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Abstract

In this paper we propose a new methodology to estimate the volatility
of interest rates in the euro area money market. In particular, our ap-
proach aims at avoiding the limitations of currently available measures,
i.e. the dependency on arbitrary choices in terms of maturity and fre-
quencies and/or of factors other than pure interest rates, e.g. credit risk
or liquidity risk. The measure is constructed as the implied instantaneous
volatility of a consol bond that would be priced on the EONIA swap curve
over the sample period from 4 January 1999 to 20 November 2012.

We show that this measure tracks well the historical volatility, in the
sense that dividing the consol excess returns by this volatility removes
nearly entirely excess of kurtosis and volatility clustering, bringing them
close to an ordinary Gaussian white noise.

Keywords : consol rate, historical volatility, overnight money market, in-
terbank offered interest rates
JEL classification : E43, E58, C22, C32
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Non-technical summary 

Excess returns of any asset traded in a liquid financial market are usually 
characterised by excess ‘peakedness’ (the so-called excess kurtosis) and by the 
fact that large fluctuations are followed by similar ones – commonly defined as the 
autocorrelation of squares or of absolute values of excess returns – (the so-called 
volatility clustering).  These two statistical properties distinguish excess returns 
from random walk process increments (or, in the continuous time language, to be 
Gaussian white noises). This substantially complicates their representation and 
thus their estimation. In this paper, we test the assumption according to which the 
presence of excess kurtosis and volatility clustering could solely result from the 
variability of the instantaneous volatility. Should this be the case, dividing the 
excess returns by the corresponding instantaneous volatility would allow removing 
excess kurtosis and volatility clustering, hence allowing the normalized excess 
returns to be Gaussian white noise by construction. This test is applied to the case 
of the euro area money market interest rates in this paper over the sample period 
from 4 January 1999 to 20 November 2012. 

For this purpose, the first step is to estimate the instantaneous volatility, which 
may prove to be a somewhat complex task. Indeed, an accurate measure of 
historical volatilities – computed as the standard deviation of excess returns across 
a time window demands a large time window while estimation of instantaneous 
volatility requests a small time window. Although an implied instantaneous 
volatility could be inferred from a sufficiently rich data set of quoted volatilities, 
such an approach involves additional technical difficulties when applied to market 
interest rates in opposition with other markets like equities or foreign exchange. 
To overcome these technical challenges, we propose to reconstruct the implied 
instantaneous volatility from available market data on the basis of the definition of 
a perpetual bond (namely a consol bond) that would have been priced on the 
overnight index swap (OIS) curve (namely the EONIA swap curve in the case of 
the euro area). The calculation of this EONIA swap curve consol volatility is then 
used to compare the statistical behaviour of the raw excess returns of such a 
perpetual (consol) bond with the normalised ones, i.e. obtained by dividing the raw 
excess returns by this volatility. Tests of our assumption are first made on the basis 
of simulations based on arbitrage free models. The method is then applied to the 
actual euro yield curve data. The results confirm our initial theoretical intuition, 
namely excess kurtosis and volatility clustering are (almost) entirely removed from 
EONIA excess returns. 

The interest of this analysis is thus twofold. First, by removing the excess kurtosis 
and volatility clustering, it allows a much easier representation of the EONIA 
cumulated excess returns in the form of a Brownian motion. Second, it allows an 
accurate approximation of the instantaneous volatility over a long time horizon. 
Our findings are of relevant importance for those who have to monitor the 
dynamics of the market interest rates, both central bankers and practitioners.  
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1 Introduction

The information content of interest rates is important not only for practitioners,
but also for monetary authorities. The estimation of the volatility of interest
rates is equally important as it allows to gauge uncertainty surrounding market’s
expectations, notably as regards the future path of the monetary policy rate.
Despite the importance of the concept, no measure of interest rates volatility

currently available in the literature is entirely satisfactory for several reasons.
Most of them do not reflect solely the interest rate risk, but are usually conta-
minated by other factors that a rigorous analysis may not ignore, but should
keep separated from the interest rate risk per se. Such factors can be liquidity
funding risk, credit risk, convenience yield, collateral cost and so on. Finally
— and perhaps more importantly — they rely on arbitrary choices in terms of
time to maturity of some underlying rate instrument, possibly also of coupon
frequency of that underlying instrument, and, in the case of market-implied
volatilities measures, time to maturity of the option itself - those measures do
not depict instantaneous volatilities. By construction, the common measures of
historical (also said empirical or realized) volatilities, cannot capture the instan-
taneous underlying volatility variable. Renewed interest of volatility measures
has occured with the works of Andersen and Bollerslev (1997) and Andersen and
Bollerslev (1998) on realized volatility. However, despite the advantages of this
measure in comparison with parametric measures, the (arbitrary) choice of the
intraday time intervals remains a shortcoming. Furthermore, when applied to
the short-term interest rate itself, the measure loses its interpretation in terms
of a standard deviation of forthcoming excess returns1 .
One remains left with market implied volatilities. By contrast, market-

implied volatilities can potentially deliver information about instantaneous volatil-
ity, even if options with intraday expiry date are not commonly traded: the
possibility remains to extrapolate the instant value from the spectrum of the
effectively traded values.
Implied volatilities remain nevertheless subject to the other drawbacks that

we discuss in details in the paper. In particular, as they are derived from the
(centralised market-based) options on future contracts on the interbank offered
rate (BOR) fixings or bond interest rates (e.g. the German Bund which is largely
used) and those derived from the (OTC-based) options on interest rate swaps
(swaptions), they never represent a comprehensive measure of the pure volatility
of interest rates, as they are usually derived from instruments that are not only
affected by the movements of the EONIA curve, but also by funding liquidity
risk, credit risk, convenience yield etc. Beneath, they still rely on the arbitrary
choices in terms of maturity and/or of coupon frequency that we would judge
preferable to eliminate.
The purpose of this article is thus to propose a measure of implied intan-

1This is because no instrument exists that would necessarily be equal to the EONIA of a
trading day, on that trading day, and would also be led to be equal to the EONIA of the next
day the following day. It follows that the difference between to subsequent EONIA fixings
cannot be rigorously interpreted as a return.
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taneous volatility that encompasses as much information as possible, while re-
maining as independent as possible of arbitrary choices such those related to e.g.
maturity or frequency. In practice, estimating intantaneous volatility of interest
rates may prove to be somewhat challenging. An accurate measure of historical
volatilities —computed as the standard deviation of excess returns across a time
window demands a large time window while estimation of instantaneous volatil-
ity requests a small time window. Although an implied instantaneous volatility
could be inferred from a suffi ciently rich data set of quoted volatilities, such
an approach involves additional technical diffi culties when applied to market
interest rates in opposition with other markets like equities or foreign exchange.
To overcome these technical challenges, we propose to reconstruct the implied
instantaneous volatility from available market data on the basis of the definition
of a perpetual bond (namely a consol bond) that would have been priced on
the overnight index swap (OIS) curve (namely the EONIA swap curve in the
case of the euro area). The calculation of this EONIA curve consol volatility is
then used to compare the statistical behaviour of the raw excess returns of such
a perpetual (consol) bond with the normalised ones, i.e. obtained by dividing
the raw excess returns by this volatility. Our underlying assumption is that the
presence of excess kurtosis and volatility clustering that characterised excess
returns of any asset traded in a liquid financial market could solely result from
the variability of the instantaneous volatility. Should this be the case, dividing
the excess returns by the corresponding instantaneous volatility would allow
removing excess kurtosis and volatility clustering, yielding the normalized ex-
cess returns to display Gaussian white noise process. Our findings demonstrate
that our measure of instantaneous volatility captures pretty well the magnitude
of the interest rates fluctuations in the near future while allowing to remove
excess of kurtosis and volatility clustering from the excess returns of interest
rates. The latter finding is powerful at least for two reasons. First, this finding
suggests a significant effi ciency of the interest rates option markets since our
measure is an implied volatility. Second, it indicates that the actual dynamics
of excess returns can be factorised in a very simple manner. It follows that their
statistical properties can be explained, in a parsimonious manner, by the sole
variability of the instantaneous volatility, which takes responsibility for both the
excess kurtosis and the volatility clustering.
The remainder of the paper is organised as follows. Section 2 briefly recalls

the main measures of volatility used in the literature and the standard measures
of volatility of the euro area interest rates. Section 3 presents the construction
of the new volatility measure against the theoretical background. Section 4
presents the data while Section 5 tests the statistical performance of the new
measure against, first, simulated data and, second, the true empirical data for
the case of the euro. Finally, Section 6 concludes.
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2 Why and how to measure volatility of interest
rates ?

