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Abstract

We study the dynamics of a Lucas-tree model with �nitely lived agents who �learn from

experience.�Individuals update expectations by Bayesian learning based on observations from

their own lifetimes. In this model, the stock price exhibits stochastic boom-and-bust �uc-

tuations around the rational expectations equilibrium. This heterogeneous-agents economy

can be approximated by a representative-agent model with constant-gain learning, where the

gain parameter is related to the survival rate.

Keywords: learning from experience, OLG, asset pricing, bubbles, heterogeneous agents

JEL codes: G12, D83, D84
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Executive Summary

The rational expectations hypothesis has provided an important step forward allowing rigorous

formalization of the process of expectations formation. Yet it has been criticized for endowing

people with �too much� knowledge about their environment. Empirical research studying how

individuals form expectations about aggregate economic variables does not, in general, corroborate

the rational expectations hypothesis. In particular, Malmendier and Nagel (2009, 2011) �nd

evidence that, contrary to the hypothesis, people �learn from experience,�meaning that individuals

are more strongly in�uenced by data realized during their own lifetimes than by earlier historical

data. More speci�cally, Malmendier and Nagel (2011) �nd that individuals who experienced low

stock market returns during their lives are less likely to participate in the stock market, invest a

lower fraction of their liquid assets in stocks, and are more pessimistic about future stock returns. In

addition, Malmendier and Nagel (2009) �nd that young individuals place more weight on recently

experienced in�ation than older individuals.

In this paper, we explore how replacing the rational expectations hypothesis with �learning

from experience�modi�es the results of a simple general equilibrium model of stock pricing. We

are interested in the dynamics of heterogeneous beliefs and in the feedback loop that arises when

individuals learn about variables that are the result of their collective decisions given their beliefs,

a type of self-referentiality emphasized by Eusepi and Preston (2011).

To this end, we recast the asset pricing model of Adam and Marcet (2011) in a stochastic over-

lapping generations framework. In the model, individuals learn the parameters of the endogenous

evolution of the stock price and the exogenous process for dividends. Individuals update their be-

liefs in a Bayesian way while continuously trading the stock in an anonymous centralized market.

Our main di¤erence with Adam and Marcet�s model is that we assume that individuals have �nite

lives and learn from their own experience rather than from all historical data. Speci�cally, we

assume that a small random fraction 1�� of individuals exit the stock market in each period (e.g.,
due to death or retirement) and that an equal measure of new individuals enter the market. Each

new entrant inherits the assets of a retired agent (e.g., his parent) but not the parent�s accumulated

knowledge about the economy. Instead, we assume that children start their own learning �from

scratch,�parting from identical prior beliefs, namely rational expectations.

We �nd that, even if the retirement rate 1� � is quite low, so that in any given period only a
small fraction of individuals are novice, the asset price fails to converge to the rational expectations

equilibrium. Instead, a chaotic equilibrium emerges in which the stock price exhibits stochastic

cycles, the frequency of which is positively related to the rate of retirement. Two forces create the

oscillating dynamics. On the one hand, there is �momentum�rooted in the continuous entry of

new individuals. At any given date, a fraction of young individuals discount the experience of their
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parents and pay more attention to the most recent stock price developments. The latter biases the

young�s beliefs about the future course of dividends and stock prices toward simple extrapolation

of the recent past, and their trading activities push the asset price away from the fundamental.

On the other hand, there is a force of reversal to the rational expectations trend. When the

stock price rises too far above the fundamental value, constraints on how much an individual can

borrow in order to invest in the risky asset begin to bind. Because any given investor (including

the optimistic types) can buy fewer shares, the asset price must decline to the valuation of less

optimistic investors for the market to clear. The same re�ecting force works also "from below"

when the stock price falls far below the fundamental value. The combination of these two factors

�momentum and trend reversion �results in boom-and-bust cycles that are only loosely related

to dividends and are mainly due to speculation about the future course of the stock price, in the

spirit of Harrison and Kreps (1978).

Indeed, our economy exhibits cyclical �uctuations of the stock price even in the absence of

dividend innovations. In this case, stochastic stock price cycles emerge purely as a result of

the random reinitialization of the learning processes of di¤erent cohorts of individuals. Thus,

idiosyncratic shocks to the learning paths of individuals translate in aggregate �uctuations as a

result of the dynamic coordination of heterogeneous beliefs.

A key �nding is that the heterogeneous-beliefs economy can be approximated reasonably well

by an economy with a representative agent who updates his beliefs with a constant-gain learning

scheme. The approximation takes two steps. In the �rst step, we show that the stock price

can be approximated using the evolution of the average (rather than the marginal) belief of the

population. In the second step, we show that the dynamics of average beliefs can be approximated

by a constant-gain learning scheme in which the gain parameter corresponds to the retirement rate

1� �. This approximation implies that memories of the distant past are lost with the passage of
time as a result of population turnover combined with �learning from experience.�We thus provide

a justi�cation for using constant-gain learning in a representative-agent context. Namely, we see

it as a useful device to approximate the aggregate dynamics of an economy populated by many

Bayesian learners, each of them using a decreasing-gain sequence, under the assumption that they

�learn from experience.�

Finally, we analyze the asymptotic behavior of our economy in the limit with in�nitely lived

agents. We show analytically that, in this case, even if traders do not know anything about each

other, endowing them with long histories of dividend and stock price realizations is su¢ cient for

their beliefs to eventually converge to the rational expectations equilibrium. However, we �nd

that, if new dividend information arrives monthly, it can take several centuries before the asset

price comes close to the rational expectations equilibrium.
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1 Introduction

The crucial role of expectations about the future is well understood in economics. The rational

expectations hypothesis (REH) has been an important step forward allowing rigorous formalization

of the process of expectations formation. Yet it has been often criticized for endowing people with

�too much� knowledge about their environment.1 Empirical research studying how individuals

form expectations about aggregate economic variables does not, in general, corroborate the REH.

In particular, Malmendier and Nagel (2009, 2011) �nd evidence that, contrary to the REH, people

�learn from experience,�meaning that individuals are more strongly in�uenced by data realized

during their own lifetimes than by earlier historical data. More speci�cally, Malmendier and Nagel

(2011) �nd that individuals who experienced low stock market returns during their lives are less

likely to participate in the stock market, invest a lower fraction of their liquid assets in stocks, and

are more pessimistic about future stock returns. In addition, Malmendier and Nagel (2009) �nd

that young individuals place more weight on recently experienced in�ation than older individuals

do. The upshot is that learning dynamics may be perpetual if history �gets lost�as new generations

replace older ones.

In this paper, we explore how replacing the REH with �learning from experience�modi�es

the results of a simple general equilibrium model of the stock market. We are interested in the

dynamics of heterogeneous beliefs and in the feedback loop that arises when individuals learn

about variables that are the result of their collective decisions given their beliefs, a type of self-

referentiality emphasized by Eusepi and Preston (2011).

To this end, we extend the asset pricing model of Adam and Marcet (2011) to a stochastic

overlapping generations (OLG) setup in which individuals learn the parameters of the endogenous

evolution of the stock price and the exogenous process for dividends. Individuals update their

beliefs in a Bayesian way while continuously trading the stock in an anonymous centralized market.

Our main di¤erence with Adam and Marcet�s model is that we assume that individuals have �nite

lives and learn from their own experience. Speci�cally, we assume that a small random fraction of

individuals exit the stock market every period with a given probability 1 � � (e.g., due to death
or retirement), and an equal measure of new individuals enter the market. Each new entrant

inherits the assets of a retired agent (e.g., his parent), but not the parent�s accumulated knowledge

about the economy. Instead, we assume that children enter the market with identical prior beliefs,

namely, the belief consistent with REH.

