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Abstract

We propose a dynamic factor model for mixed-measurement and mixed-frequency panel
data. In this framework time series observations may come from a range of families of
parametric distributions, may be observed at different time frequencies, may have missing
observations, and may exhibit common dynamics and cross-sectional dependence due to
shared exposure to dynamic latent factors. The distinguishing feature of our model is
that the likelihood function is known in closed form and need not be obtained by means
of simulation, thus enabling straightforward parameter estimation by standard maximum
likelihood. We use the new mixed-measurement framework for the signal extraction and
forecasting of macro, credit, and loss given default risk conditions for U.S. Moody’s-rated
firms from January 1982 until March 2010. Our joint modeling framework allows us to
construct predictive (conditional) loss densities for portfolios of corporate bonds in the
presence of different sources of credit risk such as frailty effects and systematic recovery
risk.

Keywords: panel data; loss given default; default risk; dynamic beta density; dynamic
ordered probit; dynamic factor model.

JEL classification codes: C32, G32.



Non-technical summary

Credit risk analysis has been highly relevant in the aftermath of the 2008 financial crisis.

Financial institutions and supervisors are specifically trying to assess what is the common

variation in firm defaults in order to better assess risk. In this paper we develop a novel

dynamic factor modelling framework for panels of mixed measurement time series data. In this

framework, observations may come from different families of distributions, may be observed

at different frequencies such as monthly or quarterly, may have missing observations, and may

exhibit cross-sectional dependence due to shared exposure to dynamic common latent factors.

The main motivation is to obtain a flexible modeling framework for the estimation, analysis and

forecasting of credit risk. A clear advantage of our framework is that the likelihood is available

in closed form and need not be obtained by means of simulation. As a result, straightforward

procedures can be used for parameter estimation.

In our empirical analysis we focus on the systematic variation in cross-sections of credit

rating transitions, bond loss rates upon default (also known as loss given default), and macro-

financial data. The rating and default data consists of 19,540 rating transition events for 7,505

companies, 1,342 cases of irregularly spaced defaults with associated losses given default, and

six macroeconomic series of mixed quarterly and monthly frequency. The estimation sample

is U.S. data from January 1982 to March 2010. Our data set exhibits all the complications

as outlined above: While the number of credit ratings transitions between rating categories

is a discrete and even ordered random variable, the macro-financial variables are modeled as

continuous variables, whereas the percentage amounts lost on the principal in case of default are

continuous and bounded between zero and one. Furthermore, the loss given defaults are only

observed if there are defaults, such that we have many missing observations by construction.

Finally, all series exhibit some common dynamic features related to the business cycle.

We use the model to forecast credit risk conditions and to construct predictive loss densities

for portfolios of corporate bonds at different forecasting horizons. The model can be used to

stress test credit portfolios and to determine adequate capital buffers using the high percentiles

of the simulated portfolio loss distributions. In our empirical application, we find that condi-

tioning on macro factors alone is not sufficient to capture credit risk dynamics. Both transition

probabilities and LGD dynamics are affected by more than only macro factors. The number

of defaults is lower than what should be expected based on macro fundamentals in the years

leading up to the 2008 crisis, likely reflecting easy credit access and low bank lending standards.
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1 Introduction

Consider an unbalanced panel time series yit for i = 1, . . . , N and t = 1, . . . , T , where each

variable can come from a different distribution. Such settings occur naturally in many areas of

economics and the need for a joint modeling framework for variables from different distributions

with common features has become more apparent recently. For example, to construct an

accurate and reliable business cycle indicator, many different measurements of economic activity

need to be considered simultaneously. Some of these may be Gaussian distributed (typical

macroeconomic time series), whereas others are fat-tailed (such as stock returns), integer or

binary (such as NBER recession dates), or categorical (such as consumer confidence that is

indicated as low, moderate, high) variables. All of these variables reflect a common exposure to

the business cycle, but at the same time each variable needs its own appropriate distributional

specification. In this paper, we propose an observation driven dynamic modeling framework

for the simultaneous analysis of mixed-measurement time series that are subject to common

features.

An additional challenge when multiple time series are available is that the observation fre-

quencies can be different for each time series. Some series are observed every year while other

series are observed every quarter or month. In empirical financial studies, daily and intra-daily

time series of returns are also readily available for analysis. A simultaneous analysis of time

series with different observation frequencies is a challenging task. Different methodologies have

been developed for this purpose. For example, Mariano and Murasawa (2003) adopt a state

space approach for the construction of a coincident business cycle index using quarterly and

monthly data while Ghysels, Santa Clara, and Valkanov (2006) show that the precision in pre-

dicting the volatility of financial time series can benefit from a mixed-data sampling analysis

applied to intra-daily returns of different frequencies. Our mixed-measurement modeling frame-

work incorporates a mixed-data sampling approach by explicitly formulating a high-frequency

time series process and allowing for missing observations in the analysis.

Our main motivation to develop a mixed-measurement, mixed-frequency modeling frame-

work is for the estimation, analysis and forecasting of credit risk. Credit risk analysis has

been highly relevant in the aftermath of the 2008 financial crisis. Financial institutions and

regulators are specifically trying to assess what is the common variation in firm defaults in
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order to correctly assess risk. In our empirical analysis we focus on the systematic variation

in cross-sections of macroeconomic data, credit rating transitions, and bond loss rates upon

default (also known as loss given default). Our data set exhibits the complications as discussed

above. While the number of credit ratings transitions between rating categories is a discrete

and even ordered random variable, the macroeconomic variables are modeled as continuous

variables, whereas the percentage amounts lost on the principal in case of default are contin-

uous and bounded between zero and one. Some of the macro series are observed quarterly

while others are observed monthly. Furthermore, the loss given defaults are only observed if

there are defaults, such that we have many missing observations by construction. Finally, all

series exhibit some common dynamic features related to the business cycle. Loss rates and

defaults both tend to be high during an economic downturn, indicating important systematic

covariation across different types of data. The commonalities are captured by latent dynamic

factors in our modeling framework. The total data set forms an unbalanced panel with 19,540

rating transition events for 7,505 companies, 1,342 cases of (irregularly spaced) defaults with

associated losses given default, and six macroeconomic series of mixed quarterly and monthly

frequency. The complicated nature of the data set underlines the flexibility of the observation

driven modeling framework as developed in this paper.

When the parameters in the model are estimated, we can use the model to forecast credit

risk conditions in the economy and to construct predictive loss densities for portfolios of cor-

porate bonds at different forecasting horizons. The model can therefore be used to stress test

current credit portfolios and determine adequate capital buffers using the high percentiles of

the simulated portfolio loss distributions. Our modeling framework provides a relatively simple

observation driven alternative to the (parameter driven) frailty models of McNeil and Wendin

(2007), Koopman, Lucas, and Monteiro (2008), and Duffie, Eckner, Horel, and Saita (2009).

In addition, our proposed model allows the identification of three components of credit risk

simultaneously: macro, default and rating migration, and loss given default. In earlier work,

models have concentrated on defaults only, defaults and ratings, or defaults and macro risk.

The distinguishing feature of our modeling framework is that it is entirely observation driven.

Observation driven time series models allow parameters to vary over time as functions of lagged

dependent variables and exogenous variables. The parameters are stochastic but perfectly

predictable given the past information. In the alternative class of parameter driven models this
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perfect predictability is lost; see Cox (1981) for a distinction between the two classes of models.

The main advantage of an observation driven approach is that the likelihood is known in closed

form. It leads to simple procedures for likelihood evaluation and in particular it avoids the

need for simulation based methods to evaluate the likelihood. Observation driven time series

models have become popular in the applied statistics and econometrics literature. Typical

examples of these models include the generalized autoregressive conditional heteroskedasticity

(GARCH) model of Engle (1982) and Bollerslev (1986), the autoregressive conditional duration

(ACD) model of Engle and Russell (1998), and the dynamic conditional correlation (DCC)

model of Engle (2002). In the same spirit, we develop a panel data model for mixed-frequency

observations from different families of parametric distributions which are linked by a small set

of latent dynamic factors. The likelihood of this new model exists in closed form and can be

maximized in a straightforward way.

