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Abstract

This paper presents a new approach to randomly generate interbank networks while
overcoming shortcomings in the availability of bank-by-bank bilateral exposures. Our
model can be used to simulate and assess interbank contagion effects on banking sector
soundness and resilience. We find a strongly non-linear pattern across the distribution
of simulated networks, whereby only for a small percentage of networks the impact of
interbank contagion will substantially reduce average solvency of the system. In the vast
majority of the simulated networks the system-wide contagion effects are largely negligible.
The approach furthermore enables to form a view about the most systemic banks in the
system in terms of the banks whose failure would have the most detrimental contagion
effects on the system as a whole. Finally, as the simulation of the network structures is
computationally very costly, we also propose a simplified measure - a so-called Systemic
Probability Index (SPI) - that also captures the likelihood of contagion from the failure
of a given bank to honour its interbank payment obligations but at the same time is less
costly to compute. We find that the SPI is broadly consistent with the results from the
simulated network structures.
Keywords: Network theory; interbank contagion; systemic risk; banking; stress-testing
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Non-technical summary

The introduction of the euro created a large and integrated euro area money market allowing
euro area banks to lend to and fund themselves via other euro area banks across national bor-
ders. This facilitated financial transactions and trade between euro area countries. However,
since the outbreak of the financial crisis in mid-2007, which inter alia led to severe disruptions
in the interbank market, particular attention has been paid to the potential counterparty risks
incurred by banks via their bilateral interbank exposures.

The paper follows the strand of the financial contagion literature that uses bank balance
sheet data to conduct counterfactual simulations. To model how shocks to one (or more) finan-
cial entities can have contagious effects throughout the financial system, a dynamic network
modelling approach is presented. It involves imposing certain characteristics, or behavioural
assumptions, on the nodes in the interbank network to allow for translating shocks to specific
nodes into propagation channels affecting other nodes in the network via the bilateral rela-
tionships. However, since data on bank-to-bank bilateral exposures are not generally available
at the EU aggregate level, an alternative method is proposed which uses individual banks’
aggregate interbank exposures to simulate a wide range of possible interbank networks.

The simulation approach to analysing contagion within interbank networks proposed in
this paper is related to the so-called Stochastic Block Modeling of networks, as for instance
suggested by Lu and Zhou (2010), whereby link prediction algorithms are used to produce
the missing links between agents (nodes) in a given network. Notably, our approach, by
simulating a large number of possible networks contingent on the underlying exposure data
and imposed behavioural characteristics, differs from networks based on entropy methods and
based on real-time data, which are typically capturing one particular snapshot of the network
structure. This produces a very dynamic pattern of interbank networks, which is reflecting
well the volatile nature of most network structures. It also aims to circumvent the averaging
bias characteristic of entropy measures, which tend to produce too much averaging at the tails
and thus may underestimate contagion risk.

Once the interbank interconnectedness structures have been simulated, a dynamic analysis
of how and to what extent shocks to different entities propagate throughout the banking system
can be conducted. Such an analysis is useful, for example, in a stress-test context to gauge the
impact on specific banks or the banking system as a whole of shocks to one or more banks.

Importantly, and in contrast to most of the counterfactual simulation contagion literature,
our approach allows for taking into account the impact of “fire sales” resulting from the shock
propagation as banks try to adjust their balance sheets. We observe that contagion risk is
significantly enhanced when taking such feedback effects into account; especially under the
realistic assumption that banks’ target a specific, pre-defined leverage ratio. Furthermore,
as our network model covers a sample of larger banks across the European Union (EU) we
are able to also analyse cross-country contagion effects, which at least for some banks in the
network are found to be non-negligible.

Another tangible finding is that of a strongly non-linear pattern across the distribution of
simulated networks, whereby only for a small percentage of networks the impact of interbank
contagion will substantially reduce average solvency of the system. In the vast majority of the
simulated networks the system-wide contagion effects are largely negligible. This corroborates
well with other studies that have documented a “knife-edge” nature of many real interbank
networks that are only subject to severe contagion risk when nodes that are central to the
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system are hit by large enough shocks.
The approach furthermore enables to form a view about the most systemic banks in the

system in terms of the banks whose failure would have the most detrimental contagion effects on
the system as a whole. Finally, as the simulation of the network structures is computationally
very costly, we also propose a simplified measure - a so-called Systemic Probability Index (SPI)
- that also captures the likelihood of contagion from the failure of a given bank to honour its
interbank payment obligations but at the same time is less costly to compute. We find that
the SPI is broadly consistent with the results from the simulated network structures. The SPI
furthermore is a useful tool for detecting systemically important institutions from the point of
view of contagion impact on the system as a whole. In regular financial stability analysis the
contagious banks identified by the SPI (and by the simulated network) can be cross-checked
against standard stability indicators, such as solvency and liquidity ratios, funding position,
etc., to gauge the overall systemic risk embedded in the interbank network at a given juncture.

We finally provide various robustness checks concerning some of the key assumptions in
the framework.
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1 Introduction

The inception of the euro created a large and integrated euro area money market, allowing euro
area banks to lend and fund themselves via other euro area banks; also across national borders.
This helped ease financial transactions and facilitate trade among euro area countries. This
success notwithstanding, the global financial crisis erupting in mid-2007 led to heavy losses at
many financial institutions and to severe disruptions in the interbank markets as individual
institutions lost confidence in the soundness of their peers. This was reinforced by a string of
bank failures in the ensuing years, the most prominent being the one of Lehman Brothers (the
US investment bank) in September 2008. More recently, the euro area sovereign debt crisis was
also accompanied by a number of bank failures and bailouts and raised substantial concerns
about the risk of pernicious contagion effects among euro area banks (and their sovereigns).

These events have highlighted the systemic risks to the financial system of individual bank
failures via the interlinkages that exist between banks; especially in the unsecured interbank
market. Particular attention has been paid to potential counterparty risks banks are exposed
to via their bilateral interbank exposures.1 This in turn has led to a flurry of academic research
to help understand, measure and assess the impact of contagion within the network of banks
and other institutions that constitute the financial system. In addition, a number of policy
initiatives have been introduced in recent years to counter the potential contagion risks of
interlinked banking networks; especially exemplified by the additional capital requirements on
globally systemic institutions (G-SIBs).

The academic literature analysing financial contagion has followed different strands. One
area of research has focused on capturing contagion using financial market data. Kodres and
Pritsker (2002) provide a theoretical model whereby in in an environment of shared macroe-
conomic risks and asymmetric information asset price contagion can occur even under the
assumption of rational expectations. On the empirical side, some early studies attempted
to capture contagion using event studies to detect the impact of bank failures on stock (or
debt) prices of other banks in the system.2 The evidence from these studies was, however,
rather mixed. This may be due to the fact that stock price reactions typically observed during
normal periods do not capture well the non-linear and more extreme asset price movements
typically observed during periods of systemic events where large-scale contagion effects could
be expected. In this light, some more recent market data studies have applied extreme-value
theory to better capture such extraordinary events.3 In a similar vein, Polson and Scott
(2011) apply an explosive volatility model to capture stock market contagion measured by ex-
cess cross-sectional correlations. Other studies have tried to capture the conditional spillover
probabilities at the tail of the distribution by using quantile regressions.4 Diebold and Yilmaz
(2011) proposes in turn to use variance decompositions as connectedness measures to construct
networks among financial institutions based on market data.

A different strand of the literature has been based on balance sheet exposures (such as in-

1See Rochet and Tirole (1996), Allen and Gale (2000) and Freixas et al. (2000) for some early prominent
examples.

2See e.g. Aharony and Swary (1983), Peavy and Hempel (1988), Docking et al. (1997), Slovin et al. (1999),
Cooperman et al. (1992), Smirlock and Kaufold (1987), Musumeci and J.F. Sinkey (1990), Wall and Peterson
(1990) and Kho et al. (2000).

3See e.g. Longin and Solnik (2001), Hartmann et al. (2004), Hartmann et al. (2005), Gropp et al. (2009).
4See e.g. Cappiello et al. (2005), Engle and Manganelli (2004), White et al. (2010) and Adrian and Brun-

nermeier (2011).
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terbank exposures and bank capital) with the aim of conducting counterfactual simulations of
the potential effects on the network of exposures if one or more financial institutions encounter
problems. This may overcome some of the deficiencies of the market data-based literature,
such as the fact that asset prices can be subject to periods of significant mis-pricing which may
distort the signals retrieved from the analysis. The starting point to analyse bank contagion
risks and interconnectedness on the basis of balance sheet data is having reliable information
on interbank networks. One can view a financial exposure or liability within a network as a re-
lationship (or edge) of an institution (node) vis-à-vis another whereby the relationship portrays
a potential channel of shock transmission among institutions. Mutual exposures of financial
intermediaries are generally beneficial as they allow for a more efficient allocation of financial
assets and liabilities and are a sign of better diversified financial institutions.5 At the same
time, when large shocks hit the financial system, financial networks - especially if exposures
are concentrated among a few main players - can act as an accelerator of the shock’s initial
impact by propagating it throughout the financial system via network links. As emphasized by
Allen and Gale (2000) the underlying structure of the network determines how vulnerable it is
to contagion.6 For example, Allen and Gale (2000) emphasize the contagion risk prevailing in
incomplete networks. 7 It is furthermore emphasized in the literature that in the presence of
asymmetric information about the quality of counterparties and of the underlying collateral,
adverse selection problems may arise which can render interbank networks dysfunctional in
periods of distress.8

The financial contagion literature is furthermore related to complex network analysis in
other academic fields (medicine and physics in particular). It thus relates to the so-called
”robust yet fragile” network characterisation, by which networks are found to be resilient to
most shocks but can be susceptible to pernicious contagion effects when specific nodes are
targeted.9 Recent models of the interbank market that incorporates this knife-edge character
of financial networks include Nier et al. (2007), Iori et al. (2008) and Georg (2011).

