Calza, Alessandro; Stracca, Livio; Monacelli, Tommaso

Working Paper

Housing finance and monetary policy

ECB Working Paper, No. 1069

Provided in Cooperation with:
European Central Bank (ECB)

Suggested Citation: Calza, Alessandro; Stracca, Livio; Monacelli, Tommaso (2009) : Housing finance and monetary policy, ECB Working Paper, No. 1069, European Central Bank (ECB), Frankfurt a. M.

This Version is available at:
http://hdl.handle.net/10419/153503

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
HOUSING
FINANCE AND
MONETARY
POLICY

by Alessandro Calza,
Tommaso Monacelli
and Livio Stracca
HOUSING FINANCE
AND MONETARY POLICY

by Alessandro Calza2, Tommaso Monacelli3 and Livio Stracca2

In 2009 all ECB publications feature a motif taken from the €200 banknote.

1 First draft December 2006. Previous versions of this paper were circulated under the title “Mortgage Markets, Collateral Constraints, and Monetary Policy: Do Institutional Factors Matter?”. The views expressed in this paper are only those of the authors and are not necessarily shared by the European Central Bank. We thank J. R. Campbell, F. De Fiore, C. Favero, S. Gerlach, J. Heathcote, Z. Hercowitz, M. Iacoviello, A. Lehnert, J. Muellbauer, E. Nelson, H. Pill, A. Schabert, F. Smets and B. Winkler for useful comments and discussions.

2 European Central Bank, Kaiserstrasse 29, D-60311 Frankfurt am Main, Germany; e-mail: alessandro.calza@ecb.europa.eu and livio.stracca@ecb.europa.eu

3 Corresponding author: IGIER, Università Bocconi, Via Sarfatti, 25 Milano, Italy and CEPR; e-mail: tommaso.monacelli@unibocconi.it
CONTENTS

Abstract 4
Non-technical summary 5
1 Introduction 7
2 Housing finance in the industrialized countries 10
3 Housing finance and monetary policy transmission: the evidence 13
4 The model 18
 4.1 Final good producers 18
 4.2 Borrowers 19
 4.3 Savers 24
 4.4 Production and pricing of intermediate goods 25
 4.5 Market clearing 26
 4.6 Monetary policy 26
5 The channels of monetary policy transmission 27
6 Dynamic simulations 28
 6.1 Calibration 29
 6.2 The role of the collateral constraint 30
7 Conclusions 33
References 34
Tables and figures 38
European Central Bank Working Paper Series 48
Abstract

We study how the structure of housing finance affects the transmission of monetary policy shocks. We document three main facts: first, the features of residential mortgage markets differ markedly across industrialized countries; second, and according to a wide range of indicators, the transmission of monetary policy shocks to residential investment and house prices is significantly stronger in those countries with larger flexibility/development of mortgage markets; third, the transmission to consumption is stronger only in those countries where mortgage equity release is common and mortgage contracts are predominantly of the variable-rate type. We build a two-sector DSGE model with price stickiness and collateral constraints and analyze how the response of consumption and residential investment to monetary policy shocks is affected by alternative values of two institutional features: (i) down-payment rate; (ii) interest rate mortgage structure (variable vs. fixed rate). In line with our empirical evidence, the sensitivity of both variables to monetary policy shocks increases with lower values of the down-payment rate and is larger under a variable-rate mortgage structure.

Keywords: Housing finance, mortgage markets, collateral constraint, monetary policy.

JEL Classification: E21, E44, E52.
Non-technical summary

We study the relationship between the structure of housing finance and the monetary transmission mechanism in several industrialized countries. We show that there is significant heterogeneity in the institutional characteristics of national mortgage markets across the main industrialized countries, and especially within the EU. Examples of such institutional characteristics include the typical duration of mortgage contracts, the required levels of down-payment (or inverse loan-to-value ratios), the existence (or lack thereof) of equity release products.

In addition to the aforementioned indicators we also classify countries according to the prevailing interest-rate structure of mortgage contracts, namely flexible vs. fixed interest rate contracts.

We then conduct a VAR-based analysis of the effects of monetary policy shocks on consumption, house prices and residential investment in a sample of industrialised countries. We classify the countries into two groups, according to their degree of development of mortgage markets and according to their prevailing interest rate structure of mortgage contracts (fixed vs. variable rate).

The empirical analysis leads to two main results:

- First, the size of the peak effect of a monetary policy shock on residential investment is positively and significantly related both to our indicators of flexibility in mortgage markets (with higher flexibility translating into larger sensitivity) and to the type of interest rate structure (with residential investment being significantly more responsive to policy innovations in those countries with a variable rate mortgage structure). A similar pattern emerges for the response of house prices.

- Second, we find that the evidence for consumption is mixed. Namely, consumption is significantly more responsive only in those countries where mortgage equity release is common and, especially, where prevailing mortgage contracts are of the variable rate type. Other indicators of mortgage markets flexibility, such as the LTV ratio or the ratio of mortgage debt-to-GDP, turn out not to be relevant for the response of consumption across countries to monetary innovations.
In order to rationalise these findings, as in Iacoviello (2005) and Campbell and Hercowitz (2004) we build a stochastic dynamic general equilibrium model where there are two groups of households, borrowers and savers, and two sectors, producing (non-durable) consumption goods and new housing respectively. The two types of households feature heterogeneous preferences, with the borrowers being more impatient than the savers, implying that their marginal utility of consumption exceeds the marginal utility of saving. Borrowers are subject to a collateral constraint, with the borrowing limit tied to the value of the existing stock of housing.

In the model analysis we show that the response of consumption and residential investment to monetary policy shocks is affected by alternative values of two institutional parameters of mortgage markets: the down-payment rate, and the interest-rate mortgage structure (variable vs. fixed interest rate). In particular, the model can rationalize the evidence that private consumption is more responsive to monetary impulses in economies with more developed/ flexible mortgage markets, somewhat in contrast with the presumption that more developed mortgage (credit) markets should be conducive to more efficient consumption-smoothing.
1 Introduction

The role of housing wealth on economic activity has recently attracted considerable attention among academic researchers, policy-makers and press commentators.\footnote{For recent academic contributions see Aoki, Proudman and Vlieghe (2004), Davies and Heathcote (2005), Iacoviello (2005) and the literature review by Leung (2004); for contributions from a policy perspective see ECB (2003), Catte et al. (2004), Girouard and Blöndal (2001), BIS (2004) and IMF (2005, 2008); for a press account see The Economist (2003).} This attention is partly explained by the sizeable rises in property prices and household indebtedness in several industrialized countries over the recent years (Debelle 2004, Terrones and Otrok 2004), and the need to understand both the determinants of such rises and their potential implications for monetary policy and financial stability. The recent global financial turmoil allegedly originating from the residential property market in the US has strengthened the interest in these matters even further. Beyond the policy considerations, there is a growing interest in assessing the effects of changes in property prices on consumption decisions, given the predominance of housing in total household wealth (Campbell and Cocco 2003, Muellbauer and Murphy 2008).

This paper studies the relationship between the structure of

housing finance

and the monetary transmission mechanism in several industrialized countries. We first show that there is significant heterogeneity in the institutional characteristics of national mortgage markets across the main industrialized countries, and especially within the EU. Examples of such institutional characteristics include the typical duration of mortgage contracts, the required levels of down-payment (or inverse loan-to-value ratios), the existence (or lack thereof) of equity release products. We interpret these indicators as alternative measures of the degree of development/flexibility of mortgage markets. There is in fact one channel, working from housing finance to the macroeconomy, that we aim at capturing by means of these indicators: the extent to which mortgage contracts allow to translate the value of housing as a collateral into current availability of credit for households. In turn, this credit can be used not only to finance new housing expenditure but also (non-housing) consumption.\footnote{See, for instance, Aron and Muellbauer (2006).}

In addition to the aforementioned indicators we also classify countries according to the prevailing interest-rate structure of mortgage contracts, namely flexible vs. fixed interest rate contracts. We treat this indicator separately for it does not necessarily reflect a higher
or lower degree of development of mortgage markets.3 We believe this channel may be particularly important for the transmission of monetary policy, especially on consumption, for it represents a direct channel through which monetary policy, by altering the service cost of debt, can affect current disposable income.

We then conduct a VAR-based analysis of the effects of monetary policy shocks on consumption, house prices and residential investment in a sample of industrialised countries. We classify the countries into two groups, according to their degree of development of mortgage markets. Those belonging to the first (second) group are countries where LTV ratios are low, mortgage equity release is common (absent or partial) and the ratio of mortgage debt-to-GDP is high (low). We then also classify countries according to their prevailing interest rate structure of mortgage contracts (fixed vs. variable rate).

We find two main results. First, the size of the peak effect of a monetary policy shock on residential investment is positively and significantly related both to our indicators of flexibility in mortgage markets (with higher flexibility translating into larger sensitivity) and to the type of interest rate structure (with residential investment being significantly more responsive to policy innovations in those countries with a variable rate mortgage structure). A similar pattern emerges for the response of house prices. Second, we find that the evidence for consumption is mixed. Namely, consumption is significantly more responsive only in those countries where mortgage equity release is common and, especially, where prevailing mortgage contracts are of the variable rate type. Other indicators of mortgage markets flexibility, such as the LTV ratio or the ratio of mortgage debt-to-GDP, turn out not to be relevant for the differential response of consumption across countries to monetary innovations.

Under frictionless financial markets, the structure of housing finance should in principle be immaterial for the effects of monetary shocks. To rationalize our evidence we build a model that extends the baseline monetary policy framework in three main directions.4 First, it allows for two sectors, respectively producing consumption goods and new housing. Second, it features heterogeneity of preferences between impatient consumers and patient consumers (in equilibrium, borrowers and savers respectively). The former do not

3It remains true, though, that in several countries the introduction of variable rate mortgage contracts has paralleled the process of deregulation in mortgage markets.