A number of well-known methods for the modeling of large panels of time series based on

latent dynamic factors have been explored: (i) principal components analysis in an approxi-

mate dynamic factor model framework, see e.g. Connor and Korajczyk (1988, 1993), Stock

and Watson (2002), Bai (2003), Bai and Ng (2002, 2007); (ii) frequency-domain estimation,

see e.g. Sargent and Sims (1977), Geweke (1977), Forni, Hallin, Lippi, and Reichlin (2000,

2005); and (iii) signal extraction using a state space time series analysis, see e.g. Doz, Gian-

none, and Reichlin (2006), and Jungbacker and Koopman (2008). Compared to the methods

of (i) and (ii), our current framework provides an integrated parametric framework for obtain-

ing in-sample estimates and out-of-sample forecasts for the latent factors and other variables

in the model. Compared to the methods under (iii), our likelihood is known in closed form,

even when the model is (partially) nonlinear and includes non-Gaussian densities. Our mod-

eling framework provides basic and simple procedures for likelihood evaluation and parameter

estimation without compromising the flexibility of model formulations that aim to construct

effective forecasting distributions.

In Section 2, we introduce observation driven mixed-measurement dynamic factor models.

We then provide an application of the new framework in Section 3 to jointly model macroeco-

nomic dynamics, credit rating dynamics, defaults, and losses given default. In Section 4, we

use the new model to estimate and forecast time-varying credit risk and loss given default risk

factors jointly with macroeconomic variables at a business cycle frequency. Section 5 concludes.
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2 Mixed-measurement dynamic factor models

This section introduces the observation driven mixed-measurement dynamic factor model for

the modeling of a large unbalanced panel of time series. The methodology for the extraction

of the factor and the maximum likelihood estimation of the parameters in the model needs to

allow for missing values. Since different time series can be observed at different frequencies

and each time series can be observed within different time intervals, missing observations are

common place in our analysis.

2.1 Model specification

Consider the N×1 vector of variables yt of which Nt elements are observed and N−Nt elements

are treated as missing, with 1 ≤ Nt ≤ N , at time period t. The measurement density for the

ith element of yt is given by

yit ∼ pi(yit|ft,Ft−1; ψ), for i = 1, . . . , N, t = 1, . . . , T, (1)

where ft is vector of unobserved factors or time-varying parameters, Ft = {y1, . . . , yt} is the set

of past and concurrent observations at time t, and ψ is a vector of static unknown parameters.

In our mixed-measurement framework, the densities pi(yit|ft,Ft−1; ψ) for i = 1, . . . , N , can

originate from different families of distributions. All distributions however depend upon the

same M × 1 vector of common unobserved factors ft. We assume a factor model structure in

which the yit’s at time t are cross-sectionally independent conditional on ft and on information

set Ft−1. We then have

log p(yt|ft,Ft−1; ψ) =
N∑

i=1

δit log pi(yit|ft,Ft−1; ψ), (2)

where δit takes the value one when yit is observed and zero when it is missing. The density

in (2) may also depend on a vector of exogenous covariates. We omit this extension here to

simplify the notation.
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The dynamic factor ft is modeled as an autoregressive moving average process given by

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1, t = 1, . . . , T, (3)

where s1, . . . , sT is a martingale difference sequence with mean zero, ω is an M × 1 vector of

constants and the coefficients Ai and Bj are M × M parameter matrices for i = 1, . . . , p and

j = 1, . . . , q. The coefficients can be specified and restricted so that the process ft is covariance

stationary. The unknown static parameters in (1) together with the unknown elements in ω,

A1, . . . , Ap and B1, . . . , Bq are collected in the static parameter vector ψ. The initial value f1

is taken as fixed at the unconditional mean of the stationary process ft.

We follow Creal, Koopman, and Lucas (2010) by setting the innovation st in (3) equal to

the score of the log-density p(yt|ft,Ft−1; ψ) for t = 1, . . . , T . In particular, st is defined as

st = St ∇t, where ∇t =
∂ log p(yt|ft,Ft−1; ψ)

∂ft

, (4)

and where St is an appropriately chosen scaling matrix. The scaled score st in (3) is a function of

past observations, factors, and unknown parameters. It follows immediately from the properties

of the score that the sequence s1, . . . , st is a martingale difference. The dynamic factors ft are

therefore driven by a sequence of natural innovations.

For particular choices of the measurement density p(yt|ft,Ft−1; ψ) and the scaling matrix

St, Creal, Koopman, and Lucas (2010) show that the modeling framework (2)-(3) reduces to

popular models such as the GARCH model of Engle (1982) and Bollerslev (1986), the ACD

model of Engle and Russell (1998), the multiplicative error model of Engle and Gallo (2006),

as well as other models. For our mixed-measurement model in which we allow for missing

observations and for different observation frequencies, we construct the scaling matrix from the

eigenvalue-eigenvector decomposition of the Fisher information matrix as given by

It = Et−1[∇t∇′
t] = E [∇t∇′

t |ft,Ft−1 ] .

The eigendecomposition of matrix It is represented by

It = UtΣtU
′
t ,
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with the columns of M×r matrix Ut equal to the eigenvectors of It corresponding to its nonzero

eigenvalues, and r × r diagonal matrix Σt containing the nonzero eigenvalues of It. We have

implicitly defined r as the rank of It. The scaling matrix is then

St = UtΣ
−1/2
t U ′

t (5)

which can be regarded as the generalized square root inverse matrix of It. By having St based

on the Fisher information matrix, the gradient ∇t is corrected for the local curvature of the

measurement density p(yt|ft,Ft−1; ψ) at time t. Furthermore, the martingale difference series

st has a finite, idempotent covariance matrix. For example, when the information matrix is

nonsingular, the covariance matrix of st equals the identity matrix.

In the mixed-measurement setting with measurement densities specified by (1) and (2), the

score vector at time t takes a simple additive form

∇t =
N∑

i=1

δit∇i,t =
N∑

i=1

δit
∂ log pi(yit|ft,Ft−1; ψ)

∂ft

, (6)

where δit takes the value one when yit is observed and zero when it is missing. Similarly, the

conditional information matrix is additive

It = Et−1[∇t∇′
t] =

N∑
i=1

δitEi,t−1[∇i,t∇′
it]. (7)

Given these results, it is straightforward to compute the scaling matrix in (5).

2.2 Measurement of the factors

The estimation of the factors at time t given past observations Ft−1 = {y1, . . . , yt−1}, for a

given value of ψ, is carried out as a filtering process. At time t, we assume that Ft−1 and the

paths f1, . . . , ft and s1, . . . , st−1 are given. When observation yt becomes available, we compute

st as defined in (4) with scaling matrix (5). Subsequently, we compute ft+1 using the recursive

equation (3). At time t + j, once observation yt+j is available, we can compute st+j and ft+1+j

in the same way for j = 1, 2, . . .. In practice, the filtering process is started at t = 1 with f1

being set to some fixed value. The initial value f1 can also be treated as a part of ψ.
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Missing values in data sets are intrinsically handled simply through the specifications of

∇t and It in (6) and (7), respectively. The variables ∇t and It enable the computation of st.

When all entries in yt are missing, it follows that st = 0. The computation of ft+1 using (3)

is not affected further when we have missing values. Hence our modeling framework adapts

naturally to missing values.

When the time series panel is unbalanced, missing values appear naturally in the data at

the beginning and/or at the end of the time series. Also they appear when time series are

observed at different frequencies. The overall time index refers to a time period associated

with the highest available frequency in the panel. Time series observed at lower frequencies

contain missing values at time points for which no new observations are available. For example,

a panel with monthly and quarterly time series adopts a monthly time index and a quarterly

time series is arranged by having two monthly missing values after each (quarterly) observation.