To model how shocks to one (or more) financial entity can have contagious effects through-
out the financial system a dynamic network modelling approach is warranted. This involves
imposing certain characteristics, or behavioural assumptions, on the nodes to allow for trans-
lating shocks to specific nodes into propagation channels affecting other nodes in the network
via the bilateral relationships.

In reality, however, network analysis is constrained by the fact that data on bilateral in-
terbank exposures are generally not available to other than supervisors and market oversight
authorities. To counter such difficulties, this paper proposes an alternative approach to con-
struct interbank networks. Our approach makes use of individual banks’ aggregate interbank
exposures to simulate a wide range of possible interbank networks. Once the interbank inter-
connectedness structures have been simulated, a dynamic analysis of how and to what extent

5For example, interbank connections may produce co-insurance against liquidity shocks and may enhance
peer monitoring; see e.g. Bhattacharya and Gale (1987), Flannery (1996), Rochet and Tirole (1996) and Freixas
et al. (2000).

6See also Battiston et al. (2009), Gai et al. (2011) and Battiston et al. (2012). Nier et al. (2007) and Allen
and Babus (2009) provides surveys of the recent literature.

7Brusco and Castiglionesi (2007) in contrast highlight that in the presence of moral hazard among banks, in
the sense that liquidity coinsurance via the interbank market entails higher risk-taking, more complete networks
may in fact prove to be more, not less, contagious.

8See e.g. Flannery (1996), Ferguson et al. (2007), Heider et al. (2009) and Morris and Shin (2012).
9See e.g. Albert et al. (2000), Barabási and Albert (1999) and Doyle et al. (2005).
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shocks to different entities propagate throughout the banking system can be conducted. Such
analysis is, for example, useful in a macro stress test context to gauge the impact on specific
banks or the banking system as a whole from shocks to one or more banks.

The simulation approach to analysing contagion within interbank networks proposed in
this paper is related to the so-called Stochastic Block Modeling of networks, as for instance
suggested by Lu and Zhou (2010), whereby link prediction algorithms are used to produce the
missing links between agents (nodes) in a given network.10 Our dynamic network modelling
is also related to the literature on shock transmissions, which asserts that the transmission
depends on the probability distribution governing whether nodes have contact with each other
and can occur through ”knock-on” cascading effects (see e.g. Newman (2005)).

Notably, our approach differs from networks based on entropy methods and based on
real-time data, which are typically capturing one particular snapshot of the network structure.
Instead, we simulate a large number of possible networks contingent on the underlying exposure
data and imposed behavioural characteristics.11 This produces a very dynamic pattern of
interbank networks, which reflects well the volatile nature of financial network structures (see
e.g. Garratt et al. (2011) and Gabrieli (2011)). It also aims to circumvent the averaging bias
characteristic of entropy measures, which tend to produce too much averaging at the tails and
thus may underestimate contagion risk (see e.g. Mistrulli (2011)).

The main contributions of the paper to the growing literature on network analysis are
threefold: first, we propose a robust method to construct interbank networks without nec-
essarily having access to bank-by-bank bilateral connections. Second, our model allows to
randomly generate a wide distribution of possible networks which in turn can be used to
dynamically analyse the likelihood and size of shock propagations throughout the interbank
network. In this context, we also allow for the impact of fire sales, which is shown to exacer-
bate the contagion.12. Third, we derive a ”contagion index” that provides a robust proxy for
the simulated networks but is computationally easier to handle. In our view, the model will
be useful for regular financial stability analysis, as conducted in central banks in particular.
First of all, it provides a convenient tool for assessing the systemic risk of individual banks in
the system and to calculate the systemic impact (and likelihood) of shocks hitting one or more
banks. As such, it can also be linked to outcomes of traditional top-down macro stress tests
to illustrate the contagion effects from different macro-financial scenarios. A final contribu-
tion compared to the previous literature relates to the geographical coverage. Whereas most
interbank contagion studies refer to specific country settings, in our paper we create networks
between large banks in the EU as a whole.13 This allows to also address the importance of
cross-border interbank contagion as compared to contagion solely within the national borders.
In an ever more globalized financial system, such cross-border contagion may be expected to
become increasingly relevant; as also the financial crisis erupting in 2007 amply illustrated.

Some caveats to our modelling approach should be mentioned. First, drawing random
networks from a uniform distribution does not necessarily lead to the core-periphery structure
often observed in real world network data. This notwithstanding, the behavioural charac-

10See also Schaefer and Graham (2002) and Kossinets (2006) for some applications to social networks.
11For a few representative country-specific studies using real-time overnight transactions data or large expo-

sure data as well as entropy approaches, see e.g. Furfine (2003), Upper and Worms (2004), Boss et al. (2004),
van Lelyveld and Liedorp (2006), Soramaki et al. (2007) and Degryse and Nguyen (2007).

12See also Karas et al. (2008).
13Gabrieli (2011) as an exception also provides a network analysis covering at least part of the euro area

money market. Likewise, Garratt et al. (2011) presents a global interbank network in their paper.
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teristics that we impose upon the nodes (e.g. whether banks are internationally or mainly
domestically-oriented) before randomly drawing our networks would in fact be expected to
imply a priori some degree of core-periphery structure. Moreover, owing to the substantial
size differences of the interbank assets and liabilities across banks in our sample (and hence the
amount of assets/liabilities of individual banks to be distributed within the system) the pro-
cedure would generally result in the emergence of large money centre banks in our simulated
systems. Second, the fact that the drawing of interbank loans follows a sequential approach
whereby the loan volume is drawn as a random fraction of the remaining total exposure may
have significant implications for the overall distribution of loans held by individual banks in
the generated networks. While this bias is averaged out at the level of individual loans among
banks (i, j) once many simulations are considered, when considering the overall distribution
of loan volumes the bias may remain. It is for example rather unlikely that, in a particular
simulation, a bank would have a large number of loans of roughly equal size - a case which
may plausibly occur for money centres. Finally, the network structures resulting from our
simulations are contingent on the specific characteristics we impose on the nodes - in other
words, the probability that two banks are linked to each other. Ultimately, the validity of
the network structures randomly generated would need to be cross-checked against real world
network data.

The paper is organised as follows: Section 2 describes the baseline model and the various
steps involved in the derivation of the simulated networks. Section 3 in turn presents the
contagion index, while some possible model extensions are presented in Section 4. Results are
discussed in Section 5 and Section 6 concludes.

2 Baseline model

The structure of our model of the interbank contagion consists of a random interbank networks
in which we apply a shock to one bank (or a set of banks) that is subsequently transmitted
within this interbank system. The network is generated in a random way based on the banks’
balance sheet data on their total interbank placements and deposits and on the assessment of
banks’ geographical breakdown of activities. There are 89 banks in the analysed sample, mostly
from euro area countries. These are banks included in the EU-wide stress tests conducted by
the European Banking Authority (EBA), but the data used to parametrise the model are taken
from Bureau van Dijk’s Bankscope and banks’ financial reports. Notably, we do not have data
on the individual banks’ bilateral exposures, which are instead derived based on their total
interbank placements and deposits; as described below. The shock is simply meant to be a
given bank’s default on all its interbank payments. It then spreads across the banking system
transmitted by the interbank network of the simulated bilateral exposures.

There are three main building blocks of the model. First, the probability map that a bank
in a given country makes an interbank placement to a bank in another (or the same) country
was proposed; second, an iterative procedure to generate interbank networks by randomly
picking a link between banks and accepting it with probability taken from the probability
map. Finally, the algorithm of clearing payments proposed by Eisenberg and Noe (2001) on
the interbank market in two versions was applied: without and (modified) with a “fire sales”
mechanism.

