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JEL classi�cation: E0, C63

Abstract

Phenomena such as the Great Moderation have increased the attention of macro-
economists towards models where shock processes are not (log-)normal. This paper
studies a class of discrete-time rational expectations models where the variance of
exogenous innovations is subject to stochastic regime shifts. We �rst show that, up
to a second-order approximation using perturbation methods, regime switching in
the variances has an impact only on the intercept coe¢ cients of the decision rules.
We then demonstrate how to derive the exact model likelihood for the second-order
approximation of the solution when there are as many shocks as observable variables.
We illustrate the applicability of the proposed solution and estimation methods in
the case of a small DSGE model.

Key words: DSGE models, second-order approximation, regime switching,
time-varying volatility.
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Non-technical summary 
 
The estimation of linear DSGE (Dynamic Stochastic General Equilibrium) models is 
commonplace in macroeconomics. By and large, applications tend to rely on the 
assumption that shocks have constant variance over time. However, there are reasons to 
also explore the role of nonlinearities and/or time-varying variances in macro-models. 
Nonlinearities are important to understand asset prices or crisis-type phenomena. Time-
varying variances are important to account for stylised facts like the “Great moderation” 
of the eighties and nineties.  

The main obstacle to the estimation of nonlinear DSGE models has been computational. 
The likelihood of nonlinear models, and hence their dynamic statistical properties, are not 
known exactly and must be approximated by methods with very slow convergence 
properties. This computational difficulty increases further when the assumption of 
constant volatility is relaxed.  

The main contribution of this paper is to develop a methodology to compute exactly the 
likelihood of quadratic (and possibly more highly nonlinear) DSGE models, including 
models in which the variance of the shocks can change randomly across different 
regimes. If two technical conditions are satisfied, the methodology is generally 
applicable.  

We illustrate our proposed methodology in the case of a small DSGE model with nominal 
rigidities, where shocks are potentially characterised by high or low variance regimes. 
The model is estimated on US data over the 1966Q1-2009Q1 sample. Consistently with 
the aforementioned evidence, the estimates recover the Great moderation and attribute it 
to a fall in the variance of technology shocks. The results are also consistent with an end 
of the Great moderation in the early years of the new millennium. 
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1 Introduction

The estimation of the �rst-order approximation of the solution of nonlinear
DSGE (dynamic stochastic general equilibrium) models is now commonplace
in macroeconomics. By and large, applications tend to rely on the assumption
that the state vector of the system is hit by i.i.d. innovations.

The estimation of higher order approximations of the solution of DSGE mod-
els has proven more di¢ cult. The problem is that the shape of the likeli-
hood function is unknown and must itself be approximated through numerical
methods. While some general methods, namely applications of the particle
�lter, have been proposed in this context (see e.g. Fernandez-Villaverde and
Rubio-Ramirez, 2007), these methods require a considerable e¤ort from the
computational viewpoint. The approximation only converges in probability
to the true likelihood when the number of particles used for each likelihood
evaluation goes to in�nity, and there are no general results ensuring that ap-
proximation errors are negligible when only a �nite, albeit large number of
particles is used.

The computational burden increases further when the assumption of i.i.d. in-
novations is relaxed. While such relaxation is not common in macroeconomics,
a number of authors have forcefully argued for the presence of heteroskedas-
ticity in macroeconomic data. For example, the literature on the so-called
Great Moderation (see e.g. McConnell and Perez-Quiros, 2000) �nds evidence
for regime-switching in the variance of macroeconomic variables. Evidence for
regime-switching is also found in Sims and Zha (2006), while Cogley and Sar-
gent (2005), Primiceri (2005) and Fernandez-Villaverde and Rubio-Ramirez
(2007), amongst others, argue in favour of stochastic volatility. A simpler
procedure to compute the likelihood of nonlinear DSGE models with het-
eroskedastic shocks would clearly be appealing.

In this paper, we propose such a procedure for the case of nonlinear DSGE
models in which the variances of innovations to the state vector is subject
to stochastic regime switches. Our procedure ultimately amounts to inverting
the observation equation for the unobservable state variables of the model. As
in the case of linearised models with i.i.d. innovations, the likelihood function
deriving from the state space representation can be computed exactly. The
state space representation, however, derives from an approximate solution of
the model (notably a second-order approximation). This feature makes our
procedure appealing compared to existing alternatives, such as the particle
�lter.

Compared to the particle �lter, however, our likelihood computation method
is not generally applicable, but can only be used under two speci�c condi-
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tions. The �rst one is that the number of variables used in estimation must
be equal to the number of stochastic innovations (including both structural
innovations and measurement errors). We believe that this is a soft restriction,
since additional measurement errors can always be introduced when additional
variables are included in the econometrician�s information set. This restriction
does however preclude the use of our methodology in cases where there are
more shocks than variables. The second condition which needs to be met for
the applicability of our method is that the economic system cannot include
unobservable non-stochastic state variables. This implies, for example, that
a general macroeconomic model can only be estimated using our proposed
method if capital can be treated as an observable variable.

To analyse the case of models with heteroskedastic shocks, we �rst need to
demonstrate how this class of models can be solved using fast methods. In
general, the solution of DSGE models with regime-switching coe¢ cients re-
quires computationally expensive methods (e.g. Coleman, 1991, Andolfatto
and Gomme, 2003, Davig, Leeper and Chung, 2004, use an Euler equation
iteration technique). In the case we focus on, however, regime switching only
a¤ects the variance of structural shocks. Our case can therefore be tackled
using standard perturbation methods (see Judd, 1998, and the references
therein, Schmitt-Grohé and Uribe, 2001; Kim, Kim, Schaumburg and Sims,
2003; Gomme and Klein, 2006; Lombardo and Sutherland, 2007). We show
that, up to a second-order approximation, the coe¢ cients on the linear and
quadratic terms in the state vector of the decision rules are independent of
the volatility of the exogenous shocks. The only impact of regime switching is
on the constant terms of the decision rules, which become regime-dependent.

We �nally illustrate our proposed method with an application to a small DSGE
model with nominal rigidities, where technology and government spending
shocks are potentially characterised by high or low variance regimes. We esti-
mate the model on US data over the 1966Q1-2009Q1 sample and �nd evidence
consistent with the assumption that the Great Moderation is related to a fall
in the variance of technology shocks. There is instead only weak evidence of
heteroskedasticity in government spending shocks.

2 A general model with heteroskedastic conditional variances

We are interested in a general nonlinear model of the form

Et [f (yt+1;yt;x1t+1;x1t;x2t+1;x2t; st)] = 0 (1)

where Et is the expectation operator conditional on information available at
time t, yt represent a vector of non-predetermined variables, x1t is a vector of
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endogenous predetermined variables, x2t are exogenous variables with contin-
uous support, and st is a vector including indicators of discrete regimes. The
vectors have length ny, nx1, nx2 and ns, respectively. Note that

x2t+1 = Ax2t + ��st"t+1 (2)
�(st+1) = B�(st) + �t+1 (3)

for known functions A and �st, mapping R
nx2 into Rnx2, and B, mapping

Rns into Rns . The function A is such that all eigenvalues of its �rst derivative
evaluated at the non-stochastic steady state lie within the unit circle. The
innovation vector "t+1 is independently and identically distributed, with zero
mean and unit variance. The vector �t+1 has zero mean and heteroskedastic
variance. We assume "t+1 and �t+1 to be mutually uncorrelated. The scalar �
is the perturbation parameter.