We �nd that, even if the retirement rate 1 � � is quite low, so that in any given period
only a small fraction of individuals are novice, the asset price fails to converge to the rational

expectations equilibrium (REE). Instead, a chaotic equilibrium emerges in which the stock price

1See, for example, Blume et. al. (1982), Arrow (1986), and Adam and Marcet (2011).
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exhibits stochastic cycles (around the REE price), the frequency of which is positively related to

the rate of retirement. Two forces create the oscillating dynamics. On the one hand, there is

�momentum� rooted in the continuous entry of new individuals. At any given date, a fraction

of young individuals discount the experience of their parents and pay more attention to the most

recent stock price developments. The latter biases the young�s beliefs about the future course

of dividends and stock prices toward simple extrapolation of the recent past, and their trading

activities push the asset price away from the fundamental. On the other hand, there is a force

of reversal toward the REE trend. When the stock price rises too far above the fundamental

value, individual leverage constraints begin to bind. Because any given individual (including the

optimistic types) can a¤ord to buy less of the stock, the asset price must decline to the valuation

of less optimistic individuals for the market to clear. The same re�ecting force works also �from

below�, when the stock price falls far below the fundamental value. The combination of these two

factors �momentum and trend reversion �results in boom-and-bust cycles, which are only loosely

related to dividends and are mainly due to speculation about the future course of the stock price,

in the spirit of Harrison and Kreps (1978).

Indeed, our economy exhibits cyclical �uctuations of the stock price even in the absence of

dividend innovations. In this case, stochastic cycles of the stock price are driven only by the random

reinitialization of the learning processes of successive cohorts of individuals. Thus, idiosyncratic

shocks to the learning paths of individuals translate into aggregate �uctuations as a result of the

dynamic coordination of heterogeneous beliefs.2

A key �nding is that the heterogeneous-beliefs economy can be approximated reasonably well

by an economy with a representative agent who updates his beliefs with a constant-gain learning

(CGL) scheme. The approximation takes two steps. In a �rst step, we show that the evolution of

the stock price can be approximated using the evolution of the average (rather than the marginal)

beliefs of the population. In a second step, we show that the dynamics of average beliefs can be

approximated by a CGL scheme in which the gain parameter is a function of the survival rate �.

This approximation implies that memories of the distant past are lost with the passage of time as

a result of population turnover combined with �learning from experience.�

CGL is usually motivated based on its ability to produce realistic model features, such as

ampli�cation of the persistence of macro variables in response to aggregate shocks.3 Rarely is

there a discussion of the reasons why all agents should learn in the same suboptimal way. The

value of the gain parameter typically is estimated or calibrated to yield the smallest possible mean-

squared forecasting error. Our contribution is to provide an alternative justi�cation for using CGL

2This e¤ect is similar to Angeletos and La�O (2011) who also generate aggregate �uctuations from dispersed
beliefs although in a di¤erent framework.

3For example, see Milani (2007), Carceles-Poveda and Giannitsarou (2008), Branch and Evans (2011), Adam,
Marcet, and Nicolini (2008).
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in a representative-agent context. Namely, we see it as a useful shortcut to approximating the

aggregate dynamics of an economy populated by many Bayesian learners, each of them using a

decreasing gain sequence, under the assumption that they �learn from experience.�

Finally, we analyze the asymptotic behavior of our economy in the limit with in�nitely lived

agents (taking the limit as � ! 1). We show analytically that, in this case, even if traders do

not know anything about each other, endowing them with long histories of dividend and stock

price realizations is su¢ cient for their beliefs to eventually converge to the REE. We study the

properties of the convergence, such as the speed and the shape of the transition path. We �nd

that, if new dividend information arrives monthly, it can take several centuries before the asset

price comes close to the REE. In the baseline calibration, after a full one century of trading and

learning, the median simulated stock price is still 20 percent higher than its REE counterpart.

Our setup rules out the possibility of a rational bubble, de�ned as a gap between the stock price

and the REE price that grows unboundedly in expectations. We preclude bubbles by assuming

that individuals face constraints on their maximum exposure to the stock. Speci�cally, we cap

individual leverage, de�ned as the multiple of the current dividend that an individual is allowed

to maintain invested in the form of stock holdings. In our environment leverage is an important

factor a¤ecting the properties of convergence to the REE. In particular, the higher the degree of

permissible leverage, the slower is the rate of convergence.

Our paper is related to several strands of the literature. First, it relates to the emerging liter-

ature on learning with heterogeneous agents, such as Giannitsarou (2003), Branch and McGough

(2004), Branch and Evans (2006), Honkapohja and Mitra (2006), or Graham (2011). In contrast

to these papers, individuals in our economy use the same Bayesian learning scheme, have the same

preferences, and observe the same public variables (prices and dividends). The only source of

heterogeneity is in the individual information sets used to update beliefs, with younger individuals

focusing on a subset of the observations used by older ones.

Second, a related body of literature analyzes the dynamics of asset prices under Bayesian learn-

ing by a representative agent. Timmermann (1994), Weitzman (2007), and Cogley and Sargent

(2008), among others, o¤er an explanation for some interesting asset pricing phenomena based

on rational learning by a representative agent. Unlike our setup, individuals in their models use

all available past information and know ex ante the correct mapping between asset prices and

fundamentals; hence, they only need to learn about the latter in order to achieve convergence to

the REE.

Third, following Radner (1979) and Lucas (1972), a large body of literature studies rational

expectations equilibria in economies with asymmetric information. Vives (1993), in particular,

analyzes the speed of convergence to REE in a model of rational learning in which the market

price is informative about an unknown parameter only through the actions of agents. Vives �nds
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that whenever the average precision of private information is �nite, convergence to the REE is

slow, at the rate 1=
p
n1=3, where n is the number of trading periods.

Fourth, recent literature focuses on the role of higher-order expectations for asset prices. For

example, Allen, Morris, and Shin (2006) analyze a linear model with asymmetric information. They

�nd that, in the absence of common knowledge about higher-order beliefs, asset prices generally

will depart from the market consensus of the expected fundamental value, typically reacting more

sluggishly to changes in fundamentals.

The rest of our paper is organized as follows. In section 2, we recast the model of Adam and

Marcet (2011) in an OLG setting. In section 3, we calibrate the model and analyze the properties

of �learning from experience.� In section 4, we show how the model can be approximated by

a representative agent with CGL. Section 5 explores the case in which the survival probability

approaches one, and section 6 concludes.

2 The model

In this section, we recast the model of Adam and Marcet (2011) in an OLG setup. We make some

additional changes to their model as follows. First, we assume Bayesian learning of the means and

the variances of the stock price and dividends.4 Second, we specify a particular market arrangement

(a centralized auction), which ensures that information about the current dividend is incorporated

into the contemporaneous stock price. We are also explicit about the way the market arrives at

the equilibrium asset price. Third, we replace Adam and Marcet�s investment constraints on the

number of shares an agent can hold with constraints on individual exposure in the stock. More

precisely, we assume that there is a ceiling for the maximum value an individual can invest in the

stock, preventing him from going arbitrarily long in the asset. Likewise, we assume that there is a

�oor for an individual�s position in the stock, preventing him from engaging in unlimited shorting.