4Such baseline framework, featuring perfect financial markets, is usually labelled as New Keynesian (see Clarida et al. 1999, Woodford 2003).
act as standard permanent-income agents, but exhibit preferences tilted towards current consumption. The borrowers may be thought of as that share of the population for which acquiring a loan/mortgage requires providing an asset, and housing in particular, as a form of collateral. Third, private borrowing is constrained by the value of the collateral. That value is endogenously tied to the evolution of the price of housing.

Thus, in a context where mortgage markets allow more easily to convert asset values into borrowing, and therefore spending, consumption and residential investment should be more responsive to underlying shocks. In our framework, the relevant institutional features of the mortgage market are summarized by two main parameters: (i) the down-payment rate, and (ii) the interest-rate structure of the contract. We calibrate and simulate the model based on our introductory evidence on the heterogenous characteristics of mortgage markets in industrialized countries. We find that both institutional features magnify the responses of consumption and residential investment to monetary policy shocks.

General equilibrium borrower-saver models build on the earlier analysis of Kiyotaki and Moore (KM) (1997) and Krusell and Smith (1998). Recently, Iacoviello (2005) extends the KM framework to include features more typical of the New Keynesian monetary policy literature, whereas Campbell and Hercowitz (2004) extend this category of models to a real business cycle framework and explore the role of credit market innovations in contributing to the so-called Great Moderation. The modelling section of our work is related to the last two papers, but it differs in two main ingredients: first, it features a two-sector structure (so that residential investment is an endogenous variable); second, it models institutional characteristics of the mortgage market (such as variable vs. fixed rate contracts) and analyzes how they shape the transmission of monetary policy shocks.

The paper is structured as follows. In Section 2 we document some key institutional differences in mortgage markets across industrialized countries. We conduct some VAR-based empirical analysis in Section 3, focussing on the impact of a monetary policy shock on housing market-related variables. The structural model is developed in Section 4 and discussed in Section 5. Section 6 presents some dynamic simulations. Section 7 concludes.
2 Housing finance in the industrialized countries

In this section we document that mortgage markets differ significantly across industrialized countries in terms of both size and key institutional characteristics, such as the prevailing contractual arrangements and the available product range. This heterogeneity is particularly evident within the euro area, where mortgage lending remains a predominantly domestic business activity, largely reflecting national traditions and cultural factors as well as the institutional settings of the local banking sector.

Table 1 summarizes some of the institutional indicators that have been identified in the literature as most likely to have a bearing on the relationship between housing wealth and consumption, as well as on the channels of monetary policy transmission (see, e.g., MacLennan et al. 1998 and Debelle 2004). We report data for a total of nineteen countries, including nine euro area countries, some European countries outside the euro area, Japan and the main Anglo-Saxon countries.

The indicators included in Table 1 are: (i) mortgage debt-to-GDP ratio; (ii) typical LTV ratio; (iii) type of interest-rate structure; (iv) typical mortgage contract duration, (v) diffusion of home equity release products, and (vi) the IMF (2008) index of mortgage market development and completeness.

Cross-country heterogeneity is pervasive in all indicators considered. Mortgage-to-GDP ratios vary widely across countries: values range between 13% in Italy and 116% in Switzerland. Among the large countries, Italy and France have the lowest ratios, while the ratios in the UK and the US are relatively high. Also typical LTV ratios vary significantly across countries, ranging between 50% in Italy and 90% in the Netherlands and UK.\(^5\) Cross-country variations in these ratios partly reflect differences in legal and regulatory frameworks.\(^6\) Hence, they reflect - at least to some extent - institutional factors which are largely exogenous.

The heterogeneity in terms of interest rate adjustment is also substantial across coun-

\(^5\)Data from the Council of Mortgage Lenders show that during the past housing boom LTV ratios above 90% were fairly common in the UK.

\(^6\)For instance, it has been argued (e.g., MacLennan et al. 1998, and Ahearne et al. 2005) that the reason why the LTV ratio has been historically low in Italy lies in the difficulty for the lender to enforce repossession in case of default of the borrower, given the country’s slow and costly judicial proceedings. In Japan, the mortgage market has been historically dominated by a public agency that kept LTV ratios low and focused on financing purchases of new rather than used housing (Seko 1994).
tries. Conceptually, mortgage contracts can be distinguished between *variable* and *fixed* rate mortgages: variable rate contracts are those in which the lending rate floats with, or is frequently adjusted to, a short-term market interest rate; fixed rate contracts are those in which the lending rate remains constant throughout the duration of the contract. In practice, contracts do not always fully conform to these conceptual types and often fall under intermediate categories (Borio 1996). Among the EU countries, the UK, Spain and Italy mainly have variable or adjustable rate mortgages, although for the latter two countries this reflects a relatively recent development. By contrast, Germany, France, Austria, Belgium, Denmark and the Netherlands are mainly characterized by fixed rate mortgages, similar to the US and Canada.

An additional element of divergence among national mortgage markets is the extent of the recourse to *home equity release*. Following changes in house prices and mortgage interest rates, collateral constrained agents may wish to adjust their net borrowing positions or to refinance the terms of their existing mortgages according to the changed conditions. For instance, in light of a run-up in house prices (and especially if that run-up is expected to continue into the future), borrowers may increase the amount of their mortgage loans or apply for a second mortgage against the increased value of their collateral. The released mortgage equity may be subsequently used for a variety of purposes, such as debt refinancing, acquisition of durable goods, purchase of financial assets or home improvements. When mortgage interest rates decrease, agents may be willing to re-finance their mortgages to take advantage of lower interest payments in order to free liquidity for other expenditures or, alternatively, they may want to increase their borrowing to reflect their increased debt servicing capacity. Alternatively, and mostly in countries with highly flexible and developed mortgage markets, lenders may be more willing to extend so-called *home equity lines of credit* (or, broadly speaking, *home equity loans*) when they observe an increase in house prices. Conversely, during a downturn in house prices, as in the recent financial turmoil, such equity lines of credit are often the first ones to be scaled back by lenders. At the same time, in those instances, lenders may find it convenient to walk away from delinquent home equity loans rather than pushing borrowers into foreclosure on the primary mortgage. All these margins are likely to have significant consequences on

7 Japan also has mainly variable rate mortgages.

current disposable income, and therefore on current consumption for liquidity constrained individuals.

Overall, the use of home equity release remains limited in some countries as reported in Table 1, though mortgage equity extraction and refinancing have become significant at the aggregate level in a few of them (e.g., US, UK and the Netherlands). In some cases, the limited recourse to home equity release may reflect scarce availability of suitable mortgage contracts (e.g., due to regulatory constraints). However, in most countries borrowers are deterred from refinancing their contracts by administrative obstacles and prohibitive transaction costs. In such countries, mortgage lending is likely to interact with interest rate and house price developments only to a very limited extent (namely only for the new mortgage contracts and not for the existing ones, which mostly reflect market conditions prevailing at the time they were signed rather than current conditions). The US has been historically one of the main exceptions to this pattern, with the special nature of its national mortgage market becoming particularly evident in recent years as US borrowers have taken advantage of low interest rates, rising house prices and a dramatic decline in transaction costs to engage in a wave of mortgage refinancing and equity extraction commonly thought to have been large enough to influence aggregate spending.

IMF (2008) compiles a synthetic indicator of the degree of development and completeness of national mortgage markets. In particular, the value of the index for each country is a function of various indicators, such as LTV ratios, the ability to extract mortgage equity or to refinance without incurring fees, the development of secondary markets for mortgage loans, etc. Higher values of the index (which lies between 0 and 1) indicate a more developed and advanced national mortgage market. With the exception of the Netherlands, European countries tend to have relatively low values. In particular, the three largest euro area economies (Germany, France and Italy) are those with the lowest values in the sample. Similarly, the value of the index is low for Japan. By contrast, the index assigns relatively high values to the Anglo-Saxon economies, with the US scoring almost the maximum level.

For instance, Borio (1996) documents the penalties and administrative costs that borrowers willing to repay in advance their medium- and long-term (not necessarily mortgage) loans face in a number of countries.
3 Housing finance and monetary policy transmission: the evidence

Institutional differences across mortgage markets are often cited as a likely source of cross-country differences in the speed and strength of the transmission of monetary policy impulses to the economy. The size and distribution of household mortgage debt, average maturity of contracts and type of interest rate adjustment are usually listed among the characteristics likely to determine the extent of the income and collateral effects induced by changes in interest rates (Debelle 2004).

BIS (1995) concludes that monetary policy could be expected to have comparatively stronger effects in Anglo-Saxon countries than in continental Europe (with the possible exception of Italy, where variable rate mortgages predominate). Borio (1996) notes that this split coincides with that between countries with more or less developed financial structures, though this does not amount to conclusive evidence. Iacoviello (2002) relates variations in the magnitude of output responses to monetary policy shocks across European countries to differences in financial systems. Likewise, Angeloni et al. (2003) refer to institutional differences in housing finance as one possible explanation for the more muted response of private consumption to monetary policy shocks in the euro area compared with the US. In recent years, the remarkable heterogeneity in private consumption developments between some continental European countries and most Anglo-Saxon countries at a time of (common) worldwide low interest rates has seemed to provide further confirmation about the importance of structural differences in mortgage markets across countries in determining the strength of the housing channel.