The key distinguishing feature of the model in equations (1)-(3) is the presence
of the discrete regimes st, which characterise the conditional variance of the
shocks "t+1. This formulation generalises the standard model with Gaussian
innovations typically studied in the macroeconomic literature. The generalisa-
tion allows one to analyse the nature of some stylised facts in a micro-founded
setting, including for example the structural sources of the Great Moderation.
A formulation with regime-switching conditional variances also enables one
to study in an arguably more satisfactory fashion the implications of micro-
founded models for asset prices (see e.g. Amisano and Tristani, 2011).

Equations (1)-(3) do not, however, represent the most general possible formu-
lation of a model with regime shifts. More speci�cally, we do not allow regime
switching to in�uence any other structural parameters than the variances of
the shocks. This assumption allows us to compute the solution through a
straightforward and fast extension of standard perturbation methods. More
involved solution methods are required to appropriately capture the e¤ects of
regime switching in, for example, the parameters of the monetary policy rule
in a linearised macro-model (see e.g. Davig and Leeper, 2007; Farmer, Wag-
goner and Zha, 2010). The development of fast and e¢ cient solution methods
for general nonlinear models with regime-switching parameters is currently an
active area of research.

In order to write an ns-state Markov chain st as in equation (3), we rely on
Hamilton (1994) which shows that �(st) must be a vector whose i-th element
is equal to 1 if st = i and zero otherwise, B is the transition matrix of the
Markov chain, and �t+1 � st+1 � E (st+1jst).

Going back to the general model (1)-(3), we can de�ne the vectors

x0t � [x01t;x02t] ;u0t � [00; "0t]
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and the matrix

e�st �

2664 0
nx1�nx1

0
nx1�nx2

0
nx2�nx1

�st

3775
so the model in equation (1) can be rewritten as

Et [f (yt+1;yt;xt+1;xt; st)] = 0

and the solution is of the form

yt = g (xt; �; st) (4)

xt+1 = h (xt; �; st) + � e�stut+1 (5)

3 Approximating the solution

We seek a second-order approximation to the functions g (xt; �; st) and h (xt; �; st)
around the non-stochastic steady state xt = xst and � = 0. We leave the de-
pendence on st outside the Taylor expansion. In other words, we seek for an
expansion such that the coe¢ cients of the second-order approximate solution
are potentially functions of st.

To write the approximation, we follow Gomme and Klein (2006) and use the
following representation (from Magnus and Neudecker, 1999) of the second-
order Taylor expansion of a twice-di¤erentiable function f : Rn ! Rm

f (x) � f (x; st)+[Df (x; st)] (x� xst)+
1

2

�
Im 
 (x� xst)

0
�
[Hf (x; st)] (x� xst)

where Df (x; st) and Hf (x; st) are the gradient and Hessian matrices struc-
tured as follows

Df (x; st) �

2666666664

@f1(x;st)
@x1

@f1(x;st)
@x2

� � � @fn(x;st)
@xn

@f2(x;st)
@x1

. . .
...

...
. . .

...
@fm(x;st)

@x1
� � � � � � @fm(x;st)

@xn

3777777775
and

Hf (x; st) � D vec
h
(Df (x; st))

0
i
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Using the solution (4)-(5), we can rewrite model (1) as the function

F (xt; �; st) = Et

2666664f
8>>>>><>>>>>:

h (xt; �; st) + � e�stut+1;

g
h
h (xt; �; st) + � e�stut+1; �;Bst + �t+1

i
;

xt; g (xt; �; st) ; st

9>>>>>=>>>>>;

3777775
= 0

We analyse the second-order approximation to the functions h and g which
can be represented as

g (xt; �; st) = g (x; 0; st)+Fst (xt � xst)+
1

2

�
Iny 
 (xt � xst)

0
�
Est (xt � xst)+ky;st�2

and

h (xt; �; st) = h (x; 0; st)+Pst (xt � xst)+
1

2

�
Inx 
 (xt � xst)

0
�
Gst (xt � xst)+kx;st�2

for potentially state-dependent vectors and matrices Fst, Est, Pst, Gst, ky;st,
kx;st.

3.1 Steady state

By de�nition, y (st) = g (x; 0; st) and xst = h (x; 0; st). In general, the steady
state of a model with regime switches would be a function of the discrete
regimes st. Given our assumption that discrete regimes only have an impact
on (1) through the variance of the innovations, however, the steady state which
arises when � = 0 is not regime-dependent. Thus xst = x and y (st) = y. We
can therefore simplify the form of the second -order approximations as

g (bxt; �; st) = y + Fst bxt + 12
�
Iny 
 bx0t�Est bxt + ky;st�2

and

h (bxt; �; st) = x+Pst bxt + 12 (Inx 
 bx0t)Gst bxt + kx;st�2
where bxt � xt � x.
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3.2 First-order approximation

The assumed form of the solution implies that

F (xt; �; st) = Et

2666664f
8>>>>><>>>>>:

Pst bxt + � e�stut+1;

Fst
h
Pst bxt + � e�stut+1; �;Bst + �t+1

i
;

xt;Fst bxt; st

9>>>>>=>>>>>;

3777775 = 0

In order to identify the coe¢ cients Fst and Pst, we exploit the property that
the solution must be such that DF1 (x; 0; st) = 0, where a subscript i indicates
di¤erentiation with respect to vector i in a given function. Using the de�nition
of function F (x; �; st), we obtain

DF1 (x; 0; st) = f1Pst + f2FstPst + f3 + f4Fst = [0]

which is a (potentially regime dependent) system of quadratic equations in
the elements of Fst and Pst.

Note that this equation implies that

f1PstEtbxt+1 + f2FstPstEtbyt+1 + f3bxt + f4Fst byt = [0]
or �

f1Pst f2FstPst

� 264Etbxt+1
Etbyt+1

375+ � f3 f4Fst
� 264 bxtbyt

375 = [0]
Using

Etbxt+1 =
264Etbx1t+1
Etbx2t+1

375 =
264 bx1t+1bx2t+1

375� � e�st

264 0

"t+1

375
= bxt+1 � � e�stut

we can further rewrite this as

�
f1Pst f2FstPst

� 264 bxt+1
Etbyt+1

375 = �
�f3 �f4Fst

� 264 bxtbyt
375+ � � f1Pst f2FstPst

� 264ut
0

375
or

Ast

264 bxt+1
Etbyt+1

375 = Bst

264 bxtbyt
375+ �Cst

264ut
0

375
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By assumption, f1, f2, f3 and f4 are not regime dependent in system (1). Hence,
the solution such that the A and B matrices are regime independent is a so-
lution of the system. This solution can be obtained using standard algorithms
(see Blanchard and Kahn, 1980, Sims, 2001, Klein, 2000, Söderlind, 1999).
The conditions for the local uniqueness of the solution are also unchanged.

Our �rst-order approximation should also include conditions for whichDF2 (z; 0) =
[0]. As in Schmitt-Grohé and Uribe (2001), the resulting equations would be
linear and homogeneous in the coe¢ cients attached to �, which implies that
those coe¢ cients must be zero.

Hence, to a �rst-order approximation, the solution is not a¤ected by the vari-
ance of the shocks, and speci�cally the variance of the Markov-switching states.