Measuring and analysing volatility of interest rates is an important element
of any financial market analysis. In the case of central banks, analysing the
volatility of interest rates is of paramount importance, since monetary policy is
usually implemented by steering short-term interest rates and by shaping the
market expectations of the future values of those short rates. There are several
reasons for the central bank’s interest in this type of analysis.
First, it may offer insights into the effects played by the microstructure of

markets and the effi ciency with which they operate. For instance, comparing
the volatility of interest rates at specific maturities with the average volatility
across the whole maturity spectrum allows the central bank to detect atypical
movements in some segments of financial markets, in particular the money mar-
ket, which, in turn, could be related to imperfections in the market’s structure
or disturbances of the market functionning. Second, it may allow to assess ex-
post the effectiveness and effi ciency of the central bank’s operational framework
through which monetary policy decisions are implemented. It can thus help
the central bank to draw conclusions about whether its liquidity management
is implemented effectively (i.e. neutral from a market viewpoint with respect to
the policy stance decided by the central bank decision-making bodies) and well
understood by market participants. In some cases, it may lead to revision of the
design of its operational framework as discussed in Durré and Nardelli (2008).
Third, analysis based on rates volatility may help central banks to check the
understanding of their own actions and communication by the market. Money
market interest rates are henceforth of particular importance to central banks in
signalling the monetary policy stance2 . For example, increasing volatility (due
to surprises) may blur the transmission of policy decisions along the yield curve
over time, and this increased volatility may eventually translate into higher risk
premium. Last but not least, interest rates volatility at longer maturities pro-
vides information about the underlying macroeconomic uncertainty and market
participants’perceptions of the economic outlook.
Despite the importance of having an accurate and precise measure of volatil-

ity, the empirical literature is based on various types of measures which generally
present the features of containing only a partial set of information and of being
contaminated by the reflections of factors distinct from interest rates. Broadly
speaking, one can classify the various existing measures of volatility within two
main classes: model-based measures, and historical volatility measures. The

2For example, investigating how interest rate volatility evolves along the money market
yield curve on days in which the central bank announces its decision regarding the appropriate
level of policy interest rates offers a timely feedback on how the monetary policy decision is
perceived by market participants. If money market interest rate volatility is relatively low both
prior to and after the announcement of the monetary policy decision, this could suggest that
the decision was expected, i.e. no surprise. It can thus be used as an indication of market’s
understanding of the central bank’s operational framework. See for details the discussion in
ECB (2006).
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former are function of a specific model or econometric specification (including
conditional volatility models and stochastic volatility models). The latter, quite
simpler, essentially boils down to standard deviation of realised excess returns.
Somewhat outside the scope of the literature, there exists a third category

of measures, the market based implied volatilities.
As pointed out in Andersen, Bollerslev and Diebold (2002), when measur-

ing the volatility of a financial asset’s return, the fist step is to determine the
excess return. In financial literature, continuous-time stochastic volatility mod-
els assume an arbitrage-free process for prices (see Andersen, Bollerslev and
Meddahi (2005)), and provide price processes related to a particular class of
semi-martingales, which allow a unique decomposition of returns into a local
martingale and a predictable finite variation process (see e.g. Andersen, Boller-
slev, Diebold and Labys (2001) and Hansen and Lunde (2004)).
Suppose that pt denotes the continuous-time logarithmic price process of

some financial asset over a time interval T in which t denotes a compact time
interval. The class of continuous-time stochastic volatility models for continuous
price process of this asset can be generally expressed in terms of a stochastic
differential equation (Ito’s process) as:

dpt = µt dt + σt dWt (1)

where µt and σt are time-varying random functions andWt a standard Brownian
motion. The drift term µt is (locally) predictable and of finite variation while

σt satisfies technical conditions such as the requirement that
∫ t

0

σ2udu <∞ for

any t > 0. As a result, the process
∫ t

0

σµdWµ is a local martingale and pt is a

semi-martingale (see also Back (1991) and Protter (2004)). Note that the σt in
equation (1)has the character of an instantaneous volatility, i.e. with maturity
dt. The integrated squared volatility for such processes is defined as:

IVt ≡
∫ t

0

σ2(t)dt (2)

i.e. the cumulative sum of the square of instantaneous volatility σ. Being
the cumulative instantaneous variance process of the asset, it is not directly
observable (Andersen et al. (2002)). Analoguous specifications exist in discrete
time. The continuous-time nature of equation (1) nonetheless presents the the-
oretical advantage of ensuring that the model’s properties will not depend in a
hidden manner of some particular discretization step. Naturally, as explained
in Andersen et al. (2005), the estimation of returns and volatility necessarily
involves a discretization of time, and available empirical data cannot be dis-
cretized at any arbitrary small step of discretization, even if Hansen and Lunde
(2004) recalls that equation (2) could indeed be accurately approximated by the
sum of high-frequency intra-daily squared returns over small contiguous inter-
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vals.3 Hence, even the historical volatilities type of measures has necessarily a
limited accuracy. Furthermore, one cannot a priori rule out that they depend
on the choice of the sampling frequency, which makes them quite diffi cult to
interpret. In effect, that dependency appears very strong when measured for
what remains the proptotype of the highly liquid market, namely the exchange
rate between euro and dollar (Brousseau (2006)). Finally, let us also mention
that microstructure effects are likely to result into measurement bias.4

Turning now to the model-based measures, one way of approximating the
true integrated volatility would be by estimating some abitrage-free factor model.
This approach presents some practical drawbacks:

• First, it does not easily allow to exploit the information content of high-
frequency data.

• Second, the tractability of this model often occurs at the cost of the pres-
ence of some unrealistic properties. For instance, some models assume that
the yield curve is only explained by the short-term interest rate whereas it
does not allow parallel shift in the yield curve (while, in the data, 90% of
the variance of the yield curve is explained by parallel shift). This is par-
ticularly obvious in the case of the generic 1-factor affi ne model, namely
the Duffi e and Kan (1996) model with one factor (hereafter abbreviated
as DK1), which can be seen as a generalisation of Vasicek (1977) and
Cox, Ingersoll and Ross (1979). In the particular case of Vasicek (1977),
although it does explain 100% of the variance of the curve by the parallel
shift, this is at the cost of not being able to exclude negative interest rates
of potentially high absolute values. The accuracy of volatility measures
based on models with unrealistic assumptions is questionable.

• Third, the estimation procedure itself may be numerically unstable.

In this context, one is led to consider market-implied volatility measures. Al-
though these measures involve some specific parametric option-pricing model,
this model plays only a conventional role, which can be described as an encryp-
tion key allowing to translate an option price into a volatility or conversely. The

3Using the theory of quadratic variation (Protter (2004)), if the (log) price process pt is
a semi-martingale and rt = pt − pt−1 denotes the return of this asset during a time period
t, assuming that the trading day t is partitioned into m intervals of equal length x = t/m,

then equation (2) corresponds to the following equation: RVmt =
m∑
t=1r

2
t,mwhere rt,m refers

to intraday returns, rt,m = (tpm+1 −t pm) is the return (or log-difference of prices) for the
interval of equal length m and RVmt is defined as ‘realised volatility’. It is thus assumed that
m to be an integer and that RVmt converges uniformly in probability to IVt, as m −→ 0.
Simply stated, when assuming that the sampling frequency of r2t,m approaches zero, then the
realised volatility consistently estimates the true (latent) integrated volatility as mentioned in
Andersen et al. (2005).

4 In fact, based on observed prices from transaction data and/or quotes, the realised volatil-
ity can be affected by the microstructure of market, involving autocorrelation in intraday
returns. The lower the sampling frequency, the stronger the effect of the microstructure. In
that case, RVmt may significantly deviate from the (latent) true value of IVt. It is thus crucial
to define the data in a equally time-spaced observations with an adequate frequency, which
remains however based on a arbitrary choice.
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model’s realism or lack thereof does not per se constitute much of a concern.5

In addition, implied volatilities present the advantage to be forward looking in
contrast with backward-looking historical volatilities. If one admits (as we tend
to do) that at any given time the market as a whole is in possession of the best
available information about the likely evolutions of the underlying instrument,
then there is a case for using implied volatilities. Nonetheless, these measures
are not immune from technical limitations:

• First, their availability depends on the existence of traded options, and
may thus not exist for all instruments of interest (e.g. implied volatility for
the euro area money market is only available for the 3-month EURIBOR
futures contracts, and not for its 3-month EONIA swap counterpart).

• Second, the specifications of the underlying options limit by nature the
volatility measure (e.g. its availability subject to the remaining duration of
actual option contracts, or in other words, they are never instantaneous).6

• Third, the interpretation of the related volatility measure requires the
knowledge of the specific option pricing model, which, by the ruling market
convention, must be used for converting volatilities in option prices and
conversely. This complicates the translation of volatility measures from
one instrument to another, due to different market conventions referring
to different market segments.7

In light of the pros and cons of each different existing volatility measure, the
purpose of this paper is to construct a “pure”measure of volatility for the euro
area money market. In contrast with existing measures, such a “pure”measure
would meet the following characteristics: It would be (i) an implied volatility,
(ii) an instantaneous volatility; and its underlying instrument (iii) would not
reflect any other risk than that related to the sole interest rate risk; and (iv)
would be independent of any arbitrarily chosen date of maturity, or time to
maturity, or (in the case of a swap or a bond) coupon frequency. All those
requirements leave us with virtually only one choice, the implied instantaneous
volatility of a consol bond that would be priced on the EONIA swap curve. No
consol bond priced on the EONIA curve exists in the market, and a fortiori no
option on it, from which an implied volatility could be derived. Nevertheless,

5See also in particular Chapter 9 in Campbell, Lo and MacKinlay (1997) for a detailed
discussion on volatility measures within derivative pricing models.