The precise arrangement depends on whether the variable represents a stock (point in time) or

a flow (a quantity over time, or average).

2.3 Maximum likelihood estimation

Observation driven time series models are attractive because the log-likelihood is known in

closed form. For a given set of observations y1, . . . , yT , the vector of unknown parameters ψ

can be estimated by maximizing the log-likelihood function with respect to ψ, that is

ψ̂ = arg max
ψ

T∑
t=1

log p(yt|ft,Ft−1; ψ), (8)

where p(yt|ft,Ft−1; ψ) is defined in (2). The evaluation of log p(yt|ft,Ft−1; ψ) is easily incorpo-

rated in the filtering process for ft as described in Section 2.2.

The maximization in (8) can be carried out using a conveniently chosen quasi-Newton

optimization method that is based on score information. The score here is defined as the first

derivative of the log-likelihood function in (8) with respect to the constant parameter vector

ψ. Analytical expressions for the score function can be developed but it typically leads to a

collection of complicated equations. In practice, the maximization of the likelihood function is

therefore based on numerical derivatives.
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Identification of the individual parameters in ψ needs to be considered carefully in factor

models. A rotation of the factors by some nonsingular matrix may yield an observationally

equivalent model. To make sure that all coefficients in ψ are identified, we impose the restriction

ω = 0 in (3) and we restrict the set of factor loadings. In particular, we restrict M rows in

the factor loading matrix to have a lower triangular format with ones on the diagonal, and we

assume the matrices Ai and Bj of (3) for i = 1, . . . , p and j = 1, . . . , q to be diagonal.

2.4 Forecasting

The forecasting of future observations and factors is straightforward. The forecast fT+h, with

h = 1, 2, . . . , H, can be obtained by iterating the factor recursion (3) in which the sequence

sT+1, . . . , sT+H is treated as a martingale difference. To obtain forecasting expectations of

nonlinear functions of the factors, the conditional mean of the predictive distribution needs to

be computed by simulation due to Jensen’s inequality. Simulating the factors is straightforward

given the recursion (3). Simulation is also the appropriate tool if other characteristics of the

forecasting distribution are of interest such as percentiles and quantiles.

Forecasting in our modeling framework has several advantages when compared to the two-

step forecasting approach in the approximate dynamic factor modeling framework of Stock and

Watson (2002). First, forecasting the future observations and factors in our framework does

not require the formulation of an auxiliary model. Parameter estimation, signal extraction,

and forecasting occurs in a single unified step. In the two-step approach, first, the factors are

extracted from a large panel of predictor variables, and, second, the forecasts for the variables

of interest are computed via regression with the lagged estimated factors as covariates. Our

simultaneous modeling approach is conceptually more straightforward, it retains valid inference

that may be lost in a two-step approach, and it ensures that the extracted factors are related

to the variables of interest throughout the estimation and forecasting process.

3 An application to macroeconomic and credit risk

The focus on credit risk has increased considerably since the 2007-2008 financial crises in both

the professional and academic finance literature. Credit risk is often discussed in terms of the
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probability of default (PD) and the loss given default (LGD): PD is the probability that a firm

or company goes into default and LGD is the fraction of the capital that is lost in case the

firm is in default. It is argued that both PD and LGD are driven by the same underlying risk

factors; see the discussions in Altman, Brady, Resti, and Sironi (2003), Allen and Saunders

(2004), and Schuerman (2006). The implication is that LGD is expected to be high when PD

is expected to be high as well. As a result, the total credit risk profile of a portfolio increases.

In our empirical study, we apply the general modeling framework of Section 2 to investigate

the linkages between macroeconomic and credit risk. We analyze firm-level data on defaults

and on changes in credit quality to obtain insight into the dynamic relations between LGD and

macroeconomic fluctuations. The model for credit quality is based on a dynamic ordered logit

distribution and the model for LGD is based on a dynamic beta distribution; see Gupton and

Stein (2005) and CreditMetrics (2007) for static versions of our model. The macroeconomic

variables are specified as a linear Gaussian dynamic factor model.

3.1 Data

Our available time series panel consists of three groups of variables: macroeconomic, default

and loss given default (LGD). The macroeconomic group has six time series (five monthly and

one quarterly) that we have obtained from the FRED database at the Federal Reserve Bank of

St. Louis. General macroeconomic conditions are reflected by three variables : annual change in

industrial production growth (monthly), annual change in the unemployment rate (monthly),

and annual change in real GDP (quarterly). These three variables are strongly related to the

state of the business cycle and measure the extent of economic activity. General financial market

and credit variables are included to account for probability to default conditions as perceived

by the market. We include the three monthly variables of credit spread, annual change in

stock market log-prices (returns), and stock market volatility. The credit spread is measured

as the spread between the yield on Baa rated bonds and treasury bonds, where the ratings are

assigned by Moody’s. Credit spread movements capture two components of credit risk: changes

in the market’s perception of the probability of default and the losses given default; changes

in the price that the market charges for this type of risk. Particularly the first of these two

elements can be relevant for determining default rate dynamics. The stock market variables are
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the yearly returns on the S&P 500 index and the volatility of the same index. The volatility is

measured by the daily realized volatility computed over the past month. Both variables can be

linked to default risk through the structural model of Merton (1974) in which firms with higher

asset values or lower asset volatilities are less likely to default. In the aggregate, the dynamics

of the two can be approximated by equity returns and equity volatilities given that the average

debt-equity proportions of the S&P index constituents are relatively stable over time. The

sample period January, 1982 to March, 2010 contains 350 observations. We standardize all six

macroeconomic variables for our analysis by subtracting the (time series) mean and dividing

by the standard deviation.

The default group of variables contains credit ratings assigned by Moody’s reflecting the

credit quality of the firm. The rating of firm i at time t is denoted by Rit. We map the ratings

scale of Moody’s on a coarser grid of four ratings. The categories are labeled Investment Grade

(IG) containing Moody’s rating grades Aaa down to Baa3; double B (BB) containing Ba1–Ba3;

single B (B) containing B1–B3; and triple C (CCC) containing Caa1–C3. All companies in

the sample can also default, which is marked as a transition to the absorbing category D. We

have Rit ∈ {IG, BB, B, C, D}. To account for all possibilities including defaults, we have five

transitions that a firm can make from its current rating (including staying in its current rating).

We therefore keep track of sixteen possible types of rating transitions. Each firm also belongs

to one of eleven industry categories which we consolidate into seven: financial, transportation,

hotel & media, utilities & energy, industrials, technology, and retail & consumer products. In

April 1982 and October 1999 Moody’s redefined some of their rating categories. These events

cause a large number of rating transitions for some categories in these months. We handle these

events in our model by including dummy variables for these two periods.

The loss given default (LGD) measures the fraction of the total exposure that is lost con-

ditional on a firm defaulting. Our sample contains 1342 defaults from which we have 1125

measurements of LGD. The number of observed LGDs can be further separated by industry

into 100 financial, 48 transportation, 188 hotel & media, 94 utilities & energy, 359 industrials,

139 technology, and 177 retail & consumer products. The LGD is measured from financial

market data using what is known as the market implied LGD. Market implied LGDs are con-

structed by recording the price of a traded bond just before the default announcement and the

market price of the same bond 30 days after the default announcement. The percentage drop in
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price then defines the loss fraction or LGD; see McNeil, Frey, and Embrechts (2005) for further

details on the different ways to measure LGDs. Missing LGDs in the database are due to the

underlying bonds not being traded in the market or to the unavailability of price information

on the bonds in the underlying data sources. The LGD variable is a vector with its element

representing a default at time t. The dimension Kt of this vector therefore varies over time.