3.3 Second-order approximation

The assumed solutions imply that (exploiting the �nding that Pst = P and
Fst = F)

F (xt; �; st)

= Et

26666666666664
f

8>>>>>>>>>>>><>>>>>>>>>>>>:

Pbxt + 1
2
(Inx 
 bx0t)Gst bxt + kx;st�2 + ��stut+1;

F
h
Pbxt + 1

2
(Inx 
 bx0t)Gst bxt + kx;st�2 + ��stut+1; �;Bst + �t+1

i
+1
2

�
Iny 


h
Pbxt + 1

2
(Inx 
 bx0t)Gst bxt + kx;st�2 + ��stut+1; �;Bst + �t+1

i0�
�

�Est
h
Pbxt + 1

2
(Inx 
 bx0t)Gst bxt + kx;st�2 + ��stut+1; �;Bst + �t+1

i
+ ky;st�

2;

xt; F bxt + 1
2

�
Iny 
 bx0t�Est bxt + ky;st�2; st

9>>>>>>>>>>>>=>>>>>>>>>>>>;

37777777777775
=

= [0]

Now evaluate H11F (x; 0; st) = [0]. We obtain

H11F (x; �; st) = (Im 
P)0 f11P+ 2 (Im 
P)0 f12D1g (h (x; �; st))
+ 2 (Im 
P)0 f13 + 2 (Im 
P)0 f14F
+ (Im 
D1g (h (x; �; st)))0 f22D1g (y) + 2 (Im 
D1g (h (x; �; st)))0 f23
+ 2 (Im 
D1g (h (x; �; st)))0 f24F+ f33 + 2f34F+ (Im 
 F)0 f44F
+ (f1 
 Inx) (Gst + ��stut+1) + (f2 
 Inx)H11g (h (x; �; st)) + (f4 
 Inx)Est

Now note that

H11g (h (x; �; st)) =
�
Iny 
P0

�
EstP+ (F
 Inx)Gst
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and
D1g (h (x; �; st)) = FP

Once these expressions are substituted into H11F (x; �; st) above and the latter
is evaluated at � = 0, we �nd

(f1 
 Inx)Gst + (f2 
 Inx)
��
Iny 
P0

�
EstP+ (F
 Inx)Gst

�
+ (f4 
 Inx)Est+

+ (Im 
P0) f11P+ (Im 
P0F0) f22FP+ f33 + (Im 
 F0) f44F+
+ 2 (Im 
P0) f12FP+ 2 (Im 
P0) f13 + 2 (Im 
P0) f14F+
+ 2 (Im 
P0F0) f23 + 2 (Im 
P0F0) f24F+ 2f34F
= [0]

This is a linear equation which can be solved for Est and Gst. Note that, as in
the case of the �rst-order approximation, all coe¢ cients in the Hessians fij are
constant by assumption. Hence, a solution such that the E and G matrices
are regime independent is a solution of the system. In other words, E and G
will be identical to the case with homoskedastic shocks.

Now consider the second derivative with respect to �, namely H22F. We obtain

H22F = (Im 
�stut+1)
0 f11�stut+1 + 2 (Im 
�stut+1)

0 f12D2g (h (x; �; st))

+
�
Iny 
D2g (h (x; �; st))

�0
f22D2g (h (x; �; st))

+ f1kz + f2H22g (h (x; �; st)) + f4ky

where
D2g (h (x; �; st)) = F�stut+1

and
H22g (h (x; �; st)) =

�
Iny 
�stut+1

�0
E (�stut+1) + ky + Fkz

Substitute the expressions for D2g and H22g into H22F (x; �; st) and evaluate
the result at � = 0 to �nd

H22F = f1kz + f2
�
ky + Fkz + Et

�
Iny 
 u0t+1�0

st

�
E�stut+1

�
+ f4ky

+ Et (Im 
�st eut+1)0 f11�stut+1 + 2Et (Im 
�stut+1)
0 f12F�st eut+1

+ Et
�
Iny 
 u0t+1�0stF

0
�
f22F�stut+1

Taking expectations, the elements of vectors ky and kz are the solution of the
following linear equations

f1kz + f2ky + f2Fkz + f2trm
�
Iny 


�
�0
st�st

��
E+ f4ky

+ trm
�
Im 


�
�0
st�st

��
f11 + 2trm

�
Im 


�
�0
st�st

��
f12F (6)

+ trm
�
Iny 


�
�0st�stF

0
��
f22F = [0]
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where �0
st�st is the conditional variance covariance matrix of vector xt and

where, as in Gomme and Klein (2006), we de�ne the matrix trace (trm) of an
(nm� n) matrix 2666666664

M1

M2

...

Mm

3777777775
as the m� 1 vector 2666666664

tr (M1)

tr (M2)
...

tr (Mm)

3777777775

Due to the presence of the regime-switching terms, the variance-covariance
matrix �0

st�st is regime dependent. Equation (6) can therefore be satis�ed
only if the coe¢ cients ky;st, kx;st assume di¤erent values depending on the
realisation of the regime-switching states. If there are ns possible regimes, ns
systems of the form (6) have to be solved, yielding ns pairs (ky;st ;kz;st).

Finally, along the lines above, one can con�rm that the coe¢ cients of terms
in �bxt are zero solving the equation H12F = [0].
To summarise, the second -order approximation of the policy functions g (bxt; �; st)
and h (bxt; �; st) can be written as

g (bxt; �; st) = y + Fbxt + 1
2

�
Iny 
 bx0t�Ebxt + ky;st�2 (7)

h (bxt; �; st) = x+Pbxt + 1
2
(Inx 
 bx0t)Gbxt + kx;st�2 (8)

Compared to the case with homoskedastic shocks, the only di¤erence in the
case of regime-switching is in the kx;st and ky;st vectors. A change in regime
only a¤ects the policy rule through a precautionary savings or risk premium
component. To a �rst -order approximation, the policy rules are exactly as in
the case with homoskedastic shocks.
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4 Estimation

In this section we demonstrate how to get the likelihood from the reduced
form obtained by solving, up to second-order terms, the DSGE model with
Markov switching variances. In order to better explain the way in which we
conduct likelihood inference, let us simplify a bit the notation and rewrite (7)
and (8) as

yt+1 = cj +C1xt+1 +C2vech(xt+1x
0
t+1) +Dvt+1 (9)

xt+1 = ai +A1xt +A2vech(xtx
0
t) +Biwt+1 (10)

st v Markov switching (11)

where xt+1 indicates directly deviations of the continuous variables with re-
spect to their steady state values. In addition, the vector yot includes all ob-
servable variables, and vt+1 and wt+1 are measurement and structural shocks,
respectively. In this representation, the regime switching variables a¤ect the
system by changing the intercepts ai and cj, and the loadings of the structural
innovations Bi (we indicate here with i the value of the discrete state variables
at t and with j the value of the discrete state variables at t+ 1).

If a linear approximation were used, we would be left with a linear state space
model with Markov switching a¤ecting some of the parameters (see Kim, 1994;
Kim and Nelson, 1999; and Schorfheide, 2005, for a DSGE application). The
likelihood cannot be obtained by recursive methods and it is approximated
using a discrete mixture approach.

Things are easier when the number of continuous shocks (measurement and
structural) is equal to the number of observables. In such a case the continuous
latent variables can be obtained via inversion and the system can be written
as a Markov Switching VAR. The likelihood can be obtained using Hamilton�s
�lter, i.e. integrating out the discrete latent variables. See Hamilton (1994).