These value limits, which can be rationalized by underlying credit constraints, are su¢ cient to rule

out rational bubbles without reliance on a �projection facility.�5

Adam andMarcet�s model is interesting to us for three reasons. First, it introduces a meaningful

distinction between �internal rationality�and �external rationality.�Internally rational individuals

maximize expected utility given consistent beliefs about the future. Externally rational individuals

are endowed, in addition, with common knowledge of each other�s preferences and beliefs, for any

possible path of dividends. We assume that our economy is populated by individuals who are

4Adam and Marcet (2011) show that, up to a �rst-order approximation, Bayesian learning of the means, or
decreasing-gain recursive least squares learning, are equivalent to full Bayesian learning in a model with an in�nitely
lived representative agent. Instead, we simply work with Bayesian learning as in De Groot (1970).

5A �projection facility� is a technical assumption that mechanically constrains beliefs to a pre-speci�ed neigh-
borhood.
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internally rational but are not externally rational. Second, an appealing feature of the model is its

simplicity, allowing us to obtain closed-form analytical expressions for the asset price dynamics.

Third, despite its simplicity, the model is rich enough to be contrasted with actual data on stock

prices and dividends.

The economy is populated by N risk-neutral ex ante identical dynasties. Members of each

dynasty have stochastic lifetimes with death (or retirement) occurring with a constant exogenous

probability, (1 � �). Thus, in each period, the measure of dynasts of age j 2 N0 is constant and
equal to fj = N(1 � �)�j: Upon retirement, a successor inherits the assets of the former dynast
but not his accumulated knowledge about the processes governing the stock price and dividends.

Instead, successors embark on their own learning experience �from scratch�, starting with the

identical initial belief that their predecessors had at birth, namely the belief consistent with REE.

The dynasts trade among themselves a single divisible stock, which is in �xed supply, normalized

to N . Each individual decides how much to invest in the asset based on inter-temporal arbitrage.

However, as emphasized by Adam and Marcet, the relevant arbitrage is not the one between

selling the stock and holding it forever for its dividends. Instead, the condition that governs

savings decisions is a one-period-ahead comparison between the value of the stock in the current

period and the subjective expected payo¤ in the following trading period.

The stock price in our model thus equals the marginal asset holder i�s subjective expected

present value of holding the stock for one period, collecting the dividend Dt+1, and selling it in

the following period at his expected price Eit(Pt+1). Because expectations about future prices

generally would di¤er across individuals, the law of iterated expectations does not apply, and the

pricing conditions of individuals do not aggregate to the familiar asset pricing formula with a

representative agent.

In the following subsections we provide a sketch of the model. We provide more details in

Appendix A.

2.1 Preferences and constraints

The head of dynasty i 2 f1; :::; Ng receives utility from consumption u(Cit) = Cit per period. He

discounts future consumption by factor ��, where � < 1 is a time preference parameter and � < 1

is a constant probability of survival. The expected value of lifetime utility for dynast i is thus

Ei0

1X
t=0

(��)t u(Cit); (1)

where Ei0 is individual i�s expectation formed at time 0.
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Individual i faces the period budget constraint

Cit + PtSit � (Pt +Dt)Sit�1 + Yit; (2)

where Sit denotes his stock holdings, Pt is the asset price, Dt is the dividend, and Yit is a period

income endowment. We assume for simplicity that Yit = Y .

In addition, the individual faces constraints on the minimum and the maximum asset exposure,

de�ned as the maximum value in terms of consumption that he stands to lose (or gain if short-

selling) if the stock price falls to zero.

E
¯ t
� PtSit � Ē t: (3)

Constraints (3) imply that an individual investor cannot go arbitrarily short or long in the stock.

In a more detailed model, these limitations can be derived from underlying credit constraints that

prevent agents from borrowing unlimited amounts of resources. Instead, we will simply assume

that E
¯ t

= 0 and Ē t = �Dt > 0; where parameter � > 0 (which we loosely refer to as the

permissible �leverage�) is the maximum multiple of the current dividend that an individual can

maintain invested in the risky stock.

Our exposure constraints (3) di¤er from the stock holding constraints used by Adam andMarcet

(2011), namely 0 � Sit � S̄ , which limit the minimum and maximum number of shares held by

an individual. Their constraints su¢ ce for the maximization problem to be well-de�ned at the

individual level. However, they are not su¢ cient to prevent agents from collectively holding the

entire stock at ever-rising prices.6 In contrast, our speci�cation of the stock holding constraints

puts e¤ective bounds on the price-to-dividend ratio, without the need for a �projection facility�

that mechanically constrains beliefs to a pre-speci�ed neighborhood.

Dividends follow the exogenous stochastic process

log (Dt=Dt�1) = "t � N(; �2); (4)

where  > 0 and �2 > 0 are, respectively, the mean and the variance of the growth rate of dividends

and where D�1 is known.

Given the information set available to individual i, his problem is to choose consumption and

equity holdings so as to maximize lifetime utility (1), subject to the budget constraint (2), and the

exposure constraints (3).

6To see this fact, note that the budget constraint (2) alone does not preclude a rational bubble, because with
Cit = 0 we have that Sit = (1 +Dt=Pt)Sit�1 + Y=Pt � Sit�1. That is, agents are not su¢ ciently discouraged from
holding the stock as the stock price rises.
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The �rst-order conditions for an individual are

Pt = ��Eit (Pt+1 +Dt+1) + �it; (5)

where �it 2 R is the sum of the Lagrange multipliers associated with the exposure constraints (3).

2.2 Learning from experience

Individuals are assumed to �learn from experience,�that is, the information set !ti;n of agent i of

age n consists of the realizations of stock prices and dividends observed during his lifetime,

!ti;n = fP� ; D�gt�=t�n :

Dynasts update their beliefs about the mean growth rate of the stock price and dividends,

i, as well as the covariance matrix of their innovations, �i. Given Pt�1 and Dt�1; individual i�s

perceived law of motion is

"
log (Pt=Pt�1)

log (Dt=Dt�1)

#
=

"
"Pit

"Dit

#
� N(i;�i); i =

"
Pi

Di

#
; �i =

"
�2iP �2iPD
�2iDP �2iD

#
: (6)

This speci�cation allows for beliefs about the growth rates in the share price and dividends

to take on di¤erent values and their innovations to be imperfectly correlated. Individuals�prior

beliefs about these parameters are of the Normal-Wishart conjugate form,

��1i � W (�0; ni0) and ij��1i � N
��
Pi0; 

D
i0

�0
;�i=ni0

�
; (7)

where theWishart distributionW with precision matrix�0 and ni0 > 3 degrees of freedom speci�es

individuals�prior marginal distribution of the inverse of the covariance matrix of innovations. In

turn, the normal distribution N speci�es individuals�prior belief about the mean growth rates of

the stock price and of dividends, conditional on the precision matrix ��1i . The vector
�
Pi0; 

D
i0

�
denotes the conditional prior mean, while ni0 is the precision of prior beliefs.