7



2.1 Probability map

Bank-by-bank bilateral interbank exposures are not readily available. For that reason, to
define the probability structure of the interbank linkages (a probability map), as a starting
point the EBA disclosures on the geographical breakdown of individual banks’ activities (here
measured by the geographical breakdown of exposures at default) were employed.14 The
probabilities were defined at the country level, i.e. the exposures were aggregated within a
country and the fraction of these exposures towards banks in a given country was calculated.
These fractions were assumed to be probabilities that a bank in a given country makes an
interbank placement to a bank in another (or the same) country. Banks were grouped into
2 subcategories within countries: with domestic scope of activities and with international
activity, respectively. Banks within the same group were assigned similar probabilities in the
probability map. The classification was based on a ratio calculated as the share of cross-border
intra-EU exposures to total exposures. With respect to the definition of internationally active
banks we experimented with different threshold values and found the most robust specification
to be a share of international exposures to total exposures equal to 25 per cent.

The probability map based on the EBA disclosures is an arbitrary choice contingent on
the very limited availability of data about interbank market structures. An idea of market
fragmentation along the national borders while treating separately the internationally active
banks seems to be justified. Nevertheless, the results (structure of the network and the conta-
gion spreading) are dependent on the particular probability structure (geographical proximity
matters). In results section 5 we perform some sensitivity analysis of the systemic importance
of banks if the probability map is distorted.

2.2 Interbank network

The network is generated randomly based on the probability map which is based on the geo-
graphical breakdown of exposures. This is a version of the “Accept-Reject” scheme. A possible
interbank network (realisation from a distribution of networks given by the probability map)
is generated in the following way. A pair of banks is randomly drawn (all pairs have equal
probability) and the pair is kept as an edge (link) in the interbank network with a probability
given by the probability map. If the drawn link is kept as an interbank exposure, then the
random number is generated (from the uniform distribution on [0, 1]) indicating what percent-
age of reported interbank liabilities (l) of the first bank in the pair comes from the second
bank in the pair (the amount is appropriately truncated to account for the reported interbank
assets (a) of the second bank). If not kept, then the next pair is drawn (and accepted with a
corresponding probability or not). Ultimately, the stock of interbank liabilities and assets is
reduced by the volume of the assigned placement. The procedure is repeated until no more
interbank liabilities are left to be assigned as placements from one bank to another.

For one realisation of the network structure obtained by the proposed algorithm, the size
of the linkage between a given pair (i, j) of banks depends on order of drawn linkages. The
first drawn link would on average be allocated 50% of total liabilities of j, the second – 25%
and so on. This bias related to linkages between banks i and j is averaged out if many
interbank structures are considered. The first drawn pair in one realisation of the algorithm
may be any nth pair in the next realisation. We construct 20,000 structures for the purpose

14The bank level exposure data were downloaded from the EBA website: http://www.eba.europa.eu.
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Figure 1: Generated interbank network
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Source: own calculations

of our contagion analysis. Analysing many different interbank structures instead of just one
specific (either observed at the reporting date or – if not available – estimated e.g. by means
of entropy measure) accounts for a very dynamic, unstable nature of the interbank structures
confirmed by many studies (see e.g. Garratt et al. (2011); Gabrieli (2011)). The way in which
linkages are drawn may still be an issue for the distribution of the whole network. It may
underestimate the probability of networks in which nodes have many linkages of similar size.
However, the algorithm does not exclude such configurations, which are typical for the real
interbank networks with money centers.

Figure 1 illustrates one realisation from the whole distribution of network structures for
the EU banking sector generated using the random network modelling approach. The width
of the arrows indicates the size of exposures (logarithmic scale) and the colouring scale (from
light to dark green) denotes the probability (inferred from the interbank probability map)
that a given bank grants an interbank deposit to the other bank. Most of the connections
are between banks from the same country but the connectivity between the biggest domestic
banking systems is also quite high (the German, Spanish and British banking systems, in
particular).
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The very general characteristics of the network and of the role played by the particular
nodes can be performed by means of some standard network measures. The simulated network
approach gives the whole distribution of measures that, further statistically analysed, may in-
dicate some candidate banks to be systemically important. Following ECB (2012), we looked
at three centrality measures – i.e. degree, closeness and betweenness, which inform about net-
work activity, independence of nodes and nodes’ control of activity in the network respectively.
We also calculated a very simple measure of network density, i.e. the ratio of the number of
linkages to total possible interbank connections (which is

(
N
2

)
for N banks in the system).

In our context, betweeness seems to most appropriately address an issue of identification of
systemic nodes, i.e. causing and transmitting most sizable contagion. The centrality measures
applied to the simulated networks are discussed in Section 5, in particular with a reference
to the entropy maximising networks broadly considered in the literature (see Mistrulli (2011)
about the entropy maximising networks). Additionally, we verify if the network measures can
explain the size of the simulated contagion losses in the banking system.15

2.3 Contagion mechanism

Our assessment of the size of the interbank contagion is ispired by the so-called interbank
clearing payments vector, derived by Eisenberg and Noe (2001) and which we define in our
modification by a vector p∗ solving the following equation

p∗ = min{max{C − a+ l + π>p∗, 0}, l} (1)

where:

� C - vector of banks’ regulatory capital. It reflects the full absorption capacity of banks;

� a - vector of interbank assets;

� l - vector of interbank liabilities;

� π> - transposed matrix of the relative interbank exposures with πij entry defined as bank
i interbank exposure towards bank j divided by the total interbank exposure of bank i.

The expression C − a + l can be interpreted as banks’ own funding sources adjusted by the
net interbank exposures. The interbank liabilities l are a proxy for a buffer set aside in the
assets assuming that banks keep some liquid sources to cover the potential outflow of the
interbank funding. Any decline in this buffer can be introduced via capital C shock. The
ultimate interbank payments are derived as the equilibrium of flows in the interbank network.
The contagious default on the interbank deposits is detected by comparing li and p∗ – if the
difference is greater than 0 then it means that bank i defaults on its interbank payments. The
loss for the interbank creditors is calculated as

loss = π>(l − p∗)

The applied clearing payments vector procedure does not require any assumption about the
size of interbank loss incurred at default of a counterparty. The loss given default is endogenous

15Further interesting reading about the application of network measures can be found in Goetz (2007).
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and can be expresses as a loss ratio L∗:

L∗i =
ai − (π>p∗)i

ai
,

where (v)i denotes ith component of vector v. In order to compare the interbank losses in a
standardised way across the banking system, we calculate an impact of the losses on a capital
adequacy measure (CAR) defined as the Core Tier 1 capital divided by the risk weighted
assets. Consequently, the CAR reduction of bank i as a result of losses incurred on the
interbank exposures is defined as

∆CARi = 100 ·
(

CT1i − lossi
RWAi

− CARi

)
The equilibrium payments vector is calculated in an iterative (sequential) procedure. Namely,
let us define a function F : [0, l1]× · · · × [0, lN ]→ [0, l1]× · · · × [0, lN ] as

F (p) = min{max{C − a+ l + π>p, 0}, l} (2)

The value of F for a given p can be interpreted as the vector of the interbank payment given
banks receive back as much as π>p of their interbank assets. It can be shown that a sequence
(pn) defined as p0 = l and pn = F (pn−1) converges to the clearing payments vector p∗.

In an event-driven concept of contagion it is interesting to decompose the first and second
round effects of contagion. First, we introduce a notion of a triggering bank, i.e. a bank that
initially defaults on their interbank deposits (due to some exogenous shock not encompassed
by the model). Second, we define the first round effects as those related purely to the default
of banks on their interbank payments given

� default of a triggering bank or a group of triggering banks on all its interbank deposits,

� all other banks declaring to pay back all their interbank debts.

Third, the default of other banks following bank-triggers’ inability to pay back their interbank
debts would be classified as second round contagion effects if

� they would pay back all their debts if all non-triggering banks which are their debtors
returned their debts,

� they are not capable of paying back part of their interbank deposits in the clearing
payments equilibrium.

In other words, first round effects describe the knock-on results nearest to the triggering
banks in the network. The second round effects thus refer to all subsequent rounds of shock
propagation. Formally, let us denote by J the set of triggering banks, i.e. J ⊂ {1, . . . , N},
and define N × 1 vector l(J ) as

li(J ) : =

{
li if i /∈ J
0 if i ∈ J

It can be interpreted as an indicator for which banks are assumed not to pay back their
interbank liabilities. Formally, the decomposition is defined as:

l − p∞ = l − F (l(J ))︸ ︷︷ ︸
I round

+F (l(J ))− p∞︸ ︷︷ ︸
II round

, (3)

where p∞ is the limit of the iteration pn = F (pn−1) with p0 = l(J ).
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2.4 Fire sales of illiquid portfolio

The concept of the sequence (pn) is helpful in introducing the “fire sales” mechanism to the
interbank equilibrium. In order to meet their obligations, banks may need to shed part of their
securities portfolio; the less interbank assets they receive back, the higher is the liquidation
need. This may adversely affect the mark-to-market valuation of their securities portfolios
and further depress their capacity to pay back their interbank creditors. Consequently, this
mechanism may lead to a spiral effect of fire sales of securities (as, for example, suggested in
recent papers by Geanakoplos (2009) and Brunnermeier (2009).