3.2 Model for credit risk

From the above data, our observation vector can be separated into three subvectors yt =

(ym′
t , yc′

t , yr′
t )′ containing the macroeconomic, credit rating, and LGD data, respectively. Time-

variation in the macroeconomic data at the business cycle frequency is assumed to carry over

into the credit ratings and the loss given default rates. Consequently, these data share a common

exposure to the dynamic latent risk factors ft. Our parsimonious model for the measurement

densities is given by

ym
t ∼ N (μt, Σm) (9)

yc
i,t ∼ Ordered Logit (πijt, j ∈ {IG, BB, B, C, D}) , (10)

yr
k,t ∼ Beta (akt, bkt) , k = 1, . . . , Kt, (11)

where the 6×1 mean vector μt = μ(ft) is a function of factor ft, the 6×6 variance matrix Σm is

fixed over time, the probability πijt concerns firm i and its transition from rating Rit to rating

j during period t for j = 1, . . . , 5 with πijt = πij(ft) as a function of ft. The kth element of yr
t

is the LGD fraction for the kth default at time t and is modeled by a beta distribution with

coefficients akt = ak(ft) and bkt = bk(ft) both functions of ft. Further details and discussions

related to our measurement densities are presented below.

Macro model

The macroeconomic vector ym
t is specified by the multivariate normal distribution in (9). Let

ysm
t = S̃ty

m
t be the subvector of ym

t that is observed at time t, where S̃t is an appropriately

sized selection matrix. The log-likelihood contribution at time t for ym
t is

const − 0.5 log |S̃tΣmS̃ ′
t| − 0.5

(
S̃t(y

m
t − μt)

)′ (
S̃tΣmS̃ ′

t

)−1 (
S̃t(y

m
t − μt)

)
, (12)
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with the 6 × 1 time-varying mean vector

μt = Zmft, (13)

where the 6 × M matrix of factor loadings Zm relates ft with μt. As the macroeconomic

variables have been standardized before they enter the analysis, we do not include a constant

term in (13). The conditional score and information matrix for the Gaussian component are

∇m
t =

(
S̃tZ

m
)′ (

S̃tΣmS̃ ′
t

)−1

S̃t (ym
t − μt) , (14)

Im
t =

(
S̃tZ

m
)′ (

S̃tΣmS̃ ′
t

)−1

S̃tZ
m. (15)

From these quantities we can compute st in (3) via (6) and (7). This part of the estimation leads

to a natural setting: the dynamics of the mean parameter μt respond linearly to the prediction

error vector ym
t − μt and the updating step relies on a generalized least squares computation.

Rating transition model

For the credit rating transitions, we specify a dynamic ordered logit model. Previous research

on credit risk has focused on a standard multinomial specification; see, for example, Koop-

man, Lucas, and Monteiro (2008) and Koopman, Kraeussl, Lucas, and Monteiro (2009). The

multinomial density does not take into account the fact that ratings are ordered. By using the

ordered logit specification, the ordering can easily be taken into account. Also, the model then

becomes a natural dynamic alternative to the static ordered probit model of CreditMetrics,

which is one of the current industry standards, see Gupton and Stein (2005). However, it is far

from evident how to construct an observation driven dynamic ordered logit model as opposed

to a dynamic multinomial model. In particular, it is not clear what functions of the data should

be chosen to drive the changes in the probabilities for the transitions. Our observation driven

modeling framework solves these issues by relying on the score of the conditional log-likelihood

function; here we take the score of the ordered logistic log-likelihood.

We specify the binary probability that firm i’s rating does not exceed j at the end of period

t by

π̃ijt = P [Ri,t+1 ≤ j] =
exp(θijt)

1 + exp(θijt)
, (16)
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where Rit is the rating for firm i at the start of month t, and Rit, j ∈ {IG, BB, B, C, D}. We

have implicitly defined π̃i,D,t = 0 and π̃i,IG,t = 1. From (16) it follows that the probability of a

transition of firm i from rating Rit to Ri,t+1 = j is given by

πijt = P [Ri,t+1 = j] = π̃ijt − π̃i,j−1,t. (17)

The log-likelihood contribution at time t becomes

∑
i

∑
j

yc
ijt log (πijt) , (18)

where the first summation is over all firms, the second summation is over all five ratings, and

the indicator yc
ijt equals unity if firm i has moved from rating Rit to rating j during month t,

and zero otherwise.

In our ordered logit specification, we let θijt depend linearly on the time-varying factor ft,

θijt = zc
ijt − Zc′

itft, (19)

where zc
ijt is a scalar and Zc

it is a M × 1 vector of factor loadings, which can both depend on

firm specific information such as initial rating of the firm, industry sector, and time-varying

financial ratios.

Based on equations (16) to (19), we obtain

∇c
t = −

∑
i

∑
j

yc
ijt

πijt

· π̇ijt · Zc
it, (20)

where

π̇ijt = π̃ijt (1 − π̃ijt) − π̃i,j−1,t (1 − π̃i,j−1,t) ., (21)

Equation (20) is expressed in an intuitive form. The actual outcome of yc
ijt is compared to its

probability by considering the ratio yc
ijt/πijt. In expectation, this ratio is one such that ∇c

t has

zero mean since
∑

j π̇ijt = 0. In the score, the ratio is weighted by the probability’s sensitivity

to changes in the time varying factor ft. By summing over all ratings j, the information from

all possible transitions is combined. The information matrix can be obtained by computing
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E[∇c
t∇c′

t ]. After some straightforward algebra, we obtain

Ic
t =

∑
i

nit

(∑
j

π̇2
ij,t

πij,t

)
Zc

itZ
c′
it , (22)

where nit is an indicator which is unity when firm i exists at the start of period t, and zero

otherwise.

As mentioned earlier, we have included time dummies in (19) for April 1982 and October

1999 in order to handle outliers due to the redefinitions of the rating categories. The redefini-

tions caused substantial incidental rerating activity during these months.

Loss given default model

The Kt × 1 vector yr
t of LGD’s has a dimension which varies over time depending on how

many firms default and on whether their LGD is recorded. As the loss given default rates yr
kt

for k = 1, . . . , Kt are reported in percentage terms, it is common to model these with a beta

distribution, such that the log-likelihood contribution at time t is given by

Kt∑
k=1

(akt − 1) log (yr
kt) + (bkt − 1) log (1 − yr

kt) − log [B (akt, bkt)] , (23)

where akt and bkt are positive scalars, and B (akt, bkt) is the Beta function B (akt, bkt) =

Γ (akt) Γ (bkt) /Γ (akt + bkt). The mean of our kth beta distribution is denoted by μr
kt and we let

it vary over time as a function of the factor ft. To ensure that the mean remains within the

[0, 1] interval, we model it as

log (μr
kt/ (1 − μr

kt)) = zr
k + Zrft, (24)

where Zr is the 1×M vector of factor loadings and zr
k is a scalar intercept term that represents

the unconditional level of LGDs. The factor loadings are common to all defaults while the LGD

level relies on the particular kth default at time t. When the data is sufficiently informative,

the factor loadings can also vary with particular characteristics of the kth default.
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Let βr > 0 be an unknown scalar and define the variance of the beta distribution as

σr 2
kt = μr

kt · (1 − μr
kt)/(1 + βr). (25)

This specification insists that as long as the conditional mean remains within the boundaries

of the unit interval, the variance remains positive. From the specifications of the mean μkt in

(24) and the variance σr 2
kt in (25), it follows that we can specify the shape parameters akt and

bkt as

akt = βr · μr
kt, bkt = βr · (1 − μr

kt)

The conditional score and information matrix for the beta distribution function, under our

parameterization, are given by

∇r
t = βrμ

r
t (1 − μr

t ) (Zr)′ (1,−1)
Kt∑
k=1

(
(log(yr

kt), log(1 − yr
kt))

′ − Ḃ (akt, bkt)
)

(26)

Ir
t = (βrμ

r
t (1 − μr

t ))
2 (Zr)′ (1,−1)

(
Kt∑
k=1

B̈ (akt, bkt)

)
(1,−1)′ Zr (27)

where Ḃ (akt, bkt) and B̈ (akt, bkt) are the first and second derivatives of the log Beta function

with respect to (akt , bkt)
′, respectively. The quantities ∇r

t and Ir
t enable the computation of

the scaled score function that we need for our dynamic modeling framework. This observation

driven time-varying parameter model for the beta distribution is new to the literature.