In the quadratic case, the likelihood cannot in general be obtained in closed
form. One possible approach to compute the likelihood is to rely on sequential
Monte Carlo techniques (for an application of these techniques in a DSGE
setting, see e.g. Amisano and Tristani, 2010). These methods, however, are
computationally expensive in a case, such as the one of our model, in which
both non-linearities and non-Gaussianity of the shocks characterise the econ-
omy. It is in fact well known that the particle �lter can be quite ine¢ cient,
especially in the presence of abnormal observations (see Pitt and Shephard,
1999, 2001), such as those implicated by shocks being drawn from mixture of
distributions with di¤erent variances. In these circumstances, the number of
particles to be used in order to provide a basis for accurate likelihood evalua-
tions might be so high to render estimation unfeasible.
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We thus adopt a simple extension of the �lter employed in the linear case
when the number of observed variables is equal to the sum of measurement
and structural shocks. It is worth emphasising that our preferred method
might also be used as a benchmark capable of producing exact likelihood
evaluations, in order to assess the precision of likelihood evaluations obtained
by using sequential Monte Carlo methods like the particle �lter.

In order to compute the likelihood function, the main problem is the quadratic
term in xt in the observation equation (9). In particular, given that we assume
that x2t, the vector of predetermined variables, contains only lagged endoge-
nous variables, the problem in computing the likelihood is generated by the
fact that x2t enters the reduced form state space representation in a nonlinear
way.

We are interested in a particular case which renders likelihood computations
quite easy. Let us de�ne

zt+1 =

264x2t+1
vt+1

375
the (nx2 + nme) � 1 vector containing all continuous latent variables of the
models which are not predetermined. When nz = nx2 + nme = ny, i.e. when
there are as many observables as continuous latent variables in the system,
the mapping

z
(j;:)
t+1 = �(yt+1jst+1 = j;x1t+1) = �j(yt+1) (12)

hasK = 2nx2 , possibly complex, solutions. In fact, we can see that the reduced
form state space representation describes a quadratic system of (ny � nx2)
equations for x2t+1 and nme linear equations in vt+1. We limit our attention
to real valued solutions, given that the domain of zt+1 is real, and we call
Kjt+1 � K the number of real roots in (12). z(j;k)t+1 is the k

th solution of (12).
We use an arbitrary ordering of the solutions to uniquely identify them

z
(j;1)
1t+1 � z

(j;2)
1t+1 � ::: � z

(j;Kjt+1)
1t+1

and de�ne as dk;t+1 the event associated to zt+1 = z
(jk)
t+1 :

Finding the solutions of this mapping entails �ltering zt+1 out. When the
number of continuous exogenous state variables nx2 = 1 or 2, it is very easy to
�nd all roots. With higher dimensional problems, other methods can be used.
As an example, we can use the the polynomial homotopy continuation (PHC)
method (and its Matlab interface 1 ) by Verschelde (1999). More details on the
methodology can be found in Morgan (1987) and Judd (1998).

1 See http://www.math.uic.edu/~jan/. The Matlab interface is documented in
Guan and Verschelde (2008).
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With the solutions (12) in hand, it is possible to obtain the likelihood. Clearly,
before observing yt+1, which ties down the set of admissible solutions, each of
the roots is equally likely, i.e. we can write

p(dj;t+1jst+1 = j; st = i; dit;yt) =
1

Kj;t+1

Conditionally on the roots obtained in the previous, time t, step, however, the
roots computed at t+ 1 have di¤erent likelihood.

In order to explain the intuition for the algorithm, we illustrate it in the
following subsections for the case of a simpli�ed model in reduced form, i.e. a
univariate model with ny = nx2 = 1; nx1 = nme = 0. For such a model, we �rst
discuss the case in which shocks are homoskedastic and all the coe¢ cients of
the reduced form are constant, then move on to the case in which the variance
of the shock can switch amongst di¤erent regimes. Finally, we generalise the
derivations to the multivariate case with regime-switches.

4.1 Univariate, homoskedastic example

We start from the following quadratic model with Gaussian shocks

yt+1 = c0 + c1zt+1 + c2z
2
t+1

zt+1 = a1zt + bwt+1

in which yt+1; zt+1 and wt+1 are univariate real processes, wt+1 is i.i.d. with
known pdf, and c0; c1; c2; a1; b1 are real valued coe¢ cients and only the time
series y

t
= fy� ; � = 1; 2; :::; tg is observable. In this case the solutions in terms

of zt are easily found as

zt =
�c1 �

q
c21 � 4c2(c0 � yt)
2c2

; t = 1; 2; :::; T (13)

and at each point in time there are either Kt = 2 or Kt = 0 real roots
(the event of having two coinciding roots has zero probability). Using Bayes�
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theorem we can update the probabilities of each root as

p(dt+1 = kjyt+1) =
p(dt+1 = kjyt)� p(yt+1jdt+1 = k;yt)

p(yt+1jyt)
_ p(yot+1jdt+1 = k;yt) =

=
KtX
h=1

p(z
(k)
t+1jz

(h)
t )�

@z
(k)
t+1

@yt+1

� p(dt = hjyt)
_

KtX
h=1

p(z
(k)
t+1jz

(h)
t )� p(dt = hjyot ); (14)

We can move from line 1 to line 2 of equation (14) because before observing
yt+1 all roots are equiprobable; the third line arises by writing the probability
as a function of the roots at time t and by using the variable transformation
rule for probabilities. Line 4 is obtained by noting that

@z
(k)
t+1

@yt+1

 =
���c21 � 4c2(c0 � yt)����1=2 ; k = 1; 2: (15)

i.e. the Jacobian of the transformation is constant across both roots. Equa-
tion (14) o¤ers a way to dynamically update the probabilities associated with
individual roots at each point in time in a �ltering fashion. Note that the
update of the probabilities is sequential insofar the process for zt is persistent,
i.e. a1 6= 0. When a1 = 0; then p(z(k)t+1jz

(h)
t ) = p(z

(k)
t+1) and expression (14)

simpli�es as

p(dt+1 = kjyt+1) _ p(z
(k)
t+1) (16)

Recursion (14) gives also the key to obtain the likelihood of each observation
as

p(yt+1jyt) =
@zt+1@yt+1

�
Kt+1X
k=1

KtX
h=1

p(z
(k)
t+1jz

(h)
t )� p(dt = hjyt): (17)

The recursion is initialised with p(z1 = z
(h)
1 jyo1) = 1

K1
:

Note that when at least one observation is associated with no real roots, i.e.
when c21� 4c2(c0� yt) < 0, then the conditional likelihood of that observation
is set to zero and so is the likelihood over the entire sample. This amounts to
assuming that a given point in the parameter space is not capable of delivering
the observed data with a positive probability.
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4.2 Univariate example with Markov switching

We now generalise the model to the case in which the variance of the shocks
change with the prevailing regime. As illustrated in section 3, this implies that
the constant in the policy functions will also be subject to regime switches.
The simpli�ed, reduced-form model is therefore

yt+1 = c0;st+1 + c1zt+1 + c2z
2
t+1 (18)

zt+1 = ast + a1zt + bstwt+1 (19)

where st+1 = j denotes the value assumed by a discrete Markov switching
state variable at time t+ 1:

p(st+1 = jjst�1 = i; st�2;yt�1) = p(st+1 = jjst�1 = i) = pij; i = 1; 2; ::;m; j = 1; 2; :::;
(20)

