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Abstract

In this paper we introduce Quasi Likelihood Ratio tests for one sided multivariate hypothe-

ses to evaluate the null that a parsimonious model performs equally well as a small number of

models which nest the benchmark. We show that the limiting distributions of the test statistics

are non standard. For critical values we consider two approaches: (i) bootstrapping and (ii)

simulations assuming normality of the mean square prediction error (MSPE) di¤erence. The

size and the power performance of the tests are compared via Monte Carlo experiments with

existing equal and superior predictive ability tests for multiple model comparison. We �nd that

our proposed tests are well sized for one step ahead as well as for multi-step ahead forecasts

when critical values are bootstrapped. The experiments on the power reveal that the superior

predictive ability test performs last while the ranking between the quasi likelihood-ratio test

and the other equal predictive ability tests depends on the simulation settings. Last, we apply

our test to draw conclusions about the predictive ability of a Phillips type curve for the US

core in�ation.

Keywords: Out-of sample, point-forecast evaluation, multi-model comparison, predictive

ability, direct multi-step forecasts, �xed regressors bootstrap.
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Non-technical Summary 
 
Given the forward looking nature of monetary policy, forecasting future economic variables 
is central for policy makers. Developing forecasting models to obtain predictions for 
variables of interest such as inflation and GDP growth is key for both monetary policy 
decision makers and policy observers. Often, researchers consider a range of competing 
forecasting models using different methods or emphasizing different aspects of the economy, 
say, labour markets or financial markets. Once forecasts from these models are produced it is 
important to assess their accuracy. Then, evaluation of forecast accuracy requires comparing 
the performance of a set of models. The criterion often used for the comparison is the mean 
squared prediction error (MSPE), which measures the difference between the predictions and 
the realizations of the forecasted variables. Testing whether the models provide the same 
forecast accuracy, i.e. the same MSPE, represents a test of equal predictive ability. 
 
Two important distinctions are relevant for the contribution of this paper: First, most of the 
previous literature focusses on pairwise forecast model comparison. Instead, this paper 
focusses on comparing forecast accuracy of multiple models simultaneously. The 
contribution of this paper lies in 1) suggesting a novel equal predictive ability test in this 
context, and 2) providing a review of the few contributions to the literature of multiple 
forecast model comparison in a unified notational framework and comparing their finite 
sample properties via an extensive Monte Carlo simulation exercise. In multiple model 
comparisons the models are simultaneously evaluated against one particular model in the set. 
This model, chosen by the researcher, is called the benchmark and is usually the most 
parsimonious. A second important distinction in the literature on forecast accuracy testing is 
whether the alternative models nest the benchmark or not. An alternative forecast model nests 
the benchmark if, for example, it contains at least all the predictors of the benchmark model. 
The distinction between nested and non-nested forecast model comparisons is important for 
choosing the appropriate test procedure for testing equal predictive ability. While we review 
tests for multiple forecast model comparisons for models that nest and for models that do not 
nest the benchmark model, our newly suggested test statistic is appropriate for the 
comparison of forecasts from a set of alternative models that nest the benchmark. A  novel 
feature is that in formulating the alternative hypothesis and the test statistics we distinguish 
among three cases in the nesting structure of the alternative models. 
 
 
The main objective of the paper is to test out-of-sample equal predictive ability with multiple 
models when a benchmark model is nested by the small number of remaining models. In the 
existing literature Hubrich and West (2010) (hereafter HW) consider this setup and propose 
two approaches: one is to directly extend the pairwise model comparison in Diebold and 
Mariano (1995) and West (1996) to a chi-squared statistic, and the other is to take the 
maximum of t-statistics (max-t test) of all the pairwise MSPE differences adjusted for 
estimation uncertainty. Also for nested multiple model comparison Inoue and Kilian (2005) 
derive the asymptotic distribution of two tests of predictability for one step ahead forecasts. 
Clark and McCracken (2012), thereafter CM, suggest two additional tests and a new 
bootstrap procedure to approximate the asymptotically valid critical values of the new and 
existing tests for multiple model comparison of nested predictive models. 
 
The main contribution of the paper is to propose an alternative test to the ones in HW and 
CM. We propose a new one-sided quasi-likelihood ratio (hereafter QLR) predictability test 
for the comparison of a small number of models nesting the benchmark model. The QLR test 
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statistic depends on the structure of the alternative models. We distinguish among three 
different cases: (i) when the alternative models are nested within each other, (ii) when there is 
no nesting relation among the alternative models, and (iii) when the models can be grouped 
such that within each group the models are nested, but there is no nesting relation among 
groups. This distinction is aimed at improving the power of the test. We derive the 
asymptotic distribution of the tests and find that it is non-standard and depends on 
characteristics of the predictors. This implies that one needs to tabulate the critical values for 
every application to use the asymptotic distribution for testing. As an alternative we consider 
two approaches, (i) bootstrapping and (ii) simulations based on the normal approximation of 
the MSPE difference estimates. We prove the validity of the bootstrap procedure developed 
in CM for our proposed test. As a second contribution of our paper we discuss the tests of 
equal and superior predictive accuracy for multiple model comparisons suggested in the 
literature in a unified notational framework.  
 
The finite sample size and power properties of the tests are evaluated via extensive Monte 
Carlo simulations for one and four-step ahead forecasts. We find that our proposed tests are 
well sized for one step ahead as well as for multi-step ahead forecasts when critical values are 
bootstrapped. Using the simulated normal critical values provides reasonable size for one-
step ahead and for the maximum t-statistic also for four-step ahead. The experiments on the 
power reveal that the superior predictive ability test performs last while the ranking between 
the quasi likelihood-ratio test and the other equal predictive ability tests depends on the 
simulation settings. 
 
Finally, we present an empirical analysis where we find that the recessionary gap and the 
food and energy inflation components do not have predictive content for core inflation during 
the Great Moderation period while the tests provide mixed evidence in the earlier sample. 
Therefore, conclusions on the predictive ability of a Phillips type curve for US core inflation 
depend not only on the sample, but also on the test and on the method with which the critical 
values are obtained. However, the size and power performance of the tests outlined in the 
simulation results can provide guidance on which test and critical values are more reliable in 
this environment. 
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1 Introduction

Evaluation of forecast accuracy usually requires comparing the expected loss of the forecasts

obtained from a set of models of interest. Testing whether the models provide the same

forecast performance represents a test of equal predictive ability.

Early literature focuses on comparing non-nested models. Diebold and Mariano (1995)

and West (1996) suggest a framework to test for equal predictive ability in the case of

pairwise model comparison of non-nested models. White (2000) suggests a test for superior

predictive ability for a large number of models in a non-nested framework. Corradi and

Swanson (2007) modify the framework in White (2000) to allow for parameter errors to

enter the asymptotic distribution; Hansen (2005) suggests standardizing the White (2000)

statistic to achieve better power. Again the benchmark model should be nonnested in at

least one of the competing models.

However, in many applications the benchmark might be a parsimonious model obtained

by imposing zero restrictions on the coe¢ cients associated with the predictors in the alter-

native models. Examples include: Cooper and Gulen (2006), Guo (2006), Goyal and Welch

(2008) for stock market predictability, Stock and Watson (1999), Hubrich (2005), Hendry

and Hubrich (2011) for in�ation, Stock and Watson (2003), Ravazzolo and Rothman (2010),

Andersson et al. (2011) for GDP growth. In this case, it is well known in the literature that

many equal predictive ability tests developed for non-nested models cannot be used due to

failure of the rank condition1 (e.g., West (2006)).

In more recent years the analysis of pairwise model comparison of nested models has

been the object of many studies. Chao et al. (2001) derive out-of sample Granger�s causality

tests that have standard normal limiting distributions for one-step ahead predictions. For

multi-step forecasts obtained with the direct method and nonlinear least squares parameter

estimation formal characterization of the limiting distributions has been attained by Clark

and McCracken (2001, 2005a) and McCracken (2007). In this environment the test statistic

to evaluate the null of equal predictive ability is derived as functionals of Brownian motions

and is asymptotically pivotal under certain additional conditions. Clark and West (2006,

2007), thereafter CW, argue that for nested models the �nite sample mean square prediction

error (MSPE) di¤erence is negative and they introduce an adjustment term to center the

statistic around zero to get well sized tests even when critical values are obtained under the

1Under the null of equal predictive accuracy the errors of the di¤erent models are the same and therefore
the covariance matrix of the estimator is not full rank.
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normal approximation. They also provide Monte Carlo evidence supporting their suggested

procedure.

