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Abstract

We propose an empirical framework to assess joint and conditional probabilities of

credit events from CDS prices observed in the market. Our model is based on a dy-

namic skewed-t distribution that captures many salient features of CDS data, including

skewed and heavy-tailed changes in the price of CDS protection, as well as dynamic

volatilities and correlations that ensure that uncertainty and risk dependence can in-

crease in times of stress. We apply the framework to euro area sovereign CDS spreads

during the euro area debt crisis. Our results reveal significant time-variation in distress

dependence and spill-over effects. We investigate in particular market perceptions of

joint and conditional risks around announcements of Eurosystem non-standard mone-

tary policy measures, and document strong reductions in joint risk.

Keywords: sovereign credit risk; higher order moments; time-varying parameters; fi-

nancial stability.

JEL classifications: C32, G32.



Non-technical summary

The issue of measuring and monitoring interconnected sovereign credit risk has received

a lot of interest in the wake of the sovereign debt crisis in the euro area. This paper intro-

duces a novel empirical framework to estimate marginal, joint, and conditional probabilities

of a credit event from observed prices for credit default swaps (CDS). Such joint and con-

ditional probabilities of a credit event can be informative for the risk management of credit

risky claims more generally as well as for surveillance purposes. Furthermore, conditional

probabilities may shed light to which extent priced credit risks are affected by public pol-

icy measures. Our methodology is novel in that the joint risk measures are derived from

a multivariate framework that is based on a flexible multivariate density that naturally ac-

commodates skewed and heavy tailed changes in marginal risks as well as time variation in

uncertainty and multivariate dependence.

This paper makes four main contributions to the literature on risk dependence and risk

assessment. First, we provide time series estimates of the variation in euro area joint and

conditional sovereign credit risk based on our modeling framework and CDS daily data

from 01 January 2008 to 28 February 2013. To this purpose we use a portfolio of CDS

with reference bonds from Austria, Belgium, Germany, Spain, France, Greece, Italy, Ireland,

The Netherlands, and Portugal. As the model-implied probabilities are inferred solely from

market prices, such estimates reflect what is expected by market participants at a given

point in time, and are uninformative about any policy stance. As a second contribution,

we analyze the extent to which parametric assumptions matter for joint and conditional

risk assessments. We demonstrate that the distributional assumptions matter most for our

conditional assessments, whereas simpler joint risk estimates are less sensitive to the as-

sumed dependence structure. Thus, risk assessments are conditional also on the empirical

model specification. Third, our modeling framework allows us to investigate the presence

and severity of spill-overs in the likelihood of a sovereign credit event. In this regard we



document spill-overs from the possibility of a credit event in one euro area country to the

perceived riskiness of other countries. Fourth, we provide an in-depth analysis of the impact

of non-standard monetary policy announcements on May 9, 2010 (the Securities Markets

Programme) and around August 2012 (the Outright Monetary Transactions programme) on

market perceptions of joint and conditional sovereign credit risk. We demonstrate that these

announcements of non-standard monetary policy measures had a strong immediate impact

on joint risk as priced in credit markets. In some cases joint bivariate risks decreased by up

to 50% virtually overnight. This suggests that central bank communication and signaling are

key channels that can strongly affect market expectations. These event studies also demon-

strate how our model can be used to disentangle market assessments of joint and conditional

probabilities.



1 Introduction

In this paper we construct a novel empirical framework to assess joint and conditional prob-

abilities of a credit event associated with credit risky claims. This framework allows us to

estimate marginal, joint, and conditional probabilities of a credit event from observed prices

of credit default swaps (CDS). Clearly, such a risk assessment framework is useful for track-

ing market perceptions about interacting sovereign credit risk during a debt crisis. However,

the current framework should also be useful for market risk measurement of credit risky

claims more generally.

Unlike marginal probabilities, conditional probabilities of a credit event cannot be ob-

tained from raw market data alone. Instead, they require a proper multivariate modeling

framework. Our methodology is novel in that our joint and tail probability assessments are

derived from a multivariate framework based on a dynamic Generalized Hyperbolic (GH)

skewed-t density that naturally accommodates all relevant empirical features of the data,

such as skewed and heavy-tailed changes in individual country CDS spreads, as well as time

variation in their volatilities and dependence. Moreover, the model can easily be calibrated

to match current market expectations regarding the marginal probabilities of a credit event

as in for example Segoviano and Goodhart (2009), Huang, Zhou, and Zhu (2009), and Black,

Correa, Huang, and Zhou (2012).

We make three empirical contributions in addition to introducing a novel non-Gaussian

framework for modeling dependent risks. First, we provide estimates of the time variation

in euro area joint and conditional sovereign credit risk using a proposed model and a 10-

dimensional dataset of sovereign CDS spreads from January 2008 to February 2013. Using

our results, we can investigate market perceptions regarding the conditional probability of

a credit event in one country in the euro area given that a credit event occurs in another

country. Such an analysis allows inference, for example, on which countries are considered by

market participants to be more exposed to certain credit events than others. Our modeling
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framework also allows us to investigate the presence and severity of spill-overs in the risk

of sovereign credit events as perceived by market participants. Specifically, we document

spill-overs from the possibility of a credit event in one country to the perceived riskiness

of other euro area countries. This suggests that, at least during a severe debt crisis, the

cost of debt refinancing in one euro area country can depend on perceived developments in

other countries. This, in turn, is consistent with a risk externality from public debt to other

countries in a monetary union.

Second, we analyze the extent to which parametric modeling assumptions matter for joint

and conditional risk assessments. Perhaps surprisingly, and despite the appeal of price-based

joint risk measures to guide policy decisions and to evaluate their impact on credit markets

ex post, we are not aware of a detailed investigation of how different parametric assumptions

matter for joint and conditional risk assessments. We therefore report results based on a

dynamic multivariate Gaussian, symmetric-t, and GH skewed-t (GHST) specification, as well

as a GHST copula approach. The distributional assumptions turn out to be most relevant for

our conditional assessments, whereas simpler joint probability estimates are less sensitive to

the assumed dependence structure. In particular, and much in line with Forbes and Rigobon

(2002), we show that it is important to account for the different salient features of the data,

such as non-zero tail dependence and skewness, when interpreting estimates of time-varying

volatilities and increases in correlation in times of stress.

Finally, we provide an in-depth analysis of the impact on sovereign risk of two key policy

announcements made during the euro area sovereign debt crisis. First, on May 9, 2010, euro

area heads of state announced a comprehensive rescue package to mitigate perceived risk

contagion in the euro area. Two policy measures were announced on the same day: the

European Financial Stability Facility (EFSF), a rescue fund, and an asset purchase program

(the Securities Markets Programme, SMP) within which the European Central Bank and 17

euro area national central banks would purchase government bonds in secondary markets.
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Later, on 02 August 2012, a second asset purchase program was announced (the Outright

Monetary Transactions, OMT). We assess joint and conditional sovereign risk perceptions,

as implied by CDS prices, around both policy announcements. For both the May 2010 and

August 2012 announcements we find that market perceptions of joint sovereign credit risk

have decreased very strongly. In some cases joint bivariate risks decreased by more than

50% virtually overnight. We show that these strong reductions in joint risk were due to

substantial reductions in marginal risk perceptions, while market perceptions of conditional

sovereign credit risk remained roughly unchanged at the same time. This suggests that

perceived risk interactions remained a concern.

