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Abstract 
This paper develops a multi-way analysis of variance for non-Gaussian multivariate 
distributions and provides a practical simulation algorithm to estimate the 
corresponding components of variance. It specifically addresses variance in 
Bayesian predictive distributions, showing that it may be decomposed into the sum of 
extrinsic variance, arising from posterior uncertainty about parameters, and intrinsic 
variance, which would exist even if parameters were known. Depending on the 
application at hand, further decomposition of extrinsic or intrinsic variance 

(or both) may be useful. The paper shows how to produce simulation-consistent 
estimates of all of these components, and the method demands little additional effort 
or computing time beyond that already invested in the posterior simulator. It 
illustrates the methods using a dynamic stochastic general equilibrium model of the 
US economy, both before and during the global financial crisis. 

 

Keywords: analysis of variance, Bayesian inference, predictive distributions, 
posterior simulation 

JEL codes: C11, C53 
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Non-technical summary 
This paper follows the Bayesian paradigm of integrating information. In this context it 
provides a new decomposition of variance for predictive distributions. Here are some 
of the questions that motivate this research. 

1. In prediction and other decision-making situations, econometricians sometimes 
replace parameters with point estimates rather than using full posterior or predictive 
distributions. This eliminates the contribution of parameter uncertainty to the 
distribution relevant to the decision at hand. The impact could be anywhere from an 
academic footnote to a disastrous outcome in the real world. Can Bayesian analysis 
provide systematic guidance on this point?  

2. Understanding complex interactions in large models and their impact on predictive 
distributions relevant for decision-making is an essential component in the 
improvement of decision support. Are there tools that Bayesians could employ on a 
regular basis to identify links between model components and features of predictive 
distributions? 

3. Emphasis on economic prediction over longer horizons has never been greater, 
due to pressing problems such as structural financial problems in many countries. In 
models that draw on historical time series, predictions naturally tend to be driven 
more by actual behaviour in the near term and more by aspects of model 
specification in the longer term. Can the structure of the impact of alternative 
information sources be decomposed systematically over a prediction horizon? 

We believe that the answers to all three of these, and similar, questions are yes,.and 
this paper provides additions to the Bayesian econometrician’s set of tools to address 
such questions. The basic approach is to use the law of total variance iteratively to 
identify multiple sources of variance. 

In the paper we take up details pertinent to Bayesian analysis, making two specific 
contributions. The .first is the decomposition of the predictive distribution into 
extrinsic variance, i.e. due to parameter uncertainty, and intrinsic variance, which 
would exist even if parameters were known.  

The second contribution is to show that given a posterior simulator, very little 
additional effort or computing time is required to produce simulation-consistent 
estimates of these variance components.  

The paper concludes with an illustrative application of the techniques developed in 
the paper, to predictive distributions from a widely used dynamic stochastic general 
equilibrium (DSGE) model just before and then during the recent financial crisis in the 
U.S. This illustration shows, among other things, that the understatement of 
predictive variance inherent in replacing parameters with known values is 
systematically greater in volatile than quiescent times. 
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1 Introduction

Bayesian inference is a remarkable intellectual tool that can integrate information from
widely di¤erent sources and draw out its implications for speci�c decisions under con-
sideration. That many economists recognize this fact is due in no small part to the
work and unrelenting e¤orts of Arnold Zellner over his long and rich career. While these
activities took many forms, three of the most important were his 1971 book Bayesian
Inference in Econometrics (Zellner, 1971), the Seminar on Bayesian Inference in Econo-
metrics and Statistics that convened regularly in the following quarter-century, and the
International Society for Bayesian Analysis which he was instrumental in founding in
the early 1990�s.
This paper follows the Bayesian paradigm of integrating information. In this context

it provides a new decomposition of variance for predictive distributions. Here are some
of the questions that motivate this research.

1. In prediction and other decision-making situations, econometricians sometimes re-
place parameters with point estimates rather than using full posterior or predictive
distributions. This eliminates the contribution of parameter uncertainty to the dis-
tribution relevant to the decision at hand. The impact could be anywhere from
an academic footnote to a disastrous outcome in the real world. Can Bayesian
analysis provide systematic guidance on this point?

