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ABSTRACT

This paper compares two contrasting approaches to robust monetary policy design. 
The first developed by Hansen and Sargent (2003, 2007) assumes unstructured 
model uncertainty and uses a minimax robustness criterion to design monetary rules. 
This contrasts with an older literature that structures uncertainty by seeking rules 
that are robust across competing views of the economy. This paper carries out and 
compares robust design exercises using both approaches using a standard ‘canonical 
New Keynesian model’. We pay particular attention to a number of issues: First, we 
distinguish three possible forms of the implied game between malign nature and the 
policymaker in the Hansen-Sargent procedure. Second, in both approaches, we 
examine the consequences for robust rules of the zero lower bound (ZLB) constraint 
on the nominal interest rate, the monetary instrument. Finally, again for both types of 
robustness exercise we explore the implications of policy design when the 
policymaker is obliged to use simple Taylor-type interest rate rules. 

Keywords: robustness, structured and unstructured uncertainty, zero lower bound 
interest rate constraint 

JEL Classification: E52, E37, E58 
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Non-Technical Summary

This paper compares two contrasting approaches to robust monetary policy design in

the face of model uncertainty. The first developed by Hansen and Sargent (2003, 2007)

assumes unstructured uncertainty and uses a minimax robustness criterion to design mon-

etary rules. It has three key ingredients that distinguishes it from alternatives. First, it

conducts ‘local analysis’ in the sense that it assumes that the true model is known only up

to some local neighbourhood of models that surround the ‘approximating’ or ‘core’ model.

Second, it uses a minimax criterion without priors in model space. Third, the type of

uncertainty is both unstructured and additive being reflected in additive shock processes

that are ‘chosen’ by malevolent nature to feed back on state variables so has to maximize

the loss function the policy-maker is trying to minimize.

The Hansen-Sargent (henceforth HS) minimax criterion for robust design contrasts

with an older literature that structures uncertainty in a number of ways. The general

feature of this approach is to seek rules that are robust across competing views of the

economy. These could be competing and possibly quite different structural models or the

same structural model, but with different parameter values.

This paper carries out and compares robust design exercises using both approaches

using a standard ‘canonical New Keynesian model’. We pay particular attention to a

number of issues: First, we distinguish three possible forms of the implied game between

malign nature and the policymaker in the HS procedure. Second, in both approaches,

we examine the consequences for robust rules of the zero lower bound (ZLB) constraint

on the nominal interest rate, the monetary instrument. Finally, again for both types of

robustness exercises we explore the implications of policy design when the policymaker is

obliged to use simple Taylor-type interest rate rules.

Our results can be summarized as follows: First, the HS robust policy calls for a more

aggressive monetary response to shocks than in the absence of model uncertainty. This

is not a new result but we pursue an important consequence of this feature that has not

appeared in the literature. A high interest rate variability in both the worst-case and

approximating equilibria means that, in both scenarios, the robust rule leads to a serious

violation of the ZLB constraint. The latter can be taken into account by choosing a

steady state inflation rate sufficiently large, but then the costs of achieving robustness are

substantial.

Second, HS robust control can be seen as a non-cooperative game between malign

nature and the policymaker. As in any game, the equilibrium concept needs close atten-

tion. In most applications of HS the latter is an open-loop Nash equilibrium. We argue
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that this is not always a minimax solution as the policymaker who can commit can do

better in the face of the worst environment by anticipating nature’s strategy and acting

as a leader. However if commitment is not possible and the policymakers exercises discre-

tion, the worst-case equilibrium deteriorates sharply and with it the cost of robustness.

A combination of an inability to commit and the ZLB constraint imposes a substantial

welfare cost mainly driven by a high steady state inflation rate for both the worst-case

and approximating equilibria.

There are other question marks against the HS approach to robustness. As Svensson

(2000) has argued, the worst-case outcome is going to be a very low probability event

and from any Bayesian perspective it is inappropriate to design policy that is so heavily

influenced by it. HS robust control is appropriate if little information is available on the

underlying uncertainty facing the policymaker, originating from the model or the manner

in which agents form expectations. But is this really the case with respect to the effect

of particular monetary rules on the macro-economy? Central banks devote considerable

resources to this end in their assessment of the forecasting properties of the approximating

model, those of rival models and estimates of parameter uncertainty gleaned from various

estimation methods. To then fail to fully utilize the fruits of this exercise seems both

incongruous and a counsel of despair.