Individuals are assumed to be born with identical prior beliefs, centered on the REE outcome

in which the asset price grows in lockstep with dividends,

�
Pi0; 

D
i0

�
= (; ) ; �0 = �

2

"
1 �

� 1

#
(n0 � 3) ; where � ! 1, � < 1: (8)

The joint distribution of the stock price and dividends is computed as the posterior of (i;�i)
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conditional on information !ti;n available up to period t. The posterior distribution is also a

Normal-Wishart with location parameters
�
Pit ; 

D
it ;�it; nit

�
: De�ning the one-step-ahead forecast

error as

eit =

"
log (Pt=Pt�1)� Pit
log (Dt=Dt�1)� Dit

#
; (9)

it follows from DeGroot (1970, ch. 9) that the recursive Bayesian updating scheme is given by

it+1 = it +
eit

nit + 1
; �it+1 = �it +

nit
nit + 1

eite
0
it; nit+1 = nit + 1: (10)

2.3 Timeline of events and market arrangement

Events unfold as follows. At the beginning of period t individuals update their beliefs about (i;�i)

based on the stock price and dividends observed in period t� 1 using the recursive Bayesian up-
dating scheme (9)-(10). Each individual�s expectations about the future stock price and dividends

are obtained by projecting his latest estimate of the growth rates of the stock price and dividends

into period t+ 1: Given these expectations, individual i computes his reservation price as7

Pit = ��Eit (Pt+1 +Dt+t) = ��Eit
�
exp

�
"Pit + "

P
it+1

�
Pt�1 + exp

�
"Dit + "

D
it+1

�
Dt�1

�
= ��

�
exp

�
2Pit +�it(1; 1)= (nit � 3)

�
Pt�1 + exp

�
2Dit +�it(2; 2)= (nit � 3)

�
Dt�1

	
:(11)

The stock is traded on a multiple-round, sealed-bid, centralized auction where actual exchange

occurs only in the very last round. The market-clearing price is established as follows. In the �rst

round, each individual sends his initial sealed bid Pit given by (11). An auctioneer sorts all the bids

from highest to lowest in an order book, and notionally allocates the asset, starting from the top

bidder and moving down the order book until the entire stock is allocated.8 The auctioneer then

announces publicly the time t, round 1, preliminary asset price, Pt1, as the bid of the marginal

investor who would just be willing to hold the asset if that were the �nal price. Thus, price Pt1
would clear the market if trade were allowed at that point and no new information had become

available.

We assume, however, that at the end of the �rst round the actual dividend for time t becomes

publicly known. Hence, in subsequent rounds of the auction, investors revise their bids based on

the preliminary price announced by the auctioneer in the preceding round Ptk�1; and on the time

t dividend,

Pitk = ��
�
exp

�
Pit +�it(1; 1)=(2nit � 6)

�
Ptk�1 + exp

�
Dit + �it(2; 2)= (2nit � 6)

�
Dt

	
: (12)

7To obtain the last equality, we use that E exp(") = exp [E(") + V ar(")=2] when " is normally distributed.
8Recall from (3) that no individual can go in�nitely long in the asset.
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Bids are collected again, and the asset is notionally allocated to the highest bidders, determining

the new preliminary price of round k as the price o¤ered by the marginal potential buyer. This

process is repeated for a large number of rounds until convergence of the price Ptk.9 This limiting-

round price is the actual clearing price in period t at which trade occurs.10 At the end of period t,

owners of the asset receive the dividend and the clearing price, and the successful bidders receive

the stock. In equilibrium, individuals collectively hold the entire stock of the asset, so

N =

1X
j=0

fjSjt; (13)

where recall that fj is the measure of individuals of age j. The model is completely characterized

by the �rst-order conditions for individual investors (5), the recursive Bayesian learning scheme

(10), the market-clearing condition (13), and the exogenous process for dividends (4). The solution

algorithm is described in Appendix B.

3 Heterogeneous beliefs and speculative bubbles

In this section, we explore the implications of heterogeneity due to agents being born at di¤erent

dates and focusing on data realizations from their own lifetimes, rather than on all historical data.

3.1 Calibration

The model�s parameters are calibrated to match the U.S. stock market evidence as documented

by Shiller (2005). We assume that each period in the model is a month, which represents a

compromise: dividends typically are announced quarterly, whereas stock prices are available at a

much higher frequency.

Dynasts discount future consumption by the factor ��, where � is a time preference parameter

and where � is the probability of survival. The survival rate is set equal to � = 0:996; implying

an �average life on the market�of about 20 years. We use Shiller�s (2005) stock market dataset

covering the S&P index from January 1871 to June 2011 to calibrate our model. In particular,

consistent with Shiller�s data, we set the mean growth rate of dividends to  = 0:0027 per month,

and its standard deviation to � = 0:0114. We set the time preference parameter to � = 0:998;

consistent with an average price-to-(monthly)-dividend ratio of around 300, close to Shiller�s num-

ber of 320. The leverage ceiling parameter is set to � = 500: Note that, by imposing a limit on

9While the convergence is asymptotic, in practice we will cut o¤ the number of rounds to K = 2000:
10If several investors place the same bid, they receive an equal share of the stock. If there is insu¢ cient demand to

clear the market because leverage constraints are binding for everyone, then the market closes recording Pt = Pt�1.
Such forced closing of the market only happens initially in the representative-agent version of the model.
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each individual�s investment in the stock, � a¤ects the measure of households who hold the asset.

Setting � = 500 is consistent with an average stock market participation rate of around 60 percent,

which is the estimate reported by Poterba et. al. (1995) for U.S. households with income over

$250;000. Prior uncertainty (or �con�dence�) is parameterized by setting n0 = 48; equivalent

to four years (the duration of an undergraduate economics degree) of stock price and dividend

observations. For our numerical simulations, we set the number of agents to N = 100 and the

number of auction rounds per period to K = 2000.11 We perform 1000 Monte Carlo simulations

of 5000 months each, equivalent to more than four centuries of trading.

3.2 Simulation results

Figure 1 illustrates the behavior of the asset price according to the model. The thin solid line plots

one particular simulated path of the ratio of the stock price in the OLG economy to the REE price.

Notice that the ratio oscillates within a 95 percent con�dence interval between 0.5 and 1.5, that is,

stock price �uctuations are strongly ampli�ed in the OLG model. Second, the median stock price

in the OLG model does fairly quickly converge to the REE. In that sense, the REE asset price is a

relevant statistic for the OLG model. Third, the 95 percent con�dence band does not shrink over

time, indicating the lack of asymptotic convergence of individual price histories.

The stochastic oscillations of the stock price around the REE are related to the dynamics of

learning. To see this, Figure 2 plots the evolution of price growth beliefs held by the cross-section of

households relative to the REE belief . We plot the median belief, and a 95% con�dence interval

at each point in time. Notice that individuals� beliefs regarding the growth rate of the stock

price do not converge to ; instead, they go through successive waves of optimism and pessimism

vis-a-vis .

Two elements of our model are responsible for the oscillating dynamics. On the one hand,

there is a force of momentum, which is rooted in the infrequent resetting of the learning schemes

of successive cohorts of individuals. Namely, at any given date, a fraction of young individuals

enters the market whose learning path initially is strongly in�uenced by the most recent stock

price and dividend realizations. The young�s forecasts inform their trading activities, and, through

trade, a¤ect the realized stock price, pulling the beliefs of older generations toward the more recent

price change realizations. On the other hand, there is a force of trend-reversion, emanating from

the constraints on individual risky asset exposure. Namely, as the stock price rises far above the

REE, the upper bound in (3) implies that optimistic investors can buy less shares for any given

dividend realization. Because, in equilibrium, all shares must be held by someone, the stock price

has to fall to the valuation of less optimistic investors. The same re�ecting force operates �from

11We also report results with N = 1000 agents, which are very similar.
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below�, when the stock price falls too far beneath the REE.12 The combination of the two factors

�momentum and trend reversion �results in boom-and-bust cycles that are only loosely related

to dividends.

Indeed, similar to Harrison and Kreps (1978), asset price cycles in our model are primarily the

result of speculation about the future course of the asset price. To see that, we simulated again our

economy under a constant realization of the dividend growth process, setting all dividend growth

innovations to zero. We found that, even in this case, disagreement necessarily arises in investors�

beliefs. In particular, over time, investors�assessments of the variance of asset price growth begin

to di¤er because the prior con�dence nit of a random fraction 1 � � of investors is reset from
nit > ni0 down to ni;t+1 = ni0 in the updating scheme(10). This, together with the direct e¤ect of

nit on expected future prices in (12), necessarily creates dispersion of beliefs and bid prices, which

translates into boom-and-bust cycles even in the absence of dividend shocks.