2. Understanding complex interactions in large models and their impact on predic-
tive distributions relevant for decision-making is an essential component in the
improvement of decision support. Are there tools that Bayesians could employ
on a regular basis to identify links between model components and features of
predictive distributions?

3. Emphasis on economic prediction over longer horizons has never been greater, due
to pressing problems including climate change, aging population and structural �-
nancial problems in many countries. In models that draw on historical time series,
predictions naturally tend to be driven more by actual behavior in the near term
and more by aspects of model speci�cation in the longer term. Can the structure of
the impact of alternative information sources be decomposed systematically over
a prediction horizon?

We believe that the answers to all three of these, and similar, questions are �yes,�and
this paper provides additions to the Bayesian econometrician�s set of tools to address
such questions. The basic approach is to use the law of total variance iteratively to
identify multiple sources of variance, and these ideas are developed in Section 2. If the
relevant statistical structure of information and the problem at hand is Gaussian this
amounts to no more than analysis of variance with multiple factors, well understood for
a century and standard training in statistics. But contemporary econometric models
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where " is independent of (x2; : : : ; xn), E (x1 j x2; : : : ; xn) = � +
Pn

j=2 �jxj, E (") =
E (" j x2; : : : ; xn) = 0, and var (") = var (x1 j x2; : : : ; xn). Let

�j = xj � E (xj j x1; : : : ; xj�1) (j = 2; : : : ; n) .

Then there is a one-to-one linear transformation between (x2; : : : ; xj) and
�
�2; : : : ; �j

�
.

In particular,

x1 =

nX
j=2

�j�j + ",

where �j = cov
�
x1; �j

�
=var

�
�j
�
and var (x1) =

Pn
j=2 �

2
jvar

�
�j
�
+ var ("). Moreover,

E (x1 j x2; : : : ; xj+1) = E (x1) +
j+1X
i=1

�i�i

and

varxj+1 [E (x1 j x2; : : : ; xj+1) j x2; : : : ; xj]

= varxj+1

 
j+1X
i=2

�i�i j �2; : : : ; �j

!
= �2j+1var

�
�j+1

�
.

None of these terms involve xj or �j, because in the Gaussian distribution conditional
variances do not depend on the values of the variables conditioned upon.
Thus the leading term (10) in Proposition 5 reduces to var (") in the Gaussian case,

and term j in the sum (11) is �2j+1var
�
�j+1

�
. Were we to divide the equation in Propo-

sition 5 by var (x1), then (10) would be 1 � R2, where R2 is the coe¢ cient of multiple
correlation between x1 and (x2; : : : ; xn); the term j in (11) would be the increment to
population R2 when xj+1 is introduced into the set of regressors that already contains
x1; : : : ; xj.

3 Simulation

All of these population decompositions have analogs in simulation. This is important for
the Bayesian applications that motivate this work. What follows takes the components
X1; : : : ; Xn to be scalars. The vector case exactly parallels the scalar case but entails
more awkward and space-consuming notation.
Suppose that it is feasible to simulate

x
(m)
j s p (xj j x2; : : : ; xj�1) (m = 1; 2; : : : ; j = 2; : : : ; n) , (12)

where the case j = 2 is unconditional simulation, as well as

x
(m)
1 s p (x1 j x2; : : : ; xn) (m = 1; 2; : : :) . (13)
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4 Application to Bayesian inference

These decompositions are useful tools in the interpretation of posterior distributions
that are accessed by means of simulation, as is the case in most Bayesian work. Let
YT = [y1; : : : ;yT ] denote the observables (random ex ante) where T is the size of the
sample, Yo

T their observed values (�xed ex post), A the model, �A 2 �A the para-
meter vector, p (�A j A) the prior density, and p (YT j �A; A) the distribution of ob-
servables conditional on the parameters. The posterior density of the parameters is
p (�A j Yo

T ; A) / p (�A j A) � p (Yo
T j �A; A), and we assume that a posterior simulator is

available that generates an identically distributed ergodic process �(m)A s p (�A j Yo
T ; A)