From a (tail) risk perspective, our joint approach is in line with for example Acharya,

Pedersen, Philippon, and Richardson (2010) who focus on financial institutions: bad out-

comes are much worse if they occur in clusters. What seems manageable in isolation may

not be so if the rest of the system is also under stress. While adverse developments in one

country’s public finances or banking sectors could perhaps still be handled with the support

of other non-distressed countries, the situation becomes more and more problematic if two,

three, or more countries would be in distress. Relevant questions regarding joint and con-

ditional sovereign credit risk perceptions would be hard if not impossible to answer without

an empirical model such as the one proposed in this paper.

The use of CDS data to estimate market implied credit event probabilities means that

our probability estimates combine physical probabilities with the price of risk. As a result,

our risk measures constitute an upper bound for an investor worried about losing money due

to joint sovereign credit events. This has to be kept in mind when interpreting the empirical

results later on.

The literature on sovereign credit risk has expanded rapidly and branched off into different

fields. Part of the literature focuses on the theoretical development of sovereign credit

risk and strategic default decisions; see for example Guembel and Sussman (2009), Yue
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(2010), and Tirole (2012). Another part of the literature tries to disentangle the different

priced components of sovereign credit risk using asset pricing methodology, including the

determination of common risk factors across countries; see for example Pan and Singleton

(2008), Longstaff, Pan, Pedersen, and Singleton (2011), and Ang and Longstaff (2011).

Benzoni, Collin-Dufresne, Goldstein, and Helwege (2011) and Caporin, Pelizzon, Ravazzolo,

and Rigobon (2012) model sovereign risk conditions in the euro area, and find evidence for

risk contagion. Finally, the link between sovereign credit risk, country ratings, and macro

fundamentals is investigated in for example Haugh, Ollivaud, and Turner (2009), Hilscher

and Nosbusch (2010), and DeGrauwe and Ji (2012).

Our paper primarily relates to the empirical literature on sovereign credit risk as proxied

by sovereign CDS spreads and focuses on spill-over risk as perceived by financial markets.

We take a pure time-series perspective instead of assuming a specific pricing model as in

Longstaff, Pan, Pedersen, and Singleton (2011) or Ang and Longstaff (2011). The advantage

of such an approach is that we are much more flexible in accommodating all the relevant em-

pirical features of CDS changes given that we are not bound by the analytical (in)tractability

of a particular pricing model. This appears particularly important for the data at hand. In

particular, our paper relates closely to the statistical literature for multiple credit events,

such as for example Li (2001), Hull and White (2004) and Avesani, Pascual, and Li (2006).

These papers, however, typically build on a Gaussian or sometimes symmetric Student t de-

pendence structure, whereas we impose a dependence structure that allows for non-zero tail

dependence, skewness, and time variation in both volatilities and correlations. Our approach

therefore also relates to an important strand of literature on modeling dependence in high di-

mensions, see for example Demarta and McNeil (2005), Chen, Härdle, and Spokoiny (2010),

Christoffersen, Errunza, Jacobs, and Langlois (2011), Patton and Oh (2012,2013), Smith,

Gan, and Kohn (2012), and Engle and Kelly (2012), as well as to a growing literature on

observation-driven time varying parameter models, such as for example Patton (2006), Har-
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vey (2010), and Creal, Koopman and Lucas (2011, 2013). Finally, we relate to the CIMDO

framework of Segoviano and Goodhart (2009). This is based on a multivariate prior distri-

bution, usually Gaussian or symmetric-t, that can be calibrated to match marginal risks as

implied by the CDS market. Their multivariate density becomes discontinuous at so-called

threshold levels: some parts of the density are shifted up, others are shifted down, while the

parametric tails and extreme dependence implied by the prior remain intact at all times.

Our model does not have similar discontinuities, while it allows for a similar calibration of

credit event probabilities to current CDS spread levels.

The remainder of the paper is as follows. In Section 2, we introduce the multivariate

statistical model and discuss the estimation of fixed and time varying parameters. We present

our main empirical results on joint and conditional sovereign risk during the euro area debt

crisis in Section 3. In Section 4, we discuss the risk impact of Eurosystem asset purchase

program announcements. We conclude in Section 5.

2 Statistical model

2.1 The dynamic Generalized Hyperbolic Skewed t distribution

We consider an observed vector time series yt ∈ Rn, t = 1, . . . , T , of n sovereign CDS spread

changes, where

yt = µt + Ltet = µt + (ςt − µς)LtT γ +
√
ςtLtT zt, (1)

with µt ∈ Rn a vector of means and Σt = LtL
′
t ∈ Rn×n a covariance matrix; et = (ςt −

µς)T γ +
√
ςtT zt a Generalized Hyperbolic Skewed t (GHST) distributed random variable

with zero mean, unit covariance matrix I, ν > 4 degrees of freedom, and skewness parameter

γ ∈ Rn; ςt ∈ R+ an inverse Gamma distributed random variable with parameters (ν/2, ν/2),

mean µς = ν/(ν − 2), and variance σ2
ς = 2ν2/((ν − 2)2(ν − 4)); T a matrix such that T ′T =

(µςI + σ2
ς γγ

′)−1; and zt ∈ Rn a standard multivariate normal random variable, independent
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of ςt. The mean-variance mixture construction for et in (1) reveals that clustering of CDS

spread changes can be the result of (time-varying) correlations as captured by Lt, or of large

realizations of the common risk factor ςt. Earlier applications of the GHST distribution to

financial and economic data include, for example, Menćıa and Sentana (2005), Hu (2005), Aas

and Haff (2006), and Patton and Oh (2012). Alternative skewed t distributions have been

proposed as well, such as Branco and Dey (2001), Gupta (2003), Azzalini and Capitanio

(2003), and Bauwens and Laurent (2005); see also the overview of Aas and Haff (2006).

The advantage of the GHST distribution vis-à-vis these alternatives is that the generalized

hyperbolic class of distributions links in more closely with the fat-tailed and skewed pricing

models from the continuous-time finance literature.

In the remaining exposition, we set µt = 0. For µt ̸= 0, all derivations go through if yt is

replaced by yt − µt. The conditional density of yt is given by

p(yt|Lt, γ, ν) =
ν

ν
2 21−

ν+n
2

Γ(ν
2
)π

n
2 |LtT |

·
K ν+n

2

(√
d(yt) · (γ′γ)

)
eγ

′(LtT )−1(yt−µ̃t)

d(yt)
ν+n
4 · (γ′γ)−

ν+n
4

, (2)

d(yt) = ν + (yt − µ̃t)
′(LtT T ′L′

t)
−1(yt − µ̃t), (3)

µ̃t = −µςLtT γ, (4)

where Ka(b) is the modified Bessel function of the second kind, and the matrix Lt character-

izes the time-varying covariance matrix Σt = LtL
′
t = DtRtDt, where Dt is a diagonal matrix

containing the time-varying volatilities of yt, and Rt is the time-varying correlation matrix.