In this paper we extend the nested pairwise model comparison set-up to a nested multiple

model comparison. The main objective of the paper is to test out-of-sample equal predictive

ability with multiple models when a benchmark model is nested by the small number of re-

maining models. In the existing literature Hubrich and West (2010) (hereafter HW) consider

this setup and propose two approaches: one is to directly extend the pairwise model com-

parison in Diebold and Mariano (1995) and West (1996), (DMW) to a chi-squared statistic

and the other is to take the maximum of t-statistics of all the pairwise MSPE di¤erences,

resulting in inference based on the maximum correlated normals. Both tests are Wald-type

tests and they adjust the MSPE di¤erences as advocated in CW for pairwise model forecast

comparison. Again for nested multiple model comparison Inoue and Kilian (2005) derive the

asymptotic distribution of two tests of predictability for one step ahead forecasts. Clark and

McCracken (2012), thereafter CM, suggest a new bootstrap procedure to approximate the

asymptotically valid critical values for two tests of equal MSPE and two tests of forecast

encompassing for multiple model comparison of nested predictive models.

The main contribution of the paper is to propose an alternative test to the ones in HW

and CM. When the null model is nested by the alternative models, we �rst notice that the

MSPE di¤erences are zeros under the null of equal predictability while they are non-negative

under the alternative. By treating the MSPE di¤erences as a multivariate parameter we for-

mulate the problem of testing for equal predictability as testing a multivariate parameter

that takes one-sided values. Then, we propose one-sided quasi-likelihood ratio (hereafter

QLR) predictability tests for the comparison of a small number of models nesting the bench-

mark model. The QLR test statistic depends on the structure of the alternative models. We

distinguish among three di¤erent cases: (i) when the models are nested within each other,

(ii) when there is no nesting relation among the alternative models, and (iii) when the models

can be grouped such that within each group the models are nested, but there is no nesting

relation among groups. We derive the asymptotic distribution of the tests and �nd that

they depend on characteristics of the predictors. This implies that one needs to tabulate

the critical values for every application to use the asymptotic distribution for testing. As an

alternative we consider two approaches, (i) bootstrapping and (ii) simulations based on the

normal approximation of the MSPE di¤erence estimates.

As a second contribution of our paper we discuss the tests of equal and superior predictive

accuracy for multiple model comparisons suggested in the literature in a uni�ed notational
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framework. The �nite sample size and power properties of the tests are evaluated via exten-

sive Monte Carlo simulations for one and four-step ahead forecasts. The tests we compare

include the QLR type tests, the max-t test of HW and the tests in CM. We also include the

tests of superior predictive ability by White (2000), Hansen (2005) and Corradi and Swanson

(2007). Our Monte Carlo investigation reveals that, for critical values derived through the

�xed regressor bootstrap, as in CM, the QLR and max-t tests are correctly sized for one

step ahead forecasts and the size distortions for the longer forecast horizons are generally not

severe. Also, as previously found by HW, the use of simulated critical values based on the

normal approximation of the MSPE di¤erences overall performs well in terms of size in the

case of one-step ahead forecasts when the test statistics are adjusted as in CW and HW. For

four step ahead forecasts and for small out-of-sample forecast evaluation periods, the QLR

tests are oversized, however, and for short out-of-sample periods even grossly oversized, while

the max-t statistic is only somewhat oversized for short out-of-sample periods, and otherwise

exhibits reasonable size properties. The White, Hansen and Corradi and Swanson superior

predictive ability tests perform poorly in terms of size as they are not suited for nested

model comparison. As far as the power of the test is concerned, the ranking between the

quasi likelihood-ratio test and the max t-statistics test depends on the simulation settings.

This result is expected given that there is no uniformly most powerful test for multivariate

one sided hypothesis about linear equality constraints.

As an illustrative application, we evaluate equal predictive ability for forecasting the US

CPI core yearly in�ation rate for an AR(1) model as a benchmark and three other alternative

models that extend the benchmark by including extra predictors. Evidence against the null

of equal predictive ability is mixed and it varies not only across samples, but it also depends

on the test considered and on the method used to obtain the critical values. Then, the

simulation results provide us with some guidance on the most appropriate tests and critical

values to consider in order to draw conclusions about the predictive ability of a Phillips type

curve for US core in�ation.

The outline of the paper is as follows: Section 2 introduces the notation and the forecast-

ing environment. Section 3 presents the tests. Section 4 provides procedures for inference

based on the tests. In Section 5 the Monte Carlo simulation experiments are described and

the size and power properties of the tests are discussed. An empirical application of the test,

forecasting core US in�ation, is presented in Section 6. Section 7 concludes.
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2 Testing Framework

2.1 Notation and General Setup

Suppose that fys+� ; xsgts=1 are observed stationary time series variables at each forecast origin
t = T; :::; T + P � � and that xm;t are the predictors that belong to xt; for m = 0; 1; :::;M:

Notation m is used to denote a forecasting model. The benchmark model is denoted by

m = 0 and the alternative models by m = 1; :::;M; with M �nite.

Suppose that one is interested in forecasting a scalar yt+� , � � 1; using M + 1 linear2

models:

yt+� = x00;t�0 + u0;t+� (1)
...

yt+� = x0m;t�m + um;t+�
...

yt+� = x0M;t�M + uM;t+� ;

where x0m;t�m is the linear projection of yt+� on the predictor xm;t and um;t+� denotes the pop-

ulation forecast error with zero mean3 and satisfying E (um;t+�xm;t) = 0 for m = 0; 1; :::;M:

Note that the time series of the linear projection errors um;t+� could be serially correlated,

in particular for multistep forecasts. For � � 2; we allow the forecast errors to follow a

MA (� � 1) process. We assume the parameters �m to be constant over time.
Denote by ŷ0;t+� ; :::; ŷm;t+� ; :::; ŷM;t+� the ��period ahead forecasts obtained from the

estimated models either through the expanding window or the rolling scheme4 for t =

T; :::; T + P � � . Here T + P is the total sample size, T is the size of the sample used

to generate the initial estimates, P is the number of the observations used for out-of- sample

evaluation. We consider the case where the benchmark model is nested by every alterna-

tive model by imposing the restriction that x0;t; :::; xM;t are vectors of predictors such that

x0;t = x01;t is of dimension k0 � 1 and xm;t =
�
x001;t; x

0
m2;t

�0
is of dimension km � 1 with

k0 < km.

2Refer to Corradi and Swanson (2002) for an out of sample predictive accuracy test where the alternative
model is unknown and (non)linear.

3It is implicitly assumed that all models include an intercept term.
4In the expanding window scheme the size of the estimation sample grows while in the rolling scheme it

stays constant.
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The main goal of the paper is to test for the null hypothesis that the parsimonious model,

model 0; performs equally well as a larger model, say model m; m 2 f1; :::;Mg : Under the
null hypothesis, model 0 is the "true" model in the sense that each model m includes km�k0
excess parameters:

�m =
�
�00;0

0
km�k0

�0
;

for all m = 1; ::;M: Moreover, under the null hypothesis the errors are identical u0;t+� =

u1;t+� = � � � = uM;t+� . Under the alternative, however, the additional parameters estimated
are non-zero in population.

Following West (2006) and CW for pairwise comparisons and HW for multiple model

comparisons we denote as fm;t+� the di¤erence of the loss functions between the benchmark

and alternative modelm: In this paper, we consider fm;t+� to be the di¤erence in the squared

prediction errors (SPE): fm;t+� = u20;t+� � u2m;t+� , where um;t+� = yt+� � y
f
m;t+� and y

f
m;t+� is

the � -step ahead forecast from model m when the parameters of the models are set to their

population values. Collect the SPE di¤erences in the vector ft+� :

ft+� = (f1;t+� ; :::; fM;t+� )
0 :

De�ne � as the expected value of the di¤erence in the SPE, i.e. the expected value of ft+� :

� = E (ft+� ) =
�
�20 � �21; :::; �20 � �2M

�0
(2)

with �2m � E
�
u2m;t+�

�
being the population variance of the forecast error, which is assumed

to be a stationary process.