(m = 1; 2; 3; : : :). For importance sampling, there are obvious modi�cations to the com-
putation of simulation moments involving the weighting function, and these will also be
consistent if the usual regularity conditions (Geweke, 2005, Theorem 4.2.2) are satis�ed.
From a formal perspective, Bayesian inference is always undertaken to inform a policy

decision. Let ! denote the random vector pertinent to the loss function L (!) governing
the decision: e.g., for a central bank, ! could consist of measures of output and in�ation
in some future quarters; for a retailer, ! could be sales of speci�ed products in speci�ed
markets; for a government agency seeking to adjust census count, ! might contain
measures of characteristics of the actual population; in a pure prediction problem !
consists of future values (yT+1; : : : ;yT+H) over a speci�ed horizonH. The model informs
the policy decision if and only if it speci�es the conditional distribution p (! j YT ;�A; A),
and we assume that is the case. This conditional distribution could be degenerate: for
example, if the decision involves testing the hypothesis �A 2 �A1 then ! = I�A1 (�A1).
Simulation from p (! j Yo

T ;�A; A) is generally straightforward and less demanding than
simulating from the posterior distribution. In many of these speci�c instances, expected
loss conditions on the prospective action taken by the decision-maker. For our purposes
one of a number of alternative actions is then subsumed in A.

4.1 Extrinsic and intrinsic variance

The distribution relevant for decision-making conditions on the model A and data Yo
T ,

p (! j Yo
T ; A) /

Z
�A

p (�A j Yo
T ; A) p (! j Yo

T ;�A; A) d�A.

Given a posterior sample �(m2)
A (m2 = 1; : : : ;M2), this distribution can be accessed by

means of auxiliary simulations from the model for !;

!(m1;m2) s p
�
! j Yo

T ;�
(m2)
A ; A

�
(m1 = 1; : : : ;M1) .

The corresponding sample moments of !, and in particular the approximation

(M1M2)
�1

M1X
m1=1

M2X
m2=1

L
�
!(m1;m2)

�
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of E [L (!) j Yo
T ; A] are simulation-consistent if and only if M2 !1; it is not necessary

that M1 increase at all, for this purpose, and indeed M1 = 1 is su¢ cient.
From (7) with X1 = ! and X2 = �A, and recognizing that the relevant distribution

conditions on the data Yo
T and the model speci�cation A,

var (! j Yo
T ; A) = E�A [var (! j �A;Yo

T ; A)] + var�A [E (! j �A;YT ; A)] . (19)

We refer to the �rst component on the right-hand side as the intrinsic variance of !:
it is the variation in ! that would exist if one knew the parameter vector �A, averaged
using the posterior distribution of �A. We refer to the second component as the extrinsic
variance of !: it is the variance in ! that is due to not knowing �A. If the distribution
of ! conditional on YT and �A is degenerate, as is the case with conventional tests
of hypotheses about �A, then there is no intrinsic variance. If the prior distribution is
dogmatic then there is no extrinsic variance. In most realistic cases both intrinsic and
extrinsic variance are positive.
Making the corresponding substitution in the simulation (14)

(M1M2)
�1 �!(m1;m2) � !

� �
!(m1;m2) � !

�0
= (M1M2)

�1
M2X
m2=1

M1X
m1=1

�
!(m1;m2) � !(m2)

� �
!(m1;m2) � !(m2)

�0
(20)

+M�1
1

M1X
m1=1

�
!(m2) � !

� �
!(m2) � !

�0
(21)

where

!(m2) =M�1
1

M1X
m1=1

!(m1;m2) and ! =M�1
2

M2X
m2=1

!(m2).

As M1 ! 1 and M2 ! 1 (20) converges to E�A [var (! j �A; A)] in (19) and (21) to
var�A [E (! j �A;YT ; A)].