In this section we estimate a baseline VAR model for 19 advanced countries, including Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, the United Kingdom and the United States. The data are quarterly and cover the 1970:1 to 2008:2 sample period. For a great majority of the time series the source is the OECD Economic
Outlook (OEO) database. The model is specified as follows:

$$A^i_0 Y^i_t = k^i_t + \gamma^i t + A^i(L)Y^i_{t-1} + \varepsilon^i_t$$ (1)

for each country i and time t. The vector of the endogenous variables, Y^i_t, includes (in this order) private consumption, residential investment, the consumer price index (CPI), the real house price, a 3-month interbank interest rate, and the real effective exchange rate. We include the real effective exchange rate to cater for open economy influences that, while arguably secondary for the US economy, are likely to matter considerably for the small open economies in our group of countries. The identification of monetary policy shocks in the VAR is achieved by assuming that the A^i_0 matrix has a Choleski structure in each country.

The model in (1) is estimated on quarterly data, seasonally adjusted whenever appropriate, on a sample period between 1980:1 and 2007:4. For two countries, the starting date is later due to data availability (1981 for Switzerland, 1988 for Austria). The VAR models are specified in levels and, with the exception of the interest rates, all variables are in expressed in logs. Based on the Schwartz information criterion, a lag order of two (in levels) is found to be optimal for this model across all countries.

After estimating the VAR model for each country, we run the pooling test (based on

10 We have used alternative sources whenever the OECD database was not sufficient. For private consumption data for Austria, again data for Austria come from the BIS and partly from the OEO. Moreover, data for Spain are from Eurostat and for Switzerland from the BIS. For the effective exchange rate, all data come from the OEO except Denmark (BIS) and Ireland (IMF International Financial Statistics and OEO). Data for the CPI for the United Kingdom are from the BIS, and for Germany both from the BIS and the OEO. The main source for house prices is the ECB Residential Property Prices (RPP) database. For a number of countries we had to use alternative, mainly national, sources where the RPP data were not sufficient. For Japan, in particular, we used the BIS data and for the United Kingdom we spliced RPP and BIS data.

11 See, for instance, Christiano et al. (1999). Our results are not sensitive to alternative orderings of the variables: for instance, whether consumption is ordered before or after residential investment (although it may seem plausible that residential investment reacts more quickly to monetary impulses than real consumption), or the real exchange rate ordered before or after the short-term nominal interest rate.

12 Notice that, due to data limitations, we have not included another possibly relevant variable in the VARs, i.e., mortgage debt. Also, the lack of harmonized data on house prices has to be emphasized; even within the euro area house price data are not fully comparable. For this reason, the results on house prices have to be interpreted with relatively more caution.

13 Giuliodori (2004) conducts a similar analysis for several EU countries, finding similar results to this study.
a Wald test of equal coefficients) to check whether a panel specification with pooled cross
sections could be preferable. However, we find that the data overwhelmingly reject the
null that the coefficients in model (1) are the same across countries.\footnote{For the sake of brevity we do not report the results of the tests, but those results are available upon request from the corresponding author.} Therefore, rather
than estimating a pooled panel which would in this case likely lead to biased estimates, we
estimate the model country-by-country and then consider the average impulse response
of the endogenous variables to a standardised contractionary monetary policy shock (i.e.,
a shock of the same magnitude to the equation for the 3-month interest rate).

In order to obtain the standard errors around the average impulse response to a mon-
eyary policy shock, we resort to a bootstrapping procedure.\footnote{Since the VAR residuals appear to be non normal in many countries, we choose a bootstrap rather than a Monte Carlo procedure.} That procedure works as
follows. We first estimate the models in (1) and save the model residuals, stacking them in
a single data group in order to allow for possible cross-country correlations in residuals to
be taken into account. We then repeat the procedure by adding the re-sampled residuals
to the endogenous variables, re-estimate the VAR models, compute the average impulse
responses, and store them. After repeating the procedure 1,000 times, we obtain a distri-
bution of average impulse responses, based on which we compute average and standard
error across bootstraps.

Figure 1 reports the group average impulse responses of private consumption, resi-
dential investment and the real house price to a monetary policy shock. The impulse
responses generally accord well with the conventional wisdom on the effects of a mon-
eyary policy shock. Both private consumption and residential investment fall temporarily
after the shock in the usual hump-shaped manner, and ultimately go back to the baseline.
The effect on residential investment is, on average, quicker and much larger at the peak
than the effect on private consumption, a result which has been already emphasised in
the literature, especially on US data (see, e.g., Erceg and Levin 2006). In addition, real
house prices fall in response to the shock, with this response also displaying an inertial
behavior.

We then turn to the key objective of this analysis, namely establishing whether the
transmission of monetary policy shocks is different across countries according to the degree
of development in their mortgage markets. In order to shed some light on this question we

divide the full group of 19 countries in two sub-groups according to several indicators of mortgage market development. First, we rank the countries according to their mortgage debt-to-GDP ratio and to the typical LTV ratio. In this way, we classify countries below the median country in the ranking as "low development" countries, and the remaining ones as "high development". As to the ability of engaging in mortgage refinancing and mortgage equity withdrawal (MEW), we divide the countries between those where this is possible (high development) and those where this is not possible (low development). Finally, we classify countries according to whether their mortgage debt structure is predominantly fixed rate or variable rate. Table 2 reports the chosen classification for all countries in our group. We choose to report results for a classification based on all the alternative indicators for this should arguably increase the robustness of our results.

Based on the above classification, we then study whether the transmission of a monetary policy shock is significantly different across sub-groups. We therefore compute the average impulse response to a standardised monetary policy in each sub-group. The results are reported in Figure 2 for private consumption, Figure 3 for residential investment, and Figure 4 for the real house price (standard errors are again computed based on the bootstrapping procedure described above). In each figure, the thick blue line refers to countries with either highly developed mortgage markets or variable rate mortgages, whereas the thin purple line to countries with either less developed markets or fixed rate mortgages. The general message is that there appears to be a strong difference between the two sub-groups as regards the response of the housing market-related variables, namely residential investment and the real house price: monetary policy exerts more powerful effects on housing markets in countries where the underlying mortgage market is more developed (according to our metric), and mortgages are mostly of the variable rate type. As regards consumption, the results are more mixed. On the one hand, countries where MEW is practiced and where the interest rate adjustment is predominantly of the variable rate type continue to show a significantly stronger impact of monetary policy shocks on consumption. On the other hand, the results for the loan to value ratio index and for the mortgage debt-to-GDP ratio do not show any significant differential effect.16

16 We conducted a series of sensitivity experiments, that, for the sake of brevity, we refrain from reporting here. Results were shown to be qualitatively robust to: (i) the exclusion of a time trend; (ii) dropping the time trend and adding the real price of oil as exogenous variable; (iii) computing generalized impulse responses; (iv) exclusion of time trend plus three autoregressive lags; (v) starting sample period
In order to formally test for the statistical significance of the differences in the mean impulse responses across the sub-groups, Table 3 reports such differences for consumption, residential investment and the real house price at 4, 8, 12 and 24 quarters ahead, together with a formal test of statistical significance, again derived using a bootstrapping procedure. To clarify, let $dX(k)$ be the absolute value of the average estimated impulse response of variable X at horizon k. Then each entry in Table 3 reports $dX(k)_{low} - dX(k)_{high}$ or $dX(k)_{fix} - dX(k)_{var}$, where, respectively, "low" and "high" stands for highly and lowly developed mortgage markets (with the degree of development measured across different indicators), and "fix" and "var" for fixed rate and variable rate contracts respectively. As can be seen in the Table, most of the differences between sub-group mean responses are negatively signed and often statistically significant, which - given the ordering of the two sub-groups - shows that on the whole monetary policy is relatively more powerful in countries with more developed mortgage markets and variable rate mortgages.

Two observations are relevant at this stage. First, a more structural investigation of the link between mortgage markets characteristics and the transmission of monetary policy shocks requires a theoretical framework. Second, the fact that private spending is more responsive to monetary impulses in economies with more developed credit/mortgage markets, at least according to some indicators, may be perceived as a puzzle. In principle, in a standard representative-agent model of the monetary transmission with free borrowing and lending, the structure of credit/mortgage markets should be immaterial for the effects of policy. In addition, a priori, one may believe that more developed financial markets would allow households to smooth consumption more efficiently, whereas our results point to a larger variability of consumption, at least conditional on monetary policy shocks.

In the following, we present a model in which a fraction of agents, in equilibrium, do not choose to behave as permanent-income consumers. Rather, for these agents, it is optimal to increase their borrowing in light of any given rise in income. Their access to credit is constrained by an endogenously determined limit. Thus, in a context where credit markets allow to convert asset values (e.g., housing) into borrowing and therefore consumption more easily, consumption itself should be in principle more responsive to underlying shocks. We describe our model in the next section.

in the mid 1980s; (vi) Spain classified as fixed-rate; (vii) exclusion of time trend and real exchange rate.
4 The model

The economy is composed of a continuum of households in the interval \((0, 1)\). As in Iacoviello (2005) and Campbell and Hercowitz (2004), there are two groups of households, named *borrowers* and *savers*, that we assume of measure \(\omega\) and \(1 - \omega\) respectively. Each group of households is endowed with one unit of time, so that an individual borrower and an individual saver are endowed with a fraction \(1/\omega\) and \(1/(1 - \omega)\) respectively. There are also *two sectors*, producing (non-durable) consumption goods and new *housing* respectively. In each sector there are competitive producers of a final good and monopolistic competitive producers of intermediate goods, with the latter hiring labour from both the borrowers and the savers. The two types of households feature heterogeneous preferences, with the borrowers being *more impatient* than the savers, implying that their marginal utility of consumption exceeds the marginal utility of saving.\(^{17}\) Both borrowers and savers derive utility from consumption of the non-durable final good and from housing services. Notice that debt accumulation reflects intertemporal equilibrium trading between the two agents. Borrowers are subject to a *collateral constraint*, with the borrowing limit tied to the value of the existing stock of housing.