In our modeling framework, the three different dynamic models for the normal, the ordered

probit and the beta densities are integrated naturally into an observation driven dynamic factor

model. The log-likelihood value for the observations at time t is obtained by simply adding the

components in (12), (18), and (23). Similarly, the score and information matrix are obtained

simply by ∇m
t + ∇c

t + ∇r
t and Im

t + Ic
t + Ir

t , respectively.

4 Empirical results

The presentation of the empirical results is split into two parts. First, we discuss the in-sample

results of the model. Then, we use the model to forecast economic and credit risk scenarios
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out-of-sample.

4.1 In-sample results

In our study we have considered several models with different combinations of factors. All

factors are subject to the dynamic specification (3) with p = q = 1. Preliminary estimation

results reveal that we need at least two macro factors to capture the salient features of the

data. After further analyses we have come to the conclusion to consider models with two or

three macro factors, one or two frailty factors, and possibly a separate LGD factor. Frailty

factors are designed to capture default clustering above and beyond what is implied by shared

exposure to common macroeconomic risk factors. Such excess default clustering is apparent

from studies of Das, Duffie, Kapadia, and Saita (2007), Duffie, Eckner, Horel, and Saita (2009),

Azizpour, Giesecke, and Schwenkler (2010) and Koopman, Lucas, and Schwaab (2011).

We impose a recursive structure on the factors for identification. In particular, we allow

the macro factors to influence the macro series, the transition probabilities, and the LGD mean

and variance. The frailty (or transition) factors influence only the transition probabilities

and the LGD mean and variance. The frailty factors thus capture variation in default and

rating transition probabilities above and beyond what is captured by macroeconomic variables

alone. Finally, the LGD factor influences only the LGD dynamics and is put into the model

to determine whether LGD dynamics coincide with frailty dynamics, or not. We label each

model by ordering the number of factors as (m, c, r) such that a model labeled (3, 2, 1) denotes

a model with 3 macro factors, 2 credit risk (frailty) factors, and 1 LGD factor.

The effects on the factor loadings are straightforward. Starting with the macroeconomic

variables, we restrict Zm such that only the macro factors directly load into the conditional

mean μt of ym
t . The columns of Zm associated with the frailty and LGD factors are zero. In the

matrix Zc, we allow the macro factors to enter the log-odds (19) while the columns associated

with any LGD factors are set equal to zero. We leave Zr unrestricted meaning that both macro

factors and credit risk factors load into the conditional mean of the LGDs ykt.

Further restrictions have to be imposed on the factor loadings Zi for i = m, c, r to ensure

identification of both Zi and the parameters A = A1 and B = B1 in (3). We restrict the rows in

Zm associated with industrial production, the credit spread, and realized volatility. In models
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with two credit factors, we restrict the rows in Zc associated with Rit = BB and Rit = CCC.

Furthermore, the matrices A and B are taken to be diagonal. Under this specification, the

model is identified.

Although some factors do not contemporaneously load into all of the observation densities,

information in series with zero loading coefficients can still affect the factors in future periods

through the score function in recursive process (3). For example, the credit frailty factors and

the LGD factor do not enter the equation for the conditional mean of the macros μt in (13),

but the macro factors do load into the transformed mean and variance of the LGDs. Therefore,

information in the credit ratings transition frequencies and LGDs helps to determine the value

of the macro factors at time t + 1 because they are part of the score vector.

Table 1 contains a list of estimated models with their log-likelihood, Akaike information

criterion (AIC), and Schwarz Bayesian information criterion (BIC) values. We see a marked

improvement in the log-likelihood as more factors are added. Particularly adding a third macro

factor or a first frailty factor causes a substantial likelihood improvement. Adding a second

frailty factor further increases the likelihood, but more modestly. Adding a separate LGD factor

appears to have a negligible effect on the likelihood if the LGDs already load on the macro and

frailty factors.

Looking at the model selection criteria, we see that the (3,2,0) is preferred by both the

AIC and BIC criterion, respectively. We therefore take the (3,2,0) model as our benchmark in

the remaining analyses. Table 2 presents the estimated parameters and standard errors for this

model. Standard errors are computed using the inverse Hessian of the maximized log likelihood.

The coefficients for the dynamics of the factor are strongly significant as we observed from

the significance of the A coefficients in Table 2. Moreover, the macro and frailty factors are

highly persistent: all of the B coefficients are estimated as 0.9 or higher. This implies that

rating transition probabilities, including default probabilities, are very sticky and may deviate

from their unconditional values for a substantial number of months. From a risk management

perspective, this means that capital levels must be set in accordance with an episode (rather

than an incidence) of high default rates for any portfolio of credit exposures.

The estimation results for Zm reveal that the first macro factor loads on industrial pro-

duction growth, real GDP growth, the (negative) change in the unemployment rate, and to

a lesser extent on the (negative) credit spread. The first three variables enter with roughly
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equal weights. The first macro factor can therefore be interpreted as a standard business cycle

indicator. The factor is higher if the business cycle is in a good state. The results for Zc show

that the first macro factor mainly feeds significantly into the rating transition probabilities for

the lower grades: bad business cycle conditions imply higher default probabilities. This holds

most strongly for the CCC class, followed by the B and BB classes. The investment grade (IG)

class does not load significantly on the first macro factor.

The second macro factor mainly loads on the credit spread and the equity market volatility,

and to a lesser extent on the change in the unemployment rate and the negative annual stock

return. All coefficients have consistent signs: high credit spreads, high volatilities, bad returns

and upward changes in unemployment all push the second macro factor up. As credit spreads

and volatilities are the main ingredients of the second macro factor, we interpret it as a summary

of the perceptions of financial markets on economic conditions. The corresponding estimates

of the elements of Zc show that the second macro factor significantly feeds into all transition

probabilities, but particularly into the transition probabilities for higher grade firms. The signs

are all intuitive: if markets perceive credit risk to be high and the environment to be uncertain,

we tend to see more defaults and downgrades. The second macro factor also significantly

influences the mean LGD rate: high credit spreads and high volatility are positively correlated

with high LGD rates.

The third macro factor is somewhat harder to interpret and loads on volatility, real GDP

growth, and realized returns, and to a lesser extent on the (negative) change in the unemploy-

ment rate. The last four variables indicate that the third macro variable might be a proxy

for business cycle conditions. However, its relation with realized volatility implies that higher

uncertainty also pushes the factor up. The corresponding Zc coefficient estimates reveal that

they all have the same sign and again are predominantly significant for the high grade firms.

A high value of the factor pushes default and downgrade probabilities down. The impact on

the LGD rates is negative, but only significant at the 10% level. All in all this favors the

interpretation of the third macro factor as another proxy for the business cycle climate.

We now turn to the frailty factors and their loadings in Zc and Zr. These factors explain

autonomous default dynamics beyond what is implied by shared exposure to the common macro

factors. The first frailty factor is the most important one and captures the default dynamics that

are left after controlling for the macro factors. The coefficients for all three rating categories
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are substantial and significant. If the frailty factor is high, default and downgrade probabilities

go up. Interestingly, the frailty factor also feeds significantly into the LGD equation. Risk of

credit ratings migrations and LGD risk appear to move together.

The second frailty factor mainly loads positively on the CCC firms and negatively on IG

firms. The factor captures two historical features of the corporate bond market. First, in the

mid 80s and also in recent years, the number of defaults of investment grade firms is higher than

expected. This causes the significantly negative coefficient on the investment grade loading in

Zc. Second, via the loading of the CCC class, the factor also picks up the benign default climate

in the years preceding the financial crisis. Due to its direct link with these historical default

periods, the second frailty component also impacts the LGD dynamics significantly.

Based on all estimation results, we conclude that conditioning on macro factors alone is not

sufficient to capture credit risk dynamics. Both transition probabilities and LGD dynamics are

affected by more than only macro factors.