Banks may respond in different ways to the losses on the interbank exposures depending on
their strategies and goals. In order to cover the resultant liquidity shortfall, they may simply
shed some assets. However, the sell-off may be much more severe for banks targeting their
leverage ratio (see also Adrian and Shin (2010)). In the latter case, the usually double digit
ratio of “x” would translate into securities disposal of “x ∗ loss”. We account for both cases
in our modeling framework of the “fire sales”.
Covering liquidity shortfall from interbank losses. We assume that the depth of the
devaluation of securities portfolios is related to the share of the liquidated securities to the
total volume of securities held by banks. In order to quantify this “fire sales” mechanism we
introduce an auxiliary measure of the conditional amount of securities sold by bank i given all
banks pay back p units of their interbank deposits, i.e.:

SecSold(p) =

N∑
i=1

min
{
Si, (pi − li)−

}
(4)

where x− : = −min(x, 0) and is called a negative part of x.
The above formula sums up the volume of all the securities needed to cover the difference

between interbank assets (equal to (π>)ip given banks pay back p of their interbank debts,
where (A)i denotes the i-th raw of a given matrix A) and interbank liabilities li. Obviously, a
natural cap for that volume is the total volume of securities portfolio.

The new equilibrium interbank payments vector can be computed with a new loss absorp-
tion capacity which is equal to the initial capital level less the devaluation of the securities.
Let TS denote the aggregate volume of securities held by the banks in the analysed system.
Following the idea of Cifuentes et al. (2005), in order to relate the price of securities to the
supply of these securities (equal to the volume of the “fire sales”) we introduce the α > 0
elasticity factor. Then the market value of securities is defined as:

S(p) : = S exp

(
−αSecSold(p)

TS

)
(5)

Hence, the equilibrium interbank payments vector p∗ satisfies

p∗ = min{max{C − S ·
(

1− exp

(
−αSecSold(p∗)

TS

))
− a+ l + π>p∗, 0}, l} (6)

The term S ·
(

1− exp
(
−αSecSold(p∗)

TS

))
reflects the negative impact of selling securities at “fire

sale” prices on the loss absorption capacity of banks. A discussion of some results of contagion
in case of “fire sales” in the securities portfolio can be found in ECB (2012).
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Target leverage ratio. The “fire sales” can be more pronounced if banks aim to maintain the
target leverage ratio, i.e. the ratio of assets to the amount of capital. This strategy is usually
an outcome of the optimal funding structure given the risk tolerance of the shareholders.
Fulfilling that strategy, any loss, which depresses the capital base, would trigger asset sales
bringing the leverage ratio to the assumed level. Should the banking system react in this way,
the depth of asset disposal were typically 10 or 20 times higher the interbank losses.

SecSoldL(p) =

N∑
i=1

min

{
Si,

TAi

Ci
(pi − li)−

}
(7)

The existence of the equilibrium payments vector in both versions of the “fire sales” model
follows application of the famous Tarski-Knaster’s theorem about fixed points of an isotone
mapping (see a similar application by Ha laj (2012))

2.5 Advantages – disadvantages

The proposed simulation procedure, apparently of a Monte Carlo type, may potentially give
results of any predefined accuracy but at a cost of long, even enormously long, computational
time. Let the following parametrisation serve as an example. If 20,000 networks are to be
generated, and for each of them the clearing payments be calculated (with and without “fire
sales” mechanism) then a parallel mode computing in Matlab on 8 processor unit lasts ∼8
hours. This should be viewed in light of the fact that 100,000 networks give full stability of
the results.

The computational burden prompted us to try defining a simplified measure of a systemic
importance of bank that would be far easier and faster to calculate. Obviously, the simplifying
assumptions are likely to distort the results but that trade-off is unavoidable. We would treat a
simplification as viable if the simplified model detects the same group of the most systemically
important banks.

3 Systemic Probability Index

The main goal of the section is to define a measure of systemic fragility in the system. We
have four general objectives:

� building an index (called: Systemic Probability Index) measuring the contagion risk
stemming form the interbank structure rather than the risk related to an external shock;

� taking into account the whole range of possible interbank structures accounting for the
probability map introduced in subsection 2.1;

� designing it in such a way that it is easy and fast to compute for large interbank systems,
at least substantially reducing the time of Monte Carlo simulations;

� being consistent with the simulation as far as the most systemically important banks are
concerned.

The Systemic Probability Index reflects the likelihood of the contagion spreading across the
banking system after a default of a given bank on its interbank debt. Therefore, it is a bank-
specific measure, depending on the distribution of the interbank deposits and placements
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among banks and on the probability map. The rest of the section is devoted to describing the
sufficient assumptions needed to satisfy the objectives and leading to a particular definition
of the Index. Additionally, some possible and natural modification are highlighted that may
allow for better accuracy of the index (at a cost of higher computational complexity).

3.1 Failure of a direct approach

Our starting point was to use a probability structure based on the simulated interbank networks
to construct a measure of how likely, how broad and how fast is the interbank contagion
spreading after a given bank defaults on all its interbank payments. Let us suppose that a
node I defaults on its interbank payments. What is the probability that node j defaults? In
short, it is a probability that losses of bank j incurred on its interbank exposures against I
surpass bank’s j capital. Formally, for a loss ratio LI , this probability can be expresses as:

P
(1)
Ij = P (GIjπIjLI lI > Cj) ,

where Gij is the random variable taking values from the set {0, 1}, whereas value 1 occurs
with probability P geoij . By introducing G we mimic the randomness of the simulated networks
as far as the accept-reject algorithm to establish links between banks is concerned. The
expected payment πIjlI is the liability od bank I towards j. The adjusted value LIπIjlI is the
corresponding loss given default of bank I. Finally, GIj informs about the probability that
the link between I and j really exists. Therefore, G introduces the probabilistic nature of
the interbank structure. The relative exposure πIj can formally be characterised by the joint
probability of the whole matrix π. The algorithm of random networks in the subsection 2.2
suggests a uniform distribution on a polytope

SN (a, l) : =
{
z ∈ RN+

∣∣∣ ∀j ∑
i

zij = aj ∧ ∀i
∑
j

zij = li

}
, (8)

which is the set of matrices with predefined sum of columns (given by a vector a) and rows
(given by a vector l).

What is the impact of a default at round k on the probability of default at round k + 1?
More precisely, what is the relationship between probability of default at k and k+ 1? Let us
assume that the default at k means that the whole volume of debt is not returned back by the
defaulted bank to its creditors. Thus,

P
(k+1)
Ij = P

(
N∑
i=1

Gijπij · LiP (k)
Ii li > Cj

)
(9)

is the probability of default of the bank j at time k + 1 given that the probabilities of default

of banks 1, 2,... N at time k are P
(k)
I1 , P

(k)
I2 ,... P

(k)
IN .

[Assumption 1]: Ratios {π1j , π2j , . . . , πNj} of relative interbank exposures are independent
and uniformly distributed, i.e. each πij has a uniform distribution taking values from the
interval [0,min(1,

aj
li

)].
The assumption abstracts from the joint distribution on the whole network and assigns a

specific uniform probability to each of the interbank linkages. This a priori may suggest that
the model does not imply the core-periphery structure of the interbank network often observed
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in the data (see e.g. Cont et al. (2010)). However, the probability map and different sizes of
banks’ balance sheets are in fact responsible for emergence of large money centre banks in the
simulated system.

In order to calculate the probability index P the distribution of the sum of K independent
uniform random variables X1, . . . , XK on intervals [0, x1], [0, x2],..., [0, xK ] has to be deter-
mined. Following Bradley and Gupta (2002), which reorganises the inverse of the characteristic
function in an elegant way, it can be expressed by the density

fKu (z) =

 ∑
e∈{0,1}K

(−1)
∑K
i=1 ei max(z − e · [x1 . . . xK ]T , 0)K

 /

(
(K − 1)!

K∏
i=1

xi

)
, (10)

where
∑

e∈{0,1}K is the sum across all the combinations of vectors of length K whose entries
take values 0 or 1. Unfortunately, the equation proves to be intractable. Only special cases
can be reduced in such a way that any automated computing can be applied (e.g. if all xi
are equal). There are two reasons for the intractability. First, the number of different pairs
of nodes, meaning linkages, is equal to K =

(
N
2

)
.16 Therefore, the sum in the first bracket of

equation 10 contains 2(N2 ) components, which is an enormous number even for small networks
of 100 nodes. Generally, this is a combinatorial problem of the sum of uniform distributions
with different supports. Second, what definitely excludes the application of this setting is the
way the sums are plugged into the equation 9. The application of the probability map P
implies that the components in the sum of uniform distributions are randomly set to 0, i.e.
for some i ∈ {1, . . . ,K} xi = 0 with probability 1 − P geoij . This practically means that there

are additionally 2(N2 ) cases of how the sum is composed weighted by the probability of a given
combination. All in all, this prompted us to consider a different distribution on edges, with
an invariance property as far as summation is concerned.