The fat-tailedness and skewness of CDS data pose a challenge for standard dynamic spec-

ifications of volatilities and correlations, such as standard GARCH or DCC type dynamics,

see Engle (2002). In the presence of fat tails, large values of yt occur regularly even if volatil-

ity is not changing rapidly. If not properly accounted for, such observations lead to biased

estimates of the dynamic behavior of volatilities and joint failure probabilities. A direct

way to link the distributional properties of yt to the dynamic behavior of Σt, Lt, Dt, and

Rt is given by the Generalized Autoregressive Score (GAS) framework of Creal, Koopman,

and Lucas (2011,2013). In the GAS framework for the fat-tailed GHST distribution with
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time-varying volatilities and correlations, observations yt that lie far from the bulk of the

data automatically receive less impact on volatility and correlation dynamics than under the

normality assumption. The same holds for observations in the left tail if yt is left-skewed.

The intuition for this is clear: the effect of a large observation yt is partly attributed to the

fat-tailed nature of yt and partly to a local increase of volatilities and/or correlations. In

this way, the estimates of volatilities and correlations in the GAS framework based on the

GHST become more robust to incidental influential observations, which are prevalent in the

CDS data used in our empirical analysis. We refer to Creal et al. (2011) and Zhang et al.

(2011) for more details.

The GAS dynamics for Σt are given by the following equations. We assume that the

time-varying covariance matrix Σt is driven by a number of unobserved dynamic factors ft,

such that Σt = Σ(ft) = L(ft)L(ft)
′ = D(ft)R(ft)D(ft). In our empirical application in

Section 3, the number of factors equals the number of free elements in Σt. We can, however,

also pick a smaller number of factors to obtain a ‘factor GAS’ model. The dynamics of ft

are given by

ft+1 = ω +

p∑
i=1

Aist+1−i +

q∑
j=1

Bjft+1−j; (5)

st = St∇t, ∇t = ∂ ln p(yt|L(ft), γ, ν)/∂ft, (6)

where ∇t is the score of the conditional GHST density with respect to ft, ω is a vector of

fixed intercepts, Ai and Bj are appropriately sized fixed parameter matrices, St is a scaling

matrix for the score ∇t, and ω = ω(θ), Ai = Ai(θ), and Bj = Bj(θ) all depend on a static

parameter vector θ. Typical choices for the scaling matrix St are I−a
t−1 for a = 0, 1/2, 1, where

It−1 = E [∇t∇′
t| yt−1, yt−2, . . .] ,

is the Fisher information matrix. For example, setting a = 1 sets St = I−1
t−1 and accounts for

the curvature of the score ∇t.
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For appropriate choices of the distribution, the parameterization, and the scaling matrix,

the GAS model (5)–(6) encompasses a wide range of familiar models, including the (mul-

tivariate) GARCH model, the autoregressive conditional duration (ACD) model, and the

multiplicative error model (MEM); see Creal, Koopman, and Lucas (2013) for more exam-

ples. Details on the parameterization Dt = D(ft), Rt = R(ft), and the scaling matrix St

used in our empirical application in Section 3 can be found in the appendix. We also show

in the appendix that

∇t = Ψ′
tH

′
tvec (wt · yty′t − LtT T ′L′

t − (1− µςwt)LtT γy′t) , (7)

wt =
1

2
(ν + n)

(
1− k′

(ν+n)/2

(√
d(yt) · γ′γ

)
·
√

d(yt) · γ′γ
)/

d(yt), (8)

with k′
a(b) = ∂ lnKa(b)/∂b. The ‘weight’ function wt decreases in the Mahalanobis distance

d(yt) as defined in (3). The matrices Ψt and Ht are time-varying and parameterization

specific and depend on ft, but not on the data. The form of the score in equation (7) is very

intuitive. Due to the presence of wt in (7), observations that are far out in the tails receive

a smaller weight and therefore have a smaller impact on future values of ft. This robustness

feature is directly linked to the fat-tailed nature of the GHST distribution and allows for

smoother correlation and volatility dynamics in the presence of heavy-tailed observations

(i.e., ν < ∞); compare also the robust GARCH literature for an alternative approach, e.g.,

Boudt, Danielsson, and Laurent (2013).

For skewed distributions (γ ̸= 0), the score in (7) shows that positive CDS changes have

a different impact on correlation and volatility dynamics than negative ones. As explained

earlier, this aligns with the intuition that CDS changes from for example the left tail are

less informative about changes in volatilities and correlations if the conditional observation

density is itself left-skewed. For the symmetric Student’s t case, we have γ = 0 and the

asymmetry term in (7) drops out. If furthermore the fat-tailedness is ruled out by considering

ν → ∞, one can show that wt = µς = 1, T = I, and that ∇t collapses to the intuitive form

for a multivariate GARCH model, ∇t = Ψ′
tH

′
tvec(yty

′
t − Σt).
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Note that the GAS model in (5)–(6) can also be used directly as a dynamic GHST cop-

ula model; see McNeil, Frey, and Embrechts (2005) and Patton and Oh (2012, 2013) for

the (dynamic) copula approach. In a copula framework, we take Dt = I in the expression

Σt = DtRtDt, such that only the correlation matrix Rt remains to be modeled. As the score

of the copula likelihood with respect to the time-varying parameter ft does not depend on

the marginal distributions, the dynamics as specified in equations (5)–(6) and (7) remain

unaltered. The advantage of the copula perspective is that we can allow for more hetero-

geneity in the marginal distribution of CDS spread changes across countries. We come back

to this in the empirical section.

2.2 Parameter estimation

The parameters of the dynamic GHST model can be estimated by standard maximum like-

lihood procedures as the likelihood function is known in closed form using a standard pre-

diction error decomposition. To limit the number of free parameters in the non-linear opti-

mization problem, we use a correlation targeting approach similar to Engle (2002),Hu (2005),

and other studies that are based on a multivariate GARCH framework. Let ω′ = (ωD, ωR),

with ωD and ωR denoting the parts of ft describing the dynamics of volatilities D(ft) and

correlations R(ft), respectively. We then set ωR = ω̃ · (I − B1 − . . . − Bq)
−1f̄R, where f̄R

is such that R(f̄R) equals the unconditional correlation matrix, and ω̃ is a scalar parameter

that is estimated by maximizing the likelihood.

As an alternative, we also considered a two-step procedure that is commonly found in

the literature. In the first step, we estimated univariate models for the volatility dynamics.

Using these, we filtered the data. In the second step, we estimated the correlation dynamics

based on the filtered data and correlation targeting. The results were qualitatively similar

as for the one-step approach sketched above. Moreover, the two-step approach is somewhere

half-way the one-step approach and a true copula approach. Therefore, we only report the
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one-step and copula results in our empirical section. The two-step approach, however, may

lead to gains in computational speed with only a modest loss in parameter accuracy for large

enough samples.