6For instance, market-exchanged options on futures contracts (like BOR traded on the
LIFFE) have a fixed maturity date (which means, as time elapses, a decreasing time to
maturity over the life of the option). By contrast, OTC-based options (like the swaptions)
are usually quoted for some fixed times to maturity (which in turn means, as time elapses,
increasing maturity dates).

7 In particular, the implied volatility for the swaptions is based on the Black and Scholes
formula for the interest rates whereas the implied volatility of bond instruments like the
German Bund is based on the Black and Scholes formula for the price (a similar market
convention is also used for other markets like the stock price indexes or the foreign exchange
markets). Furthermore, the implied volatility derived from the EURIBOR futures contracts
is based on the Back and Scholes for the quantity (100-interest rate).
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the values that both the consol rate and the consol volatility would have if they
were liquidly traded can effectively be reconstructed from available market data.
This reconstruction is technically diffi cult, but conceptually simple.

3 A volatility measure based on the consol bond
rate: theoretical background

The main objective of the construction of the consol volatility is to have a mea-
sure removing the main limitations discussed in the previous sections: (i) the
dependency of arbitrary choices of maturity and / or frequency of the measure;
(ii) the dependency of the underlying instrument of factors other than interest
rates, e.g. credit risk, liquidity risk. But before proceeding to that reconstruc-
tion, we should examine what is the exact meaning on instantaneous consol
volatility in a rigorous mathematical framework, and how it relates, within this
framework, to other usual notions, such as zero-coupon prices or rates, or for-
ward rates. We will focus on the continuous time, continuous prices framework.
Let us first recall some key mathematical notions related to the concepts of

yield curve and of consol rate, before discussing the basic properties of a con-
sol volatility. From those basic properties, it follows that the consol volatility
reduces the consol excess returns to a Gaussian white noise, within the math-
ematical frameworkof a continuous-time arbitrage-free model. This hints that,
in the real world, a correct measure of volatility should also be able to reduce
the excess returns to a Gaussian white noise. This can be tested by examin-
ing whether dividing the excess returns by the volatility actually reduces the
leptokurticity and the volatility clustering. This test will be illustrated with
simulated data, for which the true volatility can be known ex ante, before being
presented for the actual euro data. In this case, a success of the test indictes
that the true volatility can be, and has effectively been, recovered.

3.1 Notational convention

The purpose of this paragraph is to recall and define the key notions of this
paper within the continuous-time framework, as well as their basic mathematical
properties. For convenience, the following convention is adopted: Latin letters
denote dates while Greek letters refer to delay/duration between two dates.8

3.1.1 Zero-coupon and forward rates

Yield curves are formally defined as functions of a continuous time parameter,
which associate an interest rate to a maturity within a (theoretically unbounded)
maturity set. Yield curves are also usually expressed in mainly two ways: (i)
as zero-coupon interest rate curves; or (ii) as instantaneous forward interest
rate curves. These two ways are equivalent and convey the same quantity of

8For example, a bond observed at time t and having maturity date T shall have a time to
maturity τ satisfying to the relation: τ = T − t.
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information. With z(τ) the zero-coupon interest rate at maturity τ , f(τ) the
forward interest rate at maturity τ (whereby both interest rates are continuously
compounded) and P (τ) the spot price of the zero coupon of maturity τ , i.e. the
present value of one currency unit to be paid over τ , one can write that:

P (τ) = e−τ z(τ) (3)

and
P ′(τ)

P (τ)
= −f(τ), (4)

which implies the following mathematical relationship between zero-coupon in-
terest rate and the forward interest rate:

f(τ) = z(τ) + τ
dz(τ)

dτ
(5)

or, conversely, as the change of variables is duly invertible:

z(τ) =
1

τ

∫ τ

0

f(θ)dθ (6)

From eq. (5) and (6), it follows two basic but important properties follow:
(a) z(.) is constant if and only if f(.) is constant. In this particular case, it

means that the constant value taken by f(.) is the same as the constant value
taken by z(.), which would imply a flat yield curve while the constant value
taken by both z(.) and f(.) is called the level of the flat yield curve;
(b) irrespective of the shape of the yield curve, z(0) and f(0) are always

equal and the corresponding unique value defines the short-term interest rate r,
i.e. r := z(0) = f(0).
Note also that one defines as parallel shift in the remainder of the analysis a

transformation of the yield curve such as a constant is added to the zero-coupon
interest rates, or, equivalently, of the forward rates following from eq. (5).

3.1.2 Consol bond and consol rate

A consol bond is defined as a perpetual (infinite horizon) bond paying continu-
ously a constant rate of money, which is called the coupon flow. By definition,
the consol price C is defined as the price of the consol bond divided by the
coupon flow9 , which can be expressed, in terms of the yield curve, as follows:

C =

∫ ∞
0

P (θ) dθ (7)

By substituting P (θ) by its value using eq. (3), the consol price becomes:

C =

∫ ∞
0

e−θ z(θ)dθ (8)

9Such a normalisation is needed given the perpetual nature of this bond.

10



When using eq. (6), eq. (7) can also be alternatively expressed as follows:

C =

∫ ∞
0

dP (θ)

f(θ)
dθ (9)

Similarly, the consol rate, y, defined as the yield of the consol bond, is the
inverse value of the consol price, i.e.:10

y =
1∫ ∞

0

e−θ z(θ)dθ

(10)

Furthermore, the consol duration, D, that is the duration (in the sense
of Fisher and Weil (1971)) of the consol bond reflecting the sensitivity of the
logarithm of the consol price to a parallel shift of the consol yield curve, can be
expressed as:

D =

∫ ∞
0

θ e−θ z(θ)dθ∫ ∞
0

e−θ z(θ)dθ

(11)

where the sensitivity of the consol rate to a parallel shift of the yield curve, χ,
is given by the following product:

χ = y D (12)

This dimensionless number χ is equal to 1 in case of a flat curve. Empirical
evidence shows that yield curves have usually χ smaller than, but close to, 1.
We say that that a financial price is in constant terms (e.g. in constant euros,
dollars, and so on), by opposition to current terms, when it is expressed in
currency values (say e.g. EUR or USD) of a fixed reference date in the past
rather than in currency values of the current date. The conversion of the value
of an euro of one date into euros of another date is made with the compounding
of the short-term interest rate between these two dates.
Finally, the consol wealth process, denoted A hereafter, is defined as the

wealth, expressed in constant terms, of an ideal investor facing no transac-
tion costs or short-selling restrictions who holds a portfolio of consol bonds
in which she reinvests automatically the whole coupon flow at the prevailing
market price. Therefore, the corresponding (infinitesimal) consol excess return,
denoted (dAt/At), is written:

dAt
At

=
dCt
Ct

+

(
1

Ct
− rt

)
dt = ytd

1

yt
+ (yt − rt) dt (13)

whereby the first two terms refer to the nominal gain (or loss) due respectively
to the change in the market price of the consol bond (dCt/Ct) and to the coupon
flow (dt/Ct) while the third term (rdt) refers to the carry cost of the position,
i.e. holding the portfolio of consol bonds.
10By construction, the consol rate corresponding to a flat consol yield curve is equal to the

level of that yield curve.
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3.1.3 Volatility of a consol bond

The quadratic variation of a process Xt is denoted [Xt], so that Ito’s formula is:

dft (Xt) = f ′ (Xt) dXt +
1

2
f ′′ (Xt) d [Xt] (14)

The volatility of the consol bond, σt, is defined as:

σ2tdt =
d [C]t
C2t

=
d [y]t
y2t

(15)

The differential dLt (with Lt denoting the logarithm of the consol wealth
process, hereafter referenced as to consol performance) can be obtained by ap-
plying the Ito’s iteration to eq. (13), i.e.:

dLt = yt d
1

yt
+

(
yt − rt −

σ2t
2

)
dt (16)

which leads to the following identity using the Ito’s formula:

yt d
1

yt
= −dyt

yt
+ σ2tdt (17)

Substituting eq. (17) into eq. (16) leads to express the consol excess return
as:

dAt
At

= −dyt
yt
+
(
yt − rt + σ2t

)
dt (18)

which, by applying Ito’s iteration to eq. (18), yields:

dLt = −
dyt
yt
+

(
yt − rt +

σ2t
2

)
dt (19)