In the final section of the paper we set out a general Bayesian framework for using

the information available for the design of commitment interest rate rules. Again we

incorporate a ZLB constraint in construction of our robust rules, but in notable contrast

with HS robustness the Bayesian approach does not result in aggressive monetary responses

to shocks and a high interest rate volatility. It follows that the steady state inflation rate

required to impose the ZLB in an optimal fashion is very low, and in fact we confine

ourselves to slightly sub-optimal rules where it remains at zero.

In our Bayesian exercise we confine ourselves to a very simple form of structured un-

certainty surrounding one important parameter capturing the degree of price stickiness.

We compare a robust interest rate rule that is optimal in the absence of any model un-

certainty, with a simple rule feeding back on current inflation. We find that simple rules

designed for one model implemented in the wrong model are far more robust than its

optimal counterpart. This in a sense is an additional argument for simple rules to be

considered alongside their transparency and ease of implementation. However when both

types of rules are designed to be robust across the possible views of the world, this ad-

vantage of simplicity disappears. Nevertheless this exercise suggests that some types of

rule may be more robust than others and robust design using a Bayesian approach should

investigate a range of rules with that in mind.
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1 Introduction

This paper compares two contrasting approaches to robust monetary policy design in the

face of model uncertainty. The first developed by Hansen and Sargent (2003), Hansen and

Sargent (2007) assumes unstructured uncertainty and uses a minimax robustness criterion

to design monetary rules. It has three key ingredients that distinguishes it from alterna-

tives. First, it conducts ‘local analysis’ in the sense that it assumes that the true model is

known only up to some local neighbourhood of models that surround the ‘approximating’

or ‘core’ model. Second, it uses a minimax criterion without priors in model space. Third,

the type of uncertainty is both unstructured and additive being reflected in additive shock

processes that are ‘chosen’ by malevolent nature to feed back on state variables so has to

maximize the loss function the policy-maker is trying to minimize.

The Hansen-Sargent (henceforth HS) minimax criterion for robust design contrasts

with an older literature that structures uncertainty in a number of ways. The general

feature of this approach is to seek rules that are robust across competing views of the

economy. These could be competing and possibly quite different structural models (see,

for example, Levin et al. (2003), Coenen (2007)) or the same structural model, but with

different parameter values. The latter could be draws from an estimated joint distribution

of parameters, (see Batini et al. (2006)). The latter combines these forms of competing

models using Bayesian methods to estimate both the distribution and the model proba-

bilities.

This paper carries out and compares robust design exercises using both approaches

using a standard ‘canonical New Keynesian model’. We pay particular attention to a

number of issues: First, we distinguish three possible forms of the implied game between

malign nature and the policymaker in the HS procedure. Second, in both approaches,

we examine the consequences for robust rules of the zero lower bound (ZLB) constraint

on the nominal interest rate, the monetary instrument. Finally, again for both types of

robustness exercises we explore the implications of policy design when the policymaker is

obliged to use simple Taylor-type interest rate rules.

The rest of the paper is organized as follows. Section 2 describes the model. Section 3

sets out the general procedure for HS robust control and then applies the method to our

chosen model. Section 4 addresses concerns for the interest rate ZLB constraint. Section
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5 conducts a parallel rival models exercise and Section 6 concludes.

2 Optimal Policy without Model Uncertainty

2.1 The Model

The New Keynesian model we employ is now standard in the monetary policy literature.

In a linearized form in the vicinity of a no-growth zero-inflation steady state it consists of a

Keynes-Ramsey equation for consumption behaviour, (4) below with output equal to con-

sumption in the absence of capital, investment and government spending, and a Phillips

curve based on Calvo-type price setting for firms, (5). There are three exogenous shocks:

technology, mark-up and preference shocks, (1)–(3). Below we provides a summary of the

notation used throughout the paper.

πt producer price inflation over interval [t− 1, t]

it nominal interest rate over interval [t, t + 1]

mct marginal cost

yt, ŷt output with sticky prices and flexi-prices

lt employment

rt expected real interest rate

ot = ŷt − yt output gap

at+1 = ρaat + εa,t+1 AR(1) process for factor productivity shock, at

et+1 = ρeet + εe,t+1 AR(1) process for mark-up shock, et

uC,t+1 = ρCgt + εC,t+1 AR(1) process for preference, uC,t

β discount parameter

1− ξ probability of a price re-optimization

σ risk-aversion parameter

φ disutility of labour supply parameter

ζ elasticity of substitution between differentiated goods

Summary of Notation (Variables in Deviation Form)
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at+1 = ρaat + εa,t+1 (1)

et+1 = ρeet + εe,t+1 (2)

uC,t+1 = ρCuC,t + εC,t+1 (3)

Etyt+1 = yt +
1

σ
(it − Etπt+1 + EtuC,t+1 − uC,t) (4)

βEtπt+1 = πt − λmct − et (5)

mct = (σ + φ)yt − (1 + φ)at (6)

lt = yt − at (7)

rt = it − Etπt+1 (8)

ŷt =

(
1 + φ

σ + φ

)
at (9)

ot = ŷt − yt (10)

where

λ =
(1− βξ)(1 − ξ)

ξ
(11)

We choose a loss function that corresponds to the welfare-based quadratic form in

Woodford (2003).