Here the problem of multiplicity of roots is exacerbated by the fact that there
are potentially 2 roots for each discrete state st

z
(i;:)
t =

�c1 �
q
c21 � 4c2(c0;i�yt)
2c2

; t = 1; 2; :::; T

In the case of a two state process (m = 2); we have up to 4 potential roots
for each observation. Hence, we have to take into account the unobservable
nature of the Markov switching process and recursion (14) has to be modi�ed
as follows:

p(zt+1 = z
(jk)
t ; st+1 = jjyt+1) /

mX
i=1

KitX
h=1

p(z
(jk)
t+1 jz

(ih)
t )�

@z
(jk)
t+1

@yt+1

�
�pij � p(zt = z(ih)t ; st = ijyt)

/
mX
i=1

KitX
h=1

p(z
(jk)
t+1 jz

(ih)
t )� pij � p(zt = z(ih)t ; st = ijyt) (21)

and the conditional likelihood of each observation is obtained as

p(yt+1jyt) =
mX
j=1

@z
(j;:)
t+1

@yt+1

�
Kjt+1X
k=1

mX
i=1

KitX
h=1

p(z
(jk)
t+1 jz

(ih)
t )�pij�p(zt = z(ih)t ; st = ijyt)

(22)

The recursion is initialised using

p(z1 = z
(i;h)
1 ; s1 = i) = �i �

1

K1

; i = 1; 2::;m (23)
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where �i are the ergodic probabilities associated to the Markov switching
process.

Note that here, in order to have a zero value for the likelihood it is necessary
that, for at least one observation t; the number of real roots be zero for all
states, i.e.

Ki;t = 0; i = 1; 2; ::;m: (24)

When we have Ki;t = 0 only for some state i, then the probability of st = i in
the recursion is zero.

Note also that the probabilities obtained by the recursion (21) can be mar-
ginalised with respect to the roots, in order to obtain �ltered probabilities of
the discrete states

p(st+1 = jjyt+1) =
mX
j=1

p(zt+1 = z
(jk)
t ; st+1 = jjyt+1) (25)

These probabilities can then be used to obtain smoothed probabilities or
smoothed simulations of the discrete states. Smoothed and �ltered distrib-
utions of the continuous latent variable can also be obtained very easily. This
is another advantage of using our procedure with respect to using a sequential
Monte Carlo approach, where to obtain smoothed distributions of the latent
variables can be computationally very involved. In this regard, see Fernandez-
Villaverde and Rubio-Ramirez (2007).

4.2.1 A numerical example

In this section, we consider a simple data generation mechanism of the kind
(18)-(19) with numerical values of the parameters set as in Table (1).

We use these parameter values to generate T = 200 data points. The gen-
erated series are represented in the upper left panel of Figure (1). In order
to empirically analyse the properties of our proposed inferential procedure,
we use it to estimate the parameter values from the generated series. The
results are reassuring: the resulting recursive probabilities give rise to sensi-
ble results. In fact, the �ltered probabilities of the discrete state st obtained
applying equation (25), which can be seen in the upper left panel of Figure
(1), are in very close accordance with the true values of the st process (the
sample correlation is 99.7%). In the lower panel of Figure (1), we report the
probabilities assigned by our procedure to the true root of the map from yt to
zt. With few exceptions including the initial observations, the model assigns
high probabilities to the true values which have generated the observed series,
even if substantial uncertainty remains for many observations. This re�ects
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the sporadic relevance of the roots multiplicity structure that we have in the
quadratic model under study.

4.3 The quadratic MS-DSGE model

Turning now to the MS-quadratic DSGE model (9) and (10), inference is only
mildly more complicated with respect to the univariate MS case by the fact
that the model is multivariate and that it involves some predetermined, yet
observable state variables x1t:

These are just marginal complications that can be easily accounted for by
writing the model as follows

yt+1 = cj +C1xt+1 +C2vech(xt+1x
0
t+1) +Dvt+1 (26)

x1t+1 = Ry(yt � y) (27)

zt+1 = eai +fAizt + eBi ewt+1 (28)

zt+1 =

264 z2t+1
vt+1

375 ; eai =
264 ai
0

375 ;fAi =

264A1;22 [0]

[0] [0]

375 (29)

ewt+1 =

264wt+1

vt+1

375 v N �
0; Iny

�
; eBi =

264B2;i [0]
[0] D

375 (30)

and we know that

p(z
(j;k)
t+1 jz

(ih)
t ) = N(z

(jk)
t+1 ; eai +fAiz

(i;h)
t ;BiB

0

i) (31)

De�ne Kjt+1 the number of real solutions in zt+1 of equation (26), conditional
on st+1 = j, identi�ed imposing the conventional ordering

z
(j;1)
1t+1 � z

(j;2)
1t+1::: � z

(j;Kjt+1)
1t

We can therefore resort to the multivariate extension of recursion (21) to
update the probabilities of the roots and of the discrete states

p(dt+1 = k; st+1 = jjyt+1) _
KX
h=1

m�X
i=1

p(z
(jk)
t+1 jz

(ih)
t )�

@z
(jk)
t+1

@y
0
t+1

�pij�p(dt = h; st = ijyt)
(32)
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with @z
(k)
t+1

@y
0
t+1


ij

=
�C1 D �

+C2T
h�
Iny 
 xt+1

�
+
�
xt+1 
 Iny

�i
U2

�1

U2 =
@xt+1
@z

0
t+1

=

26664
[0]

(nx1�nx2 )
[0]

(nx1�nme)

Inx2 [0]
(nx2�nme)

37775
and T is de�ned as

T�vec(v) = vech(v)

The conditional likelihood of each observation is

p(yt+1jyt) =
KX
k=1

m�X
j=1

KX
h=1

m�X
i=1

p(zjkt+1jziht )�
@z

jk
t+1

@y
0
t+1

�pij�p(dt = h; st = ijyt) (33)

Equation (33) describes a �ltering recursion over a discrete set of realisations
which can be marginalised to obtain marginal �ltered probabilities of discrete
states (st+1) and continuous latent variables (zt+1):

An interesting question is how we handle complex roots. If some roots at time
t + 1 for some given discrete state j are complex, these will be assigned zero
probability, since the support of the latent variables is the real line. If at time
t + 1 for some j all roots are complex, then the algorithm will work anyway
and will assign probability zero to state j conditioned at time t+1. If at time
t+ 1 all roots are complex for all j, then the likelihood of that observation is
set to zero.

From the computational point of view, the Jacobians
@z(jk)t+1

@y
0
t+1

 are readily com-
putable analytically. In addition, it is important to bear in mind that the only
computationally expensive part of the algorithm is to obtain the roots zjt+1.
The problem can be fully parallelised, since at each t + 1 and j the roots
computations are functions only of yt+1 and of the coe¢ cients of the reduced
form measurement equations.

As already mentioned in the introduction, the main limitation of the inference
procedure described so far is that it cannot be applied when latent variables
enter the vector x1t of non-stochastic, predetermined variables. In this case,
the solution for variables zt at each point in time would also be conditional
on the value of the latent variables in x1t �see equation (12). In turn, �l-
tered values of the latent variables in x2t+1 would have to solve quadratic
equations conditional on the values assumed by variables zt. This interdepen-
dence between zt and x2t+1 generates time dependence in the solutions of the



23
ECB

Working Paper Series No 1341
May 2011

quadratic equations. As a result, the number of solutions for zt to compute
at each point in time would increase exponentially at a factor 2nL , where nL
denotes the number of latent, non-stochastic, predetermined variables.