4.1 Final good producers

In each sector \((j = c, h)\) a perfectly competitive final good producer purchases \(Y_{j,t}(i)\) units of intermediate good \(i\). The final good producer in sector \(j\) operates the production function:

\[
Y_{j,t} = \left(\int_0^1 Y_{j,t}(i)^{\varepsilon_{j,-1}} Y_{j,t}(i)^{\varepsilon_j} \, di \right)^{\varepsilon_j / \varepsilon_{j,-1}}
\]

where \(Y_{j,t}(i)\) is the quantity demanded of the intermediate good \(i\) by final good producer \(j\), and \(\varepsilon_j\) is the elasticity of substitution between differentiated varieties in sector \(j\). Notice, in particular, that in the housing sector \(Y_{h,t}(i)\) refers to expenditure in the *new* residential good \(i\) (rather than services). Maximization of profits yields demand functions for the typical intermediate good \(i\) in sector \(j\):

\(^{17}\)For previous examples of saver-borrower models, see Becker (1980), Becker and Foias (1987), Krusell and Smith (1998), Kiyotaki and Moore (1997).
\[Y_{j,t}(i) = \left(\frac{P_{j,t}(i)}{P_{j,t}} \right)^{-\varepsilon_j} Y_{j,t} \quad j = c, h \] (3)

for all \(i \). In particular, \(P_{j,t} \equiv \left(\int_0^1 P_{j,t}(i)^{1-\varepsilon_j} di \right)^{\frac{1-\varepsilon_j}{\varepsilon_j}} \) is the price index consistent with the final good producer in sector \(j \) earning zero profits.\(^{18}\)

4.2 Borrowers

A typical borrower consumes an index of consumption services of housing and non-durable final goods, defined as:

\[X_t = \left[(1 - \alpha)^{\frac{1}{\eta}} C_t^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} H_t^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} \] (4)

where \(C_t \) denotes (non-durable) consumption services, \(H_t \) denotes the stock of housing at the end of period \(t \), \(\alpha > 0 \) is the share of housing in the composite consumption index, and \(\eta > 0 \) is the elasticity of substitution between consumption and housing.\(^{19}\)

The borrower maximizes the following utility program:

\[E_0 \left\{ \sum_{t=0}^{\infty} \beta^t U(X_t, N_{c,t}, N_{h,t}) \right\} \] (5)

subject to the sequence of budget constraints (in nominal terms):

\[P_{c,t} C_t + P_{h,t} I_{h,t} + R_{m-1} B_{t-1} = B_t + W_{c,t} N_{c,t} + W_{h,t} N_{h,t} + T_t \] (6)

where \(I_{h,t} \equiv H_t - (1 - \delta)H_{t-1} \) is residential investment, \(B_t \) is end-of-period \(t \) nominal debt, and \(R_{m-1} \) is the nominal lending rate on debt contracts stipulated at time \(t - 1 \) with maturity \(m \). Furthermore, \(W_{j,t} \) is the nominal wage earned by the borrower in sector \(j \) (with \(j = c, h \)), and \(N_{j,t} \) is total hours supplied in sector \(j \). Finally \(T_t \) are net nominal government transfers.

\(^{18}\)Hence the problem of the final good producer \(j \) is: \(\max P_{j,t} Y_{j,t} - \int_0^1 P_{j,t}(i)Y_{j,t}(i) di \) subject to (2).

\(^{19}\)To define a utility-based aggregate price index one needs to assume the existence of an additional final good producer, whose task consists in assembling housing and consumption services via the production function (4). The price index consistent with maximization of profits by this producer would read:

\[P_t \equiv \left[(1 - \alpha) (P_{c,t})^{1-\eta} + \alpha (P_{h,t})^{1-\eta} \right]^{\frac{1}{1-\eta}} \]
In real terms (units of non-durable consumption), (6) reads

\[C_t + q_t(H_t - (1 - \delta)H_{t-1}) + \frac{R_{t-1}^m b_{t-1}}{\pi_{c,t}} = b_t + \frac{W_t}{P_{c,t}} N_t + \frac{T_t}{P_{c,t}} \]

(7)

where \(q_t \equiv P_{h,t}/P_{c,t} \) is the relative price of housing, and \(b_t \equiv B_t/P_{c,t} \) is real debt. Notice that, as a consequence of debt being predetermined in nominal terms, variations in inflation affect the real ex-post cost of debt service, and therefore borrower’s net worth.

Later we will work with the utility specification:

\[U(X_t, N_t) = \log(X_t) - \frac{v_c}{1 + \varphi} N_{c,t}^{1+\varphi} - \frac{v_h}{1 + \varphi} N_{h,t}^{1+\varphi} \]

(8)

where \(\varphi \) is the inverse of the wage elasticity of labor supply and \(v_j \) is a scale parameter.20

Variable vs. fixed rate Contracts The interest rate \(R_t^m \) on a mortgage contract of maturity \(m \) is related to the policy rates \(R_{t+k} \) \((k = 0, 1, 2, \ldots)\) via the term-structure equation:

\[R_t^m = \left(\sum_{k=0}^{m-1} \tau^k \right)^{-1} \sum_{k=0}^{m-1} \tau^k E_t \{ R_{t+k} \} \]

(9)

with \(\tau \in [0, 1] \).

In the case \(m = 1 \) the mortgage and the policy rate coincide. Mortgage contracts are typically multi-period. Multi-period loan contracts can be defined as at variable rate (i.e., contracts tied to the short-term policy rate), or at fixed rate (tied to a long-term interest rate) depending on the value of \(\tau \). For \(\tau = 0 \) the mortgage rate is perfectly indexed to the policy rate, while for \(\tau = 1 \) it is fixed to the \(m \)-period interest rate. We assume that the decision on who bears the interest rate risk (either the borrower or the saver) mainly reflects institutional factors which lie outside the scope of our model.21

20 Notice that each household is assumed to derive independent disutility from work in each sector. As a result, the nominal wage will not be equalized across sectors. This form of labor market segmentation is useful to dampen the substitution effect across sectors in response to relative price movements, which would otherwise tend to generate a counterfactual negative sectoral co-movement in response to aggregate monetary shocks.

21 See Campbell and Cocco (2003) for a normative analysis of the optimal choice between a variable rate and a fixed rate mortgage contract based on household-level risk management.
Collateral Constraint
Private borrowing is subject to a collateral constraint. At any time t, the amount that the borrower agrees to repay in the following period, $R_t B_t$, is tied to the expected future value of the housing stock (after depreciation):

$$ R_t B_t \leq (1 - \chi)(1 - \delta) E_t \{ H_t P_{h,t+1} \} $$ \hspace{1cm} (10)

where χ is the fraction of the housing value that cannot be used as a collateral. This type of constraint can be justified on the basis of limited enforcement. Since the borrower can run away with the assets in case of default, requiring a collateral ex-ante acts against that temptation. At the margin, the larger the expected realized value of the asset prevailing at the time of the loan repayment (i.e., $t + 1$), the larger is the lender’s willingness to extend credit in the current period. The reason is that in the event of default in time $t + 1$ the lender will be able to seize an asset whose value has increased over time. In this vein, an expected future housing appreciation contributes to expand the ability to borrow in the current period.

One can think of parameter χ as the down-payment rate (or inverse LTV ratio) required at the beginning of the loan contract (time t), therefore representing a direct measure of the flexibility of the mortgage market (Jappelli and Pagano 1989). As already discussed above, the value of χ may reflect legal and regulatory constraints changing across countries (see Table 1). Notice, though, that loan contracts extend for one period in our environment. Hence parameter χ can be broadly interpreted as measuring the ability of extracting equity from the value of the house during the life span of the mortgage: in other words, it can be interpreted also as a measure of mortgage equity withdrawal (MEW), or of the lenders’ willingness to extend home equity lines of credit.\footnote{Kiyotaki and Moore (1997), Kocherlakota (2000).}

Given initial values $\{ b_{-1}, H_{-1} \}$, the borrower chooses $\{ N_{jt}, b_t, H_t, C_t \}$ to maximize (5) subject to (7) and (10). By defining λ_t and $\lambda_t \psi_t$ as the multipliers on constraints (7) and (10) respectively, and $U_{x,t}$ as the marginal utility of variable $x = C, N_j, H$, efficiency conditions for the above program read:

\footnote{Technically speaking a measure of MEW should be based on the realized difference between the current value of the house and the debt principal still due, rather than be based on the expected realized market value of the house. The results, however, would not be qualitatively altered in our setting if we were to adopt the former specification.}
\[
-\frac{U_{n,j,t}}{U_{c,t}} = \frac{W_{j,t}}{P_{c,t}} \quad j = c, h
\]
(11)

\[U_{c,t} = \lambda_t\]
(12)

\[q_t U_{c,t} = U_{h,t} + \beta(1 - \delta)E_t \{U_{c,t+1}q_{t+1}\} + (1 - \chi)(1 - \delta)U_{c,t}q_t \psi_t E_t \{\pi_{h,t+1}\}\]
(13)

\[R_t \psi_t = 1 - \beta E_t \left\{\frac{U_{c,t+1}}{U_{c,t}} \frac{R_t}{\pi_{c,t+1}}\right\}\]
(14)

4.2.1 Interpretation

Equations (11) govern the consumption/leisure margin in each sector, while (12) equates the marginal utility of consumption to the shadow value of the flow budget constraint (6). Equation (13) is an intertemporal condition driving the choice between housing and consumption. It requires the borrower to equate the marginal utility of current consumption (left-hand side) to the marginal gain of housing services (right-hand side). The latter depends on three components: (i) the direct utility gain of an additional unit of housing; (ii) the expected utility of expanding future consumption by means of the realized resale value of a new unit of housing purchased in the previous period; (iii) the marginal utility stemming from the possibility of using housing in the form of collateral. Notice that the latter component (which is critical in our analysis) is proportional to the shadow value of borrowing \(\psi_t\), with that component disappearing when \(\psi_t = 0\), i.e., when the collateral constraint is not binding.