Wt =
1

2

[
(σ + φ)o2

t + wππ2
t + wii

2
t

]
+ t.i.p (12)

where wπ = ζ
λ
. For a quarterly model, parameter values chosen are σ = 2, β = 0.99,

ξ = 2
3 (corresponding to an average price contract of 3 quarters), φ = 1.7, ζ = 7.67

(corresponding to a 15% price mark-up), ρa = ρC = 0.7, ρe = 0.35, and sd(εi) = 1.0,

i = a,C, e. In the absence of any constraint on the nominal interest rate we put wi = 0.



10
ECB

Working Paper Series No 899

May 2008

We can write this system in state space form as

⎡
⎣ zt+1

Etxt+1

⎤
⎦ = A

⎡
⎣ zt

xt

⎤
⎦ + Bit + C

⎡
⎢⎢⎢⎣

εa,t+1

εe,t+1

εC,t+1

⎤
⎥⎥⎥⎦ (13)

st =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mct

yt

lt

rt

ot

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E

⎡
⎣ zt

xt

⎤
⎦ ≡ Eyt (14)

Wt =
1

2
[y′tQyt + 2y′tUit + Ri2t ] (15)

where zt = [at, et, uC,t]
′ is a vector of predetermined variables, xt = [yt, πt]

′ is a vector of

non-predetermined or ‘jump’ variables, and st is vector of outputs of interest. Throughout

we assume ‘complete information’ on the part of economic agents: i.e., rational expecta-

tions are formed assuming an information set {zs, xs, εa,s, εa,e, εC,s}, s ≤ t, the model and

the monetary rule. The chosen instrument is the nominal interest rate, it.

2.2 Optimal Policy with and without Commitment

We now examine three monetary policy regimes. The first is the ex ante optimal policy

(OP) which is time inconsistent and can only be reached if the policymaker can commit.

For the most general linear-quadratic problem, this is found at time t = 0 by minimizing

with respect to the interest rate path {it} the inter-temporal conditional welfare loss

Ω0 = (1− β)Et

[
∞∑

t=0

βtWt

]
(16)

subject to the model (13) and (14), initial conditions z(0), terminal conditions for x and

the variance-covariance matrix cov(εt).

To evaluate the discretionary, time-consistent policy (D) we write the expected loss Ωt

at time t as

Ωt = Et

[
(1− β)

∞∑
τ=t

βτ−tWτ

]
= (1− β)Wt + βΩt+1

The dynamic programming solution then seeks a stationary solution of the form it = −F zt,

Ωt = z
′
tSzt and xt = −Nzt where matrices S and N are now of dimensions (n − m) ×
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(n −m) and m× (n −m) respectively, in which Ωt is minimized at time t subject to (1)

in the knowledge that a similar procedure will be used to minimize Ωt+1 at time t + 1.1

Both the instrument it and the forward-looking variables xt are now proportional to the

predetermined component of the state-vector zt and the equilibrium we seek is therefore

Markov Perfect. In Appendix A.2 we set out an iterative process for Ft, Nt, and St starting

with some initial values. If the process converges to stationary values independent of these

initial values,2 F, N and S say, then the time-consistent feedback rule is it = −Fzt.

Our third rule is a Taylor-type simple rule (TR) constrained to be of the form

it = ρit−1 + θππt + θy(yt − ŷt) (17)

The policymaker then maximizes the expected conditional welfare loss Ω0 with respect to

feedback parameters ρ, θπ, θy given the model, initial conditions z(0), terminal conditions

for x and the variance-covariance matrix cov(εt). Unlike policy rules OP and D, the optimal

form of TR is not certainty equivalent and depends on both z(0) and cov(εt).

General procedures for calculating these three policy rules are set out in the Appendix.

