return to Bertin’s (1983)
eight visual variables. Bertin describes the plane, and its two dimensions (x, y), as the richest variables.
They fulfill the criteria for all levels of organization by being associative (≡), selective (6=), ordered (O)
and quantitative (Q). The retinal variables, on the other hand, are always positioned on the plane, and
can make use of three types of implantation: a point, line, or area. Their perceptual properties are as
follows: size ( 6=,O,Q), value (6=,O), texture (≡, 6=,O), color (≡, 6=), orientation (≡, 6=), and shape (≡).

Tufte’s (1983) two principles on graphical excellence and integrity covered in the main text, while
being his main guidelines on graphic design, cover only a small fraction of his work. Beyond these two
principles, but still relating to them, he highlights data-ink maximization, by advocating a focus on the
data, and nothing else. Hence, a good graphical representation focuses on data-ink maximization with
minimum non-data-ink. The data-ink ratio is calculated by 1 minus the proportion of the graph that
can be erased without loss of data information. Tufte puts forward the following five guidelines related
to data ink: (i) above all else, show data; (ii) maximize the data-ink ratio; (iii) erase non-data-ink;
(iv) erase redundant data-ink; and v) revise and edit. Moreover, Tufte (1983) highlights data density
maximization, which relates to the share of the area of the graphic dedicated to showing the data. For
too low densities, graphics should either be reduced in size (shrink principle) or replaced with a table. In
terms of concrete design, he proposes the small multiples, a design for showing varying data onto a series
of the same small graph repeated in one visual.

Appendix A.4: Visualization techniques as per data and output

Zhang et al. (2012) categorize visualization techniques into four groups from the viewpoint of the under-
lying data. First, numerical data can be visualized by a vast number of approaches, such as standard
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visualization techniques like bar and pie charts and scatter plots. These focus most often on the visu-
alization of low-dimensional numerical data. On the other hand, visualization techniques like parallel
coordinates, heatmaps and scatter plot matrices provide means to display data with higher dimensional-
ity. Second, visualization of textual data is a relatively new but rapidly growing field. Recent well-known
techniques include theme river (Havre et al., 2000) and word cloud (Kaser and Lemire, 2007), for instance.
Likewise, the availability of the third type of data, geo-tagged data, has caused a soar in the demand for
geo-spatial visualizations. Geo-related univariate or multivariate information is oftentimes projected into
conventional two-dimensional and three-dimensional spaces. Fourth, graph visualizations provide means
for displaying patterns in network data with relationships (i.e., edges) between entities (i.e., nodes). They
most often consist of a technique for positioning, such as force-directed drawing algorithms, as well as
coloring or thickness of edges to display the size of a relationship. Graph or network visualizations have
been increasingly applied in a wide range of emerging topics related to social and biological networks,
not to mention financial networks.

From the viewpoint of visualization output, Keim and Kriegel (1996) provide a five-category grouping
of techniques. First, geometric techniques provide means for visualization of geometric transformations
and projections of data. Examples of the methods are scatterplot-matrices, parallel-coordinate plots and
projection methods. Second, icon-based techniques, as already the name states, visualize data as features
of icons. The methods include, for instance, Chernoff-faces and stick figures, of which the former visualize
multidimensional data using the properties of a face icon and the latter use stick figures. Third, pixel-
oriented techniques map each attribute value to a colored pixel and present attribute values belonging
to each attribute in separate subwindows. For instance, query-independent techniques arrange data from
top-down in a column-by-column fashion or left to right in a line-by-line fashion, while query-dependent
techniques visualize data in the context of a specific user query. Four, hierarchical techniques provide
means to illustrate hierarchical structures in data. Most often, hierarchical methods focus on dividing
an n-dimensional attribute space by ‘stacking’ two-dimensional subspaces into each other. Finally, the
fifth category, graph-based techniques, focus on the visualization of large graphs, or networks, to illustrate
the properties of the network, as was above discussed. In addition, Keim and Kriegel also illustrate the
existence of a wide range of hybrids that make use of multiple categories.
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Appendix B: Analytical techniques

This appendix provides supplementary technical details regarding the analytical methods applied in the
paper.