Let ûm;t+� = yt+� � ŷm;t+� be the � -step ahead forecast error from the estimated model

m. The sample analogs of fm;t+� and ft+� , denoted by f̂m;t+� and f̂t+� , are given by:

f̂m;t+� = (yt+� � ŷ0;t+� )2 � (yt+� � ŷm;t+� )2 = (û0;t+� )2 � (ûm;t+� )2

and

f̂t+� =
�
f̂1;t+� ; :::; f̂M;t+�

�0
:

The sample counterpart of �; the sample mean SPE (MSPE), is given by:

�f = (P � � + 1)�1
 
T+P��X
t=T

f̂1;t+� ; :::;
T+P��X
t=T

f̂m;t+� ; :::;
T+P��X
t=T

f̂M;t+�

!0
:
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According to CW, under the null that model 0 is the correctly speci�ed model the sample

MSPE from the parsimonious model will generally be lower than the sample MSPE from the

alternative model, so it may be the case that (P � � + 1)�1
PT+P��

t=T

�
f̂m;t+�

�
< 0 in �nite

samples. To improve the �nite sample properties, they suggest using an adjusted sample

MSPE to center it around zero, as

f̂adjm;t+� = f̂m;t+� + (ŷ0;t+� � ŷm;t+� )
2 ;

where (ŷ0;t+� � ŷm;t+� )2 is the adjustment term. In the Appendix we show the equivalence
between adjusted MSPEs suggested in Clark and West (2007) and pairwise model encom-

passing test statistics as in Harvey et al. (1998) or Clark and McCracken (2001). This

implies that our proposed QLR test statistics based on adjusted MSPE can be interpreted

as encompassing tests for small nested model sets. Analogous quantities de�ned above for

f̂m;t+� can be derived from f̂adjm;t+� :

f̂adjt+� =
�
f̂adj1;t+� ; :::; f̂

adj
M;t+�

�0
and �fadj = (P � � + 1)�1

T+P��X
t=T

f̂adjt+� :

Following Hubrich and West�s suggestion for multiple model comparison, we de�ne

�adjm = �m + E
�
yf0;t+� � y

f
m;t+�

�2
:

In the Not-for-Publication Appendix we show that

�adjm = 2�m;

so we conclude that in population the adjustment does not alter the nature of the problem

stated by the unadjusted MSPE.5

2.2 Hypotheses

Given the parameterization of predictability with the average di¤erence of the SPE in (2),

it is natural to express the null hypothesis that the parsimonious model, model 0; performs

5Note that Clark and McCracken (2005b) show analytically and in simulations that the adjusted and
unadjusted statistics have di¤erent behaviour in the presence of unmodeled structural change under the
alternative.
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equally well as a larger model, say model m; m 2 f1; :::;Mg as

H0 : � = 0;

or equivalently

H0 : �
adj = 0:

The speci�cation of the alternative hypothesis will depend on the assumptions about the

nesting structure of the alternative models. In this paper, we will distinguish three cases: (i)

when the models are nested within each other, (ii) when there is no nesting relation between

the alternative models, and (iii) a general case in which the models are nested within each

group but not across groups.

2.2.1 Alternative Models Nested within Each Other

We characterize the case in which each model m � 1 is nested in model m by imposing

that model m includes km � km�1 additional regressors: xm;t =
�
x0m�1;t; X

0
m;t

�0
so that

k0 < � � � < km < � � � < kM .
Given the structure of the problem, if model m� is the true model, then for models

m = 1; :::;m� � 1; it will hold that �2m� < �2m��1 � � � � � �21 and hence 0 � �1 = �20 � �21 �
� � � � �20 � �2m��1 = �m��1 < �20 � �2m� = �m� ; while for models m� + 1; :::;M; it will be

the case that �2m� = �2m�+1 = ::: = �
2
M ; which implies �m� = �m�+1 = ::: = �M : Note this

holds only for the case in which the set of regressors is progressively expanding with the

models,6 meaning that for every model m the set of regressors in model m� 1 is a subset of
the regressors in model m. Then the alternative hypotheses can be expressed as:7

H1 : 0 � �1 � �2 � � � � � �M ; � 6= 0; (3)

or equivalently as

H1 : D� � 0; � 6= 0; (4)

6A notable example is provided in the seminal paper by Meese and Rogo¤ (1983) on predictability of
exchange rates.

7Equivalently, since this ordering is invariant to the introduction of the CW adjustment the alternative can
be expressed with respect to �adj for each of the three cases considered: (i) H1 : 0 � �adj1 � �adj2 � � � � � �adjM ;
�adj 6= 0; (ii) H1 : �adj � 0; �adj 6= 0; (iii) H1 : DB�adj � 0; �adj 6= 0:
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where

D =

2666664
1 0 0 0

�1 1 0 0
. . . 0

0 0 �1 1

3777775 (5)

Hence we test equal forecast accuracy versus the alternative that at least one of the

models performs better than the benchmark. We consider a one-sided alternative as �rst

suggested by Ashley et al. (1980) and subsequently assumed in many studies (CW, HW).

2.2.2 Non-Nested Alternative Models

In this case there is no nesting relation between the alternative models, but still each of them

nests the benchmark. Then, the alternative hypothesis can be expressed as

H1 : �1 � 0; :::; and �M � 0; � 6= 0; (6)

or equivalently as

H1 : � � 0; � 6= 0: (7)

2.2.3 General Case: Alternative Models Nested within Groups

Now we consider a general case. Suppose that the alternative models can be grouped ac-

cording to the following relations: within each group the models are nested; however across

di¤erent groups, the models are not nested. In particular, considerK groups such that within

each group k: �k;1 � �k;2 � � � � � �k;Mk
, with Mk the number of models included in group

k. Here groups can have common alternative models.8 De�ne �k =
�
�k;1; �k;2; � � � ; �k;Mk

�
.

Then, the alternative hypothesis is expressed as

H1 : D1�
1 � 0; :::; and DK�

K � 0;
�
�10; :::; �K0

�0 6= 0;
or equivalently as

H1 : D
G� � 0; � 6= 0: (8)

8For example, when M = 3; if models 1 and 2 are nested by model 3 but models 1 and 2 do not nest each
other, then K = 2, where the �rst group consists of models 1 and 3 and the second group consists of models
2 and 3. In this case, model 3 is shared by the two groups.
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for some matrix DG whose entries are one of �1; 0; and 1:9 In a special case where each
group is mutually exclusive, the alternative hypothesis becomes

H1 : D
B� � 0; � 6= 0;

where

DB = diag (D1; :::; DK) :
10

with Dk a Mk �Mk matrix de�ned as D in (5).

3 Test Statistics

3.1 Quasi-Likelihood Ratio (QLR) Test Statistic

In the three cases of the previous subsections, we can express the null and the alternative

hypothesis in a general form as

H0 : � = 0 (or �adj = 0)

vs

H1 : G� � 0 and � 6= 0
�
or G�adj � 0 and �adj 6= 0

�
(9)

for some matrix G: When there are multiple restrictions in G (that is, the number of the

rows of G is larger than one), the alternative hypothesis in (9) is a multivariate one-sided

hypothesis.

Let

A0 = f0g and A = f� : G� � 0g
�
or A =

�
�adj : G�adj � 0

	�
:

Here A0 is the parameter set under the null and A is the maintained parameter set (the

union of the null parameter set and the alternative parameter set), and we can reexpress the

null and the alternative hypotheses as

H0 : � 2 A0 vs H1 : � 2 A�A0: (10)

9For example, in the case of the footnote above, DG =

2664
1 0 0
�1 0 1
0 1 0
0 �1 1

3775 :
10Matrix diag (D1; :::; DK) is the block diagonal matrix whose diagonal blocks are D1; :::; DK :
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Notice that the maintained parameter set A is a convex cone.
There is a long history in statistics literature that studied testing for the hypotheses

expressed in (10). For example,11 Perlman (1969) studied the likelihood ratio test when �

is the mean of iid multivariate Gaussian random vectors with unknown variance and the

parameter sets A0 and A are positively homogenous.
Following Perlman (1969)�s idea, to test for (9) or equivalently (10); we propose a quasi-

likelihood ratio statistic that is based on the standard Gaussian likelihood ratio statistic

when �fadj � N
�
�; 1

P��+1V
�
:

QLR

= (P � � + 1) min
�2A0

�
�fadj � �

�0
Ŵ
�
�fadj � �

�
� (P � � + 1)min

�2A

�
�fadj � �

�0
Ŵ
�
�fadj � �

�
= (P � � + 1) �fadj 0Ŵ �fadj � (P � � + 1) min

G��0

�
�fadj � �

�0
Ŵ
�
�fadj � �

�
;

where Ŵ is a general weighting matrix whose limit (either the weak or the probability limit)

is strictly positive de�nite (a.s.). Examples of widely used weight matrices are Ŵ = V̂ �1

or Ŵ = diag (v̂1; :::; v̂M)
�1 ; where as an estimator V̂ ; we use the Newey-West (1987) HAC

estimator

V̂ = �̂0 +
��1X
j=1

�
1� j

(� � 1) + 1

��
�̂j + �̂

0
j

�
: (11)

and �̂i = 1
P��+1

PT+P��
t=T

�
f̂adjt � �fadj

��
f̂adjt+i � �fadj

�0
, and v̂m denotes the mth diagonal ele-

ment of V̂ :

We call it a quasi-likelihood ratio statistic (rather than a likelihood ratio statistic) be-

cause it is based on misspeci�ed likelihood function (the true distribution of �fadj is not

N
�
�; 1

P��+1V
�
): It follows the same spirit of the quasi maximum likelihood estimator of

White (1982, 1994).

Throughout this paper, notation QLRD; QLRI , and QLRDG denotes QLR with G =

D; I;DG; respectively to di¤erentiate among the structure of the alternative models.