Equation (14) is a modified version of an Euler equation. Indeed it reduces to a standard Euler condition in the case of \(\psi_t = 0\) for all \(t\). This condition is basically stating that when the collateral constraint is binding (\(\psi_t > 0\)), the borrower’s marginal utility of consumption exceeds the marginal utility of saving (i.e., of shifting consumption intertemporally).

Integrating both (13) and (14) forward, and combining, we can express the margin between consumption and housing in more compact form as:
\[U_{c,t}q_t = V_t + \Omega_t \] \hspace{1cm} (15)

where

\[V_t \equiv E_t \left\{ \sum_{j=0}^{\infty} [\beta(1-\delta)]^j U_{h,t+j} \right\} \]

and

\[\Omega_t \equiv (1-\chi)(1-\delta)E_t \left\{ \sum_{j=0}^{\infty} [\beta(1-\delta)]^j U_{c,t+j}q_{t+j}E_t \{ \pi_{h,t+j+1} \} \right\} \]

The above equation illustrates the channel linking housing collateral and consumption. The right hand side of (15) has two components, \(V_t \) and \(\Omega_t \). The first is the present discounted value of the current and future marginal utility of housing. Recall that the stock-flow ratio of housing is extremely high, hence the term \(V_t \) behaves very smoothly in response to shocks, and especially if those shocks are temporary in nature as monetary policy ones. Intuitively, the marginal increment in utility of a new unit of housing is small relatively to the underlying existing stock. Notice also that under perfect capital markets \(V_t \) would be the only component of the marginal utility of housing. The second term on the right hand side of (15), \(\Omega_t \), depends on current and future values of the shadow value of borrowing \(\psi_t \). Monetary policy has a direct effect on \(\Omega_t \) by altering the cost of servicing the debt, and therefore the shadow value of borrowing.

Next consider equation (15): if \(V_t \) is quasi constant, and even in the case of purely flexible prices in both sectors (so that the relative price \(q_t \) is constant in response to aggregate shocks), any effect on the shadow value of borrowing will affect the marginal utility of consumption. Suppose monetary policy tightens: this will generate a rise in the current and future values of \(\psi_t \), and therefore a rise in \(\Omega_t \). In turn, via (15), this will raise the marginal utility consumption and, in equilibrium, generate a fall in consumption. In addition, movements in the relative price of housing help to strengthen this channel: for instance, if the current and future real price of housing falls, the value of collateral shrinks proportionally, thereby affecting current borrowing and consumption.
4.3 Savers

We assume that the savers are the owners of the monopolistic firms in each sector. A typical saver maximizes the utility program

$$ E_0 \left\{ \sum_{t=0}^{\infty} \gamma^t U(\text{\textbar X}_t, \text{\textbar N}_{c,t}, \text{\textbar N}_{h,t}) \right\} \tag{16} $$

where

$$ \text{\textbar X}_t \equiv \left[(1 - \alpha) \frac{1}{\eta} \text{\textbar C}_t + \alpha \frac{1}{\eta} \text{\textbar H}_t \right]^{\frac{\eta}{\eta-1}} \tag{17} $$

Importantly, the discount rate γ is such that $\gamma > \beta$. The saver’s sequence of budget constraints reads (in nominal terms):

$$ P_{c,t} \text{\textbar C}_t + P_{h,t} (\text{\textbar H}_t - (1 - \delta) \text{\textbar H}_{t-1}) + R_{m,t} \text{\textbar B}_{t-1} = \text{\textbar W}_{c,t} \text{\textbar N}_{c,t} + \text{\textbar W}_{h,t} \text{\textbar N}_{h,t} + \text{\textbar B}_t + \sum_j \text{\textbar \Gamma}_{j,t} \tag{18} $$

where $\text{\textbar W}_{j,t}$ is the nominal wage rate paid to the saver in sector j, and $\text{\textbar \Gamma}_{j,t}$ are nominal profits from the holding of monopolistic competitive firms in sector j.

Efficiency conditions for the saver’s program read:

$$ \frac{-\text{\textbar U}_{n_{j,t}}}{\text{\textbar U}_{c,t}} = \frac{\text{\textbar W}_{j,t}}{P_{c,t}} \quad j = c, h \tag{19} $$

$$ \text{\textbar U}_{c,t} = \gamma E_t \left\{ \frac{\text{\textbar U}_{c,t+1}}{P_{c,t+1}} R_{m,t} \right\} \tag{20} $$

$$ q_t = \frac{\text{\textbar U}_{h,t}}{\text{\textbar U}_{c,t}} + \gamma (1 - \delta) E_t \left\{ \frac{\text{\textbar U}_{c,t+1}}{\text{\textbar U}_{c,t}} q_{t+1} \right\} \tag{21} $$

The interpretation of the above efficiency conditions is standard. In fact, those conditions can be derived as a particular case of (11), (12), and (13) when $\psi_t = 0$ for all t, and $\gamma = \beta$.
4.4 Production and pricing of intermediate goods

Intermediate-good firm \(i \) in sector \(j \) hires labor to operate the following production function:

\[
Y_{j,t}(i) = L_{j,t}(i) \tag{22}
\]

where \(L_{j,t}(i) \) is total labor employed by firm \(i \) in sector \(j \).

Each firm \(i \) has monopolistic power in the production of its own variety and therefore has leverage in setting the price. In so doing it faces a quadratic cost proportional to output, and equal to:

\[
\frac{\vartheta_j}{2} \left(\frac{P_{j,t}(i)}{P_{j,t-1}(i)} - 1 \right)^2 Y_{j,t} \tag{23}
\]

where the parameter \(\vartheta_j \) measures the degree of sectoral nominal price rigidity. The higher \(\vartheta_j \), the more sluggish the adjustment of nominal prices in sector \(j \). For \(\vartheta_j = 0 \) prices are flexible.

The problem of each monopolistic firm is to choose the sequence \(\{N_{j,t}(i), P_{j,t}(i)\}_{t=0}^{\infty} \) to maximize expected discounted nominal profits:

\[
E_0 \left\{ \sum_{t=0}^{\infty} \Lambda_{j,t} \left(P_{j,t}(i)Y_{j,t}(i) - W_{j,t}L_{j,t}(i) - \frac{\vartheta_j}{2} \left(\frac{P_{j,t}(i)}{P_{j,t-1}(i)} - 1 \right)^2 P_{j,t}Y_{j,t} \right) \right\} \tag{24}
\]

subject to (22). In (24), \(\Lambda_{j,t} \equiv \gamma E_t \left\{ \tilde{\lambda}_{t+1}/\tilde{\lambda}_t \right\} \) is the saver’s stochastic discount factor, and \(\tilde{\lambda}_t \) is the saver’s marginal utility of nominal income.

Let’s denote by \(P_{j,t}(i)/P_{j,t} \) the relative price of variety \(i \) in sector \(j \). In a symmetric equilibrium in which \(P_{j,t}(i)/P_{j,t} = 1 \) for all \(i \) and \(j \), and all firms employ the same amount of labor in each sector, the first order condition of the above problem reads:

\[
((1 - \varepsilon_j) + \varepsilon_j mc_{j,t}) = \vartheta_j (\pi_{j,t} - 1) \pi_{j,t} \tag{25}
- \vartheta_j E_t \left\{ \frac{\Lambda_{j,t+1}}{\Lambda_{j,t}} \frac{P_{j,t+1}}{P_{j,t}} \frac{Y_{j,t+1}}{Y_{j,t}} \left(\pi_{j,t+1} - 1 \right) \pi_{j,t+1} \right\} \quad (j = c, h)
\]

where \(\pi_{j,t} = P_{j,t}/P_{j,t-1} \) is the gross inflation rate in sector \(j \), and \(mc_{j,t} \) is the real marginal cost in sector \(j \).
Optimal choice of the labor input implies that the real marginal cost in sector j reads:

$$mc_{j,t} = \frac{W_{j,t}}{P_{j,t}}$$ \hspace{1cm} (26)

Finally, sectoral inflation and relative prices are related as follows:

$$\frac{\pi_{h,t}}{\pi_{c,t}} = \frac{q_t}{q_{t-1}}$$ \hspace{1cm} (27)

4.5 Market clearing

Equilibrium in the goods market of sector $j = c, h$ requires that the production of the final good be allocated to total households’ expenditure and to resource costs originating from the adjustment of prices:

$$Y_{c,t} = \omega C_t + (1 - \omega)\tilde{C}_t + \frac{\varphi}{2} (\pi_{c,t} - 1)^2 Y_{c,t}$$ \hspace{1cm} (28)

$$Y_{h,t} = \omega (H_t - (1 - \delta)H_{t-1}) + (1 - \omega) \left(\tilde{H}_t - (1 - \delta)\tilde{H}_{t-1} \right) + \frac{\varphi}{2} (\pi_{d,t} - 1)^2 Y_{d,t}$$ \hspace{1cm} (29)

where

$$Y_{j,t} \equiv \int_0^1 Y_{j,t}(i) \, di \quad j = c, h$$

Equilibrium in the debt and labor market requires respectively

$$\omega B_t + (1 - \omega)\tilde{B}_t = 0$$ \hspace{1cm} (30)

$$L_{j,t} = \omega N_{j,t}(i) + (1 - \omega)\tilde{N}_{j,t}(i) \quad j = c, h$$ \hspace{1cm} (31)

4.6 Monetary policy

We assume that monetary policy is conducted by means of an interest rate reaction function, constrained to be linear in the logs of the relevant arguments:
\[
\ln \left(\frac{R_t}{R} \right) = (1 - \phi_r) \phi_t \ln \left(\frac{\pi_{j,t}}{\pi} \right) + \phi_t \ln \left(\frac{R_{t-1}}{R} \right) + \zeta_t
\]

(32)

where \(R_t \) is the short-term policy rate, and \(\zeta_t \) is a policy shock evolving as:

\[
\zeta_t = \rho \zeta_{t-1} + u_t
\]

with \(u_t \sim i.i.d. \), with mean zero and variance \(\sigma_u^2 \). Our baseline assumption is to employ a version of (32) in which \(\pi_{j,t} = \pi_{c,t} \), although the results will not be sensitive to specifying rules in which the inflation index is the CPI.