Finally, the normalized excess return is defined as:

dNt =
dAt√
d[At]
dt

(20)

which, by combining eqs. (18), (19) and (20), yields:

dNt =
dLt
σt

+
σt
2
dt (21)

We will then apply the mathematical specification of the consol rate, and the
calculation of the corresponding volatility as discussed from eqs. (14) to (21),
to standardise the volatility measure for interest rates in the money market.
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3.1.4 Risk-neutral probability

Within the framework of Heath, Jarrow and Morton (1992), the dynamics of yt,
Lt and At are fully specified by the stochastic process of σt under risk-neutral
probability. At must be a martingale, so eqs. (13) and (15) imply:

dAt
At

= σtdWt (22)

with Wt denoting a Wiener process, from which it immediately follows that:

dLt = σt dWt −
σ2t
2
dt (23)

By combining eqs. (18) and (22) under the risk-neutral probability, the
change of the yield of the consol, bond, dyt, becomes:

dyt = −σt yt dWt + yt
(
yt − rt + σ2t

)
dt (24)

By combining eqs. (15), (18), (20) and (24), it follows:

dNt = dWt (25)

where Nt itself is also a Wiener process under risk-neutral probability. This
implies that:

d[N ]t = dt (26)

Eq. (26) is valid not only under risk-neutral probability but also under any
equivalent probability to the risk neutral probability, as it pertains to the
quadratic variation only. Finally, eqs. (21) and (25) yield that:

dLt
σt

+
σt
2
dt = dWt (27)

Note the left-hand side of equation (27) is defined as the normalized excess
return.
It follows from equation (27) that the the normalized excess returns - i.e. the

excess returns divided by the true volatility - should be akin a Gaussian white
noise under risk-neutral probability. As we know, empirical excess returns of
any financial asset usually differ from a Gaussian white noise by two properties:
(i) their empirical distribution more kurtosis than the Gaussian distribution
(the property of leptokurticity); and (ii) their absolute values (or their square
values) have a positive serial correlation (the property of volatility clustering).
To the extent that the Ito-process modelisation is a realistic representation of
the consol rate dynamics, one should be able to remove those two properties, by
dividing the excess returns by a correct measure of the underlying volatility, and
that operation of normalization would recover the underlying Gaussian white
noise process.
Attemps to approximate the true (unobserved implicit) volatility, namely

σt in equation (27), are commonly done through non-parametric or parametric
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volatility measures of assets other than the consol rate. This way of doing
is subject to two limitations. First, the time-to-maturity, and henceforth the
midified duration, of the financial asset does not remain constant across the
window used for the calculation of the corresponding volatility measure. Second,
the window length involved in the calculation of the volatility measure being not
instantaneous, one recovers at best an estimate of the average, in some sense, of
the instantaneous volatility inside the window. Both things make the estimate
of σt necessarily unprecise.
Our proposed measure of volatility circumvents those diffi culties. On the

one hand, unlike historical volatility, implied volatility can be extrapolated into
instantaneous volatility. On the other hand, the consol bond remains identical
as time slides given its perpetuity nature.

4 Data

The dataset contains only TARGET working days; it contains all the TAR-
GET working days from 4 January 1999 to 20 November 2012, which represents
3560 TARGET working days. The financial instruments taken into account are
handled in the OTC market. They consist into: short-term unsecured deposit
of maturity 1-day (overnight, tom-next and spot-next), EONIA swaps from 1-
week to 30-year, 6-month EURIBOR swaps for the corresponding maturities,
at-the-money implied volatilities of options on the EURIBOR swaps.
We used the options on 6-month EURIBOR swaps with option maturity

1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 4-year and 5-year, and with
underlying EURIBOR swap maturity 1-year, 2-year, 3-year, 4-year, 5-year, 7-
year, 10-year, 15-year, 20-year, 25-year and 30-year. Other maturities of options
or of underlying swaps are represented in the quotes contributed by brokers, but
their history may start at relatively recent dates, which makes preferable not to
use them. Besides, the EONIA fixing is included in the dataset. Each instru-
ment or fixing is identified in the Reuters database by a unique RIC (Reuters
Instrument Code).
As the financial instruments taken into account are handled on the OTC

market, we made use of quoted data, generally given as a bid-ask spread from
which we retained only the mid. We gave a preference to quotes issued by
the broker ICAP, and when not available, our primary fallback was the generic
quote of Reuters, which contains the latest quote issued by a bank or broker at
the time of its snapshot or of its contribution. In case of missing data, the data
set is completed by a reconstruction of data as described in detail in Annex I.

5 Testing the robustness of the benchmark rule

To assess the correctness of a measure of consol volatility (‘benchmark rule’
hereafter), we will test whether the excess returns of the consol bond, when
normalized by our volatility measure, resemble a Gaussian white noise process,
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i.e. that both leptokurticity and volatility clustering are essentially reduced.
Removing the volatility clustering is not suffi cient to assess the correctness of
the measure. It is easy to see that for an indicator X that oscillates rapidly
enough, the absolute value, and the square, of the ratio dL/X have small au-
tocorrelations: the rapid oscillations may remove the volatility clustering but
only at the expense of an increase of the leptokurticity. This makes necessary to
require the reduction of both elements (volatility clustering and leptokurticity)
in order to assess the quality of the volatility indicator.
Two formal tests are presented in this section. First, we conduct simulation

of affi ne factor models (which allow the knowledge of the true volatility ex ante)
and apply the test on the result of those simulations: this aims at checking that
our implementation of the test actually behaves as it is supposed to. Second,
we apply the test to the actual history of the EONIA curve, and to our re-
construction of the consol volatility, and assess by this way the quality of this
reconstruction of the consol volatility.

5.1 Test based on simulation

The consol performance L is also well defined in the case of simulated data.
In simulating the evolution of the yield curve under an arbitrage-free affi ne
factor model, one can check whether (i) dLt exhibits (or not) leptokurticity and
volatility clustering; and (ii) dLtσt +

σt
2 dt does exhibit less (or no) leptokurticity

and less less (or no) volatility clustering. This type of exercise is of particular
interest as it would provide a benchmark for the results of our test and hence a
natural comparison point for the results based on the empirical data set.

5.1.1 General setting of the simulation exercise

Denote with t1 and t2 two consecutive TARGET working days. Excess returns
are constructed by setting the cost of carry equal to the EONIA observed at
the close of business of t1. Normalized excess returns are constructed using the
volatility computed at the close of business of t1, (and not t2).
To assess the existence of leptokurticity, we examine whether the excess of

kurtosis differs from zero (contrary to a normal distribution where its value is
zero). To test the existence of volatility clustering, we use the correlation of the
absolute values of two consecutive returns, and the correlation of the square of
two consecutive returns.
Both simulations are run on 3560 TARGET working days.

5.1.2 Simulation models

For the sake of simplicity, we will use the special case of arbitrage-free models
known as affi ne models with constant parameters, with continuous time setting,
and continuous trajectories. We will perform our simulations in the case of the
generic 1-factor affi ne model and in the case of the generic 2-factor affi ne model.
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In an arbitrage-free model, the zero-coupon bond price takes necessarily the
form of the expectation:

P (t) = Eu[e
−

∫ t

u

rsds

] (28)

whereby the expectation refers to the so-called risk-neutral probability. Fur-
thermore, the probability under which the short-term rate rs actually diffuses
should be equivalent, in the probabilistic sense11 , to the risk-neutral one. We
will refer to that second probability as to the data-generating probability.
We have performed several attempts with different choices of parameters.

The results are always that the normalised excess returns behave close to a
gaussian white noise, and that the raw excess returns behave less close to a
gaussian white noise. Yet the contrast between the normalized excess return’s
and the raw excess return’s behaviours may be more or less pronounced. Typi-
cally, we find a excess of kurtosis ranging between zero and six for the raw case,
and close to zero for the normalized case. The simulations that we present here
will roughly correspond to a median case.
Simulation with 1-factor model - The generic 1-factor affi ne model is

coincident with the Duffi e and Kan 1-factor model (hereafter DK1). In the DK1
model, the risk-neutral probability is the solution12of the stochastic differential
equation (SDE):

drs = (a− brs) ds+
√
c+ rs ν2 dWs (29)

with a and b positive constants, c a real constant, and ν a positive or zero con-
stant, c and ν not being both equal to zero at the same time. By construction,
this model has thus four parameters (a, b, c and ν) and one unique factor which
can be identified to the short-term interest rate, rs. It evolves between −c / ν2
and +∞.
The data-generating probability should be equivalent (in probabilistic terms)

to the risk-neutral probability. Since we are here in a continuous-time setting,
the equivalence condition implies that the Brownian part of the data-generating
probability is also provided by the expression