Figure 3 demonstrates this for two values of the survival rate: the benchmark value � = 0:996,

and a higher rate of � = 0:998. The top panel plots the sample periodogram calculated as in

Hamilton (1994, ch. 6.2). For either value of �, it shows clear evidence of cyclicality of the

stock price, despite the fact that dividends are constant. In the benchmark case, the periodogram

indicates a series of local maxima at periods of 8 to 16 years. With the higher survival rate, the

peak corresponds to a period of around 33 years. Thus, cycle frequency is inversely related to the

survival rate.

The bottom panel depicts the simulated time series of the price-dividend ratio. It shows that

the amplitude of the cycles also depends on the survival rate. Namely, stock price cycles have

a wider amplitude with a lower survival rate and vice versa. In the limit with in�nitely-lived

investors (� = 1), asset price cycles disappear completely in the absence of shocks to dividends.

Naturally, shocks to dividends do have an in�uence on the stock price, although the link is not

nearly as direct as in the case of REE. Recall that in the REE model, stock price changes track one-

to-one changes in dividends, inheriting the persistence of dividend growth (zero by assumption).

In contrast, in the OLG model with �learning from experience,�a sequence of positive dividend

surprises has an escalating e¤ect on asset price changes. This ampli�cation occurs because, through

trade, the young�s overreaction to current information a¤ects the stock price and, progressively, the

beliefs of older generations, creating a non-linear feedback, which reinforces the e¤ects of dividend

shocks on the stock price.

12Note that trend reversion kicks in before the aggregate leverage constraint Pt=Dt = � becomes binding. Thus,
the turning points of the stock price cycles are endogenous in the model.
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4 Approximate aggregate dynamics

This section explores the possibility of analyzing the approximate aggregate dynamics of our econ-

omy without having to deal with the entire distribution of beliefs across agents. The approximation

involves two parts. One part is to approximate the stock price dynamics for a given evolution of

average beliefs; the second part is to approximate the evolution of average beliefs. We discuss

each of these parts in turn and then combine them to arrive at a stand-alone representative-agent

model that approximates the behavior of the heterogeneous-agents economy.

4.1 Price dynamics

The equilibrium price is obtained by iterating on (12) as k !1 and can be written as

Pt1 = ��

�
exp

�
Pjt +

�jt(1; 1)

(2j � 6)

�
Pt1 + exp

�
Djt +

�jt(2; 2)

(2j � 6)

�
Dt

�
+ �jt: (14)

A �rst-order approximation to the above expression is

Pt � ��
��
1 + Pjt

�
Pt +

�
1 + Djt

�
Dt

�
+ �jt:

Taking the average across all age groups yields

Pt =
1

N

1X
j=0

fjPt =
1

N

1X
i=0

fj
�
��
��
1 + Pjt

�
Pt +

�
1 + Djt

�
Dt

�
+ �jt

�
= ��

��
1 + Pt

�
Pt +

�
1 + Dt

�
Dt

�
+ �tDt; (15)

with

Pt �
1

N

1X
j=0

fj
P
jt; Dt �

1

N

1X
j=0

fj
D
jt; �t �

1

N

1X
j=0

fj
�jt
Dt

;

where Pt and 
D
t are the average expectations across individuals and where �t is the average

Lagrange multiplier normalized by the contemporaneous dividend.

In principle, the average Lagrange multiplier should be a function of the price-dividend ratio.

When the price-dividend ratio is close to the maximum leverage �, the multiplier �t should turn

negative. This sign of the multiplier re�ects the fact that most individuals are constrained, and

hence the marginal trader is more pessimistic about the future price than the average one. And

when the price-dividend ratio is su¢ ciently low, �t should turn positive as the marginal trader is

more optimistic than average. To verify this relationship between the price-dividend ratio and the

average Lagrange multiplier, Figure 4 shows a cross-plot of the two variables from data generated
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by our benchmark model. The negative, quasi-linear, relationship can be approximated well by

the linear function

�t = a� b
Pt
Dt

(16)

describing the behavior of �t as a function of the price-dividend ratio. We estimate the parameters a

and b by least squares regression from our simulations and report them in Table 1. Both coe¢ cients

are signi�cant at the 1 percent level and the regression�s R2 is 0.83 for the case of 1,000 agents.13

Using (16), the dynamics of the price-dividend ratio can be approximated as

Pt
Dt

=
��
�
1 + Dt

�
+ a

1 + b� �� (1 + Pt )
; (17)

which depends only on the average expectations about the growth rates of prices and dividends,

and on the parameters a and b governing the average Lagrange multiplier.

In the upper half of Table 2, we evaluate the quality of the approximation implied by equations

(15) and (17). In the �rst two lines under the line �Price approximation,� we take the actual

average beliefs Pt and 
D
t given by the benchmark heterogeneous-agents model. In line �actual

�t,�we also take as given the actual value of the average multiplier �t; whereas, in line �approx.

�t,� we use the approximate �t given by the law of motion (16). We consider two metrics of

similarity: the correlation between the price-dividend ratio in the heterogeneous-agents model and

the approximate model; and the R2, de�ned as one minus the ratio of the variance of the approx-

imation error to the variance of the Pt=Dt ratio in the benchmark model.14 We �nd that in both

cases the approximation is reasonable. For example, when using the approximate multiplier and

1,000 agents, the correlation between approximate and actual Pt=Dt ratio is 0.96. The adequacy

of the approximation can also be veri�ed visually in the upper panel of Figure 5, which plots the

price-dividend ratio from the benchmark model along with the approximation using (16) and (17).

4.2 Average learning dynamics

Equation (17) links the evolution of the stock price to the average market beliefs about the growth

rate of the stock price and dividends. For a complete stand-alone approximation, we need to

approximate the evolution of average beliefs. We begin with the evolution of the average price

growth expectation, which is given by

Pt =
1

N

1X
j=0

fj
P
jt =

f0

N
+
1

N

1X
j=1

fj

�
Pj�1t�1 +

1

njt

�
log (Pt�1=Pt�2)� Pj�1t�1

��
;

13A more accurate approximation to the dynamics of the average Lagrange multiplier can be obtained by increas-
ing the number of agents in the economy.
14We discard the �rst 2,000 periods of the simulation to avoid the e¤ect of initial conditions.
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where the prior con�dence, njt, is given by

njt = n0 + j; j 2 N: (18)

Assuming that individual expectations are uncorrelated with age, we obtain15

1

N

1X
j=1

fj
n0 + j

Pj�1t�1 �
 
1

N

1X
j=1

fj
n0 + j

! 
1

N

1X
j=1

fj
P
j�1t�1

!
;

where the second product on the right-hand side equals �Pt�1. The �rst product, in turn, can be

approximated using the following

Proposition 1 In the limit as � ! 1;

1

N

1X
j=1

fj
n0 + j

� (1� �):

Proof. See the Appendix.
Therefore, for � close to 1, we have

Pt � (1� �) + �
�
Pt�1 + (1� �)

�
log (Pt�1=Pt�2) =� � Pt�1

��
(19)

� Pt�1 + (1� �)
�
log (Pt�1=Pt�2)� Pt�1

�
;

that is, average beliefs about price growth are updated approximately according to a CGL scheme.

CGL can thus be viewed as an approximate aggregation of the learning of individuals who update

their beliefs by Bayes�rule, using data realized in their lifetimes. Notice that the CGL algorithm

di¤ers from the actual learning scheme of any of the individual agents because individual learning

happens with a decreasing gain, as shown in (18). The population as a whole, however, learns

approximately with a constant gain.