The final coefficients in Table 2 are the intercepts, measurement volatilities, and dummy

coefficients. The intercepts zc of the ordered logit specification show that ratings are highly

persistent on a monthly basis. For example, by considering only the cut-off points of the

ordered logit specification, we find that the probability of remaining in investment grade is

(1 + exp(−6.291))−1 ≈ 99.82%, while the probability of a CCC company defaulting over the

next month is (1 + exp(3.817))−1 ≈ 2.15%. As expected, most of the dummy coefficients are

highly significant, which is a direct consequence of the abnormally high re-rating activities in

these months due to institutional features.

Graphs of the estimated five factors are presented in Figure 1, and their implied fits for the

macro series in Figure 2. We confirm our earlier finding on the relation of the first and third

macro factors to growth, and of the second macro factor to credit spreads and volatilities. The

fit to the macro factors is tight. Only the highest peaks in the volatility series are missed by

our modeling framework. The close fit is most likely due to the dynamic factor specification of

our model in combination with the monthly updating frequency of the factors.

The transition probabilities are presented in Figure 3. The probabilities are driven by both

the macro and frailty factors. The first frailty factor in Figure 1 captures most of the dynamics

in defaults and downgrades. In particular, we see the high peak in defaults around 1990-1991

and 2000-2002. Interestingly, the first frailty factor is low in the most recent years of the sample,
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implying that the number of defaults is lower than what should be expected based on macro

fundamentals.

As mentioned before, the second frailty factor in Figure 1 captures higher downgrade and

default rates during the savings and loans and the financial crisis, as well as lower default

rates of CCC graded companies in the wake of the dotcom crisis. The impact of the combined

macro and frailty factors on transition probabilities in Figure 3 shows the structure of the

ordered logit model. In each row, the dynamics of ratings are driven by the same linear

combination of unobserved factors. Given that we consider transitions at the monthly frequency,

all probabilities are close to zero, except the probability that the rating remains unchanged.

The peaks for the different ratings differ across rating grades. For example, the investment

grade class has its highest default peaks in the financial and the dotcom crises, and some

substantially lower peaks in the mid 80s and the 1991 recession. By contrast, the CCC class

has its highest peak in 1991. However, even though the magnitude of the peaks and troughs

differs across rating grades, all rating classes appear to share the common dynamics of clustered

default experience present in the data.

Finally, we turn to the LGD series. In the upper-right panel of Figure 4 it appears that

the LGD data is very noisy and irregularly spaced. During some months, we do not observe

any LGDs, while in other months we observe many defaults and LGDs. The extracted factors

from our model appear to represent the salient features of our data set well. LGDs correlate

positively with default rate dynamics via the common factors in the model. Indeed, defaults

and LGDs tend to be high and low at the same time.

The effect of the time variation in the parameters of the beta distribution is clearly visu-

alized in the left hand panels of Figure 4. The upper-left panel gives the cross-sectional beta

distributions for LGDs applicable in a mild year, June 2006. We first concentrate on the (3,2,0)

model, indicated by the solid-bar histogram. In June 2006, the bulk of the probability mass

for the (3,2,0) model is to the left, indicating that LGDs are typically low at that time. By

contrast, the result for January 2009 in the lower-left panel are quite the opposite. Most of the

probability mass has shifted to the right, indicating that LGD rates have gone up substantially

on average.

We conclude our discussion of the in-sample results by focusing on the difference between

a model with (3,2,0) and without (3,0,0) frailty effects. The upper-right graph indicates that
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the effect on the dynamics of LGDs is substantial. Only accounting for macro effects and

discarding potential frailty, the model’s fit misses both historically high and low LGD rates.

This is corroborated in the left-hand graphs. During June 2006, the implied beta distribution

for LGDs for the (3,0,0) is substantially different than the one for the (3,2,0) model. During

other periods such as January 2009, the differences are small.

The different implications of adding frailty for credit risk are also evident if we consider

transition probabilities. The lower-right panel in Figure 4 presents the transition probability

from BB to default. We find that the dynamics are substantially different between the two

models, and particularly that the model with only macro factors misses some of the salient

peaks and troughs present in the (3,2,0) model. For example, the (3,0,0) model misses the fact

that the default rates in the years leading up to the financial crises are atypically low compared

to macro fundamentals.

4.2 Forecasting and credit risk management

In this section, we use our observation driven mixed measurement dynamic factor model to

simultaneously forecast the dynamics of macro variables, rating transition and default prob-

abilities, and LGDs for credit portfolio loss distributions. Such forecasting distributions for

portfolio losses are an important ingredient for assessing and managing the risk of credit ex-

posures; see Lando (2004). We can carry this out by, for example, having internal economic

capital requirements based on portfolio credit loss distributions.

We imagine a scenario where at time T , the end of the sample, a financial institution holds a

large portfolio of bonds. The risk management department would like to know the distribution

of credit losses at a specified future time T +H to set up capital requirements or hedge positions.

To simplify the simulation experiment, we concentrate on default losses only and do not include

credit losses due to downgrades in a marked-to-market setting. Such an extension is possible

if one wants to assume a credit spread model for different maturities and rating grades. The

set-up is close to treating the portfolio as a banking book in the accounting and regulatory

sense. We also assume a zero discounting rate to cumulate losses that materialize at different

points in time. The model can be extended by including a full term structure component.

Modeling the full term structure is, however, not the key focus of our study.
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As in the previous subsection, the initial portfolio of bonds was set equal to the current

exposures in the last period of the observed data. This leads to a portfolio of 1144 firms rated

IG, 265 firms rated BB, 615 firms rated B, and 311 firms rated CCC.

Given the portfolio and our parameter estimates, our modeling framework can be used

to generate the dynamic evolution of the macro variables and the rating composition of the

portfolio via simulation. If one of the firms transits into default, the LGD component in

our model can be used to generate the corresponding LGD realization of the appropriate beta

distribution. By simulating the portfolio and macros forward in this way, we obtain a realization

of default losses between T and the horizon date T + H. This process can be repeated many

times. In our set-up below, we use 500, 000 simulations for the loss distribution at different

horizons.

The model specification and starting values fT are an important ingredient of the analysis.

In particular, we compare a model with and without frailty dynamics. In addition, we consider

starting values in a benign period and in a period of stress. Given the stickyness of the

macro and frailty factors, these different starting conditions have a different impact on the loss

experience, both at short and longer horizons.

Figure 5 presents our initial results. It reveals the simulated loss distributions at four

different horizons for the (3,2,0) model. At the one month horizon (upper-left), we clearly

visualize the differences in the forecasting distribution. Starting from a recession, next month’s

losses are higher on average and are also more spread out. If current economic conditions are

good, by contrast, next period’s losses are low on average and have a smaller standard deviation.

Even at the 1-month horizon, there is a significant non-overlap of the 99% confidence regions

of the two densities. Both the macros and the frailty factors are in a state of recession versus

expansion at time T , causing the PDs and average LGDs of the next month to be substantially

different.

As the forecasting horizon H increases, the densities gradually start to overlap more and

more. The effect is due to the stationarity of the model and the high persistence of the factors in

ft. The high persistence of the unobserved components ft causes the PDs and expected LGDs

to be substantially different for a number of consecutive months. The cumulated losses over

longer time periods remain substantially different. Over longer and longer horizons, however,

the stationarity of the model (mean reversion) takes over and the influence of initial conditions
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starts to vanish. This can be viewed at a horizon of three years. Over a 36 months horizon, a

current recession might easily turn into an expansionary phase, and vice versa.

We compare the economic contribution of the frailty factors to capital requirements in

Figure 6. The same approach is followed as for Figure 5, but for the (3,2,0) and the (3,0,0)

model, respectively. For the left-hand four panels in the figure, the factors are started at their

unconditional means, ft = 0. The panels show that the forecasting distributions of models with

and without the two frailty factors are roughly similar at the one-month horizon. If anything,

the probability of large losses is somewhat larger for the model with frailty factors (3,2,0).