√
c+ rs ν2 dWs with the same

c and ν whereas it has no implication whatsoever as regards the form of the
drift terms of the data-generating probability. Nevertheless, again for the sake
of simplicity, one focuses on the specific case for which the stochastic differen-
tial equation defining the data-generating probability takes a form similar to
equation (29), only allowing for different values for the drift parameters. For
instance, denoting new values for the drift parameters by a∗ and b∗, we have
another data-generating probability given by:

drs = (a
∗ − b∗rs) ds+

√
c+ rs ν2 dWs

11By definition, two probabilities are said to be equivalent if and only if they are defined on
the same σ-algebra and, furthermore, they attribute the weight zero or the weight one to the
same measurable sets.
12The solution of a SDE consists of a measure on the set of future trajectories - endowed with

some suitable σ-algebra - and is therefore the relevant concept when defining expectations,
which are essentially integrations w.r.t. that measure.
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with a∗ and b∗ being strictly positive.
Note that the DK1 model is the generic case of the 1-factor affi ne model

with constant coeffi cients. It is also the simplest possible arbitrage-free model
of the yield curve, which includes two specific cases: (a) the original Vasicek
(1977) model when ν is set to zero; (b) the Cox et al. (1979) (the CIR model
hereafter) when c is set to zero.13

The functional form resulting from the DK1 model happens to be in itself
rather realistic (see Brousseau (2002)). Yet, the DK1 model appears in practice
relatively far from the real motion of actual yield curves, for at least four reasons.
First, the DK1 model assumes that the curve is entirely specified by the

knowledge of its short-term rate (or also, of its zero-coupon rate or forward rate
of any given maturity).
Second, the DK1 model implies that the zero-coupon rates or forward rates

tend to a constant value for maturities tending to infinity. This constant value
is called the long-term rate and is a function of the four parameters).
Third, it is well-known that the motion of empirical yield curve is constituted

in major part by parallel shifts. This behaviour cannot be replicated in the frame
of a DK1 model.
Fourth, the consol χ defined in equation (12) as the sensibility of the consol

rate to a parallel shift of the curve, is always close to one for empirical yield
curves. It is considerably smaller for DK1 curves.
Each of those features appears at odds with empirical observations. Our pre-

vious reasoning leads us to expect that the normalized consol excess return, as
defined in equation (27), should display less excess of kurtosis and less volatility
clustering than the raw consol excess return. Further, the normalized excess
return should also have a standard deviation close to unity.
To perform the simulation, we need to choose values for the parameters and

for the initial value of the factor. There is no compelling reason to choose one
set of parameters rather than another. We have adopted values producing yields
which are realistic for the euro, but this, strictly speaking, is not a constraint
for the particular purpose that we how have of testing the test. We perform
the simulation on the basis of the following values for the parameters and initial
value of the factor:

parameters annualized values

a∗ 0.028
b∗ 0.5
a 0.022
b 0.35
c 0.0002
ν 0.25

rs initial 0.03

Based on this simulation model, the following Table reports the results for

13When ν is not equal to zero, the DK1 model can be rewritten as a parallel shift of the
CIR model.
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the (raw) consol excess returns and the normalized consol excess returns:

Raw Normalized

Std. Deviation 0.009 0.984
Excess of kurtosis 3.959 0.138

ACF lag 1 of abs. values 36% 1%
ACF lag 1 of squares 25% 3%

Simulation with 2-factor model - The generic 2-factor affi ne model is
coincident with the model presented in Gourieroux and Sufana (2006) (hereafter
GS2), but we will rephrase it with another choice of parameters and factors, in
order to ensure formal consistency with the previous discussion.14

In the GS2 model, excluding again the case where the short-term rate is
bounded away from zero, the risk-neutral probability can be seen as the solution
of SDE described in equation (29):(

drs
dps

)
=

((
a1
a2

)
−
(
b11 b12
0 b22

)(
rs
ps

))
ds +

√√√√( c+ rs ν
2 psν

2

2
psν

2

2
ν2

4

)
dWs

(30)

with a1, a2, b11, b12, b22, c, ν, ps and rs satisfying certain constraints (as de-
scribed in Annex II). The square root sign over the matrix has to be interpreted
as the matrix square root operator, as opposed to an operator acting component
by component. The model has seven parameters, a1, a2, b11, b12, b22, c and ν,
and two factors of which the first one is identified to the short-term rate rs. As
was the case for the 1-factor affi ne model, rs evolves between −c / ν2 and +∞.
The second factor, denoted with p, has no particular economic interpretation.
It evolves between −∞ and +∞, and its physical dimension is the same one as
for a volatility, or equivalently, as the square root of a rate.
From the equation (30), it appears that if b12 is set to zero, the GS2 model

is reduced to the DK1 model. The factor rs in this case is not influenced by the
dynamics of the other factor p and follows simply the solution of equation (29).
Again, while the mathematic structure of the model only obliges us to have

the same Brownian part for the risk-neutral and data-generating probabilities,
we focus nevertheless on data-generating probabilities sharing the same alge-
braic form with the risk-neutral one. The data-generating probability is then

14The connection between those parameters and factors and the ones appearing in the
original paper is elaborated in Annex II.
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given by the following equation:(
drs
dps

)
=

((
a∗1
a∗2

)
−
(
b∗11 b∗12
0 b∗22

)(
rs
ps

))
ds +

√√√√( c+ rs ν
2 psν

2

2
psν

2

2
ν2

4

)
dWs

(31)

where the parameters with an asterisk follow similar constraints than the para-
meters without asterisk.
We perform the simulation on the basis of the following values for the para-

meters and initial value of the factor:

a∗1 0.028
a∗2 0.03
b∗11 0.5
b∗12 −0.06
b∗22 0.37
a1 0.022
a2 0.027
b11 0.35
b12 0.045
b22 0.5
c 0.0002
ν 0.25

rinit. 0.03
pinit. −0.15

The results for the consol excess returns on the left side and for the normal-
ized excess return on the right side of equation (27) become:

Variables Raw data Normalized data

Standard deviation 0.009 0.991
Excess of kurtosis 4.136 0.122
ACF lag 1 of abs. v. 36% 1%
ACF lag 1 of squares 23% 3%

We obtain again the expected results, regarding the fact that leptokurticity
and volatility clustering are present in the excess returns and removed from the
normalized excess returns. Leptokurticity and volatility clustering reach values
comparable to those of the 1-factor model. Yet, as we will see, they still cannot
be compared with what is observed on empirical excess returns.

5.2 Test based on empirical data

Similarly to the general specifications recalled in the previous sections, the consol
rate and the corresponding volatility for the EONIA is calculated over the period
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from 4 January 1999 to 20 November 2012, i.e. 3560 TARGET working days.
Table 2 reports the results based on empirical data. A graphical representation
of the volatility measure based on the consol rate specification is presented in
Figure 1 at the end of the paper.

Raw data Normalized data

Standard Deviation 0.013 0.967
Excess of kurtosis 15.866 1.047

ACF lag 1 of abs. variation 36% 7%
ACF lag 1 of squares 42% 6%

As shown by Table 2, the excess of kurtosis and the volatility clustering
exhibited by the normalised consol excess returns is substantially lower than
those exhibited by (raw) excess returns. It is also interesting to underline that
the excess of kurtosis and the volatility of the normalized consol excess returns
based on empirical data appears even lower that the value they take for the raw
excess returns (i.e. before nomalisation) in the case of the simulations.
Trends - In qualitative terms, the most striking difference between the case

of empirical data and of simulated data is the following: in the case of empirical
data, the consol volatility and the consol rate exhibit trends. The log volatility
follows an increasing trend; the rate follows a decreasing trend.
This decreasing trend of the consol rate is reflected in an ascending trend of

the normalized performance.
But a trend of performance could be engineered also in the simulations with

a suitable choice of the difference between the risk-neutral probability and the
data-generating probability. While this has not been the case for the parameters
of the simulations reported above, we could generate such trends with other trial
choices of parameters.
By contrast, a trend in the consol rate or volatility cannot. This is because,

with our specifications (29) and (30), and the constraints that the parameters
must satisfy (see Annex II), the factors follow an ergodic process, with a sta-
tionary distribution. Henceforth, while we could engineer ascending trends in
performance, they did not appear as resulting from decreasing trends in the
consol rate, as the consol rate did not follow any trend at all. This clearly
demonstrates that the two things are in fact different even if, in the case of the
empirical data, the trend of the performance appears as a clear reflection of the
trend of the consol rate.
The strategy consisting into borrowing at short maturities and lending at

long maturities has the reputation of being effective and of being a major source
of revenues for the banking system. Our analysis of the data samples proves that
the strategy has indeed be effective, as normalized performance increased at a
regular pace. But the comparison between the simulated case and the empirical
case also indicate that the source of that effectiveness is not necessarily the
presence of a term premium.
Special events - The normalized excess returns are much closer, in terms of

statistical signature, of the Gaussian white noise than of the raw excess returns.
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Furthermore, they are constructed so as to present a standard deviation of one.
A standardized and centred normal variable will only exceptionally be above
3.5 in absolute value. What is it with the consol normalized excess returns?
We find eight dates at which this has effectively happened. The ancient ones

are now diffi cult to associate with recognizable market events, but in other cases
the trigger is pretty clear. Table 3 reports these dates with their (most likely)
corresponding economic event.