The evolution of average dividend expectations as � ! 1 can be derived symmetrically as

Dt =
1

N

1X
i=0

fi
D
it � Dt�1 + (1� �)

�
log (Dt�1=Dt�2)� Dt�1

�
: (20)

Note that the value of the gain parameter, which appears in the approximation, equals the

retirement probability (1 minus the survival rate). In our baseline calibration, this is equal to 0.004,

corresponding to an expected life on the market of 20 years. In quarterly terms, the retirement

probability is 0.012, which is quite close to existing estimates of the constant-gain parameter from

15We evaluate the adequacy of this assumption at the end of the sub-section.
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macro time series data; for example, Milani (2007) estimates the constant-gain parameter to be

0.018 in U.S. data.

In the upper half of Table 2, the line �Price learning�and the line �Dividend learning�evaluate

the adequacy of the assumption that individual expectations are uncorrelated with age. In this

exercise, we take the actual price and dividend sequences from the benchmark heterogeneous-

agents model and construct series for stock price and dividend growth expectations using the

approximations in (19) and (20). The table shows the two metrics of similarity: the correlation

of the approximate with the true average growth expectations, as well as the R2 de�ned in sec.

4.1: By these measures, the approximation of both stock price and dividend learning dynamics are

reasonably accurate. The middle and the lower panels of Figure 5 con�rm this result visually.

4.3 Representative-agent approximation

We now analyze the quality of the two approximations �of the stock price and of the average

learning dynamics �as a unit. Namely, we consider the stand-alone representative-agent model

in which the stock price is given by equation (17), with parameters a and b from Table 1 (�rst

column), and in which average beliefs follow (19) and (20). This model can be simulated inde-

pendently for any given evolution of dividends. The line �Price approximation�in the lower half

of Table 2 reports the R2 and correlation with the evolution of the stock price in the benchmark

heterogeneous-agents model. As can be expected, the overall approximation deteriorates because

approximation errors in the stock price are compounded with errors in the average expectation

dynamics. Nevertheless, Figure 6 shows that the overall approximation is still decent; it de�nitely

approximates the benchmark model much better than the rational expectations model (REM)

does.

Table 3 evaluates how well the simulated price-dividend ratio matches with the evidence doc-

umented by Shiller (2005). The model �ts quite well with the observed autocorrelation of the

price-dividend ratio by explaining it as a consequence of the dynamic coordination of heteroge-

neous beliefs. The representative agent constant-gain learning (RA-CGL) approximation produces

a smoother price-dividend ratio than the benchmark heterogeneous-agents model.

Finally, Table 4 compares the one-step-ahead forecast errors (9) generated by the heterogeneous

agents overlapping-generations (HA-OLG) model, the RA-CGL approximation, and the REM. The

distribution of forecast errors is quite similar between the HA-OLG and the RA-CGL models.16 In

particular, the forecast errors for the stock price are unbiased in the HA-OLG and the RA-CGL

models but, in both cases, are more dispersed than in the REM. In addition, in the case of the

HA-OLG and RA-CGL models, the distribution of price forecast errors displays more leptokurtosis

16Because dividends are exogenous, the distribution of the forecast errors for dividends is essentially identical
across the three models.



22
ECB
Working Paper Series No 1396
November 2011

than the REM.

Thus, the HA-OLG and RA-CGL models provide an unbiased average forecast of the evolution

of stock prices and dividends, but the uncertainty about the future evolution of prices is larger than

that of dividends. This outcome occurs because the stock price depends on market expectations,

creating self-referential dynamics as emphasized in Eusepi and Preston (2011). In contrast, in the

REM, the uncertainty about prices and dividends is essentially the same because agents coordinate

ex ante onto the right model for asset pricing.

5 The case with in�nitely lived individuals

In this section, we analyze the limiting case in which the probability of survival is � = 1: We

demonstrate the asymptotic convergence of the model to rational expectations despite the fact

that individuals do not know anything about each other. We then analyze two properties of the

convergence process: its speed and the shape of the convergence path.

5.1 Convergence to rational expectations

The proof of convergence consists of two steps.17 In the �rst step, we establish a contemporaneous

relationship between the stock price and the dividend, which depends on the current state of beliefs.

In the second step, we take the limit as t!1 to establish the asymptotic convergence. The two

steps are summarized by the following two propositions, the proofs of which are in Appendix C.

Proposition 2 The market-clearing stock price Pt is given by

Pt =

� ��Dt
1���Pt

Dt; if �Pt < 1=�

�Dt; if �Pt � 1=�;
(21)

where

�Pt = exp

�
Pt +

�t(1; 1)

2(nt � 3)

�
and �Dt = exp

�
Dt +

�t(2; 2)

2(nt � 3)

�
: (22)

Proof. See the Appendix.

Proposition 3 The stock price Pt ! PREEt � �� exp(+�2=2)
1��� exp(+�2=2)Dt.

Proof. See the Appendix.
17For a related proof for the case of least squares learning using a projection facility, see Adam, Marcet, and

Nicolini (2008).
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5.2 Speed and shape of the convergence path

Having established asymptotic convergence, it is useful to know how long it takes for the stock

price to converge to the REE.18 Figure 7 plots one randomly drawn path of the ratio of the stock

price to its REE counterpart, the median across simulations, and the 95 percent con�dence band.19

Remarkably, after 100 years of trading, the median stock price is still about 30 percent above the

REE price. That is, even though there is asymptotic convergence, it takes a very long time for the

rational expectations model to become a good approximation to the short-run dynamics generated

by our model.

The convergence path is characterized by an initial �overshooting�of the stock price above the

REE. Because individual learning begins with the REE as a prior belief, initially agents overesti-

mate the growth rate of the stock price. This overestimation occurs because individuals observe

greater stock price volatility than their prior belief suggests. Thus, the initial rise in the price-

dividend ratio is self-ful�lling: The stock price rises because agents expect it to rise, which generates

an further increase in the stock price until the constraint Pt=Dt � � is reached. The stock price
remains at this level for some time, as agents progressively revise down their beliefs, eventually

pulling the price back toward the REE.

The individual exposure constraints (3) are therefore central for the convergence process. They

amount to a practical implementation of the standard transversality condition, which rules out

asset price bubbles in in�nite horizon models. The looser the constraint is (the larger is �), the

larger the initial overshooting and the longer it takes for the market to converge back to the

REE. Another way to see this outcome is illustrated in Figure 8, which plots the convergence in

mean squared error (MSE) of the ratio of the stock price to the REE price over time. MSE is

consistently higher than in the baseline calibration when the exposure constraint is relaxed by 10

percent (� = 550).

Figure 8 also illustrates how prior uncertainty a¤ects the convergence. In particular, we set the

con�dence parameter to n0 = 240; equivalent to 20 years of prior observations of the REE outcome.