3 Empirical application to the euro area

3.1 CDS data

We compute joint and conditional probabilities of a credit event for a set of ten countries in

the euro area. We focus on sovereigns that have a CDS contract traded on their reference

bonds since the beginning of our sample in January 2008. We select ten countries: Aus-

tria (AT), Belgium (BE), Germany (DE), Spain (ES), France (FR), Greece (GR), Ireland

(IE), Italy (IT), the Netherlands (NL) and Portugal (PT). CDS spreads are available for

these countries at a daily frequency from January 1, 2008 to February 28, 2013, yielding

T = 1348 observations. The CDS contracts have a five year maturity. They are denomi-

nated in U.S. dollars, as US dollar denominated contracts are much more liquid than their

euro denominated counterparts. The currency issue is complex, as the underlying sovereign

bonds are typically denominated in Euros. Moreover, sovereign risk and currency risk may

be correlated in a fragile situation characterised by one or more sovereigns getting into dif-

ficulties. Part of the currency effects may impact CDS prices and cause correlations that

are not due to actual clustering of sovereign debt risk. This has to be kept in mind when

interpreting the results. All time series data are obtained from Bloomberg.

We prefer CDS spreads to bond yield spreads as a measure of sovereign credit risk since

the former are less affected by funding liquidity and flight-to-safety issues, see for example

Pan and Singleton (2008) and Ang and Longstaff (2011). In addition, our CDS series are

likely to be less affected than bond yields by the outright government bond purchases that

have taken place during the second half of our sample, see Section 4 below.
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Table 1: CDS descriptive statistics
The summary statistics correspond to daily changes in observed sovereign CDS spreads (in 100 basis points)

for ten euro area countries from January 2008 to February 2013. Almost all skewness and excess kurtosis

statistics have p-values below 10−4, except the skewness parameters of Germany and Italy.

Median Std.Dev. Skewness Kurtosis Minimum Maximum
Austria 0.00 0.05 0.65 13.26 -0.27 0.42
Belgium 0.00 0.06 -0.36 13.96 -0.57 0.37
Germany 0.00 0.02 -0.10 8.39 -0.14 0.11
Spain 0.00 0.11 -0.46 9.76 -0.79 0.54
France 0.00 0.04 -0.22 10.19 -0.30 0.23
Greece -0.03 4.42 2.81 60.60 -43.94 56.70
Ireland 0.00 0.16 -0.95 24.42 -1.79 1.19
Italy 0.00 0.11 0.09 11.30 -0.77 0.72
Netherlands 0.00 0.03 0.85 11.69 -0.14 0.24
Portugal 0.00 0.23 -0.55 19.68 -1.92 1.75

Table 1 provides summary statistics for daily de-meaned changes in these ten CDS

spreads. All time series have significant non-Gaussian features under standard tests and

significance levels. In particular, we note the non-zero skewness and large values of kurtosis

for almost all time series in the sample. All series are covariance stationary according to

standard unit root (ADF) tests.

3.2 Daily model calibration

We estimate all model parameters over the entire sample. Using the parameter estimates,

we compute joint and conditional credit event probabilities after calibrate the model at each

time t to market implied individual probabilities as in Segoviano and Goodhart (2009).

The marginal default probabilities are typically estimated directly from observed prices

of CDS insurance. We invert a CDS pricing formula to calculate the risk neutral default

probabilities following the procedure described in O′Kane (2008). This “bootstrapping”

procedure is a standard method in financial practice for marking to market a CDS contract.

Since the procedure is standard and available in O′Kane (2008), we only highlight our choices
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in the implementation. First, we fix the recovery rate at a stressed level of 25% for all

countries. This is roughly in line with the recovery rate that investors received on average in

the Greek debt restructuring in Spring 2012, see Zettelmeyer, Trebesch, and Gulati (2012).

Second, the term structure of discount rates rt is flat at the one year EURIBOR rate (and

thus close to zero in our later application). Also, the risk neutral default intensity is assumed

to be constant. We note, however, that the precise form of discounting hardly has an effect

on our results as the implied risk neutral default intensities are quite robust to the precise

form of discounting. Finally, we use a CDS pricing formula that does not take into account

counterparty credit risk, see also Huang, Zhou, and Zhu (2009), Black, Correa, Huang, and

Zhou (2012), and Creal, Gramacy, and Tsay (2012). Given these choices, a solver quickly

finds the (unique) default intensity that matches the expected present values of payments

within the premium leg and within the default leg of the CDS. The one year ahead default

probability is a simple function of the default intensity; see O′Kane (2008) and Hull and

White (2000).

Given the marginal probability of default pi,t of sovereign i at time t, we simulate the

joint probability of default pij,t for sovereigns i and j at time t as

pij,t = Pr
[
yi,t > F−1

i,t (pi,t), yj,t > F−1
j,t (pj,t)

]
, (9)

where yi,t is the ith element of yt, and F−1
i,t (·) denotes the inverse marginal GHST distribution

of sovereign i at time t, and where the joint probability of exceedance is computed using the

multivariate GHST dependence structure. All marginal and joint GHST probabilities are

computed using the model’s estimated parameters. The conditional probability for sovereign

j defaulting given a default of sovereign i is easily computed as pij,t/pi,t. Note that the joint

and conditional default probabilities have a dual time dependence. First, there is dependence

on time because the model is re-calibrated to current market conditions pi,t at each time t.

Second, there is dependence on time because volatilities and correlations vary over time.

The second effect impacts both the marginal distributions of yi,t and the joint distribution
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of yt as specified in Section 2.

3.3 Time-varying volatility and correlation

This section discusses our main empirical results on time-varying volatility and correlation

dynamics based on the GHST modeling framework in Section 2. We consider four different

choices for the time-varying parameter model specification. The first three correspond to a

Gaussian (ν = ∞, γ = 0), a Student’s t (γ = 0), and a GHST multivariate distribution,

respectively. The fourth approach uses GHST univariate distributions for the marginal

distributions, and a GHST copula for the dependence structure. The copula approach is

flexible in allowing for heterogeneity across sovereigns in the marginal behavior of CDS

spread changes. The computational burden for the dependence part, however, is challenging.

This is due to the required numerical inversion of the cumulative distribution function of the

GHST for every observation at every evaluation of the likelihood. To facilitate this task, we

restrict the number of parameters in the copula by setting γ = γ̃(1, . . . , 1)′ for some scalar

γ̃ ∈ R. Note that we still allow for different skewness parameters for each of the marginal

distributions. Also note that the degrees of freedom parameter may be different for each of

the marginal distributions, as well as for the marginal distributions and the copula.

In an earlier version of this paper we also considered a GHST model for a fixed degrees

of freedom parameter ν = 5. The parameter ν is then treated as a robustness parameter as

in Franses and Lucas (1998). The main advantage of fixing ν is that it increases the compu-

tational speed considerably, while most of the qualitative results in terms of the dynamics

of joint and conditional default probabilities remain unaltered for the application at hand.

We leave the suggestion of using a pre-determined ν as a robustness device for empirical

researchers who are more concerned about computational speed.

There is one important difference between the multivariate GHST and the copula GHST

approach that is relevant for the results reported below. The multivariate GHST restricts

the degrees of freedom parameter to be the same across all the marginals. As a result,
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the degrees of freedom parameter determines both the fatness of the marginal tails and the

degree of tail clustering. Some of the CDS data have very fat tails, pushing the value of

ν downwards. However, as ν approaches 4 from above, the covariance matrix Σt collapses

to a rank one matrix proportional to γγ′, and thus to a perfect correlation case. As this

is incompatible with the data, there is an automatic mechanism to push ν above 4. The

final result balances these two effects. In the copula approach, the step of modeling the

marginals versus the dependence structure is split. As a result, the degrees of freedom

parameter for the marginal models may become very low, while that for the copula can be

substantially higher; see also the empirical results further below. In particular, the degrees

of freedom parameters of the marginal models may be below 4, such that the variance no

longer exists. This poses no problem for the computation of joint and conditional default

probabilities. It does mean, however, that we can no longer consider a time-varying variance

for the marginals. To account for this, we set T = 1 for the marginal models in the copula

approach and interpret Lt as the time-varying scale parameter. The latter is well-defined

for any ν > 0.