4.2 Decomposition of intrinsic variance

Let the vector of interest be partitioned !0 = (!01;!
0
2), and suppose that it is feasible

to simulate

!
(m)
1 s p (!1 j Yo

T ;�A; A) , (22)

!
(m)
2 s p (!2 j !1;Yo

T ;�A; A) . (23)

For example in a pure prediction problem we might have !1 = yT+1 and !2 = yT+2
or !2 = (1=4)

P4
s=1 yT+s; or, !1 could be a monetary policy instrument and !2 would

consist of the remaining variables in a macroeconomic model. In the notation of the
previous section, take X1 = !2, X2 = �A and X3 = !1. Then from the particular case
(8) of Proposition 5,
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var (!2) = E�A;!1 [var (!2 j !1;�A)] (24)

+E�A fvar!1 [E (!2 j �A;!1)]g (25)

+var�A [E (!2 j �A)] . (26)

All of the moments in this decomposition condition on the data Yo
T and model

speci�cation A as well as the vectors explicitly indicated; we omit those terms to keep
the expressions from being unduly cluttered. The term (26) is the extrinsic variance
of !2, and therefore (24)-(25) provides a decomposition of the intrinsic variance of !2.
The bracketed term in (24) is the variance in !2 that would remain even if one knew
both �A and !1, and (24) averages this with respect to the posterior distribution of
�A and predictive distribution of !1. The term in braces in (25) is the variance in !2
attributable to not knowing !1, and (25) averages this with respect to the posterior
distribution of �A. More loosely speaking, (25) is the portion of intrinsic variance that
is resolved (disappears) once !1 becomes known. As a speci�c instance, if T is the fourth
quarter of 2011, yt is a vector of growth rates, !1 = yT+1 and !2 = (1=4)

P4
s=1 yT+s,

then (25) is the variance in the annual growth rate for 2012 that will be resolved at the
close of the �rst quarter of 2012.
Following the methods of Section 3, it is straightforward to compute a simulation-

consistent approximation of (24)-(26). Conditional on a simulation sample �(m2)
A of size

M2 from the posterior distribution of �A, generate M3 values !
(m2;m3)
1 from (22) and

then conditional on each of theseM2M3 draws generateM1 values !
(m1;m2;m3)
2 from (23).

Then substituting �(m2)
A for x(m2)

2 , !(m2;m3)
1 for x(m2;m3)

3 and !(m1;m2;m3)
2 for x(m1;m2;m3)

1 ,
compute the moments as indicated in (16)-(18).
This process can be iterated For example, continuing with the speci�c case of pre-

dicting four successive quarters of growth rates, intrinsic variance can be decomposed
into four rather than two components, yielding the variance in the 2012 annual growth
rate that will be resolved following quarters 2 and 3 as well as quarter 1 of 2012.

4.3 Decomposition of extrinsic variance

Let the parameter vector be decomposed �0A = (�
0
1A;�

0
2A), and suppose that it is feasible

to simulate

�
(m)
A1 s p

�
�A1 j Y0

T ; A
�
, (27)

�
(m)
A2 s p

�
�A2 j �A1;Y0

T ; A
�
. (28)

The simulation (27) is from the marginal distribution of �A1, so these simulations can
be taken as the corresponding subvector of the posterior simulation sequence itself. The
second simulation need not be straightforward or even feasible, though it usually is. If
the posterior simulator is a pure Metropolis algorithm then the same algorithm can be
used in (28), and indeed this simulation should be less challenging due to the diminished
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5 An illustration

We illustrate the methods set forth using the dynamic stochastic general equilibrium
(DSGE) model with price and wage stickiness and monopolistic competition due to
Smets and Wouters (2007). There are seven structural shocks in the model: innovations
in total factor productivity and the risk premium, an investment speci�c technology
shock, innovations to wage and price mark up, and policy shocks to �scal and monetary
policy. See Smets and Wouters (2007) for further detail. The model predicts seven
macroeconomic time series:

1. Consumption (quarterly percentage growth rate in per capita real consumption);

2. Investment (quarterly percentage growth rate in per capita real investment);

3. Output (quarterly percentage growth rate in per capita real GDP);

4. Hours (log per capita weekly hours);

5. In�ation (quarterly percentage growth rate growth rate in GDP de�ator);

6. Real wage (quarterly percentage growth rate growth rate in real wage);

7. Interest rate (Federal Funds Rate on a quarterly basis).

The data used in this illustration begin with the �rst quarter of 1951.
With respect to the notation introduced in Section 4 this seven-dimensional time

series constitutes fytg. DSGE modes like the one in Smets and Wouters (2007) are
widely used in central banks. In the most common implementation the one-step-ahead
predictive density is taken to be

p
�
yT+1 j Yo

T ;
b�(T )A ; A

�
, where b�(T )A = argmax

�A
p (�A j Yo

T ; A) : (32)