Appendix B.1: Self-Organizing Map

The SOM (Kohonen, 1982, 2001) is a method that performs a simultaneous data and dimension reduction.
It differs from non-linear projection techniques like Multidimensional Scaling (MDS) by attempting to
preserve the neighborhood relations in a data space Ω on a k-dimensional array of units (represented
by reference vectors mi) instead of attempting to preserve absolute distances in a continuous space. On
the other hand, it differs from standard Vector Quantization (VQ) by also attempting neighborhood
preservation of mi. The VQ capability of the SOM performs this data reduction into mean profiles (i.e.,
units mi). It models from the continuous space Ω, with a probability density function p(x), to the grid
of units, whose location depend on the neighborhood structure of the data Ω.

We employ the batch training algorithm, and thus process data simultaneously instead of in se-
quences. This reduces computational cost and enables reproducible results. Following an initialization
based upon two principal components, the batch training algorithm operates a specified number of itera-
tions t (where t = 1, 2, . . . , T ) in two steps. In the first step, each input data vector xj is assigned to the
BMUs mb:

dx(j, b) = min
i
dx(j, i), (1)

where dx(j, b) is the input space distance between data xj and reference vector mb (i.e., BMU)
and dx(j, i) is the input space distance between data xj and each reference vector mi. Hence, data are
projected to an equidimensional reference vector mb, not a two-dimensional vector as in MDS. In the
second step, each reference vector mi (where i = 1, 2, . . . ,M) is adjusted using the batch update formula:

mi(t+ 1) =

∑N
j=1 hib(j)(t)xj∑N
j=1 hib(j)(t)

(2)

where index j indicates the input data vectors that belong to unit b, N is the number of the data
vectors, and hib(j) is some specified neighborhood function. In comparison to the update formula of the

k-means algorithm, the batch update of the SOM can be seen as a spatially
(
hib(j)

)
constrained version.

The neighborhood function hib(j) ∈ (0, 1] is defined as the following Gaussian function:

hib(j) = exp

(
−dr(b, i)2

2σ2(t)

)
(3)

where dr(b, i) is the distance between the coordinates rb and ri of the reference vectors mb and
mi on the two-dimensional grid. Moreover, the radius of the neighborhood σ(t) is a monotonically
decreasing function of time t. The radius of the neighborhood begins as half the diagonal of the grid size
((X2 + Y 2)/2), and decreases towards a user-specified radius σ.

Appendix B.2: Self-Organizing Time Map

The SOTM (Sarlin, 2013b) uses the clustering and projection capabilities of the standard SOM for
visualization and abstraction of temporal structural changes in data. Here, t (where t = 1, 2, . . . , T ) is
a time-coordinate in data, not in training iterations as is common for the standard SOM. To observe
the cross-sectional structures of the dataset for each time unit t, the SOTM performs a mapping from
the input data space Ω(t), with a probability density function p(x, t), onto a one-dimensional array A(t)
of output units mi(t) (where i = 1, 2, . . . ,M). Preservation of orientation and gradual adjustment to
temporal changes is accomplished by initializing A(t1) with the first principal component of Principal
Component Analysis (PCA) and initializing A(t2,3,...,T ) with the reference vectors of A(t − 1). Hence,
the model uses short-term memory to retain information about past patterns and preserve orientation.
Adjustment to temporal changes is achieved by performing a batch update per time t. For A(t1,2,. . . ,T ),
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each data point xj(t) ∈ Ω(t) (where j = 1, 2, . . . , N(t)) is compared to reference vectors mi(t) ∈ A(t) and
assigned to its BMU mb(t):

‖xj(t)−mb(t)‖ = min
i
‖xj(t)−mi(t)‖ . (4)

Then each reference vector mi(t) is adjusted using the batch update formula:

mi(t) =

∑N(t)
j=1 hib(j)(t)xj(t)∑N(t)

j=1 hib(j)(t)
, (5)

where index j indicates the input data that belong to unit b and the neighborhood function hib(j)(t) ∈
(0, 1] is defined as a Gaussian function

hib(j)(t) = exp

(
−‖rb(t)− ri(t)‖

2

2σ2

)
, (6)

where ‖rb(t)− ri(t)‖2 is the squared Euclidean distance between the coordinates of the reference
vectors mb(t) and mi(t) on the one-dimensional array, and σ is the user-specified neighborhood parameter.
In contrast to what is common for the standard batch SOM, the neighborhood σ is constant over time for
a comparable timeline, not a decreasing function of time as is common when time represents iterations.
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