3.2 Simplified approach

The basic idea behind the simplification of the interbank network distribution refers to the
flexibility with which the sum of normally distributed random variables can be handled. For
that reason we replace the uniform distribution on edges of the network with normal distribu-
tion preserving some key characteristics of these edges. The simplification is summarised in
the following assumption.
[Assumption 2]: For a given sequence of coefficients (b1, . . . , bN ), the weighted sum of bank’s
j interbank relative exposures

∑N
i=1 biGijπij is approximated by the sum of normally dis-

tributed components (πGij)i∈{1,...,N} weighted by bis. The mean and standard deviation of the

approximate relative exposure ratios πG is

E[πGij ] = P geoij min(1,
aj
li

)/2, σ(πGij) =

√
3

6
P geoij min(1,

aj
li

)

The assumption has a statistical justification based on central limit theorems. Namely, for
a sufficiently large number of components, the sum of uniformly distributed variables can be
quite accurately approximated by the normal distribution. The relationship between the true

16The estimated probability map states that most of the linkages is not very likely implying that the vast
majority of the interbank structures is very unlikely.
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and the approximate one is captured by the famous Berry-Esseen theorem (see Paditz (1989)
for the non-homogenous version). Roughly speaking, it states that the cumulative distribution
function (CDF) of the standardised sum of the non-identically distributed variables globally
(i.e. with common constant for all arguments and any number of summands) differs from the
standard normal distribution with an error of order N−1/2. In fact, we use a non-homogenous
version of the theorem. Let us denote dij : = min(1, aj/li). The variance of the original link
Gijπij is given by D2[Gijπij ] = (P geoij )2d2ij/12. Additionally, the third (central) moment is
needed for the estimate. It turns out to be equal to

E|Gijπij −EGijπij |3 = EI{Gij=1}|πij − P
geo
ij dij/2|3 + EI{Gij=0}(P

geo
ij dij/2)3

= (P geoij )2
d3ij
64

+ P geoij

(
1−

P geoij

2

)4
d3ij
4

+ (1− P geoij )(P geoij )3
d3ij
8
,

where IA stands for an indicator function of set A, i.e. taking values 0 or 1 depending whether
condition A is satisfied or not. Then, after some basic transformations due to standardisation
of a random variable, the theorem guarantees that for a given N :∣∣∣∣∣P(

N∑
i=1

biGijπij > x)− (1− Φ (x̂))

∣∣∣∣∣ < ω(P geo·j , d·j , b)
K1

1 + |x̂|3
,

where

x̂ =
x− b(k) ·E[πG·j ]√
(b

(k)
·j )2 ·D2[πG·j ]

is “standardised” x and

ω(P geo·j , d·j , b
(k)) = 6

√
3

∑N
i=1

(
(P geoij )2

16 + P geoij (1− P geoij

2 )4 +
(1−P geoij )(P geoij )3

2

)
(dijb

(k)
i )3(√∑N

i=1

(
P geoij dijb

(k)
i

)2)3 (11)

Φ(·) is the cumulative probability function of the standard normal distribution. The constant
K1, being improved for the last couple of decades, is currently known to be at the level of

31.935 (see Paditz (1989)). The coefficient b
(k)
ij can be interpreted as the size of the expected,

k-round loss of bank j given its exposure against i. Namely, for a loss ratio Li of the interbank

losses from bank i, b
(k)
ij = P

(k)
Ii Lili.

17

The inequality 11 is a bridge between originally uniformly distributed linkages between
banks and their approximation by the normal distribution. On the one hand, it states that
the error is small for large N . It is already an outcome of the central limit theorem. However,
on the other hand, and what is an even more important application of the inequality is the error
at the tail. We checked that the distribution of the original sum tends to have a systematically
“fatter” right tail. This prompts us to use the ratio ω as a tail correction term in our recursion
for the systemic index.

17Anyway, we conservatively assume that Ri = 0 for all banks and perform some sensitivity analysis in section
5.
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We find the coefficient ω to have an interpretation as far as the topology of the interbank
network is concerned. It is well-known (see Nier et al. (2007) or Georg (2011) for an extensive
review of the results) that more concentrated structures are more exposed to the systemic risk

with extreme impact. Indeed, ω is the lowest and equal to 6
√
3√
N

if the system is fully connected

(P geo ≡ 1) and the links are of the same size (implying that all the banks are the same; at
least have equal interbank assets and liabilities and equal capital). Any asymmetry in the
structure leads to a higher probability of the tail default on the interbank obligations.

What is, say the benchmark value of the tail correction coefficient? Let us presume that we
calculate it at the tail of the distribution where the “standardised” value of x (i.e. the value
x̂, see formula 12) is 3.72 (corresponding to tail probability equal to 0.01%). Additionally, let
us consider the homogeneous network of a 100 banks. Then, the coefficient is equal to 2.43. It
means, that the tail probability that the standard normal random variable exceeds 3.72 should
be increased by 64%. If the probability of a link decreases to 10% (P geo ≡ 0.1) then ω = 82.52
and 0.01% tail probability should be increased by 510%! In fact, the latter case network is a
very sparse network in which the contagion risk drops radically and it is meaningful to apply
the correction ω for very low tail probabilities γ. The network related to the probability map
described in section 2.1 consists of nodes which are connected to at least one other node with
relatively high probability (greater then 80%). Anyway, the tail correction should apply to
the very low probabilities (of order 0.01% and less).

Summarising, we define the individual bank systemic indices in the following way:

Let γ > 0, b
(k)
I = [P

(k)
I1 L1l1 . . . P

(k)
INLN lN ]> and

ω
(k)
Ij = ω(P geo·j , d·j , b

(k)
I )K1/

1 + |
Cj − b(k)I ·E[πG·j ]√

(b
(k)
I )2 ·D2[πG·j ]

|3


Define Σ
(k)
j : =

∑N
i=1 π

G
ij · P

(k)
Ii Lili. Then, for all k ∈ N P

(k)
II = 1. If j 6= I, then

P
(1)
Ij =

 P
(
πGIjLI lI > Cj

)
if P

(
πGIjLI lI > Cj

)
> γ

min
(
γ, ω

(1)
Ij + P

(
πGIjLI lI > Cj

))
if P

(
πGIjLI lI > Cj

)
≤ γ

P
(k+1)
Ij =

 P
(

Σ
(k)
j > Cj

)
if P

(
Σ
(k)
j > Cj

)
> γ

min
(
γ, ω

(k)
Ij + P

(
Σ
(k)
j > Cj

))
if P

(
Σ
(k)
j > Cj

)
≤ γ

(12)

The recursive formula 12 is complicated enough to deserve detailed explanations. First,

P
(1)
Ij indicates probability that bank’s I default on interbank payments triggers losses in bank
j that are higher than capital of bank j. Therefore, bank I is a triggering bank. The γ
fraction should be relatively low in order to account for the tail correction ω. Second, the lion
share of the distribution lies ex definitione within the admissible ranges. If the link between
banks i and j is certain according to the probability map, i.e. P geoij = 1, then precisely

1 − 2Φ(2
√

3) ' 99.97% of the distribution belongs to the range [0,min(1,
aj
li

)]. Third, the

distribution is centered around P geoij min(1,
aj
li

)/2. Therefore, the lower the probability P geo of
the link, the lower values are sampled from the distribution in Assumption 2 (with the vanishing
link if P ij approaches 0). Hence, the simplified construct has the ability to differentiate the
interbank structures according to the probability map. The main, unquestionable advantage
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of the index is a substantial reduction of the computational burden comparing with the Monte
Carlo simulation; practically, the recursion can be explicitly solved. The first visible drawback
of the index is the infinite support of the distribution which allows for realisations higher
then 1 (the share in total exposures higher then 100%). However, it happens with marginal
probability. The same reasoning applies to equally probable shares of the distribution that are
negative.

Summerising, the normal distribution simplifies the system a lot. This is shown in the
following corollary:

Corollary 3.1 Let mij : = E[πij ], ∆l
(k)
i : = P

(k)
Ii Lili. Then

Σ
(k)
j ∼ N

 N∑
i=1

mij∆l
(k)
i ,

[
N∑
i=1

(
mij∆l

(k)
i

)2] 1
2


A vector measure P

(k)
I· should be aggregated across the banking system to obtain a scalar

and comparable measure of bank’s default impact on the interbank system, i.e. Systemic
Probability Index. It can be done in many ways and we propose 2: one reflecting the limit
(equilibrium) probability index and the other accounting for the speed with which the index
stabilises at the equilibrium. In order to define the former, we weigh the individual indices at
their limits by banks’ total assets. i.e.:

SPII =

∑N
j=1 TAjP

(∞)
Ij∑N

j=1 TAj

(13)

The index representing the second mentioned type is computed in two steps. First, the

individual path P
(1)
Ij , P

(2)
Ij ,... P

(K)
Ij , for some large K is averaged using the exponentially

decreasing weights exp(−1β), exp(−2β),... exp(−Kβ), with β > 0 as a given decay factor.
Second, as in the former case we weigh the resulting time weighted indices by banks’ total
assets and define a time weighted average of individual indices in the following way:

PwIj =

∑∞
k=1 e

−βkP
(k)
Ij∑∞

k=1 e
−βk = (eβ − 1)

∞∑
k=1

e−βkP
(k)
Ij

It depends on β which measures how we weigh the importance of the outcomes from the early
stages of the recursion 12. Consequently, the weighted Systemic Probability Index is defined
as

SPIwI =

∑N
j=1 TAjP

w
Ij∑N

j=1 TAj

(14)

Convergence. It is not a priori obvious, that the Systemic Probability Index is well-defined.