This does not conform with the formal Bayesian rule

p (yT+1 j Yo
T ; A) =

Z
�A

p (yT+1 j Yo
T ;�A; A) p (�A j Yo

T ; A) d�A. (33)

If there were no extrinsic variance in yT+1 in the predictive density (33) then (32) would
be equivalent to (33). Of course this is not the case, but if extrinsic variance is a small
enough component of predictive variance then the preference for (33) over (32) is an
academic rather than a practical point. That is one of the questions investigated here.
We accessed the posterior density p (�A j Yo

T ; A) by means of a conventional Metropo-

lis random walk posterior simulation algorithm to generate the sequence
n
�
(m2)
A

o
de-

scribed in Section 4 by thinning a chain of 10,000 MCMC simulations to M2 = 100
equally-spaced draws. Our vector of interest is !0 = (!01;!

0
2), with !1 = yT+1 and
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Predictive variance Intrinsic variance
Total Extrinsic Intrinsic Due to !1 Remainder

Consumption 0.2782 0.0264 (0.095) 0.2518 (0.905) 0.0817 (0.324) 0.1702 (0.676)
Investment 4.2767 0.3218 (0.075) 3.9549 (0.925) 1.6159 (0.409) 2.3390 (0.591)

Output 0.4714 0.0308 (0.065) 0.4406 (0.935) 0.1513 (0.343) 0.2893 (0.657)
Hours 1.2488 0.0771 (0.062) 1.1717 (0.938) 0.6689 (0.571) 0.5029 (0.429)

In�ation 0.0745 0.0052 (0.070) 0.0693 (0.930) 0.0652 (0.941) 0.0041 (0.059)
Wages 0.1558 0.0072 (0.046) 0.1487 (0.954) 0.0660 (0.444) 0.0826 (0.556)

Fed funds 0.0936 0.0055 (0.059) 0.0881 (0.941) 0.0489 (0.555) 0.0392 (0.445)

Table 2: Decomposition of predictive variance for one-year growth rates 2009:3 - 2010:2,
based on the posterior at 2009:2

model.

6 Conclusion

From a formal but reasonable perspective the goal of Bayesian analysis can generally be
cast as providing a predictive distribution relevant for a decision at hand. In doing so
it integrates information from several sources, including increments to information sets
as predictive distributions are updated in real time. This paper has provided a corre-
sponding analysis of variance. Because integration of information does not typically lead
to linear (Gaussian) models this analysis is necessarily more complex than the familiar
treatment that has been central to statistics for a century. But the complexity poses
no essential complication for simulation methods that are fast, practical, and natural
in the context of modern Bayesian inference. We believe that systematic application of
this analysis of variance will provide greater insight into the structure of models and
information aggregation, and hope that ultimately it will be useful in improving models,
predictions and decisions.
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Appendix

The following Matlab code implements the simulation-approximation of variance
decomposition described in Section 3, and was used in for the illustration in Section 5.

function [term1 term2 term3 total]=aov(x)
% This function computes simulation-based method of moments estimates
% of the population decomposition in the paper. The explicit
% computations are in the displays (16)-(18).
% Input:
% x This is a three-dimensional structure. The first dimension
% corresponds to "X_2" and has the m_2 index; the second
% dimension corresponds to "X_3" and has the m_3 index; the
% third dimension corresponds to "X_1" and has the m_1 index.
% Outputs:
% term1 Estimate (16)of the first term of (8)
% term2 Estimate (17) of the second term of (8)
% term3 Estimate (18) of the third term of (8)
%
[M2 M3 M1]=size(x);
term1=var(mean(reshape(x,M2,M3*M1),2),1,1);
term2=mean(var(mean(x,3),1,2),1);
term3=mean(var(reshape(x,M3*M2,M1),1,2),1);
total=term1+term2+term3;
end
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