Figure 1 plots the squared CDS spread changes and estimated volatility or scale lev-

els for two countries and four different models. The assumed statistical model (Gaussian,

Student-t, GHST, Copula) directly influences the dynamics of the volatility estimates. For

example, early 2010 the German series spikes for the Gaussian model and then comes down

exponentially. For Portugal we see something similar around July 2011. In particular, the

temporary increased volatility for the Gaussian series does not appear in line with the sub-

sequent squared CDS spread changes. We see no similar behavior for the GAS models based

on fat-tailed distributional assumptions due to the presence of the weighting mechanism wt

in (7).

Table 2 reports the parameter estimates of the different models. We estimate all speci-

fications under the restriction of stationarity by reparameterizing B = (1 + exp(−B̃))−1 for
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Figure 1: Estimated time varying volatilities for changes in CDS for two countries
We report four different estimates of time-varying volatility that pertain to changes in CDS spreads on

sovereign debt. The estimates are based on different parametric assumptions regarding the univariate dis-

tribution of sovereign CDS spread changes: Gaussian, symmetric t, and a GHST distribution, and a GHST

copula. We pick two countries, Germany and Portugal, to illustrate differences across model specifications.

As a direct benchmark, squared CDS spread changes are plotted as well in the top panels.
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B̃ ∈ R. Standard errors are computed using the likelihood based sandwich covariance ma-

trix estimator and the delta method. For all models, volatilities and correlations are highly

persistent, i.e., B is numerically equal to or close to one. Note that the parameterization of

our score driven model is different than that of a standard GARCH model. In particular,

the persistence is completely captured by B rather than by A + B as in the GARCH case.

Also note that ω regularly takes on negative values. This is natural as we define ft to be the

log-volatility rather than the volatility itself.

The estimates of the skewness parameters γ differ somewhat between the multivariate

GHST and the GHST copula specification. For the multivariate GHST, 7 out of the 10 γs

are negative, but only those for Greece, Ireland, and Portugal are statistically significant.

For the copula, all marginal γs are positive, but the (common) copula γ is negative. The

significance of the marginal γs differs between countries. The copula γ, however, is highly

significant. The difference can be explained by the fact that the multivariate distribution

mixes the effect of the marginal distributions with that of the dependence structure. This

is no longer the case for the copula. The negative γ for the copula increases the sensitivity

of the correlation dynamics to common increases in CDS spreads, making sudden common

shifts upwards in CDS spreads more likely. The (marginal) volatility dynamics, by contrast,

appear less sensitive to large increases in CDS spreads, as follows from the positive γs for

the marginal models. The multivariate GHST specification lacks this flexibility.

The degrees of freedom parameter for the Student’s t distribution is estimated at ν = 5.9.

That of the multivariate GHST distribution is estimated even lower at ν = 4.05. This

is close to the region where the variance no longer exists. As discussed before, the low

value of ν for the GHST mixes the extremely fat-tailed marginal behavior of CDS spread

changes for specific countries such as Greece or Ireland, and the multivariate tail dependence

structure. The GHST copula approach does not suffer from this automatic link. For the

copula specification, we indeed see that 6 countries have a degrees of freedom estimate for
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Table 2: Model parameter estimates
The table reports parameter estimates that pertain to four different model specifications. The sample consists

of daily changes from January 2008 to February 2013. The Student’s t and GHST distribution are estimated

jointly. The GHST copula is estimated with the same skewness parameter.

AT BE DE ES FR GR IE IT NL PT Joint

Gaussian

A 0.058 0.070 0.075 0.066 0.085 0.096 0.073 0.092 0.082 0.089 0.015
(0.007) (0.020) (0.013) (0.036) (0.011) (0.005) (0.017) (0.012) (0.016) (0.008) (0.001)

B 0.992 0.993 0.978 0.983 0.993 1.000 0.969 1.000 0.982 1.000 0.983
(0.003) (0.010) (0.011) (0.022) (0.007) (0.000) (0.010) (0.000) (0.010) (0.000) (0.002)

ω -3.551 -3.684 -4.065 -2.546 -3.952 -3.648 -2.326 -4.211 -3.954 -3.934
(0.314) (0.803) (0.150) (0.289) (0.412) (0.294) (0.147) (0.261) (0.196) (0.319)

Student’s t

A 0.127 0.126 0.110 0.136 0.138 0.148 0.150 0.138 0.125 0.184 0.022
(0.011) (0.010) (0.014) (0.014) (0.017) (0.034) (0.020) (0.014) (0.015) (0.025) (0.002)

B 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000
(0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000)

ω -3.955 -3.405 -3.983 -3.540 -3.504 -3.616 -3.476 -3.436 -3.912 -3.502
(0.337) (0.242) (0.281) (0.280) (0.342) (0.279) (0.506) (0.284) (0.296) (0.318)

ν 5.917
(0.210)

GHST

A 0.081 0.079 0.071 0.087 0.089 0.094 0.096 0.088 0.080 0.117 0.013
(0.008) (0.007) (0.011) (0.010) (0.011) (0.025) (0.013) (0.009) (0.011) (0.016) (0.001)

B 0.998 0.998 0.999 0.997 0.998 0.995 0.996 0.997 0.998 0.995 1.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.000)

ω -3.787 -3.163 -3.765 -3.343 -3.312 -2.863 -3.288 -3.284 -3.703 -3.342
(0.350) (0.255) (0.293) (0.293) (0.349) (0.301) (0.472) (0.290) (0.327) (0.329)

ν 4.048
(0.021)

γ -0.009 -0.004 0.005 -0.023 -0.002 0.165 -0.024 0.000 -0.008 -0.039
(0.021) (0.017) (0.013) (0.020) (0.014) (0.036) (0.012) (0.013) (0.011) (0.016)

GHST Copula

A 0.098 0.099 0.119 0.120 0.135 0.197 0.128 0.105 0.103 0.125 0.007
(0.012) (0.014) (0.017) (0.016) (0.017) (0.028) (0.016) (0.015) (0.016) (0.014) (0.001)

B 0.993 0.991 0.974 0.989 0.985 0.985 0.990 0.991 0.983 0.991 0.993
(0.004) (0.004) (0.009) (0.004) (0.006) (0.004) (0.004) (0.004) (0.007) (0.003) (0.001)

ω -3.530 -3.422 -4.305 -2.689 -3.843 -1.330 -2.572 -2.736 -4.172 -2.219
(0.457) (0.347) (0.159) (0.345) (0.294) (0.362) (0.402) (0.385) (0.199) (0.439)

ν 3.742 4.115 4.452 3.989 4.316 2.074 3.028 3.894 3.638 4.590 10.291
(0.419) (0.487) (0.567) (0.436) (0.552) (0.070) (0.279) (0.460) (0.454) (0.619) (1.049)

γ 0.077 0.090 0.056 0.056 0.085 0.013 0.020 0.070 0.059 0.119 -0.008
(0.029) (0.035) (0.034) (0.028) (0.035) (0.012) (0.016) (0.030) (0.029) (0.041) (0.001)
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the marginal distribution below 4. For the Greek case, the estimate is even close to 2, such

that the mean may no longer exist. By contrast, the degrees of freedom parameter for the

dependence structure is estimated at ν = 10.3, such that tail dependence for the copula

specification is smaller. How the different effects balance out when computing the joint and

conditional default probabilities is shown in the next subsections.