Analytical results for our NK model for the more general robust policy rules are provided

in section 3.4. Numerical results, given our calibration, are provided in table 1. This

table provides conditional (asymptotic) variances and the expected conditional welfare

loss in the vicinity of the steady state; i.e., we put z(0) = 0 and, in effect, only study the

stochastic optimization problem, a feature of all our results.3 The table also gives two

further useful properties of these rules: first, the probability of the interest rate hitting

the zero lower bound in the vicinity of the steady state, equal to the probability of the

standard normal variable z > I
sd(it)

, where I = 1
β
− 1 is the steady state interest rate;4

second, the welfare loss associated with the two sub-optimal policies D and TR measured

in terms of a permanent percentage fall in consumption at the steady state given by5

(ΩOP −Ωi)× 10−2 ; i = D,TR

1See Currie and Levine (1993) and Söderlind (1999).
2Indeed we find this is the case in the results reported in the paper.
3The ‘timeless perspective’ (set out in Appendix A.1.2) is then irrelevant for this choice of welfare

criterion.
4With β = 0.99, I = 1.01% or about 4% per year.
5See Levine et al. (2007).
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A number of features are worth noting at this stage. First, the optimized Taylor rule

comes very close to mimicking the fully optimal policy with only a consumption equiva-

lent cost of ce = 0.001%. The optimized parameters imply an integral rule with a strong

feedback from inflation, but a modest one from the output gap. Second, the gains from

commitment measured as the difference between OP and D are small at ce = 0.007%. The

reported variances indicate that these costs take the form of higher output gap and infla-

tion volatilities. Third, the asymptotic variance of interest rate is very high in all cases

implying a probability of hitting the ZLB of just over a quarter for the two commitment

rules, rising to almost a third for discretion. This feature of the optimal policy is clearly

unrealistic, but we defer a discussion of this point to section 4 where we impose a ZLB

constraint.

Optimal (OP) Discretion (D) Taylor Rule (TR)

var(at) 1.96 1.96 1.96

var(uC,t) 1.96 1.96 1.96

var(et) 1.96 1.96 1.96

var(ot) 1.91 2.23 198

var(πt) 0.03 0.04 0.03

var(yt) 2.95 3.28 2.93

var(lt) 2.05 2.38 2.16

var(rt) 2.15 4.88 2.56

var(it) 2.40 4.60 2.53

Prob. ZLB 0.26 0.32 0.27

Ω0 4.286 4.986 4.356

ce(%) 0 0.007 0.001

Table 1. Volatility and Welfare Outcomes with No Model Uncertainty

Note: For the Taylor rule optimal parameter values are ρ = 1, θπ = 8.96, θy = 0.06.

Figure 1 shows the impulse responses to a mark-up shock. In the absence of a ZLB

constraint, the technology and preference shocks are uninteresting because the output gap
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and inflations are met perfectly and the only variables to respond are the nominal and real

interest rates necessary to meet these targets. For the mark-up shock and for all policy

rules labour supply and therefore output (yt) falls leading to an increase in the output

gap, ot = ŷt−yt. The mark-up shock directly increases inflation and the policy response is

to raise the nominal interest by considerably more, so that both the ex ante and expected

real interest rate rises. Output then is depressed reducing marginal costs and offsetting the

effect of the mark-up shock. The figures indicates that the optimized Taylor rule almost

exactly mimics the fully optimal rule, but under discretion the responses of the labour

supply, the output gap, inflation and the nominal interest rate are all more exaggerated.

The reason for this is that in the absence of a commitment mechanism, the promise under

commitment to first raise inflation then lower it below the steady state lacks credibility.

With discretion, the interest rate then lacks the same ability to influence demand in any

one period with the result that the initial hike is much greater.

3 Robust Rules with Unstructured Model Uncertainty

3.1 The Approximating and Disturbed Models

Our approximating model is the model of section 2. The distorted model adds miss-

specification errors ut+1 and vt+1 to the Phillips and Euler equations respectively and is

given by

at+1 = ρaat + εa,t+1

et+1 = ρeet + εe,t+1

uC,t+1 = ρCuC,t + εC,t+1

βEtπt+1 = πt − λmct − et − ut+1

Etyt+1 = yt +
1

σ
(it − Etπt+1 + EtuC,t+1 − uC,t)− vt+1

mct = (σ + φ)yt − (1 + φ)at

lt = yt − at

rt = it − Etπt+1

ŷt =

(
1 + φ

σ + φ

)
at

ot = ŷt − yt
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We can again write this system in state space form as