5 The channels of monetary policy transmission

Relative to a standard monetary NK framework with perfect financial markets, monetary policy works via three novel channels in this framework. We label those channels (i) nominal-debt effect, (ii) collateral-constraint effect, and (iii) asset-price effect, respectively. Although these channels are clearly interrelated in the general equilibrium, it is helpful, for expositional purposes, to consider them distinctively.

Consider a monetary policy contraction, in the form of an interest rate hike: first, this produces a fall in inflation and therefore a rise in the real service cost of debt, which is predetermined in nominal terms at time \(t \). This effect is akin to a negative income effect via the borrower’s budget constraint. We feature this as an independent channel because, in principle, it would be at work also in the absence of a collateral constraint.

Second, the policy tightening works via the collateral constraint. The rise in the nominal interest rate induces a rise in the shadow value of borrowing both directly (via a mechanical fall in debt \(B_t \) in equation 10) and indirectly, via a heightened future service cost of debt. The rise in the shadow value of borrowing, in turn, induces a fall in consumption via the channel described in equation (15).

Finally, movements in the real price of housing \(q_t \) also affect the transmission of monetary policy shocks, by affecting the (expected) value of the housing stock that can be used as a collateral. Fluctuations in that value affect the tightness of the collateral constraint.
In our two-sector model, however, this effect is operative only in the case of asymmetric price stickiness. With prices flexible or equally sticky in both sectors, in fact, real house prices would remain unchanged in response to a monetary policy shock. Under our baseline assumption that house prices are flexible and consumption prices sticky, however, a policy tightening will induce a fall in the real house price, thereby inducing (all else equal) a depreciation of the collateral value and a further tightening of the collateral constraint. In turn, this will induce a fall in the demand for borrowing, and therefore a fall in the demand for housing, which will further depress its relative price, all in a self-reinforcing fashion. In this respect, this asset price channel works by strengthening the collateral channel. In equation (15), in fact, a fall in \(q_t \) requires an even larger increase in the marginal utility of consumption in order to match any given variation in the tightness of the collateral constraint represented by the right-hand side of (15).

This interpretation of the channels at work clarifies the role of the institutional features of mortgage markets. First, a lower value of \(\chi \), representing a more flexible/developed mortgage market, implies that a larger variation in consumption is needed to satisfy (15) for any given variation in \(\psi_t \) (i.e., for any given impact on the tightness of the collateral constraint). Intuitively, in light of a policy tightening, a more flexible mortgage market entails that credit to households will be reduced more rapidly, with this effect translating proportionally into a variation in consumption. Second, any given variation of the short-term interest rate will be passed-through to mortgage rates more rapidly if the structure of mortgage contracts is at variable rate. This pass-through effect, in turn, will be larger in those economies with low \(\chi \) mortgage contracts.

6 Dynamic simulations

In this section we evaluate the transmission of monetary policy shocks. We begin by illustrating how the role of borrowers and of a collateral constraint alter the equilibrium dynamics relative to a baseline NK model. We then analyze how the transmission of monetary policy shocks is affected by two key institutional features: (i) the down-payment rate \(\chi \); (ii) the interest-rate mortgage structure (fixed vs. variable debt contract)
6.1 Calibration

We resort to the following calibration. Time is in quarters. We set the quarterly discount rate $\gamma = 0.99 > \beta = 0.98$. The annual real interest rate is pinned down by the saver’s patience rate and is equal to 4%. The annual physical depreciation rate for housing is generally low, and around 1% per year. Therefore we set $\delta = 0.01/4$ as a baseline value. The elasticity of substitution between varieties is set to 7.5 in both sectors, which yields a steady-state mark-up of 20%.

We assume throughout that house prices are flexible. This assumption is not without controversy. For one, as argued in Barsky et al. (2007), house prices, unlike consumption prices, are largely subject to negotiation upon transactions, so it could be plausible that they are relatively more flexible. At the same time, there is evidence that house prices are subject to a large degree of predictability (see Glaeser and Gyourko 2007), both upward and downward. Our results, however, do not hinge critically on this assumption.

We set the stickiness parameter for consumer prices equal to a benchmark value of $\vartheta_c = 75$. To pin down this value we proceed as follows. Let θ be the probability of not resetting prices in the standard Calvo-Yun model. We parameterize $1/1 - \theta = 4$, which implies $\theta = 0.75$, and therefore an average frequency of price adjustment of one year. This value is roughly in line with the micro-based evidence for European countries summarized in Alvarez et al. (2006) and Angeloni et al. (2006). Log-linearization of (25) around a zero-inflation steady state (in the consumption sector) yields a slope of the Phillips curve equal to $(\varepsilon_c - 1)/\vartheta_c$, whereas the slope of the Phillips curve in the Calvo-Yun model reads $(1 - \theta)(1 - \beta \theta)/\theta$. Setting the elasticity ε_c equal to 7.5, which implies a steady-state markup of 15 percent, the resulting stickiness parameter satisfies $\vartheta_c = \theta(\varepsilon_c - 1)/(1 - \theta)(1 - \beta \theta) \approx 75$.

The current share of housing and housing-related expenditure is about 10% on average in the euro area. However, by adding owner-occupied housing that number would increase to 17.5%. Since we do not have rents in the model, we calibrate the share α in order to match the expenditure for owner-occupied housing. The latter value is estimated as being 7.5% in the euro area and 24% in the US, although statistical methodologies differ substantially. We choose to pick an intermediate value of $\alpha = 16\%$. The down-payment rate is set at $\chi = 0.3$ in the baseline calibration, a value which is close to the euro area average, corresponding to a LTV ratio of about 0.7 (see Table 1). Below, however, we
experiment with alternative values of this parameter. As to monetary policy, we set
the Taylor rule parameters $\phi_p = 1.5$ and $\phi_r = 0$, and the persistence of the monetary
policy innovation $\rho_r = 0.7$. Throughout we assume that (i) durable prices are flexible;
(ii) the elasticity of substitution η equals 1 (which implies Cobb-Douglas preferences in
consumption and housing services); (iii) the monetary policy rule features a reaction to
consumption price inflation.24

6.2 The role of the collateral constraint

We begin by describing the general features of the monetary transmission in our setup.
Figure 5 depicts the effect on selected per capita variables of a 25 basis point rise in
the nominal (policy) interest rate. Solid lines and dashed lines denote respectively the
borrower’s and the saver’s choice variables.

In this exercise, we set the share of borrowers to a baseline value of $\omega = 0.5$. Notice,
first, that the monetary policy tightening induces a rise in the shadow value of borrowing
ψ_t. This in turn induces a contractionary effect on borrower’s consumption (collateral-
constraint effect). Since house prices are flexible (and consumption prices sticky), the
policy tightening induces also a fall in the real house price q_t, which in turn reduces directly
the collateral value, further contributing to a tightening of the borrowing conditions (asset-
price effect). As a result, real household debt falls, the demand for housing services drops
on impact and then starts to gradually revert back towards the steady state.

To better understand why, despite prices being flexible in that sector, the demand for
housing services and therefore residential investment both fall, it is useful to notice that
a policy tightening increases the user cost of housing. The user cost is the key intertem-
poral price that drives the relative demand of housing vs. consumption. Condition (13)
requires the marginal rate of substitution between housing and consumption, $U_{h,t}/U_{c,t}$, to
be equated to the user cost (Z_t), which in this case reads:

$$Z_t \equiv q_t [1 - (1 - \chi)(1 - \delta)\psi_tE_t \{\pi_{d,t+1}\}] - \beta(1 - \delta)E_t \left\{ \frac{U_{c,t+1}}{U_{c,t}}q_{t+1} \right\}$$

The user cost depends positively on the current relative price of housing but inversely
on the future price. Intuitively, expected capital gains on the holding of housing decrease

24All our results do not hinge on these assumptions in any significant way.
the current user cost. A typical feature of the model with a collateral constraint is that the user cost depends not only on the dynamic of q_t but also on the shadow value of borrowing ψ_t. In particular, one can show that a rise in the shadow value of borrowing generally induces a rise in the user cost.\footnote{See Monacelli (2008) for an analysis on this point referred to durable goods consumption.} The figure makes clear that, under a collateral constraint, fluctuations in the shadow value of borrowing overwhelmingly drive the user cost. As a result, a policy tightening induces a rise in the user cost, a fall in the relative demand for housing services, and a fall in residential investment.