3.2 Alternative Nested Models Tests

We consider few alternative forecast accuracy tests for nested multi-model comparison con-

sidered in the existing literature proposed by HW and CM.

11Sillvapulle and Sen (2005) and Andrews (2001) are examples of more recent studies on this problem.
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HW suggest the test statistics:

max� t = max
1�m�M

(p
(P � � + 1)

�fadj1p
v̂1
; :::;

p
(P � � + 1)

�fadjMp
v̂M

)
;

max� t� unadj = max
1�m�M

�p
(P � � + 1)

�f1p
v̂1
; :::;

p
(P � � + 1)

�fMp
v̂M

�
;

which is the maximum of the t-statistics where v̂m is the mth diagonal element of V̂ in (11) :

CM consider the additional test statistics:

max� F = max
1�m�M

(
(P � � + 1)

�fadj1

�̂21
; :::; (P � � + 1)

�fadjM

�̂2M

)
;

max� F � unadj = max
1�m�M

�
(P � � + 1)

�f1

�̂21
; :::; (P � � + 1)

�fM

�̂2M

�
;

where �fm denotes the m� th element in the vector �f and �̂2m =
PT+P��

t=T
1

P��+1 û
2
m;t+� : These

last two statistics were also considered in Inoue and Kilian (2005) who derive the asymptotic

distribution of max-F and max-F-unadj for the case of one step ahead predictions.

3.3 Superior Predictive Ability Tests

Although the hypothesis of interest is di¤erent, for completeness we consider three additional

tests for multiple model comparison developed by White (2000), Hansen (2005) and Corradi

and Swanson (2007). These tests involve the composite null hypothesis:

H0 : � � 0: (12)

Because the null states that the benchmark is superior or equal (not inferior) to the alterna-

tive models they are called superior predictive ability tests. Given the null hypotesis in (12),

these tests are not designed for nested model comparison but rather accommodate cases in

which at least one of the alternative models is non-nested with the benchmark model.

White (2000) uses the test statistic:

SPAW = max
1�m�M

np
(P � � + 1) �f1; :::;

p
(P � � + 1) �fM

o
(13)

where �fm is the sample mean SPE associated with model m:
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The other two tests are recent variants of the White (2000) reality check test: Hansen

(2005) suggests the standardized test statistic:

SPAH = max

�
max

1�m�M

�p
(P � � + 1)

�f1p
v̂1
; :::;

p
(P � � + 1)

�fMp
v̂M

�
; 0

�
;

where v̂m is a consistent estimator of the m� th diagonal element of V̂ . This test statistic is
designed to discard poor and irrelevant alternatives from the set of forecasting models. As

in White (2000) the critical values are obtained through a stationary bootstrap.

Corradi and Swanson (2007) generalize White (2000) to the case in which the e¤ect of

parameter estimation error does not vanish asymptotically. Under a quadratic loss function

they formulate their test statistic as in (13), but they propose a new nonparametric block

bootstrap procedure to account for model misspeci�cation and non-vanishing parameter

estimation error.

4 Limiting Distribution and Computation of Critical

Values

In this section we discuss how to compute critical values for the test statistics of the previous

section. For this, we �rst derive the limiting distribution of the test statistics. We show that

the limit is not only a complicated functional of Brownian motion but also non-pivotal, and

this makes it di¢ cult to use the critical values of the limiting distribution. As alternatives,

we consider two di¤erent approaches. The �rst method is the bootstrapping approach. The

second method is to use the Gaussian approximation. Due to space limitation, we consider

only the QLR statistic since it covers a general case. It is straightforward to modify these

approaches for the test statistics QLRD; QLRI and QLRDG.

4.1 Limiting Distribution of QLR Statistic

We derive the asymptotic distribution of the general QLR test statistic

QLR = (P � � + 1) �fadj 0Ŵ �fadj � (P � � + 1) min
G��0

�
�fadj � �

�0
Ŵ
�
�fadj � �

�
:

Then, we discuss how to compute the critical values based on the limiting distribution.

For this, we let xt denote the kx� vector of all the predictors that do not overlap. Denote
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Jm to be the (km � kx) selection matrix such that xm;t = Jmxt for m = 0; 1; :::;M: De�ne

ut+� = yt+� � x0t�0; where x0t�0 is the (population) projection of yt+� on xt: Then, under the
null hypothesis, u0;t = u1;t = � � � = uM;t = ut: Let ut = um;t for all t and ht+� = xtut+� :

Denote Ht = 1
t

Pt��
s=1 ht+� ; �x = E (xtx

0
t) ; and 
h = limT

1
T

PT
t=1

PT
s=1E (hth

0
s) : De�ne

~ht = 

�1=2
h ht and Qm = 


1=2
h

�
J 0m (Jm�xJ

0
m)

�1 Jm � J 00 (J0�xJ 00)
�1 J0

�


1=2
h : We use W (r) to

denote the kx dimensional Wiener process.

We make the following assumptions which are quite standard in the literature (e.g., Clark

and McCracken (2001, 2005a, 2011), McCracken (2007)).12

Assumption 1 The coe¢ cient �m of Model m is estimated recursively by OLS:

�̂m;t = argmin
�m

1

t

t��X
s=1

(ys+� � �0mxm;s)
2
; for m = 0; 1; :::;M:

Denote Ut+� =
�
h0t+� ; vech (xtx

0
t � E (xtx0t))

�0
:

Assumption 2 (a) Ut is strictly stationary with E (Ut) = 0 and E kUtkr < 1; for some
r > 8: (b) E

�
hth

0
t�j
�
= 0 for all j � � : (c) E (xtx0t) > 0: (d) For some r > d > 2; fUtg

is strong mixing with mixing coe¢ cients of size � rd
r�d . (e) The long run variance of Ut;

limT
1
T
E

��PT��
s=1 Us+�

��PT��
s=1 Us+�

�0�
is a �nite and positive de�nite matrix.

Assumption 3 Assume that limP;T!1
P
T
= � 2 (0;1) :

Suppose that � is an M� vector and 	 is a (strictly) positive de�nite M �M matrix.

De�ne the functional

� (�;	) = arg min
G��0

(�� �)0	(�� �) :

Then, it is well known that

�0	�� min
G��0

(�� �)0	(�� �) = � (�;	)0	� (�;	)

(e.g., Silvapulle and Sen (2005) , Proposition 3.4.1) and � (�;	) is continuous in (�;	).

(e.g., see page 213 of Silvapulle and Sen(2005)).

De�ne

F = (F1; :::;FM)0 ; Fm =
Z 1+�

1

1

r
W (r)0QmdW (r) :

12Refer to these studies for a detailed discussion of the assumptions.
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Theorem 1 Assume Assumptions 1 �3. Then, under the null hypothesis, we have

1

2
(P � � + 1) �fadj ) F :

Furthermore, if "
1
2
(P � � + 1) �fadj

Ŵ

#
)
"
F
W

#
; (14)

where W is strictly positive de�nite with probablity one, then,

QLR) � (F ;W)0W� (F ;W) :

Remarks:

1. In the appendix we show that under the assumptions in Theorem 1, if the null is true,

then

V̂ ) V ;

where

V =

2664
V11 � � � V1M
...

. . .
...

VM1 � � � VMM

3775 ;
and

Vmn =
Z 1+�

1

1

r2
W (r)0QmQnW (r) dr:

2. Furthermore, suppose that B is an (M �M) matrix such that its (m;n)th element is
tr (QmQn) ; that is,13 B = [tr (QmQn)](m;n) : If rank rank (B) = M; then V is strictly
positive de�nite a.s.

3. If W is a positive de�nite non-random matrix, then the joint limit condition (14) is

implied by Ŵ !p W > 0:

Note that the limiting distribution of QLR is a functional of Brownian motion and it

depends on the characteristics of the data generating process such as the out-of-sample to

13Note that in a special case where 
h = �x = Ikx ; tr (QmQm) is km� k0 > 0 and tr (QmQn) = (# of the
common regressors in models m and n)� k0: In this case, if the alternative models are non-nested, then B
is a diagonal matrix with positive diagonal elements.
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in-sample ratio and on the covariance matrix of the regressors that do not overlap. Therefore

critical values should be tabulated for every application.14

4.2 Bootstrap Approach

An alternative method to the asymptotic approach is the bootstrap method. In this paper

we consider the bootstrap procedure proposed by Clark and McCracken (2012) which is a

variant of the wild �xed regressor bootstrap developed in Goncalves and Kilian (2004). A

detailed procedure is:

Step 1: Compute �̂ =
�PT

s=1 xsx
0
s

��1 �PT
s=1 xsys+�

�
; the OLS estimator that uses the

whole set of kx predictors: Then, compute the residuals ûs+� = ys+� � �̂
0
xs+� ; for s =

1; :::; T + P � � :
Step 2: Fit ûs+� on an MA (� � 1) process: ûs+� = "̂s+� + �̂1"̂s+��1 + � � � + �̂��1"̂s+1:

Simulate a sequence of iid N (0; 1) random variables, �s+� ; where s = 1; � � � ; T+P�� : Then,
compute û�s+� = �s+� "̂s+� + �̂1�s+��1"̂s+��1 + � � �+ �̂��1�s+1"̂s+1; for s = 1; :::; T + P � � :
Step 3: Estimate the benchmark model by OLS: �̂0 =

�PT
s=1 x0;sx

0
0;s

��1 �PT
s=1 x0;sys+�

�
:

Then, generate samples

y�s+� = x
0
0;s�̂0 + û

�
s+�

for s = 1; � � � ; T + P � � :
Step 4: Using

�
y�s+� ; xs

	
s=1;:::;T+P�� ; construct the test statistic QLR

�:

Step 5: Repeat Steps 1�4 B times to compute QLR�(b); b = 1; :::; B: Compute the

(1� �)th quantile of the empirical distribution of
�
QLR�(b)

	
b
as the size � critical value.