Date Possible event

14 May 1999

2 January 2001

12 September 2001 9/11 attacks (CET)

1 November 2001

2 January 2008 First new year after the turmoil

29 September 2008 Freezing of the EA money market

27 April 2010 Greek debt crisis

11 July 2011 Greek debt crisis (2nd wave)

‘Rich’ vs. ‘Poor’ volatility - While over the whole sample, the standard
deviation of the normalized excess returns is close to unity, two relatively large
sub-periods are identified over which it deviates by some ten or fifteen percent
from that value. The first sub-period ranges from 3 January 2005 to 31 May
2006 (where kurtosis and standard deviation amounts respectively to 0.04 and
1.10%). A second period spans from 2 January 2009 to 20 November 2012 (with
kurtosis and standard deviation at respectively 2.21 and 0.84%). A period where
the implied volatility is higher than the historical one is colloquially referred as
a period of “rich” volatility. Conversely, the period is said to be of “cheap”
volatility. Our data sample, covering the history of the euro, contains one
period of cheap volatility covering the year 2005 and the first half of the year
2006, a time at which the risk perception by the market actors was generally
subdued (also the FX volatility creped at historically low levels). In early 2009,
when it was realized that the disruptions having followed the Lehman collapse
were here to last, a period of “rich”volatility started, which is still prevailing
today.
A parsimonious representation of the yield curve dynamics - Despite the

existence of those periods of relatively rich or poor volatility, the kurtosis and
the clustering are substantially removed when the excess returns are normalized
by our reconstructed volatility measure. A convenient way to visualize to what
extent this is cocnlusion holds true is to apply to the normalized excess returns,
the inverse normal distribution function, yielding a number comprised between
zero and one. We refer to that number as to the implied uniform variable; a
name whose justification follows the following reasoning: if the normalization
has effectively brought the statistical signature of the returns closer to the one
of a Gaussian white noise process, then those numbers comprised between zero
and one should appear uniformly distributed. The implied uniform variable thus
appears uniformly distributed on any large enough subset of the time span of
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the sample.15 It follows that the variability of the volatility suffi ces to explain
the greatest part of both the kurtosis and the volatility clustering of the excess
returns, i.e. two features that usually lead to deviations from a Gaussian white
noise. The description of the dynamics of the yield curve becomes then strongly
parsimonious.

6 Concluding remarks

Despite the importance to have an accurate measure of volatility to monitor
financial markets, the standard measures currently available contain several
shortcomings. This also applies to the measures of volatility used in general
by most central banks to assess market’s reactions (either to refinancing oper-
ations or to communication) as to monitor money market interest rates. By
nature, standard measures of volatility only provide limited information related
to one specific money market segments, which impedes an easy comparison
across them.
In this context, this paper proposes a new measure of volatility derived from

the specification of the consol rate for the EONIA swap curve in order to have
an accurate estimation of volatility free from any model-based specifications and
relaxed from maturity and frequency constraints. In addition, we demonstrate
that this volatility measure is very close to the true (unobserved implicit) instan-
taneous volatility as it allows the excess returns of the consol rate to display
a Gaussian white noise process (under risk-neutral probability or any similar
probability) once normalised by this measure. This finding is quite powerful for
several reasons.
First, our measure allows an homogeneisation of volatility measure (with

a forward looking feature), hence providing information for the entire market
without being restricted to one particular maturity. In the empirical part of
the paper, we estimate this measure of volatility for the entire unsecured money
market in the euro area which is obtained from the EONIA swap curve.
Second, by allowing to remove the leptokurticity and volatility clustering

(which are natural features of excess returns of any financial assets), the excess
returns normalised by our volatility measure is only sensitive to a limited number
of exceptional events. In the illustrative example used in the paper, only eight
special events are reported above the threshold of 3.5 standard deviation (out
of 3560 observations, i.e. from 4 January 1999 to 20 November 2012), each of
them related to exterme events.
Last but not least, our measure solves, by encompassing the volatility fluctu-

ations of the entire market, the complexity of introducing a volatility measure in
econometric models. More specifically, the restrictive nature of standard volatil-
ity measures (due to the strong link to a certain maturity and/or frequency)
usually limit the use of volatility measure in times series regressions. It thus

15We thank the referee for his comment which has allowed us to add this demonstration in
our analysis.
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offers new research avenues as regards volatility transmission and/or assessment
of market stress with a more manageable measure of volatility.
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ANNEX

Annex I - Determination of the consol volatility

1. - Data

1.1. - Working days and instruments

The dataset contains only TARGET working days; it contains all the TAR-
GET working days from the 4 January 1999 to the 20 November 2012, so 3560
TARGET working days. The financial instruments taken into account are han-
dled in the OTC market. They consist into: short-term unsecured deposit of
maturity 1-day (overnight, tom-next and spot-next), EONIA swaps from 1-week
to 30-year, 6-month EURIBOR swaps for the corresponding maturities, at-the-
money implied volatilities of options on the EURIBOR swaps.
We used the options on 6-month EURIBOR swaps with option maturity

1-month, 3-month, 6-month, 1-year, 2-year, 3-year, 4-year and 5-year, and with
underlying EURIBOR swap maturity 1-year, 2-year, 3-year, 4-year, 5-year, 7-
year, 10-year, 15-year, 20-year, 25-year and 30-year. Other maturities of options
or of underlying swaps are represented in the quotes contributed by brokers, but
their history may start at relatively recent dates, which makes preferable not to
use them.
Besides, the EONIA fixing is included in the dataset. Each instrument or

fixing is identified in the Reuters database by a unique RIC (Reuters Instrument
Code).

1.2. - Raw data

As the financial instruments taken into account are handled on the OTC
market, we made use of quoted data, generally given as a bid-ask spread from
which we retained only the mid. We gave a preference to quotes issued by the
broker ICAP, and when not available, our primary fall-back was the generic
quote of Reuters, which contains the latest quote issued by a bank or broker at
the time of its snapshot or of its contribution.

1.3. - Completion

The data have been completed by reconstructed figures in three cases.
• When the history of long-term EONIA swaps was missing in the Reuters

database, we reconstructed it on the following basis: before the 9 August 2007,
it was assumed to have a constant and small spread with the corresponding
EURIBOR swap, and between the 9 August 2007 and the first occurrence of
the long-term EONIA swap in the Reuters database, it was reconstructed on
the basis of both the corresponding Bloomberg data and of the Reuters data of
the most similar instruments. The results of those reconstructions have been
permanently integrated in the dataset used by the application.
• When the history of the options was missing, we reconstructed it ac-

cording to the following procedure. The missing data, as it turned out, always
pertained to short-term option on long term EURIBOR swaps, while longer
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options on the same underlying swap were nevertheless available, as well as
options of the same maturity on swaps of shorter maturity. We reconstructed
then recursively, following the array of volatilities in the order of decreasing
option maturities, then increasing underlying swaps maturity, assuming always
that the reconstructed volatility and the previous one had the same ratio than
the two corresponding volatilities of the next option maturity. The results of
those reconstructions have not been permanently integrated in the dataset used
by the application; instead, the application proceeds to their reconstruction at
every session.
• When the history of an instrument was missing due to a London closing

day, a case which occurred only in the recent years, the missing rates were
reconstructed from the corresponding yield curve of the previous TARGET day,
and the missing volatilities were reconstructed by copying their values of the
previous TARGET working day. The results of those reconstructions have not
been permanently integrated in the dataset used by the application; instead,
the application proceeds to their reconstruction at every session.

1.4. - Descriptive statistics of the sample

The resulting data sample is described by the following descriptive statistics:

Number of TARGET working days 3560
Start 4 January 1999

End 20 November 2012

Number of RICs 187
Number of recomputed rates 72

Size 505868

2. - Algorithms

2.1. - Yield curves

2.1.1. - Composition

The EONIA curve is made of short-term unsecured deposits of maturity 1-
day (overnight, tom-next and spot-next) and of EONIA swaps from 1-week to
30-year. It therefore spans a maturity interval ranging from 1-day to 30-year.
The EURIBOR swap curve is made of short-term unsecured deposits of

maturity 1-day (overnight, tom-next and spot-next) and longer (between 1-week
and 6-month) and of swaps versus 6-month EURIBOR from 1-year to 30-year.
It therefore spans a maturity interval ranging from 1-day to 30-year.
The two curves evolve in a somewhat independent manner since the begin-

ning of the crisis, 9 August 2007. Before that date, they were keeping a spread
of small sized and which could be regarded, in first approximation, as being
constant.