Qualitatively, the convergence is similar to the baseline calibration with n0 = 48, with initial price

overshooting followed by progressive convergence to the REE price. However, the convergence is

now faster so that after 40 years, the median stock price is less than 10 percent away from the

REE.20

18In di¤erent contexts, this question has been studied, for example, by Vives (1993), Marcet and Sargent (1992),
and Ferrero (2006). Evans and Honkapohja (2003, ch. 15) establish that in recursive least squares learning for gain
sequences of the form t�� the speed of convergence is asymptotically t�=2:
19In this exercise with � = 1, we need to recalibrate the time preference parameter to � = 0:994 to make the

model�s output consistent with Shiller�s evidence.
20The initial beliefs are assumed to be centered on the REE. As a robustness check, we simulated the model with

biased prior beliefs. The results (not reported here) are qualitatively similar to the benchmark case.
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6 Conclusions

In order to coordinate a priori to a REE, individuals must be endowed with incredible amounts

of information not only about the structure of the economy and the exogenous shocks but also

about the higher-order beliefs of all other market participants. If individuals lack this information,

the law of iterated expectations is no longer valid and �beauty contest�dynamics may emerge as

individuals embark on speculative trading as in Harrison and Kreps (1978). In particular, empirical

research by Malmendier and Nagel (2009, 2011) suggests that expectations are not �externally

rational� in the sense of Adam and Marcet (2011); rather, they �nd evidence that people �learn

from experience,�giving more weight to data realized during their own lifetimes than to earlier

historical information.

We extend the model of Adam and Marcet to a stochastic OLG setup and analyze the e¤ects of

�learning from experience.�The fact that di¤erent generations of individuals hold di¤erent beliefs

leads to boom-and-bust cycles of the stock price around the REE. Even a tiny degree of �learning

from experience�is su¢ cient to generate chaotic dynamics, which roughly resemble what we �nd

in the data.

We show that the aggregate market dynamics can be approximated by a representative-agent

model with CGL. Despite the fact that individuals learn with decreasing gain, learning by the

population as a whole can be approximated by a constant gain. To a �rst-order approximation

the gain parameter equals the survival rate, re�ecting the fact that historical data is lost when

successive generations �learn from experience.�This result provides a plausible justi�cation for

the use of CGL algorithms in macroeconomic models instead of the more widely used rational

expectations. Besides achieving more realism in modeling the expectations formation process, our

approach provides needed discipline by tying the gain parameter to the survival rate.

Finally, we show that in the limiting case with in�nitely lived agents, individuals can coordinate

through a centralized market, and, eventually, achieve convergence to the REE. The only require-

ment for the equilibrium to be stationary are bounds on asset exposure that prevent coordination

to an explosive path. This requirement is akin to the way transversality conditions are imposed in

standard representative-agent models. We show that, for a plausible parameterization, the market

converges very slowly to rational expectations. Moreover, the speed of convergence is strongly

a¤ected not only by the prior beliefs but also by the tightness of the exposure constraints.
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Appendix A: The model in more detail

Stock holding decision

The �rst-order optimality conditions of the individual�s problem are:

if Pt < Pit, then Sit = Ē t=Pt (23a)

if Pt = Pit, then Sit 2 [E¯ t=Pt; Ē t=Pt]; (23b)

if Pt > Pit, then Sit = E¯ t
=Pt; (23c)

8t; and 8!t 2 
t, where
Pit = ��Eit (Pt+1 +Dt+1) (24)

is individual i�s �reservation price�. Because the objective function is linear and the feasible set is

closed, a maximum exists (and generally is a corner solution).

Symmetric rational expectations equilibrium

If individuals were identical, and this fact were common knowledge, they would be able to compute

the equilibrium asset price by deduction. Namely, dividing (24) by the current dividend, dropping

the i subscript, and iterating the resulting equation forward while applying the law of iterated

expectations and taking into account the known process for dividends (4), yields:

Pt
Dt

= ��Et

�
Dt+1

Dt

�
1 +

Pt+1
Dt+1

��
=

1X
j=1

(��)j ej(+�
2=2) + lim

T!1
Et

�
(��)T

Dt+T

Dt+T�1

Pt+T
Dt+T

�
: (25)

Given that the sum of stock holdings must equal the �xed supply of the stock N , it follows

from (3) that the price-dividend ratio is bounded above by �,

N =

NX
i=1

Sit � N�Dt=Pt =) Pt=Dt � �: (26)

Hence the last term in (25) is zero, and therefore the equilibrium asset price is given by

PREEt =
�� exp ( + �2=2)

1� �� exp ( + �2=2)Dt > 0; (27)

where dividends follow the exogenous stochastic process de�ned in (4). We further impose the
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parameter restrictions,

�� exp
�
 + �2=2

�
< 1 and � >

�� exp ( + �2=2)

1� �� exp ( + �2=2) ; (28)

which ensure that the price-dividend ratio is �nite and that it is not a corner solution due to

binding leverage constraints (26).

Informational limitations

We depart from REE by assuming that individuals have only limited information about the world

they live in. In particular, they do not know anything about other market participants�preferences

or constraints. However, they do know their own objectives and constraints and have a prior

belief about parameters  and �2 governing the dividend process (4). In the absence of common

knowledge, from an individual�s perspective, the price of the asset itself is a stochastic process

a¤ecting optimal savings decisions much like dividends do. Hence individuals try to forecast both

the dividend and the stock price, conditioning their forecasts on the history of past dividends and

stock price realizations.

Formally, following Adam and Marcet (2011), denote by the operator Ei0 investor i�s subjective

expectation de�ned in a probability space (
;	;�i), where 
 is the space of realizations, 	 the

corresponding �-algebra, and �i is a subjective probability measure over (
;	). Denote by 
ti the

set of histories during the lifetime of agent i up to period t, and let !ti 2 
ti: When investor i
chooses his stock holding in period t, he takes as given �i and his choice is contingent on !ti. The

space of realizations is


 � 
P � 
D; (29)

where 
P contains all possible sequences of stock prices and where 
D contains all possible dividend

sequences. Individuals can thus condition their investment decision on all possible combinations

of dividend and stock price histories. Investors have �a consistent set of beliefs�, meaning that

(
;	;�i) is a proper probability space and that �i satis�es all standard probability axioms and

gives proper joint probabilities for all possible dividend and stock price realizations on any set of

dates.
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Appendix B: Simulation algorithm

We brie�y sketch the algorithm used to perform a single Monte Carlo simulation of the model:

1. Generate an exogenous series for dividends Dt following (4) and assuming that D�1 = 1: Set

P�1 = P
REE
�1 and P0 = PREE0 ; where PREEt is given by (27).

2. Initialize the prior beliefs, i0, �i0, and ni0, for all agents following (7) and (8).

3. Main loop. At each point in time t = 1; ::; T , for all N agents:

(a) Compute the one-step-ahead forecast errors eit using (9)

(b) Draw a vector of random numbers from a uniform distribution between 0 and 1. For

values greater than �, the agent retires; otherwise he survives to the following period

(the case of in�nitely lived agents is nested by setting � = 1):

(c) If an agent survives, update his beliefs, it, �it, and nit, using (10). If he retires (he is

replaced by a new agent), set it = i0, �it = �i0, and nit = ni0:

(d) Set the initial auction price to Pt0 = Pt�1:

(e) Compute the reservation price for each agent in auction round zero Pit0 using (11).

(f) Auction. For each auction round k = 1; ::; K :

i. Sort the reservation prices Pitk�1 in decreasing order and notionally allocate the

amount Sitk = � Dt
Pitk�1

to each agent until the entire stock N of the asset gets

allocated. To ensure that the total does not exceed N , the marginal agent to

receive a share of the asset may receive Sitk < � Dt
Pitk�1

. The reservation price of the

marginal agent is denoted as P �itk�1:

ii. If
NP
i=1

Sit � N , then set Ptk = Pit�1: Otherwise, set Ptk = P �itk�1:

iii. The reservation price of each agent in round k; Pitk; is computed using (12).