Namely, the individual probabilities P
(k)
Ij may not be convergent as k tends to infinity, what

would lead to an ambiguity in the definition. However, it is not the case if only for some k,

P
(k)
Ij ≥ γ.

Theorem 3.1 For every I ∈ {1, . . . , N} and every i ∈ {1, . . . , N}, the sequences (P
(k)
Ii )k∈N

either converge, with the limit denoted P
(∞)
Ii or stay within a (narrow) band [0, γ] (with the

limit defined in this case as lim supkP
(k)
Ii ).
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Proof: (rather technical and postponed to the Appendix)
2

The convergence in theorem 3.1 is obviously unconditional of γ if no tail-correction is
introduced.

4 Some extensions

4.1 Possible modification to the Systemic Probability Index definition

The proposed ω correction to the tails of the distribution is one of many possible ways to
account for the fact that the sum of uniformly distributed random variables has in general
higher kurtosis (is flatter) than its approximation by the normal distribution parametrised by
the first and the second moment of the original sum. An alternative could be to apply normal
distribution matching the 4th moment of the original distribution, leaving the location of the
distribution unchanged.

Given that the components of π and G are assumed to be independent the fourth (raw)
moment of the sum

∑N
i=1Gijπijbi is equal to

M
(k)
j (b) =

1

5

N∑
i=1

m4
ijb

4
i +

4

9

∑
i1 6=i2

(mi1jbi1)2 (mi2jbi2)2

On the other hand, the fourth raw moment of normal distribution with mean equal to m̂
(k)
j (b) =∑N

i=1mijbi and a given standard deviation σ̂
(k)
j (b) is equal to(

m̂
(k)
j (b)

)4
+ 6

(
m̂

(k)
j (b)

)2 (
σ̂
(k)
j (b)

)2
+ 3

(
σ̂
(k)
j (b)

)4
and the moment matching condition states that it should be equal to M

(k)
j (b). Solving for

σ̂
(k)
j (b) one gets:

σ̂
(k)
j (b) =

1

2

(
6
(
m̂

(k)
j (b)

)2
+

√
24
(
m̂

(k)
j (b)

)4
+ 12M

(k)
j (b)

)
(15)

The Assumption 2 can be modified as far as σ(πGij) is concerned:

[Assumption 2’]: The weighted sum of bank’s j interbank relative exposures
∑N

i=1 biGijπij is

approximated by the normal distribution N (k)
j (b) with mean and standard deviation given as

m̂
(k)
j (b) and σ̂

(k)
j (b).

The modified systemic impact of bank I on bank j, with no additional tail correction this
time, equals:

P̂
(1)
Ij = P

(
N (1)
j

(
[0 . . . 0︸ ︷︷ ︸
I−1

LI lI 0 . . . 0︸ ︷︷ ︸
N−I

]>
)
> Cj

)
P̂

(k+1)
Ij = P

(
N (k)
j

(
[P̂

(k)
I1 L1l1 . . . P̂

(k)
INLN lN ]>

)
> Cj

)
(16)
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4.2 Typical network approach

The inherently very complex distribution on SN (a, l) can be characterise by means of the so-
called typical matrices. The computational complexity is then reduced to the large scale but
anyway deterministic convex optimisation problem and to sampling from the distribution of
the sum of independent exponential random variables.

For Z being N ×N matrix with non-negative entries, let us define a function

g(Z) =
∑
i,j

(zij + 1) ln(zij + 1)− zij ln zij

Following ideas of Barvinok (2010), we also define the typical matrix ZN (a, l) of SN (a, l), that
is ZN (a, l) which maximises functional g on SN (a, l), i.e.

ZN (a, l) = arg maxZ∈SN (a,l)g(Z)

Then, the following theorem holds:

Theorem 4.1 (Barvinok (2010)) Let ZN (a, l) be a typical matrix of the network SN (a, l).
Moreover, let a random matrix XN (a, l) be given such that

1. xij entry is a geometric random variable, and xij is independent of xkm if i 6= k or
j 6= m;

2. Exij = zij for al pairs (i, j), where zij is the i-row and j-column entry of ZN (a, l).

Then, the following characterisation of the uniform probability distribution on SN (a, l) holds:

P(XN (a, l) = Y ) = e−g(ZN (a,l)) for all Y ∈ SN (a, l)

First, let us emphasise that this representation of the distribution on SN (a, l) by means of
independent random variables simplifies calculations of the sum

∑N
i=1 biGijπij enormously.

Their components can be sampled independently and the only restriction is given by the initial
optimisation problem involving function g. This helps a lot while calculating probability that
the weighted sum of columns is greater then Cj . Second, let us observe that the optimisation
leading to ZN (a, l) is done only once for a given set of the interbank assets and liabilities. It can
be performed in an efficient way applying the standard optimisation algorithms. Of course,

in the next steps the calculation of the individual indices P
(∞)
Ij has to rely on the Monte

Carlo simulations both with respect to the probability map P geo and the sum of geometric
distributions of x1j , x2j , ...,xNj . Nevertheless, it is tractable unlike in the case of the uniform
distribution given by 10.18

18The representation has also an interpretation in terms of entropy maximisation on the subspace of matrices
that has predefined sum of rows and columns. Investigating further the “behavior” of the random matrices
of SN (a, l) type, Barvinok (2010) concluded that the distribution of the sum of sufficiently large number of
elements of s ∈ S is very close to the sum the corresponding typical matrix Z. The maximal entropy thrown
away by us returns through the backdoor of the typical matrices. However, we deal with the sum of at most
N elements, some of them still weighted by probabilities close to 0 and our problem should not normally boil
down to the “simple” case of the typical matrices.
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Remark 4.1 (Further extensions) The probability map could be treated in a different way.
Suppose, that if Gij equal to 0 is drawn (with probability 1 − P geoij ) then it means that the
entry i, j of drawn matrix SN (a, l) is equal to 0. This means that for a given realisation of the
matrix P geo there is an additional restriction imposed saying that all entries of SN for which
P geoij equals 0 are set to 0 (the link between i and j is non-existent) still with the sum of rows
and columns equal to a and l. According to Barvinok (2010), there is an analog of the theorem
4.1 accounting for this additional constraint. However, in this case the the computational
complexity rises since we need to calculate ZN (a, l), depending on the 0-1 constraint matrix.

5 Results

The very first conclusion about how reasonable is the simulated network approach rather than
approaches focusing just on one particular network structure can be inferred from the topo-
logical properties of the simulated networks. For that purpose, we calculate the distribution
of the betweenness measures for all nodes in the 20,000 simulated networks and compare those
with the entropy maximising network (using the efficient RAS algorithm (Mistrulli, 2011)) and
the average network (described by the sum of all the simulated relative exposure matrices π
divided by 20,000). The results are shown in Figure 2.19 The complex shape of the resulting
distributions suggests that none of the two calculated special networks are far from approxi-
mating the set of simulated networks. In addition, the study of systemically important nodes
in the two special network cases could be misleading. For example, it is counterintuitive that
(as indicated by the entropy maximising network) the Hungarian bank in our sample should
be more systemically important than all the German banks in the sample or (as pointed out
by the average network) that the default of one of the Irish banks may induce higher conta-
gion than any of the German banks. Summing up, the simulated networks allow for analysing
much richer structures related to the probability map of the geographical breakdown of banks’
activities than just the usually available (or estimated) one period snapshots. Otherwise, one
ignores some very useful information about probabilities of the interbank links which is helpful
in studying the tail contagion risk related to the variety of possible formation of the interbank
structures.

Against this background, we now turn to discuss the contagion results based on our simu-
lated networks. First, to illustrate the outcome of the network simulation, we compute – for
each simulated network – the average Capital Adequacy Ratio reduction (i.e. average ∆CARi)
in the event of one bank failing on its interbank liabilities. Figure 3 shows the distribution of
average CAR reductions across all the simulated networks; with and without “fire sale” losses.
It is observed that for the large majority of simulated networks the average solvency implica-
tions are relatively muted. In other words, contagious bank default is a tail-risk phenomenon.
Broadly speaking, in 99 per cent of the scenarios the CAR reduction is negligible, while only
in 1 percentage point of the network realisations the CAR reduction surpasses 0.2 percentage
point. This suggests that the interbank network structures are overall fairly robust against
idiosyncratic shocks to the system, which thus serves the purpose of diversifying risks among
the banks. This notwithstanding, we also observe substantial non-linear effects in terms of
contagion as for some, albeit limited in number, network structures the impact on overall

19In some case, we present results only for the internationally active banks since banks from this group trigger
the interbank contagion.
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Figure 2: Betweenness-centrality measures: distribution on the simulated networks vs the
average network
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Figure 3: Distribution of the average CAR reduction (in p.p.)
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banking sector capitalisation turns out to be much larger than for the vast majority of the
networks.