The figure shows also the response of consumption by a typical saver (dashed lines). Recall that the savers are standard permanent-income agents. Two competing effects drive their demand. For one, a positive income shock, which is the counterpart of the negative income shock for the borrowers. This effect leads the savers to increase both consumption and housing services. However, the rise in the real interest rate makes them substitute consumption intertemporally, so that, on balance, savers’ consumption is less responsive than borrowers’ consumption. At the same time, since the relative price of housing falls, the savers increase their demand for housing services. For these agents, in fact, the relevant user cost of housing is the one prevailing in the absence of any collateral constraint, and therefore it depends heavily on the behavior of the (intratemporal) relative price of housing q_t (and not on ψ_t).

6.2.1 Varying the down-payment rate and the interest rate structure

Figure 6 depicts the effect on aggregate consumption and residential investment of varying the down-payment rate χ. We continue to assume a variable interest rate mortgage structure. We consider three cases for parameter χ: 0.05, 0.1, 0.3. This range of values approximately spans the gap between LTV ratios that have been common in the US in the last few years (arguably before the onset of the financial crisis) and average European ones.

Two results stand out. First, as in the data, the response of residential investment is significantly larger than the one of consumption. Intuitively, each household tries, in response to the policy shock, to smooth the response of both consumption and the housing stock (although this smoothing ability is limited by the presence of the borrowing constraint). Given that the stock-flow ratio of housing is particularly high, the elasticity
of residential investment (i.e., of the housing expenditure flow) to interest rate changes is particularly high. Second, the response of both variables is amplified by a smaller down-payment rate. As suggested above, a lower down-payment rate increases, all else equal, the sensitivity of borrowing to changes in the value of the collateral. A more rapid contraction of borrowing leads to a more rapid contraction of both consumption and housing services, and in turn of residential investment.

Figure 7 displays the effect of varying the interest-rate mortgage structure (which, in practice, corresponds to the degree of interest rate pass-through). We analyze two cases. The first case considers a debt structure in which the mortgage rate is freely linked to the short-term policy rate (variable rate, $R_{mt} = R_t$ for all t, or alternatively $\tau = 0$ in equation (9)). The second case is a limit case of a fixed rate mortgage structure. This is approximated by considering the variant of the term structure equation (9) for $\tau \rightarrow 1$, with maturity m extending to a limit case of an infinite number of periods. In each case, we compare the effect of varying the interest rate structure under alternative values of parameter χ. We wish to highlight, in fact, that also the interaction of different institutional characteristics of the mortgage market is potentially relevant.

When the down-payment rate χ is low ($\chi = 0.05$, upper panel), a variable rate contract structure significantly amplifies the responses of both consumption and residential investment relative to the fixed rate case. When the down-payment is high, though, ($\chi = 0.3$, upper panel) the effect of moving from a fixed to a variable rate structure is significantly dampened. Intuitively, even if the pass-through from policy rates to mortgage rates is high (as under variable rate contracts) when the ability to borrow remains limited because of low LTV ratios, the interest rate structure of the mortgage matters relatively less.26

Notice, however, that in all cases a fixed rate structure does not necessarily imply that consumption is unresponsive on impact. In this case, a policy tightening is still generating both a nominal-debt and a collateral-constraint effect (via a fall in the relative price of housing, which in turn depressed borrowing capability). With real house prices returning back to baseline, then, the effect on consumption is quickly reversed in the case of a fixed rate mortgage structure, whereas it continues to persist under a variable rate structure.

26This result may vary, though, in a context in which multi-period contracts are specified. Namely, if the ability to extract borrowing is influenced by the LTV ratio only at the beginning of the contract, during the maturity of the loan the interest rate ratio only at the beginning of the contract, during the maturity of the loan the interest rate structure may continue to affect disposable income significantly. In our context this is not feasible, for debt contracts are renewed in every period.
7 Conclusions

We have studied the role of housing finance for the transmission of monetary policy on consumption, residential investment and house prices in a sample of industrialized countries. We have provided evidence that, according to a wide set of indicators, such structure varies significantly across industrialized countries. We have then shown that residential investment and house prices are usually more responsive to policy shocks in those countries with more developed/flexible mortgage markets. As for consumption, it is really two indicators that matter: the possibility (or lack thereof) of mortgage equity release and the prevailing interest rate structure of mortgage contracts. We have then built a DSGE model of the monetary transmission with three non-standard features: (i) two sectors; (ii) heterogeneity in patience rates; (iii) a collateral constraint on borrowing. We have shown that the response of consumption and residential investment to monetary policy shocks is affected by alternative values of two institutional parameters of mortgage markets: the down-payment rate, and the interest-rate mortgage structure (variable vs. fixed interest rate). In particular, the model can rationalize the evidence that private consumption is more responsive to monetary impulses in economies with more developed/flexible mortgage markets, somewhat in contrast with the presumption that more developed mortgage (credit) markets should be conducive to more efficient consumption-smoothing.

There are several issues that have remained unexplored in this work and that it would be interesting to pursue in future research. First, providing a full estimation of the model. Recent work by Iacoviello and Neri (2008) is an interesting step in this direction. Second, introducing an endogenous choice by the households between variable and fixed rate mortgage contracts. Third, studying how the optimal conduct of monetary policy varies according to the characteristics of mortgage markets, and in particular in the context of a currency area (such as the euro area) in which the heterogeneity of mortgage market institutions remains widespread.
References

<table>
<thead>
<tr>
<th>Country</th>
<th>Mortgage debt to GDP ratio (2004)</th>
<th>Typical loan to value ratio</th>
<th>Interest rate adjustment a)</th>
<th>Typical duration (years)</th>
<th>Equity release products</th>
<th>IMF mortgage market index b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>74%</td>
<td>80%</td>
<td>Mainly V</td>
<td>25</td>
<td>Used</td>
<td>0.69</td>
</tr>
<tr>
<td>Austria</td>
<td>20%</td>
<td>60%</td>
<td>F(75%) V(25%)</td>
<td>25</td>
<td>Not used</td>
<td>0.31</td>
</tr>
<tr>
<td>Belgium</td>
<td>28%</td>
<td>83%</td>
<td>F(75%) M(19%) V(6%)</td>
<td>20</td>
<td>Not used</td>
<td>0.34</td>
</tr>
<tr>
<td>Canada</td>
<td>43%</td>
<td>75%</td>
<td>F and M(92%) V(8%)</td>
<td>25</td>
<td>Used</td>
<td>0.57</td>
</tr>
<tr>
<td>Denmark</td>
<td>85%</td>
<td>80%</td>
<td>F (75%) M(10%) V (15%)</td>
<td>30</td>
<td>Used</td>
<td>0.82</td>
</tr>
<tr>
<td>Finland</td>
<td>27%</td>
<td>75%</td>
<td>F(2%) V(97%) Other(1%)</td>
<td>17</td>
<td>Used</td>
<td>0.49</td>
</tr>
<tr>
<td>France</td>
<td>26%</td>
<td>75%</td>
<td>F/M/Other(86%) V(14%)</td>
<td>15</td>
<td>Not used</td>
<td>0.23</td>
</tr>
<tr>
<td>Germany</td>
<td>43%</td>
<td>70%</td>
<td>Mainly F and M</td>
<td>25</td>
<td>Not used</td>
<td>0.28</td>
</tr>
<tr>
<td>Ireland</td>
<td>50%</td>
<td>70%</td>
<td>V(70%) Rest mostly M</td>
<td>20</td>
<td>Limited use</td>
<td>0.39</td>
</tr>
<tr>
<td>Italy</td>
<td>13%</td>
<td>50%</td>
<td>F(28%) Rest mainly M</td>
<td>15</td>
<td>Not used</td>
<td>0.26</td>
</tr>
<tr>
<td>Japan</td>
<td>36%</td>
<td>70-80%</td>
<td>F(36%) M and V(64%)</td>
<td>25</td>
<td>Not used</td>
<td>0.39</td>
</tr>
<tr>
<td>Netherlands</td>
<td>68%</td>
<td>90%</td>
<td>F(74%) M(19%) V(7%)</td>
<td>30</td>
<td>Used</td>
<td>0.71</td>
</tr>
<tr>
<td>New Zealand</td>
<td>80%</td>
<td>60%</td>
<td>Mainly F</td>
<td>25</td>
<td>Used</td>
<td>NA</td>
</tr>
<tr>
<td>Norway</td>
<td>54%</td>
<td>70%</td>
<td>Mainly V</td>
<td>17</td>
<td>Used</td>
<td>0.59</td>
</tr>
<tr>
<td>Spain</td>
<td>40%</td>
<td>70%</td>
<td>V(≥75%) Rest mainly M</td>
<td>20</td>
<td>Limited use</td>
<td>0.40</td>
</tr>
<tr>
<td>Sweden</td>
<td>35%</td>
<td>80%</td>
<td>F(38%) M(24%) V(38%)</td>
<td>25</td>
<td>Used</td>
<td>0.66</td>
</tr>
<tr>
<td>Switzerland</td>
<td>116%</td>
<td>66%</td>
<td>Mainly V</td>
<td>NA</td>
<td>Not used</td>
<td>NA</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>74%</td>
<td>80-90%</td>
<td>M(28%) V(72%)</td>
<td>25</td>
<td>Used</td>
<td>0.58</td>
</tr>
<tr>
<td>United States</td>
<td>69%</td>
<td>80%</td>
<td>F(85%) M(15%)</td>
<td>30</td>
<td>Used</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Notes: a) Breakdown of new loans by type. Fixed (F): Interest rate fixed for more than five years or until expiry; Mixed (M): Interest rate fixed between one and five years; Variable (V): Interest rate renegotiable after one year or tied to market rates or adjustable at the discretion of the lender. b) The IMF index is a composite indicator (between 0 and 1) of the degree of development and completeness of a national mortgage market; a higher value indicates a higher degree of market development and completeness.