(g) The auction is over in round K, and the stock price in period t is Pt = PitK :

4. Repeat the main loop (3) for periods t = 1; ::; T .
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Appendix C: Proofs

Proposition 1. In the limit as � ! 1;

1

N

1X
j=1

fj
1

n0 + j
� (1� �):

Proof. First we compute the series

1X
j=1

(1� �)�j

n0 + j
= (1� �)��n0

1X
j=n0+1

�j

j
= (1� �)��n0

1X
j=n0+1

Z
�j�1d�

= (1� �)��n0
Z  1X

j=n0+1

�j�1

!
d� = (1� �)��n0

Z
�n0

(1� �)d�;

as n0 2 N+, the integral
R

�n0

(1��)d� can be expressed asZ
�n0

(1� �)d� = Qn0(�)� log(1� �);

where Qn0(�) is a polynomial of order n0: Therefore, the limit as � ! 1 is

lim
�!1

1X
j=1

(1� �)�j

n0 + j
= lim

�!1

�
(1� �)��n0

�
[Qn0(�)� log(1� �)] ;

which can be solved by applying L�Hôpital�s rule,

d

d�

�n0

(1� �) =
n0�

n0�1(1� �) + �n0
(1� �)2 ;

d

d�
[Qn0(�)� log(1� �)] =

�
Q

0

n0
(�) +

1

1� �

�
;

where Q
0
n0
(�) = d

d�
Qn0(�): Then, we take the limit as � ! 1

lim
�!1

�
(1� �)��n0

�
[Qn0(�)� log(1� �)] = lim

�!1

(1� �)2
�
Q

0
n0
(�) + 1

1��
�

n0�
n0�1(1� �) + �n0

= lim
�!1

1� �
n0�

n0�1(1� �) + �n0
:

Proposition 2. The stock price that clears the market at time t is given by

Pt =

� ��Dt
1���Pt

Dt; if �Pt < 1=�

�Dt; if �Pt � 1=�
(30)
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where

�Pt = exp

�
Pt +

�t(1; 1)

2(nt � 3)

�
and �Dt = exp

�
Dt +

�t(2; 2)

2(nt � 3)

�
: (31)

Proof. Because individuals are identical we can drop index i. In the initial round of the auction
at time t, then, the price is given by

Pt0 = �
�
2�Pt Pt�1 + 2�

D
t Dt�1

�
; (32)

where (31) holds. In the subsequent rounds, the price evolves as

Ptk = �
�
�Pt Ptk�1 + �

D
t Dt

�
=
�
��Pt

�k
Pt0 + ��

D
t Dt

k�1X
i=1

�
��Pt

�i
: (33)

If ��Pt � 1, then as k ! 1; Ptk would grow unboundedly were it not for constraint (3) that
prevents explosive beliefs by e¤ectively setting an upper (and a lower) limit on the price-to-dividend

ratio, and hence Ptk = �Dt: If ��Pt < 1; then in the limit as k ! 1; the �rst term in equation

(33) tends to zero and the price for period t is

Pt � lim
k!1

Ptk =
��Dt

1� ��Pt
Dt: (34)

Proposition 3. The economy converges to the REE with stock price PREEt de�ned in (27).

Proof. First, because dividends follow an exogenous process, the Bayesian learning algorithm for

dividends must converge asymptotically to the true value of the parameters

lim
t!1

Dt = ; lim
t!1

�t(2; 2)

nt � 3
= �2; and lim

t!1
�Dt = exp

�
 + �2=2

�
: (35)

Second, given the equilibrium price (21), the value of log (Pt�1=Pt�2) is bounded as t ! 1:
Therefore, given the Bayesian updating scheme, �Pt must converge ,

lim
t!1

�Pt = lim
t!1

exp

�
Pt +

�t(1; 1)

2(nt � 3)

�
= lim

t!1
exp

�
Pt�1 +

log (Pt�1=Pt�2)� Pt�1
1 + nt�1

+
�t�1(1; 1)

2(1 + nt�1 � 3)
+

+
nt�1

�
log (Pt�1=Pt�2)� Pt�1

�2
2(1 + nt�1 � 3) (1 + nt�1)

#
= lim

t!1
�Pt�1 � �P : (36)
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Third, the limit �P must satisfy

lim
t!1

�Pt = �
P < 1=� (37)

This last point can be proved by contradiction: suppose �P � 1=�: Then, all individual constraints
(3) must be binding, so that (26) is binding as well, and

lim
t!1

log (Pt=Pt�1) = lim
t!1

log (�Dt= (�Dt�1)) = exp
�
 + �2=2

�
< 1=�

by (35) and (28); thus, we have reached a contradiction.

Finally, by taking the log-di¤erence of (34),

lim
t!1

log (Pt=Pt�1) = lim
t!1

(
log

"
�Dt
�
1� ��Pt�1

�
�Dt�1 (1� ��Pt )

#
+ log (Dt=Dt�1)

)
: (38)

Together, (35) and (37) imply that the �rst term in the brackets on the right-hand side of (38)

converges to zero, and hence the learning parameters for the stock price must also converge to the

asymptotic values of the REE,

lim
t!1

Pt = ; lim
t!1

�t(1; 1)

(nt � 3)
= �2; and lim

t!1
�Pt = exp

�
 + �2=2

�
: (39)

Substituting the above in equation (34) we obtain limt!1 Pt =
� exp(+�2=2)
1�� exp(+�2=2)Dt = P

REE
t :
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Appendix D. Tables and �gures

Table 1. Average Lagrange multiplier

Coe¤. 1000 agents 100 agents

a 0.9367 0.9221

s.e. (0.009) (0.010)

b -0.0035 -0.0033

s.e. (0.0001) (0.0001)

R2 0.83 0.77

Obs. 3000 3000

Note: Standard errors are in parenthesis.

The table reports the coe¢ cients a and b

from an OLS regression �t = a+ b
Pt
Dt
+ "t:

Table 2. Approximation accuracy under di¤erent assumptions

1000 agents 100 agents

R2 Correl. R2 Correl.

Single approximation step

Price approximation

With actual �t 0:76 0:89 0:86 0:95

With approx. �t 0:92 0:96 0:91 0:96

Price learning 0:88 0:94 0:88 0:94

Dividend learning 0:88 0:94 0:89 0:94

Complete RA-CGL model

Price approximation 0:67 0:83 0:59 0:80

Price learning 0:58 0:75 0:51 0:72

Dividend learning 0:88 0:94 0:88 0:94

Note: The sample consists of 3000 simulated observations of the benchmark model.

RA-CGL stands for �representative agent constant-gain learning.�
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Table 3. Moments of the price-dividend ratio

Data REM HA-OLG RA-CGL

Mean 320:3 307:6 316:8 309:5

Standard deviation 166:1 0 65:4 56:9

Autocorrelation 0:996 � 0:995 0:989

Note: REM stands for �rational expectations model�

HA-OLG stands for �heterogeneous agents overlapping generations.�

RA-CGL stands for �representative agent constant-gain learning.�

Table 4. Moments of the forecast errors

Mean Std. Dev. Skewness Kurtosis

Price forecast errors

REM 9:0� 10�5 0:0114 �0:0148 3:0753

HA-OLG 5:2� 10�5 0:0207 0:1346 3:4809

RA-CGL 0:8� 10�5 0:0208 0:1300 3:4934

Dividend forecast errors

REM 9:0� 10�5 0:0114 �0:0148 3:0753

HA-OLG 3:4� 10�5 0:0114 �0:0149 3:0605

RA-CGL 1:9� 10�5 0:0114 �0:0153 3:0640

Note: The sample consists of 3000 simulated observations of the benchmark model.

REM stands for �rational expectations model.�

HA-OLG stands for �heterogeneous agents overlapping generations.�

RA-CGL stands for �representative agent constant-gain learning.�
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Figure 1: Stock price divided by the rational expectations price
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Figure 2: Expectations of stock price growth relative to REE
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