Consider the following assumption:15

Assumption 4 (a) Under the null, the forecast error ut is an invertible MA (� � 1) process
generated by ut = "t+�

0
1"t�1+ � � �+�0��1"t��+1, where "t � iid with E ("t) = 0; E k"tk

r <1;
for some r > 8; and "0 = � � � = "1�� = 0: (b) Denote �(L; �) = 1 + �1L + � � � + ���1L��1:
Denote "t (�; �) = � (L; �)

�1 ut (�) with u0 (�) = 0; where ut (�) = yt+� � �0xt: We assume
that there exists an open neighborhood N of the true parameter

�
�0; �0

�
and r > 8 such that

supt sup(�;�)2N k"t (�; �)kr ; supt sup(�;�)2N
@"t(�;�)@(�;�)


r
� K for some �nite constant K:

14In the appendix available from www-rcf.usc.edu/~moonr, we provide a procedure to simulate the asymp-
totic critical values and simulation results regarding the small sample properties of the QLR tests evaluated
against the asymptotic critical values.
15Assumption 4(a) implies that the forecasts are optimal as it requires the � step ahead forecast errors to

be at most MA(� � 1) processes.
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Denote P � to be the probability distribution of the generated samples y�s+� conditioning

on fys+� ; xsgs=1;:::;T+P�� : Denote )� to be "weak convergence" in P � to distinguish weak

convergence in the original probablity measure ()): The following theorem validates the

consistency of the bootstrap approximation of the distribution of the test statistic QLR:

Theorem 2 Assume Assumptions 1 �4. Then, 1
2
(P � � + 1) �f �adj )� F : Furthermore, if�

1
2
(P � � + 1) �f �adj; Ŵ �

�
)� (F ;W) ; where W is positive de�nite a.s., then we have

QLR� )� � (F ;W)0W� (F ;W) :

4.3 Use of Normal Approximation

We have shown that the limit distribution in Theorem 1 is nonstandard and a complicated

functional of Brownian motion. This is mainly because when testing for forecasting models in

the case of nested model comparison, if limP;T!1 P=T = �; � > 0; the limiting distribution

of �fadjm =
p
v̂m is a functional of Brownian motion instead of a standard normal distribution

(e.g., Clark and McCracken (2001 and 2005a), McCracken (2007)).

However, under di¤erent set-ups,16 it is possible to approximate �fadjm =
p
v̂m with a normal

distribution (see Giacomini and White (2006), Clark and McCracken (2001, 2005a), and the

discussion in HW). Using the normal approximation of the distribution of �fadjm =
p
v̂m; HW

proposed an inference based on the maximum of correlated normals, building on results from

the literature of order statistics. For one-step ahead forecasts and homoscedastic prediction

errors the simulation experiments in CW and HW provide evidence that the size properties

of their test statistics with the standard normal approximation of �fadjm =
p
v̂m are reasonable.

They also demonstrate that the standard normal approximation performs reasonably well in

heteroscedastic environments when the number of additional regressors, km is equal to one.

Moreover, they do not �nd substantial size or power improvements when using simulated or

bootstrapped critical values rather than asymptotic normal critical values.

Based on the results of CW and HW, one may conjecture that treating �fadj as nor-

mal might deliver a reasonable approximation despite the limiting distribution of the quasi

likelihood ratio test being a functional of Brownian motion under the maintained assump-

16Example of these are when the null hypothesis is to test the forecasting methods not models and when
one uses an asymptotic approximation holding T �xed and letting P ! 1 (Giacomini and White (2006)),
and when � = 0 (Clark and McCracken (2001, 2005)).

19



tions of the paper.17 This leads us to use the critical values computed under the normality

assumption for the MSPE-adjusted to evaluate the tests in our simulations. These criti-

cal values can be computed as follows. Treat �fadj � N(0; V ): De�ne Z = (Z1; :::; ZM)
0 �

N
�
0; R̂�1=2V̂ R̂�1=2

�
; where R̂ = diag(V̂ ): Then, we approximate the distributions of the

tests as follows: max1�m�M fZ1; :::; ZMg for the limit of max� t; and �
�
Z; Ŵ

�0
Ŵ�

�
Z; Ŵ

�
for the limit of QLR: Though this approach might be appealing because it is easy to im-

plement, we stress that under the maintained assumptions of this paper the limiting null

distribution of the MSPE di¤erences is non-normal and therefore the Normal approximation

is not guaranteed to deliver well-sized tests.

5 Monte Carlo Simulation

In this section we �rst outline in detail the two experimental designs for the Monte Carlo

simulation: one motivated by empirical studies on the predictive content of the yield curve for

gdp growth and one suited to the comparison of forecast models for in�ation. The evaluation

of the tests is implemented with critical values derived through simulations by bootstrapping

or by assuming normality of the MSPE. We present results for test statistics based on both

unadjusted and adjusted MSPEs. Additionally, we provide results for the superior predictive

ability tests discussed in Section 3.3.

In this simulation study we go beyond the existing literature in presenting new small

sample evidence for our proposed QLR tests using di¤erent critical values, including normal

and bootstrapped critical values. We add to the simulation evidence in HW and CM results

for di¤erent DGPs. In addition, we present new evidence for the superior predictive ability

test suggested by Corradi and Swanson (2007), SPA_CS, that to our knowledge has not

been presented in simulation studies so far.

5.1 Experimental Design

The implementation of the simulation exercise requires the design of the DGP process for

the size and the power experiment and the selection of the forecasting models.

17We stress that these critical values might be incorrect under our approximation framework, so we do not
claim validity of the normal approximation for our test statistics.
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The design for DGP1 takes the form:

yt+� = c+ �yt + 
0xt + ut+� (15)

with c = 1; � = 0:25 and ut+� i.i.d N(0; 1) when � = 1 and ut+� a MA (� � 1) process of
the form:18 ut+� = "t+� + 0:95"t+��1 + 0:9"t+��2 + 0:8"t+��3 when � = 4: The DGP for the

size exercise is an autoregressive process obtained by setting  = 0: In the power experiment

three exogenous variables are added to the autoregressive term and  = [0:05 0:05 0:25]0

when � = 1,  = [0:15 0:15 0:75]0 when � = 4. The exogenous variables, collected in the

vector xt = (x1;t; x2;t; x3;t)
0 are determined independently by:

xi;t = ai + �ixi;t�1 + �it (16)

with ai = 1; �i = 0:8 for i = 1; 2; 3; �it � N(0; 1); �it is independent of ut and of �jt for all
i 6= j and t: DGP1 is loosely related to the empirical analysis conducted in Ang et al. (2006).
The variable of interest for forecasting is gdp growth which exhibits little persistence. The

exogenous variables are quite persistent, as it is the case for short term bonds yield, bonds

spread and in�ation, the candidate variables for predicting gdp growth. The vector  is

chosen such that one of the variables matters much more than the others in determining the

evolution of yt: This is consistent with the �ndings in Ang et al. (2006) that short rate and

lagged gdp growth account �ve time less than the term spread in an estimated univariate

and unconstrained linear regression model for gdp growth.

Similarly to DGP1 the target series for DGP2 yt+� is generated by the process described

in (15), but the vector xt follows the VAR(1) process:

xt = a+ �xt�1 + vt

with xt = (x1;t; x2;t; x3;t)0; a a 3�1 vector of ones, ut+� aMA (� � 1) process of the same form
as for DGP1, vt � N(0; I) and ut+� independent of vt: The VAR(1) regression coe¢ cient �
allows for interdependence between the predictors:

� =

2664
0:6 0:1 0

0:6 0:25 0

0 0 0:9

3775 : (17)

18The MA process for the errors is taken from Clark and McCracken (2012).