2.1.2. - Bootstrapping

We turn now to the construction of the yield curve from a collection of in-
terest rate instruments. This construction, which consists into the successive
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calculation of zero-coupon prices or “discount factors”, is termed “bootstrap-
ping”. For a detailed description of the bootstrapping, we refer to Brousseau
(2002).16 In a nutshell, the algorithm should be such that:
• it re-prices all the instruments contained in the above described yield

curves to their exact original observed price,
• it can be entirely described through a finite (albeit not a priori speci-

fied) number of rates and dates.
The instruments to be integrated in the curve are sorted by ascending matu-

rity. One constructs the curve by recurrence up to each maturity. Each of those
maturities is termed a “knot point”. Rates at intermediate points on the curve
can be estimated by assuming a shape for the curve either in zero-coupon price
or rate space. The choice of that interpolation rule constitutes the signature or
the identification of the bootstrapping method. This choice is not conditioned
by any theoretical reason, but it is conditioned by several practical reasons. The
chosen rule should be such that:
1. The curve is smooth.
2. The curve does not have strong oscillations.
To those requirements, we add the supplementary one that:
3. The integral of the zero-coupon price between two knots can be com-

puted in closed analytical form. The same holds for the integral of the zero-
coupon price multiplied by the time to maturity.
The two first conditions are somewhat antagonist: an interpolation rule that

favours one requirement will generally disfavour the other one.
The third requirement finds its justification in the necessity of performing

consol-related calculations, which will be described in paragraph 2.3.2. below.
We have implemented and tested four different rules, satisfying to those three

criteria, among which one is the method known as “unsmoothed Fama-Bliss”
bootstrapping, whose interpolation rule results into stepwise constant forward
rates. All of the methods performed rather close in term of the realistic aspect
of the constructed curve. On the basis of some minute differences, we have
chosen as default bootstrapping method, and used in this study, one of the
three remaining methods.

2.1.3. - Extrapolation

It order to handle swaptions of maturity 5-year on 30-year swaps, one needs
a yield curve covering a range of 35 years. Yet, quotes for the EONIA swaps
stop at the 30-year tenor, at least for the price source that we have chosen to
privilege. We have therefore extrapolated the EONIA curve.
While 35-year EURIBOR swaps quotes are actually available, we have nev-

ertheless chosen to also extrapolate the EURIBOR swap curve to 35-year, to
ensure the similarity of their treatment.
The extrapolation has always been made according to the following rule:

denote with z(τ) the zero-coupon rate of maturity τ , continuously compounded
and with day count actual/365 (i.e. whereby one year always means 365 calendar

16See paragraph 3.2.2. pp. 19-20.
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days). The extrapolation of the curve has been achieved by adding the rate z(35)
defined as 2*z(30)-z(25).

2.2. - Implied volatilities

2.2.1. - Converted volatilities

The primary input for the calculation of the consol volatility is a set of
implied volatilities quoted in the market. The implied volatilities that we have
used as raw data are those of EURIBOR swaptions, which are standardized
options on 6 month EURIBOR swaps. They cannot be directly used, and this,
for two reasons.
Firstly, the swaptions volatilities are implied by a Black and Scholes model

in which the logarithm of the swap rate is assumed to be a Brownian motion.
By contrast, while the consol volatility, resulting from the equations presented
in the text, has to be implied by a Black and Scholes model of the standard
variety, i.e. in which the logarithm of the zero coupon prices are assumed to
be Brownian motions. A conversion will thus be necessary, changing the raw
swaptions volatilities into other ones implied by the second model, and therefore
directly comparable to, e.g., Bund options implied volatilities, or FX implied
volatilities.
Secondly, the swaptions volatilities pertain to EURIBOR-linked instruments,

whereby the consol volatility pertains to the EONIA curve. Also for that reason,
a conversion will be needed.
The change of model cannot be done by an exact calculation (or that exact

calculation would be too complicated). However, as we already mentioned, we
know that the motion of the empirical yield curves are primarily composed of
parallel shifts. We will then make an approximation and assume that those
movements consist purely of parallel shifts. In this case, we only need to do the
calculation at the first order, i.e. to multiply the raw swaptions volatility by the
sensitivity of the log zero coupon price w.r.t. the log swap rate.
The two conversions are simultaneously achieved as follows:
The underlying of the option —which is a forward EURIBOR swap as the

tenor of the option itself is not zero —is priced from the EURIBOR curve. Then,
one computes the flat spread of that forward swap over the EONIA curve: this
is the quantity of parallel shift to apply to the EONIA curve to let it price
the forward swap at its present market price. That quantity is called the “z-
spread”or the “yield curve spread”of the forward swap over the EONIA curve.
We denote it with h. Remark that, like the zero coupon and forward rates of
the yield curve, this z-spread is a continuously compounded rate with day-count
actual/365, while an EURIBOR swap rate is neither continuously compounded
nor has day-count actual/365. The needed conversion was operated at the stage
of the construction by bootstrapping of the EURIBOR swap curve.
The sensitivity of the log zero coupon price (of the EONIA curve) w.r.t. the
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log swap rate (non compounded, with day-count actual/360) is then given by:

(τ2 − τ1)S (τ1, τ2, x)
∂S(τ1,τ2,x)

∂x |x=h
(1)

where:
• τ1 refers to the time-to-maturity of the option,
• τ2 is the time-to-maturity of the swap (e.g. 35-year for a 30-year swap

forward in 5-year),
• S(τ1,τ2) is the swap rate (non compounded, with day-count actual/360),

h is the swap’s z-spread to EONIA curve (continuously compounded, with day-
count actual/365), and
• S(τ1,τ2, x) is the swap rate (non compounded, with day-count ac-

tual/360) of a forward swap having z-spread x w.r.t. the EONIA curve (so
that S(τ1,τ2, 0)= S(τ1,τ2)).
The product of the quoted volatility by this sensitivity yields a first order

approximation of the “converted volatility”. To be on the safew side, we ac-
tually used a higher order approximation (up to the 5-th power of the quoted
volatility: a polynomial expression with three non-zero terms corresponding to
the thirst, the third and the fivth power of the qulted volatility). However, that
higher precision does not bring any visible difference.
We denote the “converted volatility”with σ(τ1,τ2) . For an instantaneous

volatility σ(0,τ), we will use the short-hand σ(τ) .

2.2.2. - Instantaneous volatilities

We are then left with a collection of implied volatilities for options tenors
ranging between 1-month and 5-year.
We need to obtain instantaneous volatilities, i.e. the limit of the at the

money volatility tends to zero. Because we reconstruct the history of consol
performance and of consol normalized performance with a daily frequency, we
need to understand instantaneity as meaning, in concrete terms, the interval be-
tween two subsequent TARGET working days. This implies that we reconstruct
at the money volatilities of tenor one TARGET working day.
This is achieved by creating the cubic spline of the converted volatilities of

tenors ranging between 1-month and 5-year and by extrapolating the resulting
splined function to the tenor 1-day. The quantity to be splined is not directly
the converted volatility, but the squared converted volatility multiplied by the
time to maturity: this is the proper way to interpolate a term structure of
volatilities.

2.3. - Consol-related calculations

2.3.1. - Formulas

The consol rate, consol duration, consol ksi and consol volatility rely on the
computation of three integrals:

I1 =

∫ ∞
0

P (τ) dτ (2)
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I2 =

∫ ∞
0

τ P (τ) dτ (3)

I3 =

∫ ∞
0

σ (τ) P (τ) dτ (4)

where P(τ) is the zero coupon price for time-to-maturity τ , and σ(τ) is the
zero coupon price instantaneous volatility for time-to-maturity τ . We keep the
notation σ, without argument, to designate the consol volatility.
The computation of the consol rate, denoted with y, consol duration, denoted

with D, and consol ksi, denoted with χ, following the derivation presented in
the main text, boils down to the formulas:

y =
1

I1
(5)

D =
I2
I1

(6)

χ =
I2
I21

(7)

The computation of the consol volatility involves the integral I3, but in all
rigor the σ(τ) under the integral sign should be interpreted as vectors living in
a space of some unknown, and possibly high, dimension, so that the quantity
σ(τ1) σ(τ2) is interpreted as the covariance of the increments of the log zero
coupon prices of time-to-maturity τ1 and τ2 over the time interval dt.
Consistently with what we did for the conversion of volatilities, we will as-

sume that the yield curves movements consist purely of parallel shifts. With the
help of that approximation, that we use for the second time, the σ(τ) under the
integral sign in (4) can be interpreted as scalars instead of vectors. The consol
volatility is given by the formula:

σ =
I3
I1

(8)

The σ(τ), even when we made them scalar numbers, have to be determined
on the basis of the instantaneous volatilities resulting from the procedure de-
scribed in 6. Yet those ones exist for eleven tenors of the underlying swaps,
ranging from 1-year to 30-year. We take recourse again to a spline procedure,
whereby we add to the list of available tenors the artificial tenor zero-day, asso-
ciated with a value of the volatility of zero. For now, the quantity to be splined
is directly the instantaneous volatility, and not the squared one multiplied by
the time to maturity: we are not interpolating any more a term structure of
volatilities, since all the involved ones are already instantaneous volatilities.
To compute the consol volatility of the theoretical yield curves of the affi ne

models, used in the simulations, we do not need to make that approximation,
because we do not need to remove the vector character of σ(τ). We have indeed
that:

σ(τ) = V ·∇ log (P (τ)) (9)
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where V designates the volatility of the vector of factors: V is either
√
c+ r ν2

for the 1-factor case or

√√√√( c+ r ν2 p ν2

2
p ν2

2
ν2

4

)
for the 2-factor case (see Annex

II). The operator ∇ represents the gradient w.r.t. the vector of factors.
For the 1-factor model, the σ(τ) is anyway a scalar, and for the 2-factor

model, the σ(τ) is a vector of dimension 2, but both components can be explic-
itly computed.