Provided that there are no unobservable predetermined state variables in the
system (and that nx2 + nme = ny), however, there is no conceptual problem
in extending the algorithm to contexts in which the DSGE model is solved to
third order.

5 An application to a simple model

In order to highlight the marginal contribution of heteroskedasticity, we rely
on a standard model in the spirit of Woodford (2003). The central feature
is the assumption of nominal rigidities and the presence of discrete shifts in
conditional volatility of the shocks. The model is kept deliberately simple in
order to have a very low number of continuous unobserved non-predetermined
state variables. In Amisano and Tristani (2011), a quadratic model with het-
eroskedastic shocks is used in a context where the vector of observable variables
includes term structure data.

5.1 Households

We assume that each household i provides N (i) hours of di¤erentiated labour
services to �rms in exchange for a labour income wt (i)Nt (i). Each household
owns an equal share of all �rms j and receives pro�ts

R 1
0 �t (j)dj.

As in Erceg, Henderson and Levin (2000), an employment agency combines
households�labour hours in the same proportions as �rms would choose. The
agency�s demand for each household�s labour is therefore equal to the sum of
�rms�demands. The labour index Lt has the Dixit-Stiglitz form

Lt =
�Z 1

0
Nt (i)

�w�1
�w di

� �w
�w�1

where �w > 1. At time t, the employment minimizes the cost of producing
a given amount of the aggregate labour index, taking each household�s wage
rate wt (i) as given and then sells units of the labour index to the production

sector at the aggregate wage indexwt =
hR 1
0 w (i)

1��w di
i 1
1��w . The employment
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agency�s demand for the labour hours of household i is given by

Nt (i) = Lt

 
wt (i)

wt

!��w
(34)

Each household i maximizes its intertemporal utility with respect to consump-
tion, the wage rate and holdings of contingent claims, subject to its labour
demand function (34) and the budget constraint

PtCt (i) + EtQt;t+1Wt+1 (i) � Wt (i) + wt (i)Nt (i) +
Z 1

0
�t (j)dj (35)

where Ct is a consumption index satisfying

Ct =

 Z 1

0
Ct (z)

��1
� dz

! �
��1

(36)

the price level Pt is de�ned as the minimal cost of buying one unit of Ct, hence
equal to

Pt =
�Z 1

0
p (z)1�� dz

� 1
1��
: (37)

Wt denotes the beginning-of-period value of a complete portfolio of state con-
tingent assets, Qt;t+1 is their price, wt (i) is the nominal wage rate and �t (j)
are the pro�ts received from investment in �rm j.

Equation (35) states that each household can only consume or hold assets
for amounts that must be less than or equal to its salary, the pro�ts received
from holding equity in all the existing �rms and the revenues from holding a
portfolio of state-contingent assets.

Households maximise the discounted sum of the period utility

ut =
h
(Ct (i)� hCt�1 (i))

�
N �N�

t (i)
�i1�

(38)

subject to the budget constraint (35)

PtCt (i) + EtQt;t+1Wt+1 (i) � Wt (i) + wt (i)Nt (i) +
Z 1

0
�t (j)dj

and

Nt (i) = Lt

 
wt (i)

wt

!��w
where the choice variables are wt (i) and Ct (i).
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The �rst -order conditions for this problem can be written as

ewt = ��wN��1
t

(Ct � hCt�1)1�
�
N �N�

t

��
e�t (39)

Qt;t+1 = �
e�t+1e�t

1

�t+1
(40)

e�t = (Ct � hCt�1)� �N �N�
t

�1�
� �hEt (Ct+1 � hCt)�

�
N �N�

t+1

�1�
(41)

where ewt � wt=Pt and �w � �w= (�w � 1).
The gross interest rate, It, equals the conditional expectation of the stochastic
discount factor, i.e.

I�1t = EtQt;t+1 (42)

Note that we will focus on a symmetric equilibrium in which nominal wage
rates are all allowed to change optimally at each point in time, so that indi-
vidual nominal wages will equal the average wt.

5.2 Firms

We assume a continuum of monopolistically competitive �rms (indexed on
the unit interval by j), each of which produces a di¤erentiated good. De-
mand arises from households�consumption and from government purchases
Gt, which is an aggregate of di¤erentiated goods of the same form as house-
holds� consumption. It follows that total demand for the output of �rm i

takes the form Yt (j) =
�
Pt(i)
Pt

���
Yt. Yt is an index of aggregate demand which

satis�es Yt = Ct +Gt.

Firms have the production function

Yt (j) = AtL
�
t (j)

where Lt is the labour index Lt de�ned above.

Once aggregate demand is realised, the �rm demands the labour necessary to
satisfy it

Lt (j) =

 
Yt (j)

At

! 1
�



26
ECB
Working Paper Series No 1341
May 2011

The total nominal cost function for the �rm will therefore be given by

TCt (j) = wt

 
Yt (j)

At

! 1
�

where wt is the wage index de�ned above. As a result, real marginal costs will
be

mct (j) =
1

�

wt
Pt

1

At

 
Yt (j)

At

! 1��
�

where nominal costs are de�ated using the aggregate price level (not the in-
dividual �rm�s price).

As in Rotemberg (1982), we assume the �rms face quadratic costs in adjusting
their prices. This assumption is also adopted, for example, by Schmitt-Grohé
and Uribe (2004) and Ireland (1997). It is well-known to yield �rst-order in-
�ation dynamics equivalent to those arising from the assumption of Calvo
pricing. 2 From our viewpoint, it has the advantage of greater computational
simplicity, as it allows us to avoid having to include an additional state variable
in the model, i.e. the cross-sectional dispersion of prices across �rms.

The speci�c assumption we adopt is that �rm j faces a quadratic cost when
changing its prices in period t, compared to period t�1. Consistently with what
is typically done in the Calvo literature, we modify the original Rotemberg
(1982) formulation to allow for indexation of prices in part to lagged in�ation,
in part to the in�ation objective

�

2

 
P j
t

P j
t�1

� (��)1����t�1
!2
Yt

So, �rms maximise their real pro�ts

max
P jt

Et
1X
s=t

Qt;s

24P j
s Y

j
s (P

j
s )

Ps
� TCs (Y

j
s (P

j
s ))

Ps
� �
2

 
P j
s

P j
s�1

� (��)1����s�1
!2
Ys

35
subject to

Yt (j) =

 
Pt (j)

Pt

!��
Yt

and to
Yt (j) = AtL

�
t (j)

2 The two pricing models, however, have in general di¤erent welfare implications �
see Lombardo and Vestin (2008).
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Focusing on a symmetric equilibrium in which all �rms adjust their price at
the same time, the �rst -order condition for price setting can be written as

(� � 1)Yt + �
�
�t � (��)1����t�1

�
Yt�t =

�

�
ewt � Yt

At

� 1
�

+

+ EtQt;t+1�
�
�t+1 � (��)1����t

�
Yt+1�t+1

5.3 Monetary policy

We close the model with the simple Taylor-type policy rule

It =

 
��

�

!1��I ��t
��

� 
�
�
Yt
Y

� Y
I�It�1 (43)

where Yt is aggregate output and �� is a constant in�ation target.