Figure 2 plots the average correlation, averaged across 45 bivariate time varying pairs, for

each model specification. The dynamic correlation coefficients refer to the standardized CDS

spread changes. Given n = 10, there are n(n−1)/2 = 45 different elements in the correlation

matrix. As a robustness check, we benchmark each multivariate model-based estimate to the

average over 45 correlation pairs obtained from a 60 business days rolling window. Over each

window we use the same pre-filtered marginal data as for the multivariate model estimates.

Comparing the correlation estimates across different specifications, the GHST model matches

the rolling window estimates most closely.

Correlations increased visibly during times of stress. GHST correlations are low in the

beginning of the sample at around 0.3 and increase to around 0.75 during 2010 and 2011.

Estimated dependence across euro area sovereign risk increases sharply for the first time

around September 15, 2008, on the day of the Lehman bankruptcy, and around September

30, 2008, when the Irish government issued a broad guarantee for the deposits and borrowings

of six large financial institutions. Average GHST correlations remain high afterwards, around

0.75, until around May 10, 2010. At this time, euro area heads of state introduced a rescue

package that established the European Financial Stability Facility, a fund designed to provide

financial assistance to euro area states in economic difficulties. At the same time, the ECB

announced the so-called Securities Markets Program. Afterwards, correlations eventually

decline to around 0.5 towards the beginning of 2013.
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Figure 2: Average correlation over time
Plots of the estimated average correlation over time, where averaging takes place over 45 estimated correlation

coefficients. The correlations are estimated based on different parametric assumptions: Gaussian, symmetric

t, and GH Skewed-t (GHST), and GHST copula. The time axis runs from March 2008 to February 2013.

The corresponding rolling window correlations are each estimated using a window of sixty business days of

pre-filtered CDS changes.
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3.4 Joint risk during the euro area debt crisis

This section discusses the probability of the extreme (tail) possibility that two or more

credit events take place in our sample of ten euro area countries, over a one year horizon,

as perceived by credit market participants. Such a probability depends on the perceived

country-specific (marginal) probabilities, as well as the dependence structure.

Figure 3 plots estimates of marginal CDS-implied probabilities of default (pd) over a

one year horizon obtained as described in Section 3.2 and in for example Segoviano and

Goodhart (2009). These probabilities are directly inferred from CDS spreads and do not

depend on parametric assumptions regarding their joint distribution. Market-implied pds

vary markedly in the cross section, ranging from below 2% for some countries to above

8% for Greece, Portugal, and Ireland during the second half of 2011. The market-implied

probability of a credit event in Greece increases above 25% in mid-2011. Greek CDS spreads

increase further until March 2012, and fall from August 2012 until the end of the sample.

Figure 4 plots the market-implied probability of two or more credit events among ten

euro area countries over a one year horizon. The joint probability is calculated by simulation,

using 50,000 draws at each time t. For each simulation, we keep track of the joint exceedance

of yi,t and yj,t above their calibrated thresholds at time t, as described in Section 3.2. This

simple estimate combines all marginal risk estimates and 45 correlation parameter estimates

into a single time series plot. The plot reflects, first, the deterioration of debt conditions

since the beginning of the debt crisis in Spring 2010, and second, a clear turning of the

tide around mid-2012. Vertical lines indicate the announcement of a first euro area rescue

package (the EFSF and SMP) on 10 May 2010, and announcements regarding the Outright

Monetary Transactions (OMT) in August and September 2012, which we revisit in Section

4 below.

There are only slightly different patterns in the estimated probabilities of joint default

in Figure 4; the overall dynamics are roughly similar across the different distributional
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Figure 3: CDS-implied marginal probabilities of a credit event
The risk neutral marginal probabilities of a credit event for ten euro area countries are extracted from CDS

prices. The sample is daily data from 01 January 2008 to 28 February 2013. The market-implied probability

of a credit event in Greece increases above 25% in mid-2011, see also the discussion in the main text.
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Figure 4: Probability of two or more credit events
The top panel plots the time-varying probability of two or more credit events (out of ten) over a one-

year horizon. Estimates are based on different distributional assumptions regarding marginal risks and

multivariate dependence: Gaussian, symmetric-t, and GH skewed-t (GHST) distribution, and a GHST

copula with GHST marginals. Vertical lines refer to program announcements on the 10 May 2010 (SMP and

EFSF), and on the 02 August 2012 (OMT) and 06 September 2012 (details on OMT); see Section 4.
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specifications. In the beginning of our sample, the joint default probability from the GHST

multivariate distribution somewhat higher than that from the Gaussian, symmetric-t, and

GHST copula models. This pattern reverses in mid-2011, when the Gaussian, symmetric-t,

and GHST copula estimates are slightly higher than the GHST multivariate density estimate.

Altogether, the level and dynamics in the estimated measures of joint default from this

section do not appear to be very sensitive to the precise model specification.

4 Event study: policy announcements and

sovereign risk dependence

This section investigates the immediate impact of two key policy announcements on sovereign

risk conditions as perceived by credit market participants. We document that each policy

announcement had a very strong effect on joint sovereign risk perceptions, cutting some

perceived joint risks by up to 50%. We show that this pronounced impact worked through

decreasing marginal risks, and not by lowering risk dependence. For all analyses in this

section, we use the GHST copula specification of the model as it is the most flexible specifi-

cation.

During a weekend meeting on May 8–9, 2010, euro area heads of state agreed on a

comprehensive rescue package to mitigate potential risk contagion in the euro area. Two

main measures were announced on the same day: the European Financial Stability Facility

(EFSF) and the ECB’s Securities Markets Program (SMP). The EFSF is a limited liabil-

ity facility with an objective to preserve financial stability of the euro area by providing

temporary financial assistance to euro area member states in economic difficulties. Initially

committed funds were 440bn Euro. The announcement made clear that EFSF funds could

be combined with funds raised by the European Commission of up to 60bn Euro, and funds

from the International Monetary Fund of up to 250bn Euro, for a total safety net up to 750bn

Euro. The other announcement referred to a government bond buying program, the SMP.

Specifically, the ECB announced that it would start to intervene in secondary government
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bond markets to ensure depth and liquidity in those market segments that are qualified as

being dysfunctional. These purchases were meant to restore an appropriate monetary policy

transmission mechanism, see ECB (2010). The joint announcement impacted asset prices

on Monday 10 May 2010.

The impact of the 10 May 2010 announcement on joint sovereign risk perceptions (as

well as that of the initial bond purchases) is visible in Figure 4. The figure suggests that the

probability of two or more credit events in our sample of ten countries decreases from about

7% to approximately 3% before and after the announcement, thus virtually overnight. Figure

3 indicates that marginal risks decreased considerably as well. The average correlation plots

in Figure 2 do not suggest a wide-spread and prolonged decrease in dependence. Instead,

there seems to be an up-tick in average correlations.