21



In the size exercise the vector  is set to zeros, while in the power exercise  = [0:15 0:15

�0:15]0 for one step ahead forecasts and  = [0:25 0:25 �0:25]0 for four step ahead forecasts.
The second design is based on the empirical application presented in this paper, where the

US CPI core in�ation is forecasted with backward looking Phillips Curve type models using

a recessionary gap variable as in Stock and Watson (2010) and in�ation components as

in Hubrich (2005) and Hendry and Hubrich (2011). The coe¢ cient matrix � is obtained

by estimating a VAR(1) for cpi food in�ation, cpi energy in�ation, and a recessionary gap

de�ned in Section 5 over the sample 1959:Q1-2010Q2. The gap evolves independently of the

two components and in the power exercise it is negatively correlated with core in�ation.

Next the forecasting models are selected. The benchmark model is the true model in the

size experiment:

M0 : yt+� = c0 + �0yt + u0;t+� : (18)

while the alternative models take the form:

Mm : yt+� = �
0
mxm;t + um;t+� ; m = 1; :::;M; (19)

where xm;t = (1; yt; x1;t)
0 form = 1, xm;t = (1; yt; x1;t; x2;t)

0 form = 2; xm;t = (1; yt; x1;t; x2;t; x3;t)
0

for m = 3: The dimension of �m is m+2: Model M3 then nests not only the benchmark but

also models 1 and 2; this is equivalent to the scenario analyzed in the �rst case presented in

Section 2.2, where the alternative models are progressively nested within each other.

For both DGPs the estimates are carried out through OLS with expanding window scheme

and 10 percent signi�cance level. For the QLR test the simulations are implemented with

Ŵ = V̂ �1; where V̂ is de�ned as in (11). We focus on one and four step ahead forecasts

and we consider di¤erent length of the in-sample, T = f80; 100; 200g, and out-of-sample
P = f40; 100g. The sample sizes selected are consistent with the current length of time
series available at the quarterly frequency.

5.2 Simulation Results

5.2.1 Size

First we report the empirical size for the QLR, the max-t and the max-F statistic based

on both adjusted (Table 1) and unadjusted MSPEs (Table 2). We also include the superior

predictive ability tests by White (2000), Hansen (2005) and Corradi and Swanson (2007)

described in Section 3.3. We abbreviate them as SPA_W, SPA_H and SPA_CS respectively.
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Table 1. Empirical Size (Nominal Size =10%)

DGP1 DGP2

� = 1

P=40 P=100 P=40 P=100

test T 80 100 200 80 100 200 80 100 200 80 100 200

Bootstrap

QLRI 0.095 0.083 0.096 0.103 0.098 0.096 0.113 0.109 0.116 0.100 0.101 0.104

QLRD 0.086 0.078 0.091 0.085 0.085 0.082 0.101 0.102 0.125 0.095 0.109 0.110

max-t 0.088 0.075 0.090 0.089 0.077 0.089 0.132 0.127 0.138 0.114 0.120 0.130

max-F 0.090 0.086 0.085 0.088 0.082 0.081 0.145 0.124 0.140 0.125 0.115 0.132

Normal

QLRI 0.129 0.135 0.135 0.099 0.101 0.106 0.126 0.129 0.133 0.097 0.098 0.112

QLRD 0.095 0.093 0.103 0.062 0.066 0.072 0.095 0.101 0.104 0.065 0.066 0.074

max-t 0.065 0.068 0.074 0.052 0.052 0.058 0.073 0.071 0.079 0.053 0.056 0.059

Non-nested

SPA_W 0.017 0.024 0.024 0.006 0.005 0.018 0.022 0.020 0.035 0.007 0.005 0.017

SPA_H 0.026 0.021 0.029 0.005 0.007 0.020 0.022 0.025 0.035 0.008 0.004 0.017

SPA_CS 0.179 0.153 0.121 0.319 0.245 0.158 0.037 0.031 0.009 0.069 0.041 0.023

� = 4

Bootstrap

QLRI 0.167 0.188 0.203 0.183 0.183 0.169 0.132 0.125 0.147 0.128 0.135 0.151

QLRD 0.150 0.168 0.200 0.160 0.162 0.143 0.123 0.137 0.153 0.130 0.158 0.133

max-t 0.144 0.135 0.156 0.141 0.148 0.123 0.147 0.161 0.178 0.128 0.171 0.147

max-F 0.320 0.304 0.334 0.295 0.325 0.295 0.240 0.237 0.245 0.215 0.245 0.225

Normal

QLRI 0.336 0.344 0.338 0.218 0.217 0.230 0.304 0.292 0.284 0.187 0.185 0.199

QLRD 0.272 0.284 0.273 0.163 0.157 0.179 0.258 0.246 0.242 0.147 0.142 0.159

max-t 0.164 0.166 0.161 0.112 0.109 0.121 0.141 0.132 0.133 0.088 0.086 0.101

Non Nested

SPA_W 0.117 0.125 0.143 0.029 0.058 0.092 0.116 0.121 0.123 0.043 0.052 0.091

SPA_H 0.158 0.154 0.187 0.051 0.073 0.107 0.137 0.137 0.151 0.057 0.061 0.108

SPA_CS 0.214 0.206 0.168 0.348 0.291 0.196 0.092 0.078 0.038 0.181 0.129 0.062

NOTE: The DGPs are described in Section 5.1. T and P refers to the size of the in-sample and out-of-sample respectively. The
forecast horizon is denoted by � . The su¢ x �-F� refers to a test statistic constructed using the variance-covariance matrix of
the forecast errors. The QLRI and QLRD statistics accommodate di¤erent structures of the alternative models as described
in Section 2. The reported results are based on 10000 replications when the statistics are obtained under the assumption of
normality. For critical values generated through the bootstrap the number of replications is 1000 and for each replication we
generate 500 bootstrap samples. For every draw, the initial 100 observations generated are discarded. The superior predictive
ability (SPA) tests are described in Section 3.3.

Tests for comparisons where all alternative models nest the benchmark and that are

based on adjusted MSPEs exhibit reasonable size properties. When bootstrap critical values

are employed all tests are slightly undersized for DGP1 and show good size properties also

for DGP2 for �=1. The max-t test is slightly oversized in that case, and max-F is most
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oversized for P=40. For P=100 the QLRI test performs best in terms of size.19

For the normal critical values the size distortions of tests based on adjusted MSPEs

for �=1 are larger than for those based on bootstrap critical values, which is in line with

results in CM. The QLRI is oversized and QLRD is well sized to undersized, while the max-

t is somewhat undersized (the latter �nding con�rms results in HW and CM for di¤erent

DGPs). QLRD has the best size of the three tests with normal critical values for P=40 and

QLRI has the best size for P=100. For four steps ahead and bootstrapped critical values all

tests are oversized, but the max-F test shows the largest size distortions with empirical size

even three times larger than the nominal size. For DGP 1 the max-t test does best in terms

of size, while for DGP 2 the QLRI test is best. With critical values based on the normal

approximation the max-t is somewhat oversized, but has good size properties for higher

values of P. In contrast, QLRI and QLRD are clearly oversized in this case, especially QLRI
for P=40.20 We stress that, because the limiting distribution of the MSPE di¤erentials is

non-normal, the approximation is not guaranteed to provide well sized tests in a broader set

of DGPs.

The tests of superior predictive ability (SPA) are suited for comparisons where at least

one of the alternative models does not nest the benchmark. They are also constructed for a

di¤erent null than the tests of equal predictive accuracy that we have discussed so far.Then it

is not surprising that those tests do not perform as well as the tests designed for nested model

comparison. In particular, we �nd that the SPA_W and SPA_H tests are both severely

undersized for �=1. Such large size distortions are in line with earlier simulation results

for the White and Hansen tests in HW and CM. For �=1 the SPA_CS test is oversized

for DGP1, severely oversized for T=80, while for DGP2 it is undersized. For the SPA_CS

there are, to our knowledge, no other simulation results published in the literature. For �=4

SPA_W and SPA_H are oversized for P=40 and undersized for P=100. For SPA_H we �nd

that the size increases with increasing in-sample period T, similar to the pattern found in

CM. SPA_CS exhibits severe size distortions for DGP1, while for DGP2 the size is overall

good, either under or oversized depending on the sample size. We have investigated further

the properties of the SPA test by changing the forecasting models to consider only non-nested

19Simulation experiments in CM show that the bootstrap approach to obtain the critical values works well
even for a large number of models when the number of predictors is relatively small.
20Further research might also explore the possibility of improving the small sample size properties of the

QLR tests using di¤erent weighting matrix than V̂ �1. In the appendix for example we show that for critical
values obtained by simulating the asymptotic distribution, size improves in small samples when choosing a
diagonal weighting matrix.
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models and, in the case of the SPA_CS test, to introduce misspeci�cation. The results in a

Not-for-publication Appendix show improved size of the SPA tests in the simulation setting

that considers nonnested models.