5.4 Market clearing

Market clearing in the goods market requires

Yt = Ct +Gt

In the labour market, labour demand will have to equal labour supply. In
addition, the total demand for hours worked in the economy must equal the
sum of the hours worked by all individuals. Taking into account that at any
point in time the nominal wage rate is identical across all labour markets
because all wages are allowed to change optimally, individual wages will equal
the average wt. As a result, all households will chose to supply the same
amount of labour and labour market equilibrium will require that

Lt =
�
Yt
At

� 1
�

5.5 Exogenous shocks

In macroeconomic applications, exogenous shocks are almost always assumed
to be (log) normal, partly because models are typically log-linearised and re-
searchers are mainly interested in characterising conditional means. However,
Hamilton (2008) argues that a correct modelling of conditional variances is
always necessary, for example because inference on conditional means can be
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inappropriately in�uenced by outliers and high-variance episodes. The need
for an appropriate treatment of heteroskedasticity becomes even more com-
pelling when models are solved nonlinearly, because conditional variances have
a direct impact on conditional means.

In this paper, we assume that variances are subject to stochastic regime
switches for all shocks other than the in�ation target. More speci�cally, we
assume a deterministic trend in technology growth, so that

At = ZtBt
Bt = Bt�1�

Zt = Z
�z
t�1e

"zt ; "zt+1 v N
�
0; �z;sz;t

�

where � is the productivity trend and Zt is a standard "level" technology
shock. We specify the exogenous government spending process in deviation
from the trend, so that

Gt

Bt
=
�
gY

B

�1��g  Gt�1

Bt�1

!�g
e"

g
t "Gt+1 v N

�
0; �G;sG;t

�

where the long run level g is speci�ed in percent of output, so that g � G=Y .

Both technology and government spending shocks have regime-switching vari-
ances, namely

�z;sz;t = �z;Lsz;t + �z;H (1� sz;t)
G;sG;t = �G;LsG;t + �G;H (1� sG;t)

and the variables sz;t, sG;t can assume the discrete values 0 and 1. For each
variable sj;t (j = z;G), the probabilities of remaining in state 0 and 1 are
constant and equal to pj;0 and pj;1, respectively.

We assume regime switches in these particular variances for the following
reasons. The literature on the Great Moderation (see e.g. McDonnell and
Perez-Quiros, 2000) has emphasised the reduction in the volatility of real ag-
gregate variables starting in the second half of the 1980s. We conjecture that
this phenomenon could be captured by a reduction in the volatility of tech-
nology shocks in our structural setting. The literature has also often found a
relationship between regimes and the business cycle. In our model, this rela-
tionship could be accounted for by regime switches of the volatility of demand
(government spending) shocks.
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5.6 Data and prior distributions

We estimate the model on quarterly US data over the sample period from
1966Q1 to 2009Q1. Our estimation sample starts in 1966, because this is
often argued to be the date after which a Taylor rule provides a reasonable
characterisation of Federal Reserve policy. 3

The data included in the information set are real per-capita consumption
growth, the consumption de�ator and the 3-month nominal interest rate. Mea-
surement error characterises the nominal interest rate.

The data are described in �gure (2). Note that, beside the di¤erencing for log
consumption, the data are not subjected to any prior transformation.

We include in the information set total real personal consumption per-capita
and the consumption de�ator (from the FRED database of the St. Louis Fed).
In addition, we use the 3-month nominal interest rate (from the Federal Re-
serve Board).

Prior distributions for our model parameters are presented in Table (2).

Concerning regime switching processes, we assume beta priors for transition
probabilities. The distributions imply that persistences in each state are sym-
metric and have high means. In the prior, we assume that the standard devi-
ations of the structural shocks are identical in the various states.

The priors for the standard deviation and persistence of shocks, as well as for
the long run growth rate of technology and for the long run in�ation target,
are centred on values which allow us to roughly match unconditional data
moments in the �rst 10 years of the sample, given the other parameter.

For the policy rule, we use relatively loose priors centred around the classic
Taylor (1993) parameters for the responses to in�ation and output, but we
also allow for a substantial degree of interest rate smoothing. Finally, for the
other parameters we use priors broadly in line with other macro studies.

Note that we impose priors which are completely symmetric across states.
Therefore, we sample from the posterior and ex post impose the constraint
that state 1 for each of the discrete unobservable state variables is that with

3 According to Fuhrer (1996), "since 1966, understanding the behaviour of the
short rate has been equivalent to understanding the behaviour of the Fed, which
has since that time essentially set the federal Funds rate at a target level, in response
to movements in in�ation and real activity". Goodfriend (1991) argues that even
under the period of o¢ cial reserves targeting, the Federal Reserve had in mind an
implicit target for the Funds rate.
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the lowest variance. This is the way in which we deal with the so-called la-
bel switching problem of Markov switching models. For a discussion of this
problem and its bearing on posterior simulation, see Geweke and Amisano
(2011).

5.7 Results

Bayesian estimation is performed by using a single block randomwalkMetropolis-
Hastings algorithm and a multivariate Gaussian distribution as candidate den-
sity. We initialise the algorithm by �nding the mode of the log posterior via
simulated annealing and computing the covariance matrix of the candidate
distribution by using a numerical Hessian of the posterior distribution at its
mode.

We run several chains and we report results here based on 250,000 draws. The
results from the posterior distribution are summarised in Table (3). A few
notable features are apparent from this table.

Looking at the transition probabilities of posterior distribution, we note that
their marginal distributions are centered on mean values which are not very
di¤erent from their prior counterparts (with the exception of the probability
of staying in the regime of low variability for the G process). The state of high
volatility seems to be much more persistent than that of low volatility for the
G process; to a lesser extent, this occurs also for the Z process.

Note also that the posterior distributions of the state speci�c standard errors
are quite polarised for the Z process: the standard deviation of Z in the high
volatility state is twice as high as the low volatility standard deviation (140
vs. 70 bps in quarterly terms), whereas this ratio is just 1.5 for the G shock
(340 vs 230 bps).

Looking at the policy rule parameters, we see that the interest smoothing
parameter has a posterior mean which is higher than its prior mean (.80 versus
.70), while the in�ation response coe¢ cient posterior mean is lower than its
prior mean (.23 vs. .50).

It is interesting to consider one step ahead forecasting errors as a way to gauge
model �t. These are illustrated in Figure (3). Looking at one step ahead fore-
casting errors, the �t seems to be reasonably good. One step ahead forecasts
track actual variables quite well, even in the last part of the sample which is
a¤ected by the recent �nancial crisis. Moreover, forecast errors do not display
clear signs of serial correlation.

Figure (4) displays the �ltered values for the continuous latent variables. Look-
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ing at the �ltered values for the measurement error on interest rate, we see
that it shows abnormal volatility in the early 80s, possibly in relation with the
so called "monetarist experiment". We do not model this feature of the data
in this paper, but in Amisano and Tristani (2011) we capture it through the
assumption of heteroskedasticity in policy shocks.

Another interesting feature is the pattern displayed by the technology process
and the government spending process, as documented in the �rst and second
panels of �gure (4). Keeping in mind that these variables are expressed in
deviations from a deterministic trend which has a posterior mean growth rate
of 20 quarterly bps, we notice from the upper left panel that technology has
oscillated around the deterministic growth trend with sharp dips during the
mid 1970s, early 1980s and early 1990s recessions., while the government im-
plied by the model, followed the deterministic trend until the early 1980s, and
then sharply fell until the onset of the current recession.

Turning to the analysis of the discrete states indexing volatility regimes (Fig-
ure (5)), we notice some interesting features.