As we start to focus on longer horizons, the differences become much clearer. The models

that only use the three macro factors to drive the credit loss conditions result in much more

concentrated loss distributions. The location of these distributions is roughly the same as that

of the model with the frailty components, but the spread and right hand tail are substantially

different. This is most clearly seen at the 36-month horizon: the (3,2,0) model has the right

skew that is typical for portfolio loss distributions. Because of the additional, separate dynamics

of the frailty components versus the macro components, the 99% confidence loss quantiles for

the (3,2,0) are substantially larger than for the (3,0,0) model. A model that only conditions on

macro risk leads to a severe underestimation of required capital, particularly at longer horizons.

The four right-hand panels in Figure 6 give the results if the factors fT are started in a

recession. At short horizons, the results are now much more pronounced. This is due to the

fact that not only the macro factors start under bad economic circumstances but the frailty

factors do as well. The projected increase in expected loss rates are substantial. The upper

quantiles of the loss distribution increase substantially if the frailty factors are added. The

increase for the highest quantiles is close to 100% in most settings, implying a doubling of

model based capital requirements at these horizons. At the longest horizon of 36 months, the

distributions start to overlap more, similar to the setting with fT = 0. This is again due to the

stationarity of the model: at these longer horizons, the differences in initial conditions matter

less. Still, the loss quantiles are substantially different for models with and without frailty.

We conclude that models that account for only macro dynamics can miss out on substantial

parts of credit loss dynamics and potential credit loss sizes. Though the absolute numbers for

the losses (as a percentage of the notional) may appear small, one should account for the fact

that the portfolio holds many investment grade bonds, resulting in a high quality portfolio with
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small losses on average. If we look at the 99% quantile of the loss distribution at long horizons,

accounting for the frailty dynamics may shift out the loss quantiles by more than 80%.

4.3 Impulse response analysis

Another application of our observation driven mixed measurement model is impulse response

analysis that allows us to track how a shock in an unobserved fctor process feeds through the

entire model. In particular we are interested in how such shocks dynamically affect the credit

loss distributions.

Since our dynamic factor model is non-linear and non-Gaussian, we follow the non-linear

impulse response methodology of Koop, Pesaran, and Potter (1996). The approach is as follows.

Consider the (3,2,0) model where we keep the parameter estimates fixed at their maximum

likelihood values. We store the estimated scaled scores ŝ1, . . . , ŝT . Our aim is to compute

E[g(yT+H)|sT = s∗,FT−1] − E[g(yT+H)|FT−1], (28)

for some funtion g(·). Concretely, this means we compare the effect on g(yT+H) of shocking the

common factor fT by a fixed shock s∗ versus the average effect over all possible shock sizes. To

compute the second expectation in (28), we bootstrap a value sT+1 from the fitted scaled scores

ŝ1, . . . , ŝT . Together with fT , this draw is used to generate fT+1, which in turn can be used

to simulate the complete model forward (macros, rating transitions of all firms in the entire

portfolio, and LGDs in case of defaults). We store the simulated portfolio losses for each of the

next 48 months. The first expectation in (28) is obtained similarly. Suppose we are interested

in a shock of size s∗ to the i-th factor within ft. After drawing a bootsrapped value of ŝt, the

i-th element is set equal to s∗, which in our case is a one unit negative shock. The impulse

responses obtained in this way have marginalized out all other elements besides the i-th entry.

In our work, we use 50,000 simulations. Plots of the impulse responses of the loss distribution

are presented in Figure 7 and 8.

The impulse response functions for the macros confirm the estimation results as presented

in Table 2.1 The impulse response function for the first macro factor (as presented in the first

1We have smoothed the plots because even with a high number of simulations the impulse responses exhibit
jagged behavior due to the high quality of the portfolio (few defaults) and the discrete nature of defaults.

25



column of figures) has the largest impact on the business cycle related variables. A bad shock

decreases industrial production growth (1st row) and real GDP growth (3rd row) and increases

the unemployment rate (2nd row). The impact is quite persistent and roughly needs 3 to 4

years to die out. The second factor mainly impacts the lower three macros: the credit spread,

the stock market return, and the volatility. Again, the effect of a shock in the second factor

dies out only slowly: its impact lasts 3 to 4 years. The third factor appears to be of a much

more transitory nature and impacts the stock market return and its volatility (and to a lesser

extent real GDP growth).

As expected, the frailty factors have no direct impact on the macro variables. This underlines

the recursive structure of the model and helps to interpret the frailty factors as credit dynamics

above and beyond macro developments.

The results for the credit loss distributions and their 90% quantiles are in Figure 8. Both

the means and quantiles, however, reveal the same pattern. We see that the first and second

macro factor have the largest and most persistent impact on portfolio credit losses. The effect

of a shock in the first or second macro factor can last up to three or four years. The third

macro factor has a much shorter half-life and vanishes after one to two years. Its impact on

portfolio credit losses is also substantially smaller.

The frailty factors have a large impact on credit losses. The first frailty factor (column

4) has an effect similar in size to the business cycle related macro factor (column 1) and the

financial markets related macro factor (column 2). The impact of the second frailty factor is

roughly half this size. This implies that by omitting the frailty component from the model,

one may miss one third to one half of the credit risk. In addition, the dynamics of credit losses

might be completely misspecified if the frailty components are left out of the model.

We conclude that the in-sample estimation results, the out-of-sample forecasting distribu-

tions, as well as the impulse response analysis all point in the same direction: the size and

dynamics of portfolio credit losses cannot be captured by conditioning only on macroeconomic

conditions. The losses appear to have their own additional (frailty) dynamics, which are highly

significant in both statistical and economic terms. The current observation driven mixed mea-

surements modeling framework allows for a straightforward analysis of all these results. It does

so in a standard likelihood context, where the likelihood is easily tractable and known in closed

form. As such, the framework provides a good alternative to parameter driven models that
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require advanced simulation tools to do estimation and inference.

5 Conclusion

We have introduced a new framework for observation driven mixed-measurement dynamic factor

models for time series observations from different families of distributions and mixed sampling

frequencies. Missing values arise due to unbalanced time series panels and mixed frequencies;

they can be accommodated straightforwardly in our framework. In an empirical application of

the mixed-measurement framework we model the systematic variation in US corporate default

counts and recovery rates in the period 1982–2010. We estimate and forecast interconnected

default and recovery risk conditions, and demonstrate how to obtain the predictive credit

portfolio loss distribution.

The model is a useful device to deal with a large number of data points in a complex data

set. A clear advantage of our framework is that the likelihood remains analytically tractable in

closed form and therefore standard likelihood procedures can be used for parameter estimation.

The model also lends itself easily to integrated forecasting exercises for joint macro and credit

risk developments. In particular, the model can be used in a straightforward way to obtain

portfolio loss distributions at multiple horizons. Such distributions can be used as an input for

risk analyses. In addition, we can use the simulation framework to conduct impulse response

analysis for non-linear model specifications. The impulse response functions can be used directly

to study the feed-through mechanism from macro developments to credit losses and thus provide

interesting input for both practitioners, regulators, and policy makers.

We have shown that the mixed-measurement dynamic factor modeling framework facilitates

our credit risk application well given the many complexities in a typical credit risk data set.

However, the modeling framework is not restricted to credit risk applications. For example, in

the context of high-frequency financial data, our approach allows to model inter-trade dura-

tions, discrete tick changes in prices, and general market conditions simultaneously for different

assets that can be made subject to common risk and liquidity factors. For the modeling of a

macroecononomic time series panel, we can mix the usual continuous variables with indicator

data such as the NBER business cycle classifications. Other examples may be found in health

and retirement economics, business, marketing, and psychology.
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Table 1: Likelihoods and Information Criteria

The table contains the log-likelihood values and information criteria for alternative model specifica-
tions. Each model contains a different number of macroeconomic (m), credit or frailty risk (c), and
LGD factors (r) which are ordered as (m, c, r). The maximum log-likelihood value and the minimum
AIC and BIC are denoted in bold.