It is furthermore noticeable from Figure 3 that when including a fire sale mechanism
the interbank contagion will increase the CAR reduction. It is, however, also observed that
the additional contagion impact compared to the case without any fire sales is relatively
limited under the ”liquid assets” assumption described in Section 2.4. The fire sale impact is
considerably more pronounced if banks instead are assumed to sell assets in order to retain a
specific target leverage ratio, as the implications of contagious bank defaults now kick-in at
substantially lower percentiles of the distribution of simulated networks (see Figure 4). This
finding is consistent with theoretical predictions about the potential for substantial and long-
lasting spillover effects when financial intermediaries aim at controlling their leverage metrics.20

It also suggests that bank-specific characteristics are crucial determinants for contagion risk
(see e.g. Nier et al. (2007)).

Figure 5 shows the distribution of individual banks’ CAR reduction. Two observations are
notable. First, whereas contagion in general is a tail-risk phenomenon across all banks, for some
banks contagion can be initiated in a substantial number of the simulated network structures.
This indicates that some nodes in the network are more important than others for producing
contagious effects. A second notable feature is that in the vast majority of cases there are
no substantial differences between the contagion effects derived using the probability map to
simulate the networks and those derived without averaging out the cross-border exposures (i.e.
disaggregate map).

We can also decompose the CAR reductions into first-round and second-round contagion
effects; as proposed in equation 3 (see Figure 6). We observe that while the first-round, or
direct, effects are clearly dominating the overall impact across all banks, at least for some

20See, for example, Adrian and Shin (2010), Geanakoplos (2009) and Brunnermeier (2009).
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Figure 4: Distribution of the average CAR reduction with target leverage ratio (in p.p.)
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banks also the second-round shock propagation adds to the overall losses in the system. This
illustrates that when analysing interbank contagion one needs to look beyond the direct bilat-
eral exposures between the banks in the network, but also needs to consider potential knock-on
effects once the first round impact of bank defaults has been accumulated.

Turning now to the results based on the Systemic Probability Index (SPI), Figure 7 shows
the bank-by-bank SPI index values for the two different probability maps that we consider;
i.e., one where banks are grouped into international and domestically-oriented institutions and
another where no distinction is made between the different types of banks. We observe that
according to the SPI only around a dozen of banks (mainly from Germany, France and Spain)
out of the sample of 89 banks appear to be systemic in nature whereby a failure of one of these
banks is attached with a high likelihood of spreading to the rest of the interbank network.

It is furthermore noticeable that for the large majority of the banks the SPI based on
the international/domestic grouping and the SPI based on the disaggregate measure (i.e. no
grouping) are broadly the same. In other words, the same set of banks appear systemically
relevant, according to the index, independent of the aggregation method. Only in a few cases,
mainly pertaining to the French banking groups, we find that the “disaggregate” SPI lies
significantly above the “grouped” SPI. For those few banks it thus appears that grouping banks
according to their international activities matters, as their systemic relevance is somewhat
“averaged out” taking into account the international dimension. In this sense, using the
international/domestic grouping of banks is useful as it allows for detecting outliers.

With a view to using the SPI to identify the systemic nature of a bank, we find some
indication that the SPI is higher for those banks with more interbank liabilities, which is in-
tuitively appealing (Figure 8). More importantly for our purposes, there is a clearly visible
positive relationship between the SPI and the failure results from our simulated network (Fig-
ure 9). The only exception concerns three German banks for which the SPI is relatively high
compared to the simulated results. A simplistic method to quantify the positive relationships
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Figure 5: Distribution of individual banks’ CAR reduction (in p.p.)
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Figure 6: Decomposition of the distribution of individual banks’ CAR reduction into first and
second round contagion (in p.p.)
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Figure 7: SPI index for two different Probability Maps (for grouped banks into domes-
tic/internationally active banks and for disaggregate data)
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Figure 8: SPI index (x-axis) vs interbank liabilities (y-axis)
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discerned in Figures 8-9 is to calculate the correlation coefficients. Correlation between SPI
and banks liabilities amounts to 52%, whereas correlation of the index with the average CAR
reductions related to the 10% worst contagion losses is at the level of 64%. Overall, this gives
us confidence that the trade-off between computational simplicity and precision in the results
does not compromise the SPI.

The introduced SPI measure should ideally be used as a cross checking device of the re-
sults of the simulated networks, not necessarily completely replacing the simulations. SPI is
much quicker to compute but at a cost of simplifications of the modeled interbank network.
The nature of the interbank network can be much better understood through the Monte Carlo
simulations but with SPI it is much easier to experiment with various assumptions and modifi-
cations made to the loss absorption capacity of banks (capital shocks) and scenarios of funding
constraints (funding shocks), that can straightforwardly be introduced to the framework. And,
since in general contagion mechanism is such a nonlinear phenomenon, the more measures are
applied to detect it, the better. To our best knowledge, our mathematically rigorous ap-
proach to approximate the clearing payments contagion by introducing a tractable probability
structure on the interbank network is the first of this kind in the literature on networks.

The results of the simulations and SPI can be compared also in a time dimension. For
that purpose, we collected end of 2010 data on interbank assets and liabilities and capital from
banks’ balance sheets and we performed an analogues exercise as for the 2011 data in order
to calculate CAR reduction due to contagion losses and values of SPI indices. We used the
same probability map as in the case of 2011 simulations. The results are presented in Figure
10. There are two important conclusions that can be drawn from this comparison. First, at
the end of 2011 the contagion risk measured by SPI increases (the 2011 line lies above the
corresponding 2010 line on the upper part of the figure, except for one Dutch bank). Second,
this observation is mostly confirmed by the ∆CAR showing a general consistency between
results of the simulation and SPI (apart from one French and one British bank).
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Figure 9: Probability Index (SPI, y-axis) vs results of the simulation (log scale, x-axis)

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

AT

AT

DE DE
DE

DEDE DEDE

ES

FR
FR

GB

GB

GB

GR

EEIT

NLSE

Note: SPI – total assets weighted average of P
(∞)
i s; results of the simulation presented as the average

of the 10% worst losses induced by a given banks default on its interbank deposits.

Source: own calculations

Figure 10: Comparison of results (simulation vs SPI) for 2010 and 2011 data
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Figure 11: Convergence of SPI index components for bank-triggers
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The importance of controlling for (especially French) banks’ international activities is also
discernible when looking at the cascading effects on other banks conditioned on individual
bank defaults. Thus, Figure 11 illustrates the extent to which individual bank defaults trigger
contagion to other banks when using the probability map, while Figure 12 shows the same
cascades but using the disaggregate map.

Common for both examples is that the knock-on effects of bank defaults on other banks
tend to affect other domestic banks (red lines) first, and only subsequently (if at all) the
shock propagates to foreign banks (green lines). Notably, the international contagion is more
visible (especially for French banks, but also for German and UK banks) when applying the
disaggregate map.

In general, it is notable that many banks only display contagion to other domestic entities
whereas cross-border contagion appears to be substantially more limited. This may reflect
that apart from a few large players the EU interbank market is still very much fragmented
along national lines.

Another useful metric for assessing the systemic relevance of a bank is how fast its default
propagates to the rest of the interbank network. As described in the previous section, a varia-
tion of the SPI is to weigh the probabilities of default of individual banks using exponentially
decreasing weights. This can be used to assess the speed with which the SPI stabilises at
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Figure 12: Convergence of SPI index components for bank-triggers with disaggregate Proba-
bility Map
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Figure 13: Speed of contagion spreading – SPI vs SPIw indices
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the equilibrium. Figure 13 plots the un-weighted SPI against the weighted SPI. It allows for
a comparison across banks in terms of how quickly a bank’s default spreads throughout the
network. The further away from the 45-degree line a bank lies, the slower is the contagion
effects stemming from this bank.

So far, in our simulated networks we did not restrict the size of exposures a bank is allowed
to hold against another bank. However, in practice banks are constrained by so-called “large
exposure limits”.21 To account for such regulations, we impose two conditions:

1. the sum of all exposures that (individually) exceed 10 per cent of the capital should not
exceed 800 per cent of capital;

2. each exposure should not exceed 25% of the total regulatory capital.

Figure 14 illustrates the implications in terms of CAR reductions when imposing such “large
exposure limits”. As expected, this has the effect of substantially reducing the overall contagion
impact across the networks compared to the situation without any limitations to counterparty
exposures (see Figure 3).