Table 2. Empirical Size (Nominal Size =10%), unadjusted statistics

DGP1 DGP2

� = 1

P=40 P=100 P=40 P=100

test T 80 100 200 80 100 200 80 100 200 80 100 200

Bootstrap

QLRI -unadj 0.093 0.084 0.098 0.095 0.098 0.101 0.118 0.109 0.125 0.107 0.099 0.109

QLRD-unadj 0.100 0.079 0.098 0.088 0.097 0.092 0.123 0.099 0.130 0.094 0.111 0.109

max-t-unadj 0.099 0.082 0.096 0.091 0.086 0.097 0.138 0.130 0.150 0.124 0.123 0.148

max-F-unadj 0.094 0.096 0.101 0.096 0.095 0.083 0.132 0.138 0.0145 0.127 0.124 0.151

Normal

QLRI -unadj 0.084 0.097 0.108 0.055 0.060 0.070 0.083 0.089 0.103 0.053 0.055 0.072

QLRD-unadj 0.042 0.047 0.063 0.009 0.015 0.025 0.037 0.046 0.063 0.011 0.014 0.026

max-t-unadj 0.019 0.025 0.038 0.005 0.007 0.015 0.025 0.028 0.045 0.007 0.010 0.018

� = 4

Bootstrap

QLRI -unadj 0.161 0.171 0.191 0.162 0.171 0.159 0.144 0.149 0.167 0.142 0.135 0.156

QLRD-unadj 0.149 0.171 0.188 0.147 0.156 0.146 0.133 0.155 0.185 0.137 0.159 0.144

max-t-unadj 0.130 0.147 0.166 0.117 0.127 0.112 0.142 0.169 0.188 0.143 0.175 0.164

max-F-unadj 0.264 0.245 0.295 0.217 0.228 0.229 0.207 0.221 0.231 0.167 0.190 0.203

Normal

QLRI -unadj 0.260 0.270 0.283 0.123 0.127 0.157 0.225 0.227 0.239 0.112 0.113 0.138

QLRD-unadj 0.171 0.186 0.203 0.048 0.052 0.083 0.155 0.156 0.177 0.044 0.046 0.076

max-t-unadj 0.076 0.080 0.099 0.020 0.025 0.046 0.064 0.064 0.081 0.019 0.020 0.042

NOTE: Refer to the note on Table 1. Also, the su¢ x �-unadj� refers to test statistics constructed based on the di¤erences in
MSPE without using the CW adjustment.

Tests for nested model comparisons based on the unadjusted MSPEs (Table 2) show

generally more size distortions than tests based on adjusted MSPEs. The size results show

a similar pattern as for the adjusted statistics. Assuming the normal approximation leads

to a severely undersized max-t test and undersized QLR tests for �=1. For �=4 our results

show an undersized max-t test and somewhat over- or undersized tests for small values of T

and small values of T and P respectively. The size distortions for the normal approximation

in case of the unadjusted test statistic are not surprising since approximate normality has

been shown to lead to reasonable small sample size properties in CW and HW only for the

statistic based on adjusted MSPEs (see also the discussion in Section 4.3 in this paper).

Regarding the max-F test we �nd similar relative performance as for the adjusted statistics,

namely comparable size to QLR and max-t tests for �=1 and much worse size for �=4.
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5.2.2 Power

We now comment on the power of the tests given the results shown in Table 3 and Table

4. For all tests and forecast horizons the power increases with the size of the out-of-sample

period for a given in-sample size. Improvements are also generally obtained when the in-

sample size grows for �xed out of sample size, but the power gain is more substantial for an

increase in P than an equal increase in T.

Table 3. Power, tests based on adjusted MSPEs

DGP1 DGP2

� = 1

P=40 P=100 P=40 P=100

test T 80 100 200 80 100 200 80 100 200 80 100 200

Bootstrap

QLRI 0.592 0.557 0.617 0.943 0.945 0.956 0.670 0.675 0.690 0.941 0.951 0.958

QLRD 0.669 0.682 0.705 0.962 0.972 0.980 0.770 0.770 0.790 0.969 0.974 0.977

max-t 0.765 0.754 0.783 0.967 0.979 0.991 0.821 0.822 0.849 0.971 0.975 0.980

max-F 0.916 0.915 0.960 0.991 0.997 0.999 0.927 0.943 0.978 0.987 0.993 0.999

Normal

QLRI 0.634 0.629 0.655 0.935 0.941 0.957 0.724 0.733 0.771 0.972 0.975 0.981

QLRD 0.680 0.679 0.711 0.952 0.957 0.969 0.784 0.797 0.836 0.985 0.984 0.990

max-t 0.662 0.675 0.718 0.951 0.957 0.975 0.769 0.783 0.822 0.984 0.983 0.991

Non-nested

SPA_W 0.625 0.625 0.789 0.832 0.849 0.923 0.727 0.767 0.861 0.909 0.935 0.956

SPA_H 0.237 0.262 0.332 0.445 0.514 0.542 0.375 0.390 0.398 0.613 0.626 0.666

SPA_CS 0.639 0.649 0.771 0.886 0.887 0.894 0.142 0.126 0.109 0.262 0.236 0.224

� = 4

Bootstrap

QLRI 0.563 0.581 0.611 0.930 0.940 0.956 0.329 0.337 0.378 0.608 0.618 0.663

QLRD 0.635 0.657 0.688 0.960 0.957 0.971 0.426 0.423 0.453 0.705 0.730 0.772

max-t 0.691 0.735 0.758 0.966 0.974 0.982 0.504 0.506 0.547 0.717 0.747 0.800

max-F 0.945 0.950 0.978 0.995 0.998 1.000 0.694 0.748 0.848 0.860 0.893 0.957

Normal

QLRI 0.766 0.773 0.789 0.946 0.953 0.966 0.567 0.587 0.616 0.720 0.739 0.777

QLRD 0.787 0.799 0.817 0.959 0.962 0.974 0.604 0.620 0.668 0.767 0.788 0.837

max-t 0.738 0.752 0.794 0.955 0.961 0.977 0.467 0.481 0.534 0.691 0.701 0.764

Non-Nested

SPA_W 0.669 0.687 0.838 0.873 0.894 0.936 0.499 0.541 0.652 0.597 0.653 0.755

SPA_H 0.557 0.553 0.659 0.730 0.761 0.799 0.433 0.476 0.465 0.488 0.531 0.594

SPA_CS 0.676 0.655 0.756 0.870 0.883 0.893 0.207 0.196 0.151 0.319 0.256 0.185
NOTE: Refer to the note on Table 1.

In the case of a multivariate one-sided alternative hypothesis there is no uniformly more

powerful test, so the ranking between tests is likely to vary across di¤erent simulation designs.
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However given the structure of the alternative models the QLRD test should outperform the

QLRI test as the latter does not account for the particular ordering of the MSPE di¤erences.

This conjecture is con�rmed by our simulations.

The power based on adjusted test statistics is presented in Table 3. The QLR and max-t

tests based on bootstrap critical values have comparable power for P=100 given the size

properties, while for small P max-t has better power. QLRD is more powerful than QLRI
for both �=1 and �=4. The max-F shows higher power than the max-t and QLR tests, in

particular for DGP2 for �=4. However, the size of this test is clearly distorted for four step

ahead predictions which suggests only a limited usefulness of this test statistic in practice.

Using normal critical values, the QLR tests are more powerful than the max-t test for DGP1,

while for DGP2 the max-t test is more powerful.

Table 4. Power, tests based on unadjusted MSPEs

DGP1 DGP2

� = 1

P=40 P=100 P=40 P=100

test T 80 100 200 80 100 200 80 100 200 80 100 200

Bootstrap

QLRI -unadj 0.217 0.221 0.275 0.465 0.501 0.546 0.400 0.384 0.400 0.603 0.639 0.679

QLRD-unadj 0.391 0.394 0.405 0.775 0.781 0.740 0.602 0.591 0.584 0.869 0.875 0.860

max-t-unadj 0.524 0.496 0.526 0.846 0.844 0.827 0.688 0.678 0.665 0.899 0.896 0.888

max�F-unadj 0.751 0.742 0.817 0.932 0.940 0.970 0.822 0.835 0.894 0.962 0.972 0.968

Normal

QLRI -unadj 0.216 0.215 0.252 0.366 0.387 0.438 0.327 0.339 0.391 0.484 0.502 0.586

QLRD-unadj 0.239 0.241 0.285 0.414 0.431 0.496 0.375 0.394 0.455 0.573 0.593 0.673

max-t-unadj 0.208 0.225 0.289 0.387 0.431 0.517 0.303 0.322 0.386 0.531 0.547 0.634

� = 4

Bootstrap

QLRI -unadj 0.307 0.310 0.311 0.554 0.545 0.560 0.289 0.280 0.300 0.355 0.369 0.426

QLRD-unadj 0.395 0.425 0.402 0.751 0.733 0.726 0.391 0.395 0.404 0.595 0.598 0.623

max-t-unadj 0.505 0.541 0.516 0.824 0.813 0.825 0.434 0.443 0.449 0.618 0.623 0.648

max�F-unadj 0.768 0.807 0.866 0.931 0.930 0.998 0.587 0.632 0.712 0.725 0.749 0.832

Normal

QLRI -unadj 0.408 0.416 0.456 0.477 0.506 0.563 0.373 0.386 0.427 0.318 0.344 0.412

QLRD-unadj 0.410 0.426 0.477 0.507 0.537 0.595 0.370 0.395 0.456 0.352 0.379 0.472

max-t-unadj 0.337 0.356 0.424 0.471 0.519 0.605 0.208 0.231 0.286 0.233 0.253 0.341

NOTE: Refer to the note on Table 1.