(2,0,0) (2,1,0) (2,2,0) (3,0,0) (3,1,0) (3,2,0) (3,1,1) (3,2,1)
log-Lik -40447.9 -40199.1 -40162.8 -40056.2 -39817.1 -39780.8 -39812.6 -39780.0
AIC 81005.9 80520.1 80457.0 80242.4 79776.2 79713.6 79771.2 79716.0
BIC 81640.0 81223.0 81218.0 80991.0 80594.0 80589.0 80612.0 80615.0
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Table 2: Parameter estimates and standard errors for the (3,2,0) model.

This table contains the estimated parameters and their standard errors for our model with (3,2,0) factor struc-
ture. The macros are orderd from i = 1, . . . , 6 as industrial production growth (IP), unemployment rate change
(UR), annual real GDP growth (GDP), credit spread (CrSPR), annual return on the S&P500 (SP500), and
annual realized volatility of the S&P500 returns using the past 252 daily trading days (σS&P ). Significance at
the 10%, 5%, and 1% level is denoted by ∗, ∗∗, and ∗∗∗, respectively.

macro1 macro2 macro3 frailty1 frailty2

A 0.240∗∗∗ 0.303∗∗∗ 0.278∗∗∗ 0.033∗∗∗ 0.036∗∗∗

(0.012) (0.017) (0.023) (0.005) (0.012)
B 0.968∗∗∗ 0.933∗∗∗ 0.900∗∗∗ 0.978∗∗∗ 0.973∗∗∗

(0.013) (0.021) (0.025) (0.011) (0.017)

Zm

macro1 macro2 macro3 frailty1 frailty2 zm Σm

IP 1.000 0.000 0.000 0.000 0.000 0.000 0.063∗∗∗

(0.006)
UR -0.892∗∗∗ 0.122∗∗∗ -0.062∗ 0.000 0.000 0.000 0.118∗∗∗

(0.037) (0.041) (0.040) (0.012)
RGDP 0.811∗∗∗ 0.072 0.336∗∗∗ 0.000 0.000 0.000 0.278∗∗∗

(0.066) (0.079) (0.074) (0.034)
Cr.Spr. -0.169∗∗ 1.000 0.000 0.000 0.000 0.000 0.059∗∗∗

(0.085) (0.005)
rS&P 0.049 -0.268∗∗∗ 1.223∗∗∗ 0.000 0.000 0.000 0.154∗∗∗

(0.093) (0.081) (0.093) (0.012)
σS&P -0.007 0.648∗∗∗ 1.000 0.000 0.000 0.000 0.541∗∗∗

(0.107) (0.084) (0.045)

Zc zc

Rit = macro1 macro2 macro3 frailty1 frailty2 ≤IG ≤BB ≤B ≤CCC
IG -0.052 0.202∗∗∗ -0.123∗∗ 1.475∗∗∗ -1.165∗∗ 6.291∗∗∗ 8.279∗∗∗ 9.617∗∗∗ 10.284∗∗∗

(0.059) (0.055) (0.069) (0.371) (0.555) (0.156) (0.175) (0.225) (0.276)
BB -0.078∗∗ 0.172∗∗∗ -0.102∗∗∗ 1.000 0.000 -5.204∗∗∗ 4.621∗∗∗ 7.047∗∗∗ 7.444∗∗∗

(0.037) (0.037) (0.040) (0.086) (0.082) (0.123) (0.140)
B -0.184∗∗∗ 0.162∗∗∗ -0.142∗∗∗ 0.970∗∗∗ -0.016 -7.641∗∗∗ -5.461∗∗∗ 4.641∗∗∗ 5.967∗∗∗

(0.035) (0.031) (0.040) (0.156) (0.158) (0.135) (0.085) (0.080) (0.089)
CCC -0.262∗∗∗ 0.073∗ -0.018 1.936∗∗∗ 1.000 -9.008∗∗∗ -8.091∗∗∗ -5.278∗∗∗ 3.817∗∗∗

(0.057) (0.050) (0.075) (0.465) (0.399) (0.291) (0.194) (0.185)

macro1 macro2 macro3 frailty1 frailty2 zr β
Zr 0.018 0.276∗∗∗ -0.082∗ 1.212∗∗∗ 1.065∗∗∗ 0.194∗ 2.569∗∗∗

(0.049) (0.046) (0.062) (0.376) (0.301) (0.142) (0.094)

DUM t = 15 t = 308
IG 3.619∗∗∗ -1.105

(0.161) (0.988)
BB 1.359∗∗∗ 1.813∗∗∗

(0.337) (0.269)
B -3.633∗∗∗ -0.937∗∗∗

(0.526) (0.281)
CCC -3.229∗∗∗ -3.058∗∗∗

(1.063) (0.158)
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Figure 1: Estimates of macro and frailty factors in the (3,2,0) model

This figure contains the estimated factors ft for a specification with 3 macro and 2 frailty factors.
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Figure 2: Fit to macro variables

The figure presents industrial production annual growth (IP), the annual change in the unemployment rate
(UR), real GDP annual growth (GDP), the credit spread (CSPR), annual return on the S&P500 index (SP500),
and realized monthly volatility (VOLA) on the S&P500 (based on daily data). Each panel contains the macro
series and the fit of our model with three macro and two frailty factors, (3,2,0).
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Figure 3: Time-varying transition probabilities for the (3,2,0) model
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Figure 4: Loss-Given-Default (LGD) dynamics

The left panels contain the cross sectional beta distributions applicable in June 2006 and January 2009 for
a model with three macro factors (3,0,0) and a model with three macro and two frailty factors (3,2,0). The
upper-right panel contains the time series plot of the means of the LGD distributions and its fit to the observed
LGD data. The lower-right panel gives the transition probability from BB to Default for the (3,0,0) and (3,2,0)
models.
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Figure 5: Comparison of simulated loss distributions for the (3,2,0) model

For our model with three macro and two frailty factors, the panels present the cumulative losses at different
horizons. The difference betwen the two curves is the starting values for the factors, namely recession and
expansion.
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Figure 6: Comparison of simulated loss distributions for the (3,2,0) and (3,0,0) model

For our model with three macro and two frailty factors (3,2,0), respectively only three macro factors (3,0,0),
the panels present the cumulative losses at different horizons. The left-hand four panels show the results if the
factors ft are started at zero. The right-hand four panels show the results if the factors are started in a recession
period.
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Figure 7: Non-linear impulse response functions for the (3,2,0) model: macros

For our model with three macro and two frailty factors, one of the factors ft is given a unit size negative shock.
All of the remaining stochastics of the model are simulated 48 months forward. The impulse response functions
plot the difference between the average of the simulated quantity for a unit size shock to one of the factors and
the average of the same quantity where the same factor receives a random model shock. The panels show the
results for the 6 macros: rows 1 to 6 for industrial production growth, the change in the unemployment rate,
real GDP growth, the credit spread, the S&P500 return, and its volatility, versus columns 1 to 5 for shocking
the macro factors 1 to 3 and the 2 frailty factors. Factors are started at their mean values fT = 0.
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Figure 8: Non-linear impulse response functions for the (3,2,0) model: portfolio losses

For our model with three macro and two frailty factors, one of the factors ft is given a unit size shock. All of
the remaining stochastics of the model are simulated 48 months forward. The impulse response functions plot
the difference between the average of the simulated quantity for a unit size shock to one of the factors and the
average of the same quantity where the same factor receives a random model shock. The panels show the result
for the mean portfolio credit loss (top row) and its 90th percentile (bottom row). The portfolio holds 1144 firms
rated IG, 265 firms rated BB, 615 firms rated B, and 311 firms rated CCC. Columns 1 to 5 are for a shock to
the macro factors 1 to 3 and the 2 frailty factors, respectively. Factors are started at their values fitted at the
end of our sample.
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