To further investigate the impact on joint and conditional sovereign risk from actions

communicated on 10 May 2010 and implemented shortly afterwards, Table 3 reports model-

based estimates of joint and conditional risk. We report our risk estimates for two dates,

Thursday May 6, 2010 and Tuesday May 11, 2011, i.e., two business days before and after

the announced change in policy. We re-iterate that the ECB’s SMP was targeted towards

restoring monetary policy transmission, not towards affecting market participants’ sovereign

credit risk perceptions. The top panel of Table 3 confirms that the joint probability of a

credit event in, say, both Portugal and Greece, or Ireland and Greece, declines from 3.8%

to 1.7% and from 2.5% to 1.3%, respectively. These are large declines in joint risks, cutting

some perceived risks in half. For any country in the sample, the probability of that country

failing simultaneously with Greece or Portugal over a one year horizon is substantially lower

after the 10 May 2010 announcement than before. The bottom panel of Table 3 indicates

that the decrease in joint default probabilities is generally not due to a decline in default

dependence. Instead, the perceived conditional probabilities of a credit event in for example

Greece or Ireland given a credit event in Portugal remains roughly constant from 63% to
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59% and from 38% to 38%, respectively. Similarly, the perceived conditional probabilities

of a credit event in Belgium or Ireland given a credit event in Greece only move from 9% to

11% and from 21% to 19%, respectively.

Figures 4 and 3 also suggest that the impact of the 10 May 2010 announcement was

temporary. Sovereign yields soon started to rise afterwards in some euro area countries.

Figure 4 would suggest that the height of the euro area debt crisis could be dated from

mid-2011 to mid-2012.

A visible break of the upward trend in joint risk can be associated with three dates in

2012 (also visible as vertical lines in Figure 4). On 26 July 2012, the president of the ECB

pledged to do “whatever it takes” to preserve the euro, and that “it will be enough”. In the

speech, euro area sovereign risk premia were mentioned as an obstacle to monetary policy

transmission and a concern within the ECB’s mandate, see Draghi (2012). Communication

regarding a new asset purchase program, the Outright Monetary Transactions (OMT), fol-

lowed swiftly afterwards on 2nd August, see ECB (2012) for details. These details on OMT

were communicated on 06 September 2012. The joint impact of the three measures on joint

risk in clearly visible in Figure 4. For a discussion of this figure in the context of central

bank communication in the financial press, see Wessel (2013).

Table 3 reports model-based estimates of joint and conditional risk around the OMT

announcements. We compare risk estimates for Tuesday, 24 July 2012 (two days before the

speech) to risk estimates for Friday, 07 September 2012 (two days after the announcement

of the OMT details). A common finding emerges. Just as in the case of the 10 May 2010

announcement, joint risks have decreased markedly. For example, the joint probability of a

credit event in both Spain and Italy over a one year horizon decreased from 4.7% to 2.9%.

Similar reductions are observed for other countries as well. Second, the decrease in joint risk

is generally not due to a decline in dependence. Instead, the conditional probabilities of a

credit event remain very similar, despite the period of more than two months between the
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Table 3: Sovereign risk perceptions around SMP and EFSF announcement
The top and bottom panels report GHST copula model-implied joint and conditional probabilities of a credit

event for a subset of countries, respectively. For the conditional probabilities Pr(i defaulting | j defaulted),

the conditioning events j are in the columns (PT, GR, ES), while the events i are in the rows (AT, BE, . . . ,

PT). Avg contains the averages for each column. Joint and conditional risks are reported two business days

before and after the 10 May 2010 announcement.

Joint risk, Pr(i ∩ j)

Thu 06 May 2010 Tue 11 May 2010
PT GR ES PT GR ES

AT 0.9 % 0.9 % 0.8 % 0.5 % 0.6 % 0.4%
BE 1.1 % 1.1 % 0.9 % 0.7 % 0.7 % 0.5%
DE 0.6 % 0.7 % 0.6 % 0.4 % 0.4 % 0.3%
ES 2.5 % 2.5 % 1.2 % 1.2 %
FR 0.9 % 0.9 % 0.8 % 0.5 % 0.6 % 0.4%
GR 3.8 % 2.5 % 1.7 % 1.2%
IE 2.3 % 2.5 % 1.8 % 1.1 % 1.3 % 0.9%
IT 2.1 % 2.2 % 1.8 % 1.1 % 1.2 % 1.0%
NL 0.5 % 0.5 % 0.4 % 0.3 % 0.3 % 0.3%
PT 3.8 % 2.5 % 1.7 % 1.2%
Avg 1.6% 1.7% 1.3% 0.8% 0.9% 0.7%

Conditional risk, Pr(i | j)
Thu 06 May 2010 Tue 11 May 2010
PT GR ES PT GR ES

AT 15 % 8 % 21 % 17 % 8 % 20%
BE 18 % 9 % 24 % 24 % 11 % 26%
DE 11 % 6 % 16 % 13 % 6 % 15%
ES 42 % 22 % 42 % 18 %
FR 14 % 8 % 21 % 18 % 8 % 21%
GR 63 % 70 % 59 % 58%
IE 38 % 21 % 50 % 38 % 19 % 45%
IT 35 % 18 % 50 % 37 % 17 % 48%
NL 8 % 4 % 11 % 11 % 5 % 12%
PT 32 % 69 % 26 % 58%
Avg 27% 14% 37% 29% 13% 34%
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Table 4: Sovereign risk perceptions around OMT announcements
The top and bottom panels report GHST copula model-implied joint and conditional probabilities of a credit

event for a subset of countries, respectively. For the conditional probabilities Pr(i defaulting | j defaulted),

the conditioning events j are in the columns (PT, GR, ES), while the events i are in the rows (AT, BE, . . . ,

PT). Avg contains the averages for each column. Joint and conditional risks are reported two business days

before the 26 July 2012 and after the 06 September 2012 announcement of the OMT details.

Joint risk, Pr(i ∩ j)

Tue 24 Jul 2012 Fri 07 Sep 2012
PT GR ES PT GR ES

AT 1.0% 1.7% 1.2% 0.5% 0.8% 0.7%
BE 1.5% 2.6% 1.8% 0.9% 1.6% 1.3%
DE 0.6% 1.0% 0.7% 0.3% 0.6% 0.5%
ES 3.3% 7.7% 1.9% 4.1%
FR 1.2% 2.3% 1.5% 0.8% 1.4% 1.1%
GR 10.7% 7.7% 5.8% 4.1%
IE 3.9% 7.1% 3.4% 2.1% 4.1% 2.3%
IT 3.2% 6.8% 4.7% 1.9% 3.9% 2.9%
NL 0.7% 1.2% 0.8% 0.4% 0.8% 0.6%
PT 10.7% 3.3% 5.8% 1.9%
Avg 2.9% 4.6% 2.8% 1.6% 2.6% 1.7%

Conditional risk, Pr(i | j)
Tue 24 Jul 2012 Fri 07 Sep 2012

PT GR ES PT GR ES

AT 9% 2% 14% 8% 1% 16%
BE 13% 3% 23% 13% 2% 30%
DE 5% 1% 8% 5% 1% 11%
ES 29% 8% 29% 5%
FR 11% 2% 19% 12% 2% 25%
GR 95% 96% 88% 92%
IE 34% 8% 43% 32% 5% 51%
IT 28% 7% 59% 28% 5% 65%
NL 6% 1% 10% 7% 1% 13%
PT 12% 41% 7% 42%
Avg 26% 5% 35% 25% 3% 28%
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two measurement dates. This suggests that market perceptions regarding risk interactions

remained a concern.