SPA_W and SPA_H exhibit low power, which was expected since the tests are severely

undersized. SPA_CS has power comparable to the max-t and QLR tests, but the evaluation
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of this power performance has to take into account that the test is clearly oversized, in

particular for DGP2.

The power of the tests for nested model comparison based on unadjusted MSPE is dis-

played in Table 4. As noted in CM tests based on unadjusted statistics have lower power

than tests based on adjusted statistics. With the bootstrap based critical values the max-t

test exhibits higher power than the QLR test, although the di¤erence to QLRD is not very

large. Also in this case the QLRD test has larger power than QLRI for �=1 and �=4. In

contrast, with critical values obtained assuming normal approximation the QLRD test has

higher power than the max-t and QLRI tests for both �=1 and �=4.

6 Forecasting US In�ation

In this section we apply our test to the evaluation of equal predictive ability for forecasting

the US CPI core yearly in�ation rate. In�ation exhibits very di¤erent characteristics over

the last 50 years: in the beginning of the sample it is very high and volatile while from

the mid-80s it is more stable and has a lower mean. This led us to split the data into two

samples, as the di¤erent behavior is possibly due to parameters instability not handled by

our framework: the �rst includes the observations 1959:Q1-1971:Q4, the second spans from

1984:Q1 through 1997:Q4. The remaining years (1972-1983 for the �rst sample, and 1998-

2010 for the second sample) are used for forecast evaluation. The models we consider are an

AR(1) benchmark with constant and three alternatives obtained by progressively expanding

the set of predictors: a lagged real activity gap measure in model M1, the lagged in�ation

rate for cpi food in model M2 and lagged in�ation rate for cpi energy in model M3. The

real activity gap we consider is the recessionary gap de�ned by Stock and Watson (2010)

as the di¤erence between the current unemployment rate and the minimum unemployment

rate over the current and previous 11 quarters. Stock and Watson (2010) show evidence

of a linear relationship between PCE in�ation and the recessionary gap, a �nding that

is relevant for our backward Phillips-curve type of analysis for core CPI in�ation. Food

and energy in�ation are the two most volatile components of CPI all items in�ation and are

excluded from the computation of CPI core in�ation. We ask whether those two components
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have any additional predictive ability over a Phillips Curve model for CPI core in�ation.21

Consistently with the simulation settings, all the alternative models nest the benchmark and

the alternative models are nested within each other. The estimation technique adopted is

recursive OLS applied to the annualized quarterly in�ation rate and the forecast horizons of

interest are one and four.

Table 5 collects test results for the max t-statistic and the two quasi likelihood ratio tests

for both one step ahead and four step ahead forecasts. For each sample the table reports

the test statistics and the p-values obtained under the assumption of Normality (N) of the

MSPE and through bootstrapping (B).

Table 5. Test of Equal Forecast Accuracy for US In�ation

One� Step Ahead Four � Step Ahead
1st sample 2nd sample 1st sample 2nd sample

test stat p-values test stat p-values test stat p-values test stat p-values

B N B N B N B N

max-t 1.744 0.655 0.106 1.145 0.557 0.247 2.052 0.056 0.086 1.109 0.230 0.260

QLRI 4.300 0.545 0.121 2.487 0.573 0.340 4.349 0.094 0.146 2.020 0.363 0.439

QLRD 4.301 0.536 0.078 0.712 0.589 0.538 4.350 0.082 0.123 0.143 0.612 0.600
NOTE: The variable to be forecasted is the annualized quarter to quarter in�ation rate for PCE core. The models we consider
are an AR(1) benchmark with constant (M0) and three alternatives obtained by progressively expanding the set of predictors:
a lagged real activity gap measure in model M1, the lagged in�ation rate for cpi food in model M2 and lagged in�ation rate
for cpi energy in model M3. The estimation samples are 1959:Q1-1971:Q4 and 1984:Q1 through 1997:Q4. The remaining years
(1972-1983 for the �rst sample, and 1998-2010 for the second sample) are used for forecast evaluation.

For the second sample there is clear evidence from all tests that equal predictability

at both forecast horizons cannot be rejected. For the �rst sample instead the results are

mixed: at one step ahead when the normal approximation is used only QLRD rejects the

null at the 10% signi�cance level, while the recessionary gap and/or the food and/or energy

components do not have signi�cant predictive content for core in�ation when critical values

are bootstrapped. For four step-ahead forecasts there is strong evidence against the null for

the max-t stat and the QLR tests for bootstrapped critical values, while for critical values

under normality only the max-t test rejects.22

We turn to our simulation results to interpret the �ndings in Table 5. For a four step

ahead forecast horizon the max-t test for DGP2 (which is more relevant for our empirical

21Hubrich (2005) and Hendry and Hubrich (2011) discuss the merit of including components in the forecast-
ing model for the aggregate; the latter authors particularly suggest to include components in the forecasting
model for the aggregate.
22Concerns may rise on the stability of the parameters during the last recession, so we repeat the analysis

for the second sample disregarding the observations past 2007Q2. For this shorter sample for both forecast
horizons all tests fail to reject the null regardless of the methods under which the critical values are obtained.
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application) with both bootstrap and normal critical values exhibits higher power than the

QLR tests. Also, the QLRD test, which has higher power than QLRI according to our

simulations, also clearly rejects based on bootstrap critical values, and is close to rejection

when using normal critical values. In light of these considerations we conclude that we can

reject equal forecast accuracy for the 1st sample on a 10% nominal signi�cance level for

four-step ahead forecasts.

7 Conclusions

This paper introduces a quasi likelihood ratio predictability test for the comparison of a small

number of models nesting a parsimonious benchmark model. In formulating the alternative

hypothesis and the test statistics we distinguish among three cases according to the structure

of the alternative models. We show that the limiting distribution of the test statistic is

nonstandard and it depends on the characteristics of the predictors. Then we prove the

validity of the bootstrap procedure developed in CM for our proposed test.

A further contribution of this paper is to discuss the tests of equal and superior predictive

accuracy for multiple model comparisons suggested in the literature in a uni�ed notational

framework.

The �nite sample size and power properties of the tests are evaluated and compared via

Monte Carlo simulations either by bootstrapping or by treating the statistics as normally

distributed. These investigations indicate that the bootstrapped critical values deliver QLR

tests with empirical size close to nominal size for one-step-ahead forecasts, whereas for longer

forecast horizons the tests are somewhat oversized, with the max-F su¤ering the largest

distortions. The normal approximation of the vector of MSPE-adjusted yields approximately

correctly sized QLR, max-t and max-F tests for one step ahead forecasts but for longer

horizons it provides oversized QLR tests while the max-t test is about correctly sized. Relying

on the bootstrap rather than on the assumption of normality to compute the critical values

in general does not a¤ect the power of the tests. Also, we �nd that the CW adjustment

improves size in particular for higher forecast horizons, and power of the QLR tests, max-t

and max-F tests at all forecast horizons. The size and power properties of the QLR tests

relative to the max t-statistic depends on parameterization of the Monte Carlo experiment.

We compare our test with existing tests for multi-model forecast comparison of superior

predictive ability such as White (2000), Hansen (2005) and Corradi and Swanson (2007),

which are suited for nonnested model comparison. These tests have inferior size properties
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in our simulation setting which involves a di¤erent null and a nested model comparison.

Last, in the empirical analysis we �nd that the recessionary gap and the food and energy

components do not have predictive content for core in�ation during the Great Moderation

period while the tests provide mixed evidence in the earlier sample. Therefore, conclusions

on the predictive ability of a Phillips type curve for US core in�ation depend not only on the

sample, but also on the test and on the method with which the critical values are obtained.

However, the size and power performance of the tests outlined in the simulation results can

provide guidance on which test and critical values are more reliable in this environment.
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