2.3.2. - Numerical implementation

For what regards the consol rate, duration and ksi, in the case of the curves
bootstrapped from empirical data, we have analytically computed the integrals
between subsequent knot points of the bootstrapping. This was possible because
the interpolation rules underlying the bootstrapping algorithms were chosen so
as to allow for it, as was explained above. Then, by summing those partial
integrals, we obtained the integral up to the latest available maturity: given the
extrapolation procedure described in 6, that latest available maturity was 35-
year. To complement the integral between 35-year and infinity, we have assumed
that the zero-coupon rate remained constant. This way, all the complement
integrals also could be obtained by closed form analytical formulas.
For what regards the consol rate, duration and ksi, in the case of the affi ne

model curves, and for what regards the consol volatility, in both cases of empir-
ical curve and model curve, we have discretized the integrals with a step of 30
calendar days and we have computed 1000 steps, reaching a maturity of circa
80-year. To complement the integral between that latest maturity and infinity,
we have assumed that the zero-coupon rate remained constant, and that the
instantaneous volatility remained strictly proportional to the time-to-maturity.
This way, all the complement integrals also could be obtained by closed form
analytical formulas.

2.3.3. - Consol performance and numerical performance

Let t1 and t2 to consecutive TARGET working days. The excess return
between t1 and t2 is defined as the logarithm of the consol price in t2 divided by
the consol price in t1 and by the actualisation coeffi cient (1+EONIA(t1)/(t2-
t1)/36000), where EONIA(t1) is the EONIA published at the close of business of
t1 - so: non compounded, with a day count actual/360, expressed in percentage
points - and (t2-t1) is the difference in calendar days between t2 and t1.
The consol excess return thus writes:

log

(
100

CONSOL(t2)
+ t2−t1

365

1 + (t2−t1) EONIA(t1)
36000

CONSOL (t1)

100

)
(10)

where CONSOL(t), is the consol rate observed at the close of business of
t, continuously compounded, with a day count actual/365, and expressed in
percentage points. The normalized excess return is the quotient of the excess
return between t1 and t2 and of the consol volatility observed at the close of
business of t1.

32



The consol performance and normalized performance designate respectively
the cumulated sum of the excess returns and of the normalized excess returns.
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Annex II - The parameters, factors and constraints of the generic
2-factor Affi ne model

The model, hereafter denoted GS2 model, is introduced in Gourieroux and
Sufana (2006), where its main properties are explored, and the relationship with
the 2-factor models belonging to the Dai and Singleton classification are eluci-
dated. The GS2 model is proven in this paper to be the sole non-degenerated
case of the 2-factor affi ne models; as non-degenerated models can be expected to
produce more leptokurtic returns than degenerated ones, this property justifies
that we use it in our simulation.

Gourieroux and Sufana (2006) writes the model using 8 parameters α01, α02,
α11, α21, α22, β0, β1 and β2, and 2-factors x and y.
With those notations, the SDE defining the process writes (Proposition 2

page 37):(
dx
dy

)
=

(
α11x+ β1

α21 x+ α22 y + β2

)
dt+

√(
1 2x
2x 4y

)
dW (1)

where the short-term interest rate r is defined as an affi ne combination of
the factors x and y, as (page 32 line 12):

r = α01 x+ α02 y + β0 (2)

and where the parameters and factors satisfy constraints, among which the
condition that α02 is positive (see page 42 line -10).
We change the parameters and the factors in order to have equations that

visibly generalise the equations used for the 1-factor case. The transformation
rules between the original parameters and the new parameters are:

θ = −α01α02

a1 =
α201(α22− α11) − α01 α02(α21− 2 β1) + 2 α02 (α02 β2 − α22 β0)

2 α02

a2 =
2α02 β1 − α01 α11

2
√
α02

b11 = − α22
b12 =

α01 α22−α01 α11−α02 α21√
α02

b22 = − α11
c = α201 − 4 α02β0

ν = 2
√
α02

(3)
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The inverse transformation rules are:

α01 = − θ ν
2

4

α02 =
ν2

4
α11 = −b22

α21 = (b11 − b22) θ − 2 b12
ν

α22 = −b11
β0 = − c

ν2 +
θ2ν2

16

β1 =
b22 θ
2 + 2 a2

ν

β2 =
4 b11 c
ν4 + 4 a1

ν2 + (2 a2 + b12)
ν θ + (2 b22 − b11)

4 θ2

(4)

The transformation rules between the original factors and the new factors
are:

r = α01x+ α02y + β0
p = α01+2α02x

2
√
α02

(5)

in which one naturally recognises in the second equation of (5) the formula
(2). The inverse transformation rules are:

x = 2 p
ν + θ

2

y =
4 (c+rs ν2)

ν4 + 2 p
ν θ + 1

4 θ
2

(6)

The SDE becomes:(
drs
dps

)
=

((
a1
a2

)
−
(
b11 b12
0 b22

)(
rs
ps

))
ds+

√√√√( c+ rs ν
2 psν

2

2
psν

2

2
ν2

4

)
dWs

(7)

It is apparent that the parameter θ plays no role, and that consequently the
model has truly seven parameters only. We have written the model using the
seven parameters a1, a2, b11, b12, b22, c and ν, and the two factors r and p.
One makes appear the 1-factor model as a particular case by setting simply the
parameter b12 to zero. Conversely, any system of parameters and factors such
that one can obtain the 1-factor model as a particular case by setting simply
one parameter to zero is necessarily isomorphic to (3)-(6).
The lowest possible value, that we will denote as rmin, attainable by the

short-term rate, admits the following expressions in terms of the original para-
meters and in terms of the transformed parameters:

rmin + β0 −
α201
4 α02

= − c

ν2
(8)

We turn now to the constraints that the parameters and variable should
satisfy in the model. They are slightly more complicated than in the 1-factor
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affi ne model. Gourieroux and Sufana (2006) specify, page 37, that either:

(α21 − 2 β1)
2
< 4 (α22 − 2 α11) (β2 − 1) and (α22 > 2 α11) (9)

or:
(α21 − 2 β1) and (β2 > 1) and (α22 = 2 α11) (10)

Under the transformations (3) and (5) condition (9) is rewritten as:

2 b22 − b11 > 0

a1 ≥ a(0)1min
(11.1)

where:

a
(0)
1min = b11 rmin +

ν2

4
+
(2 a2 + b12)

2

4 (2 b22 − b11)
(11.2)

whereby condition (10) is rewritten as:

2 b22 − b11 = 0

b12 = − a2
b11
b22

a ≥ a(1)min

(11.3)

where:

a
(1)
min = b11 rmin +

ν2

4
(11.4)

We will focus on the cases that are interesting for our simulation: No de-
generacy, existence of a lower bound and inexistence of an upper bound for the
short-term rate, existence of a stationary distribution for the factors. We use
for the simulation a parameter set falling into the first case (11.1) (11.3), as it
is generic, while the second case (11.2) (11.4) is degenerated.
Relations (11.2) and (11.4) require that ν is not zero, but this is granted by

the already mentioned positivity of α02.
The parameter ν intervene always raised at the power 2 or 4, so under

assumption α201 > 4α02 β0 and without further loss of generality, and in order
to preserve the interpretation of ν as the volatility parameters of a Vasicek
model and a CIR model, we add the conditions:

ν > 0 (12)

It is easy to see that the spectrum of the Jacobian of the drift field is
{−b11,−b22}. So, taking into account that by (11.1) we have b11 < 2 b22 ,
it is suffi cient to add:

b11 > 0 (13)
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to obtain the case with existence of a stationary probability. Finally, the
factors must satisfy a condition, written in the notations of Gourieroux and
Sufana (2006) as y > x2 and therefore, in the current notations, as conditions:

c+
(
r − p2

)
ν2 > 0 (14)

To conclude, the conditions fulfilled by the parameters and factors in order
to implement our simulation shall be (11.1) with (11.2), (12), (13) and (14).
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Figure 1 – Historical and implied consol volatility measures (logarithmic scale) 
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