We conclude that both the 10 May 2010 and 2012 policy announcements had a very

strong effect on joint sovereign risk perceptions, cutting some perceived joint risks by up to

50%. This pronounced impact worked through decreasing marginal risks, not perceived risk

dependence. These findings are robust to alternative statistical choices (such as the degrees

of freedom in the dependence model), as well as to alternative ways of extracting marginal

risks from CDS prices (such as recovery rates assumptions in the case of a credit event).

5 Conclusion

We have proposed a novel empirical framework to assess risk perceptions regarding joint

and conditional credit risk based on the price of CDS insurance. Our methodology is novel

in that our joint risk measures are derived from a multivariate framework based on a dy-

namic Generalized Hyperbolic skewed-t conditional density that naturally accommodates

skewed and heavy-tailed changes in marginal risks as well as time variation in volatility and

multivariate dependence. When applying the model to euro area sovereign CDS data from

January 2008 to February 2013, we find significant time variation in risk dependence, evi-

dence for risk spillovers regarding sovereign credit events, as well as a strong impact of key

policy announcements during the euro area debt crisis on joint and conditional sovereign risk

perceptions. Regarding model risk, parametric assumptions, in particular assumptions about

higher order moments and their dynamics, matter for joint and conditional risk assessments.
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Appendix: Technical Background

The Generalized Autoregressive Score model of Creal et al. (2011, 2013) for the GH skewed-t
(GHST) conditional density (2) adjusts the time-varying parameter ft at every step using the scaled
score of the conditional density at time t. This can be regarded as a steepest ascent improvement
of the parameter using the local (at time t) likelihood fit of the model.

We partition ft as ft = (fD
t , fR

t ) for the (diagonal) matrix D2
t = D(fD

t )2 of variances and cor-
relation matrix Rt = R(fR

t ), respectively, where Σt = DtRtDt = Σ(ft). We set fD
t = ln(diag(Dt)),

which ensures that variances are always positive, irrespective of the value of fD
t . For the correlation

matrix, we use the hypersphere parameterization also used in Creal et al. (2011) and Zhang et al.
(2011). This ensures that Rt is always a correlation matrix, i.e., positive semi-definite with ones on
the diagonal. We set Rt = R(fR

t ) = XtX
′
t, with fR

t as a vector containing n(n− 1)/2 time-varying
angles ϕijt ∈ [0, π] for i > j, and

X ′
t =



1 c12t c13t · · · c1nt
0 s12t c23ts13t · · · c2nts1nt
0 0 s23ts13t · · · c3nts2nts1nt
0 0 0 · · · c4nts3nts2nts1nt
...

...
...

. . .
...

0 0 0 · · · cn−1,nt
∏n−2

ℓ=1 sℓnt
0 0 0 · · ·

∏n−1
ℓ=1 sℓnt


, (A1)

where cijt = cos(ϕijt) and sijt = sin(ϕijt). The dimension of fR
t thus equals the number of

correlation pairs.
As implied by equation (6), we take the derivative of the log conditional density with respect

33



to ft, and obtain

∇t =
∂vech(Σt)

′

∂ft

∂vech(Lt)
′

∂vech(Σt)

∂vec(LtT )′

∂vech(Lt)

∂ ln pGH(yt|L(ft), γ, ν)
∂vec(LtT )

(A2)

= Ψ′
tH

′
t

(
wt(yt ⊗ yt)− vec(LtT T ′L′

t)− (1− ν

ν − 2
wt)(yt ⊗ LtT γ)

)
(A3)

= Ψ′
tH

′
tvec

(
wtyty

′
t − LtT T ′L′

t − (1− µςwt)LtT γy′t
)
, (A4)

Ψt = ∂vech(Σt)/∂f
′
t , (A5)

Ht = (LtT T ′L′
t ⊗ LtT T ′L′

t)
−1(LtT ⊗ I)

(
(T ′ ⊗ I)D0

n

) (
Bn (I + Cn) (Lt ⊗ I)D0

n

)−1
, (A6)

wt =
ν + n

2 · d(yt)
−

k′(ν+n)/2

(√
d(yt) · γ′γ

)
√

d(yt)/γ′γ
, (A7)

where k′a(b) = ∂ lnKa(b)/∂b is the derivative of the log modified Bessel function of the second kind,
D0

n is the the duplication matrix vec(L) = D0
nvech(L) for a lower triangular matrix L, Dn is the

standard duplication matrix for a symmetric matrix S vec(S) = Dnvech(S), Bn = (D′
nDn)

−1D′
n,

and Cn is the commutation matrix, vec(S′) = Cnvec(S) for an arbitrary matrix S.
To scale the score ∇t, Creal, Koopman, and Lucas (2013) propose the use of powers of the

inverse information matrix. The information matrix for the GHST distribution, however, does not
have a tractable form. Therefore, we scale by the information matrix of the symmetric Student’s t
distribution,

St =
{
Ψ′

t(I⊗ (LtT )−1)′[gG− vec(I)vec(I)′](I⊗ (LtT )−1)Ψt

}−1
, (A8)

where g = (ν + n)/(ν + 2 + n), and G = E[ztz
′
t ⊗ ztz

′
t] for zt ∼ N(0, I). Zhang et al. (2011)

demonstrate that this results in a stable model that outperforms alternatives such as the DCC if
the data are fat-tailed and skewed.

For parsimony, the dynamics of the correlation parameter fR
t follow a similar parameterization

as in the DCC model,
fR
t+1 = ω̃(1−BR)f̄R +ARs

R
t +BRf

R
t , (A9)

where ω̃, AR, BR ∈ R are scalars, and f̄R is such that R(f̄R) equals the unconditional correlation
matrix of the data. Estimation results showed that ω̃ was close to 1 in all cases. To further reduce
the number of parameters, we therefore set ω̃ = 1. All remaining parameters are estimated by
maximum likelihood. Inference is carried out by taking the negative inverse Hessian of the log
likelihood at the optimum as the covariance matrix for the estimator.

Evaluating the GHST density and distribution can be tricky due to the modified Bessel function
and various off-setting factors in the conditional density expression (2). We used the built-in
modified Bessel function of the Ox programming language of Doornik (2007), except in the far
tails. For the far tails and yt, γ ∈ R, we used the expression

eb Ka(|b|) ≈
√

π

2|b|
eb−|b|

(
1 +

4a2 − 1

8|b|

(
1 +

4a2 − 9

16|b|

))
,

for large values |b| with b = (yt − µ̃t)γ/(LtT ); see Abramowitz and Stegun (1970). This also
directly balances the skewness effect in either tail in a numerically stable way. If small values of
the argument |b| are of interest, similar expansions exist.
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