Having analysed the topological properties of the simulated networks and the distribution
of losses induced by the networks it is natural to ask about any formal relationship between
network measures and network related losses. More specifically, the question is whether there
is a relationship between any of the centrality measures and the size of the losses. We tested
measures like degree, betweenness, closeness and – the very simple one – the average number
of nodes. Only the average number of nodes proved to be significantly correlated with losses.

21See Article 111 of Directive 2006/48/EC that introduces the limits.
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Figure 14: Distribution of the average CAR reduction for networks satisfying Large Exposure
limits (in p.p.)
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However, as presented on Figure 15 in the absolute terms the differences between the number
of nodes across the sample seemed not to be substantial.

There are at least two important assumptions of the SPI definition that the results may be
highly sensitive to. We address this issue of results’ stability by performing some robustness
checks. The first one pertains to the probability map. It was constructed defining interna-
tionally active banks as those with cross-border exposures exceeding an arbitrary threshold of
25 per cent of their total exposures. Checking the robustness of this assumption, in Figure
16 the SPI impact of incrementally shocking the probability map entries are shown. We ob-
serve that for the large majority of banks marginally changing the probability map does not
materially alter the results; especially in terms of the relative ranking of the banks and if the
probabilities are allowed to change by at most 5 pp. In other words, varying the thresholds for
when a bank is internationally active does not materially affect the assessment of which banks
are systemically relevant: systemic banks remain systemic, while non-systemic ones remain
non-systemic. However, the relative impact of banks (i.e. when comparing banks to their
peers in the sample) is more variable if more oscillation is allowed in the probability map, it
means if probabilities are shocked by not more than 15 pp. Nevertheless, even in that case
the assessment of SPI index only for two banks may give some inconclusive outcomes (the
interquartile range spans between 0 and 0.2).

The second stability test is related to the LGD assumption about the interbank losses. The
baseline case of 100% LGD was compared with simulated defaults measured by SPI calculated
with a sample of LGD parameters taken from a range of 25% to 100%. For all the banks in the
sample it is true that if a bank can be called a systemically important note in the system for
LGD= 100 then this conclusion is also valid for all other LGD parameters higher than 25%. It
is crucial since it means that the outcomes are qualitatively stable irrespective of the assumed
LGD level. It seems that systemic importance of two banks in the analysed sample (one
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Figure 15: Number of edges for networks divided by the total possible number of edges (order
from the worst to best case in terms of the interbank losses)
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Figure 16: SPI and SPIw indices under various scenarios of P geo
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Figure 17: SPI and SPIw indices under various scenarios of P geo
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Figure 18: Stability of results related to the LGD assumption
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French and one British) jumps considerably as the LGD parameter hits 100%. Hence, from
this perspective the relative systemic impact of these two banks may vary significantly if the
assumed LGD is reduced only by a few percentage points (remaining systemically important in
absolute terms). Notably, the results of the simulation are another confirmation of nonlinearity
of network problems (banking networks in particular).

6 Conclusions

We propose two new tools to study the contagion risk in the banking system based on the
simulated networks concept. Both abstract from the usual snapshot perspective in most con-
tagion studies. The first tool allows for generating many possible interbank structures and for
analysing distribution of clearing payments vector á la Eisenberg and Noe (2001). Since the
simulation of the random networks is computationally costly we propose a second tool which
is the so called Systemic Probability Index (SPI). It is based on the same set of information as
the random networks (publicly available data and EBA disclosures on the geographical break-
down of banks’ activities) but is substantially easier to compute. Both tools give consistent
results measured in terms of inclusion of the sets of systemic banks, i.e. banks that are found
to be systemic in the random network tool (generate highest contagion losses in the interbank
system) are confirmed to be systemic by the SPI.

The simulations that we performed confirm that contagion is heterogenous across the
banking system and strongly non-linear. We found that there are banks that pose much
higher contagion risk to the banking system than other banks. At the same time, a small
fraction of possible network structures may spread relatively sizable contagion losses across
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the system, thus highlighting the non-linear nature of shock propagation effects. Contagion is
very much a tail risk problem.

Our simulated networks approach (either in form of random networks or the Systemic
Probability Index) allows for comparison of the tail risk networks. Although, all of the sim-
ulated structures on average can transmit contagion of only very limited size, the impact of
bank-triggers on the system may substantially differ in extreme cases. This is both confirmed
by the simulations of contagion losses and by the Systemic Probability Index.

There is a couple of interesting extensions of the analysis presented in the article. We can
group them into theoretical and empirical strands.

Sensitivity of contagion related to the changes of interbank activity and changes in capital-
isation of nodes banks in the system is one research path that seems to be interesting to follow.
Theoretically necessary conditions for a system to remain resilient to systemic risk would have
interesting policy implications as far as simple monitoring of the system’s proneness to conta-
gion risk is concerned. As far as the SPI is concerned, there is a couple of technical extensions
already mentioned in section 4 to follow. They may increase the accuracy of the SPI-based
results, although at a higher computational cost, however still manageable.

The answer to the question about how realistic are the simulated networks could be ob-
tained based on the interbank exposures extracted from the payment systems. An ideal source
of data for the European banking system is the overnight interbank payments data. Not only
can the simulated and the true structures be compared but the probability map could be
estimated from the time series of the observed networks. Even if such the highly confidential
data are not available for such the analysis, one could still study empirically the development
of the contagion risk in time. For that purpose, at least a time series of the balance sheet
interbank exposures should be gathered to verify how changes in other systemic risk measures
(see Holló et al. (2012)) correlate with the contagion losses in the simulated random networks
or with changes in SPI.

A Appendix

A.1 Proof of theorem 3.1

We focus on the triggering bank I. Let us define a mapping ΨI : [0, 1]N → [0, 1]N as

ΨIj(z) =

{
P((π>)I ·A(z) > Cj), P((π>)I ·A(z) > Cj) > γ

min
{
γ,B(z) + P((π>)I ·A(z) > Cj)

}
, P((π>)I ·A(z) > Cj) ≤ γ

where A(z) is an isotone, positive mapping and B(z) a given mapping (in R).
Suppose that z1 ∈ [0, 1]N is such that z1i ≥ γ and z1 � z2. Then, ΨI(z1) � ΨI(z1). It

follows from the fact that A(·) is isotone and positive. In fact, A(·) and B(·) both depend
on j but we drop the index for brevity. Let us notice, that for e being a unit vector (e.g.
e(k) : = [0 . . . 0︸ ︷︷ ︸

k

1 0 . . . 0︸ ︷︷ ︸
N−k−1

]), e(k) � ΨI(e
(k)), since by definition ΦI is bounded by 0 and 1. If

ΨIj(e
(k)) ≥ γ, then the sequence ΨIj(e

(k)), ΨIj ◦ ΨIj(e
(k)), . . . , ΨIj ◦ · · · ◦ ΨIj(e

(k)), . . . is
non-decreasing and, since is bounded by 1, it converges. It is, then, sufficient to prove the
theorem by showing that ΨI is isotone if A(z) is replaced by [z1L1l1, . . . , zNLN lN ]>. But
trivially, Aj(z) is increasing in every zi. This completes the proof.
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Remark A.1 Why (P
(k)
Ij ) may not be globally convergent? Set b : = [z1L1l1 . . . zNLN lN ]>.

Let B(z) be replaced by 

ω(P geo·1 , d·1, b)
K1

1+

∣∣∣∣∣ C1−b·E[πG·1]√
b2·D2[πG·1]

∣∣∣∣∣
3

...

ω(P geo·N , d·N , b)
K1

1+

∣∣∣∣∣ CN−b·E[πG·N ]√
(b)2·D2[πG·N ]

∣∣∣∣∣
3


Let us represent B in the following way (we slightly abuse the notation introducing z to

power nth, i.e. zn : = [zn1 , . . . , x
n
N ]>):

B(z) = B1(z)B2(z)

where

B1(z) =
Q(21) · z3√
Q(22) · z2

3

B2(z) =
1

1 +
Cj−Q(23)·z√
Q(24)·z2

for positive vectors Q(21), Q(22), Q(23) and Q(24). We determine a region where B is increasing.
Namely, differentiating B1 with respect to zi (in the set {z|P((π>)I · A(z) > Cj) < γ}), one
observes that it is increasing if

3Q
(21)
i z2i

√
Q(22) · z2

3

− 3Q(21) · z3
√
Q(22) · z2Q(22)

i zi > 0

It happens for z bounded from 0N , i.e. for all i ∈ {1, . . . , N} satisfying

zi >
Q

(22)
i

∑
m6=iQ

(21)
m z3m

Q
(21)
i

∑
m6=iQ

(22)
m z2m

In case of B2 the differentiation with respect to zi brings us to the following inequality

Q
(23)
i zi

√
Q(24) · z2 + (Cj −Q(23) · z)

Q
(24)
i zi√

Q(24) · z2
> 0

that translates into increasing B2. The sufficient condition for the inequality to hold is Cj −
Q(23) · z > 0.
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