TABLE 2. Classification of countries according to mortgage market development indicators

<table>
<thead>
<tr>
<th>Country</th>
<th>Mortgage to GDP ratio</th>
<th>IMF mortgage index</th>
<th>Loan to value ratio</th>
<th>MEW</th>
<th>Fixed (F) or variable (V) rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>V</td>
</tr>
<tr>
<td>Austria</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>F</td>
</tr>
<tr>
<td>Belgium</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>no</td>
<td>F</td>
</tr>
<tr>
<td>Canada</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>no</td>
<td>F</td>
</tr>
<tr>
<td>Denmark</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>F</td>
</tr>
<tr>
<td>Finland</td>
<td>low</td>
<td>low</td>
<td>high</td>
<td>yes</td>
<td>V</td>
</tr>
<tr>
<td>France</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>F</td>
</tr>
<tr>
<td>Germany</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>F</td>
</tr>
<tr>
<td>Ireland</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>V</td>
</tr>
<tr>
<td>Italy</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>V</td>
</tr>
<tr>
<td>Japan</td>
<td>low</td>
<td>high</td>
<td>low</td>
<td>no</td>
<td>V</td>
</tr>
<tr>
<td>Netherlands</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>F</td>
</tr>
<tr>
<td>New Zealand</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>F</td>
</tr>
<tr>
<td>Norway</td>
<td>high</td>
<td>high</td>
<td>low</td>
<td>yes</td>
<td>V</td>
</tr>
<tr>
<td>Spain</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>no</td>
<td>V</td>
</tr>
<tr>
<td>Sweden</td>
<td>low</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>F</td>
</tr>
<tr>
<td>Switzerland</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>no</td>
<td>V</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>V</td>
</tr>
<tr>
<td>United States</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>yes</td>
<td>F</td>
</tr>
</tbody>
</table>

Note: See Table 1 for further reference.
TABLE 3. Test of the difference in means between impulse responses to a standardised contractionary monetary policy shock in country sub-groups: (i) lowly vs. highly developed mortgage markets; (ii) fixed vs. variable interest rate structure.

<table>
<thead>
<tr>
<th>Quarters after shock</th>
<th>Loan to value ratio</th>
<th>Mortgage to GDP ratio</th>
<th>MEW</th>
<th>Interest rate adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0005**</td>
<td>0.0008**</td>
<td>0.0000</td>
<td>-0.0009**</td>
</tr>
<tr>
<td>8</td>
<td>0.0002*</td>
<td>0.0007**</td>
<td>-0.0003**</td>
<td>-0.0012**</td>
</tr>
<tr>
<td>12</td>
<td>0.0000</td>
<td>0.0004**</td>
<td>-0.0004**</td>
<td>-0.0012**</td>
</tr>
<tr>
<td>24</td>
<td>-0.0003**</td>
<td>-0.0001</td>
<td>-0.0002**</td>
<td>-0.0008**</td>
</tr>
<tr>
<td>Residential investment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.0003</td>
<td>-0.0016**</td>
<td>-0.0018**</td>
<td>-0.0030**</td>
</tr>
<tr>
<td>8</td>
<td>0.0000</td>
<td>-0.0017**</td>
<td>-0.0035**</td>
<td>-0.0035**</td>
</tr>
<tr>
<td>12</td>
<td>0.0005</td>
<td>-0.0003</td>
<td>-0.0018**</td>
<td>-0.0047**</td>
</tr>
<tr>
<td>24</td>
<td>0.0006</td>
<td>-0.0010</td>
<td>-0.0004**</td>
<td>-0.0052**</td>
</tr>
<tr>
<td>Real house price</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-0.0050**</td>
<td>-0.0014**</td>
<td>-0.0050**</td>
<td>-0.0015**</td>
</tr>
<tr>
<td>8</td>
<td>-0.0030**</td>
<td>-0.0004**</td>
<td>-0.0041**</td>
<td>-0.0040**</td>
</tr>
<tr>
<td>12</td>
<td>-0.0010</td>
<td>0.0001</td>
<td>-0.0021**</td>
<td>-0.0047**</td>
</tr>
<tr>
<td>24</td>
<td>0.0005</td>
<td>-0.0010*</td>
<td>0.0010</td>
<td>-0.0026**</td>
</tr>
</tbody>
</table>

Note: ** and * denote statistical significance at the 95% and 90% confidence level respectively. The null hypothesis is no difference in the average impulse response between the two groups. The table reports the differences, at each selected horizon, in the impulse responses to a standardised contractionary monetary policy shock. Let dX(k) be the absolute value of the average estimated impulse response of variable X at horizon k. Then each entry reports dX(k)_low - dX(k)_high or dX(k)_fixed - dX(k)_var, where, respectively, "low" and "high" stands for highly and lowly developed mortgage markets, and "fixed" and "var" for fixed rate and variable rate contracts. The groups include the same number of countries for all four criteria.
FIGURE 1. Mean group impulse responses to a contractionary monetary policy shock.

Residential investment

Private consumption

Real house price

Note: See text for further explanations. The same VAR model is estimated country-by-country over the sample period 1980:Q1 to 2007:Q4. The figures report the cross-sectional average impulse response over 19 countries to a standardised monetary policy shock and 2 standard error bands computed by making 1,000 bootstraps with joint re-sampling.
FIGURE 2. Sub-group mean impulse responses of private consumption to a contractionary monetary policy shock: mortgage market development indicators

Note: See text for further explanations. The same VAR model is estimated country-by-country over the sample period 1980:Q1 to 2007:Q4 (or closest depending on data availability in each country). The full group of 19 countries is split approximately in half where each country is classified as having a “high developed” or “low developed” mortgage market according to the ranking in the four considered indicators. In particular, countries with (i) relatively higher (lower) loan-to-value ratio, (ii) where mortgage equity withdrawal is (is not) allowed, (iii) with relatively higher (lower) mortgage to GDP ratio and (iv) where the interest rate adjustment is predominantly variable rate (fixed rate) are classified as high (low) mortgage market developed countries. The thick blue line refers to high development countries, the thin purple line to low development countries. Two standard error bands are computed by a bootstrapping procedure (based on 1,000 bootstraps), with joint re-sampling.
FIGURE 3. Sub-group mean impulse responses of residential investment to a contractionary monetary policy shock: mortgage market development indicators

Note: See text for further explanations. The same VAR model is estimated country-by-country over the sample period 1980:Q1 to 2007:Q4 (or closest depending on data availability in each country). The full group of 19 countries is split approximately in half where each country is classified as having a “high developed” or “low developed” mortgage market according to the ranking in the four considered indicators. In particular, countries with (i) relatively higher (lower) loan to value ratio, (ii) where mortgage equity withdrawal is (is not) allowed, (iii) with relatively higher (lower) mortgage to GDP ratio and (iv) where the interest rate adjustment is predominantly variable rate (fixed rate) are classified as high (low) mortgage market developed countries. The thick blue line refers to high development countries, the thin purple line to low development countries. Two standard error bands are computed by a bootstrapping procedure (based on 1,000 bootstraps), with joint re-sampling.
FIGURE 4. Sub-group mean impulse responses of the real house price to a contractionary monetary policy shock: mortgage market development indicators

Note: See text for further explanations. The same VAR model is estimated country-by-country over the sample period 1980:Q1 to 2007:Q4 (or closest depending on data availability in each country). The full group of 19 countries is split approximately in half where each country is classified as having a “high developed” or “low developed” mortgage market according to the ranking in the four considered indicators. In particular, countries with (i) relatively higher (lower) loan to value ratio, (ii) where mortgage equity withdrawal is (is not) allowed, (iii) with relatively higher (lower) mortgage to GDP ratio and (iv) where the interest rate adjustment is predominantly variable rate (fixed rate) are classified as high (low) mortgage market developed countries. The thick blue line refers to high development countries, the thin purple line to low development countries. Two standard error bands are computed by a bootstrapping procedure (based on 1,000 bootstraps), with joint re-sampling.
FIGURE 5. Theoretical Impulse Responses to a Monetary Policy Tightening (% deviations from steady state).
FIGURE 6. Theoretical Impulse Responses to a Monetary Policy Tightening: Effect of Varying the Down-Payment Rate. (% deviations from steady state)
FIGURE 7. Theoretical Impulse Responses to a Monetary Policy Tightening: Effect of Varying the Interest Rate Contract Structure (solid line variable rate, dashed line fixed rate). (% deviations from steady state)
European Central Bank Working Paper Series

For a complete list of Working Papers published by the ECB, please visit the ECB’s website (http://www.ecb.europa.eu).

1043 “Optimal monetary policy in a model of the credit channel” by F. De Fiore and O. Tristani, April 2009.

1044 “The forecasting power of international yield curve linkages” by M. Modugno and K. Nikolaou, April 2009.

1047 “The impact of reference norms on inflation persistence when wages are staggered” by M. Knell and A. Stiglbauer, April 2009.

1051 “Are more data always better for factor analysis? Results for the euro area, the six largest euro area countries and the UK” by G. Caggiano, G. Kapetanios and V. Labhard, May 2009.

1061 “The distribution of households consumption-expenditure budget shares” by M. Barigozzi, L. Alessi, M. Capasso and G. Fagiolo, June 2009.

1064 “Does it pay to have the euro? Italy’s politics and financial markets under the lira and the euro” by M. Fratzscher and L. Stracca, June 2009.

DOWNWARD WAGE RIGIDITY AND OPTIMAL STEADY-STATE INFLATION

by Gabriel Fagan
and Julián Messina