First of all, given the posterior distribution of transition probabilities, we
expect G to spend much more time in the high volatility state. The same for
the Z process, even if the di¤erence between posterior means of within state
persistence probabilities is smaller than in the G case. This is clearly con�rmed
by looking at �ltered and smoothed probabilities. In the case of the G process,
it seems that the low volatility state is never visited in the sample.

Overall, the interpretation for the variances of the productivity growth and
government spending processes is di¤erent from our conjecture. The technol-
ogy shock does show also a very prolonged spell of low volatility from the
mid 1980s to the early 2000s, which is consistent with the Great Moderation
phenomenon. The model also suggests that the Great Moderation came to an
end after 2004, when the technology shock is estimated to return to a high
volatility regime. However, the government spending shock does not display
a cyclical pattern. This is instead the case for the technology shock, whose
variance tends to increase during various recessions over the mid-1970s and
early 1980s. This also appears to be true for the recession associated with the
recent �nancial crisis.

6 Conclusions

This paper shows that the second-order approximate solution of DSGE models
with Markov switching variances is characterised by coe¢ cients on the linear
and quadratic terms in the state vector of the decision rules that are indepen-
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dent of the volatility of the exogenous shocks. Up to second order, only the
constant term of the decision rules is a¤ected by the introduction of regime
switching. We devise a procedure to compute the likelihood in situations in
which the number of shocks in the empirical model match the number of ob-
servable variables (and there are no unobservable predetermined variables).
In such an environment we can compute the likelihood exactly via recursive
methods without resorting to approximations or to simulation �ltering tech-
niques.

The results of an application of our solution and estimation methods to US
data are consistent with the hypothesis that changes in the conditional vari-
ance of technology shocks are responsible for both the Great Moderation and
the cyclical features of macroeconomic volatility.
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Table 1. parameter values in the simple model

a0;1 a0;2 a1 b1 b2 c0;1 c0;2 c1 c2 P

:0 �:01 0:9 :01 :2 :2 �:1 0:4 0:3

264 :95 :05
:2 :8

375

Table 2
Prior speci�cation

parameter name role pr. type mean sd low. q. up. q.

pG;11 prob G staying in reg. 1 Beta 0.8994 0.0660 0.7358 0.9872

pG;22 prob G staying in reg. 0 Beta 0.8998 0.0654 0.7397 0.9869

pz;11 prob z staying in reg. 1 Beta 0.9005 0.0653 0.7414 0.9872

pz;22 prob z staying in reg. 0 Beta 0.9005 0.0650 0.7399 0.9862

�G;1 std dev G state 1 inv. Ga. 0.0066 0.0016 0.0042 0.0103

�G;2 std dev G state 0 inv. Ga. 0.0095 0.0032 0.0056 0.0177

�z;1 std dev z state 1 inv. Ga. 0.0019 0.0004 0.0013 0.0028

�z;2 std dev z state 0 inv. Ga. 0.0026 0.0007 0.0017 0.0042

�G persistence G Beta 0.9001 0.0300 0.8352 0.9503

� deterministic growth rate shifted Ga. 1.0040 0.0028 1.0005 1.0113

�z persistence z Beta 0.2028 0.1225 0.0286 0.4892

� in�ation target shifted Ga. 1.0070 0.0026 1.0029 1.0129

 � Taylor r. in�ation par Gamma 0.4952 0.3506 0.0583 1.3708

 y Taylor r. output par Gamma 0.0308 0.0217 0.0038 0.0859

�I Taylor r. int.rate par Norm. 0.6963 0.3006 0.1074 1.2840

� In�. indexation Beta 0.6040 0.1986 0.1984 0.9320

� labour elasticity Gamma 2.0142 1.4147 0.2445 5.5442

� relative risk aversion shifted Ga. 1.9938 0.9990 1.0274 4.7546

� price adj. cost Norm. 16.9960 2.0089 13.0531 20.9463

h habit parameter Beta 0.7047 0.1074 0.4753 0.8914

� el. subst across goods shifted Ga. 7.9667 2.6746 3.7435 14.1693

� discount factor Beta 0.9939 0.0042 0.9835 0.9992

�0 intercept det trend Norm. -0.9928 0.9857 -2.9430 0.9281

�me;I meas std error on int rate inv. Ga. 0.0001 0.0001 0.0001 0.0003

Legend: "sd" denotes the standard deviation; "low q" and "up q" denote the 5th
and 95th percentiles of the distribution. Note that shifted gamma distribution for z
means that z-1 has Gamma distribution.
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Table 3
Results from posterior simulation of model

po. m. po. sd. po. low. q. po. up. q. pr. m. pr. sd. pr. low. q. pr. up. q.

pG;11 0.8034 0.0741 0.6635 0.9390 0.8994 0.0660 0.7358 0.9872

pG;22 0.8875 0.0468 0.7652 0.9467 0.8998 0.0654 0.7397 0.9869

pz;11 0.9065 0.0457 0.8074 0.9720 0.9005 0.0653 0.7414 0.9872

pz;22 0.9230 0.0481 0.8195 0.9834 0.9005 0.0650 0.7399 0.9862

�G;1 0.0231 0.0046 0.0149 0.0330 0.0066 0.0016 0.0042 0.0103

�G;2 0.0340 0.0038 0.0272 0.0415 0.0095 0.0032 0.0056 0.0177

�z;1 0.0071 0.0014 0.0050 0.0103 0.0019 0.0004 0.0013 0.0028

�z;2 0.0138 0.0024 0.0101 0.0195 0.0026 0.0007 0.0017 0.0042

�G 0.9974 0.0008 0.9958 0.9986 0.9001 0.0300 0.8352 0.9503

� 1.0020 0.0004 1.0013 1.0027 1.0040 0.0028 1.0005 1.0113

�z 0.7868 0.0442 0.6918 0.8630 0.2028 0.1225 0.0286 0.4892

� 1.0065 0.0017 1.0038 1.0097 1.0070 0.0026 1.0029 1.0129

 � 0.2276 0.0088 0.2092 0.2428 0.4952 0.3506 0.0583 1.3708

 y 0.0035 0.0012 0.0016 0.0063 0.0308 0.0217 0.0038 0.0859

�I 0.7979 0.0081 0.7834 0.8150 0.6963 0.3006 0.1074 1.2840

� 0.1241 0.0654 0.0530 0.3216 0.6040 0.1986 0.1984 0.9320

� 2.1883 0.3812 1.5075 3.0168 2.0142 1.4147 0.2445 5.5442

� 2.1090 0.3682 1.6070 3.0490 1.9938 0.9990 1.0274 4.7546

� 18.9902 1.8762 15.2896 22.7451 16.9960 2.0089 13.0531 20.9463

h 0.4944 0.0261 0.4433 0.5439 0.7047 0.1074 0.4753 0.8914

� 1.7306 0.1766 1.4140 2.1205 7.9667 2.6746 3.7435 14.1693

� 0.9994 0.0004 0.9985 0.9998 0.9939 0.0042 0.9835 0.9992

�0 0.1252 0.0761 -0.0171 0.2805 -0.9928 0.9857 -2.9430 0.9281

�me;I 0.0024 0.0000 0.0024 0.0025 0.0001 0.0001 0.0001 0.0003

Results based on 250,000 draws from random walk MH algorithm initialised at
posterior mode, saved after 25,000 (burn-in) draws were discarded to get rid of initial
conditions. Acceptance rate = .55. One in ten draws were then used to compute
posterior moments of functions of interest.
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