⎡
⎣ zt+1

Etxt+1

⎤
⎦ = A

⎡
⎣ zt

xt

⎤
⎦ + Bit + C

⎡
⎢⎢⎢⎣

εa,t+1

εe,t+1

εC,t+1

⎤
⎥⎥⎥⎦ + Dŵt+1 (18)

st =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mct

yt

lt

rt

ot

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= F

⎡
⎣ zt

xt

⎤
⎦ ≡ Fyt (19)

Ω0 = Et

[
1

2

∞∑
t=0

βt[y′tQyt + 2y′tUit + Ri2t ]

]
(20)

Wt =
1

2
[y′tQyt + 2y′tUit + Ri2t ] (21)

3.2 The Hansen-Sargent Robust Controller

The robust policy is then found by assuming that nature chooses ŵ′t+1 = [ut+1 vt+1]
′ in a

malign fashion so as to maximize Ω0 subject to a constraint on the misspecified dynamics

given by
∑∞

t=0 βtŵ′t+1ŵt+1 ≤ η. Following HS it is more convenient to reformulate this

constraint problem as a certainty equivalent multiplier problem in which nature maximizes

Λ0 = Ω0 −
1

2
Θ

∞∑
t=0

βt
ŵ
′
t+1ŵt+1 (22)

where Θ is a positive Lagrange multiplier, subject to Θ ∈ [Θ̄,∞).6 The HS robust con-

troller is then found as a solution to

min
{it}

max
{ŵt+1}

Λ0 (23)

To solve the deterministic case of this problem define a Hamiltonian

Ht = βt
[
(y′tQyt + 2y′tUit + w

′
tRit) + 2βp

′
t+1(Ayt + Bit + Dŵt+1 − yt+1)− βΘŵ

′
t+1ŵt+1)

]
6A simple minimax problem of this form shows that the lower bound on Θ is necessary to ensure

that the inner optimization by nature satisfies the second order condition. The parameter Θ is positively

related to the ‘detection probability error probability’ that an econometrician observing the equilibrium

outcome would infer incorrectly that the approximating and worst-case equilibria generate the same data.

See Hansen and Sargent (2007), chapter 9.
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Then the first-order conditions with respect to it, yt and ŵt+1 respectively are

it = −R−1(βB′pt+1 + U ′yt) (24)

βA′pt+1 = pt − (Qyt + Uit) (25)

ŵt+1 =
1

Θ
D′

pt (26)

Together with the original constraint

yt+1 = Ayt + Bit + Dŵt+1 (27)

(24) to (27) describes the worst-case equilibrium. By contrast the approximating equilib-

rium is the approximating model (27) with D = 0, i.e.,

ya,t+1 = Aya,t + Bit (28)

but under the robust rule given by wt. Appealing to certainty equivalence the same rules

apply when we add white-noise shocks εt. Then substituting for it and ŵt+1 from (24) and

(26) we arrive at the following system describing both the worst-case and approximating

equilibria⎡
⎢⎢⎢⎣

I 0 βBR−1B′

0 I βBR−1B′ − 1
ΘDD′

0 0 β(A′ − UR−1B′)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ya,t+1

yt+1

pt+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

A−BR−1U ′ 0 0

0 A−BR−1U ′ 0

0 −(Q− UR−1U ′) I

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ya,t

yt

pt

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

C

C

0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

εa,t+1

εe,t+1

εC,t+1

⎤
⎥⎥⎥⎦ (29)

To complete the solution we require 3n boundary conditions for (29). Specifying

za,0 = z0 gives us 2(n −m) of these conditions. The initial condition for an optimum for

both the policymaker and nature is

p2,0 = 0

where p
′
t =

[
p
′
1,t p

′
2,t

]
is partitioned so that p1,t is of dimension (n−m)× 1. This gives us

m more initial conditions. We seek a stable rational expectations solution which imposes

n + m terminal conditions on the forward-looking variables [p′1,t x
′
t x
′
a,t], completing the 3n

boundary conditions. As Θ becomes large, robust and non-robust rules will converge.
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In what follows we treat the parameter Θ as a parameter whose inverse represents the

policymaker’s concern for robustness. Note, however, that robust control in the engineering

literature, from which the work of Hansen and Sargent stems, adopts a slightly different

approach from this section and from what follows. Part of the so-called H∞ design is that

‘malign nature’ chooses the value of Θ as low as possible, subject to two criteria being

satisfied: (i) the overall system under control is stable (ii) the optimal feedback as designed

to solve the problem yields a stable system when malign nature is switched off. This is

similar to the approximating model ya,t being stable. However choosing Θ ‘optimally’ can

lead to either the system in (i) or that in (ii) being only just stable. This means that in

the stochastic case, variances can be very high for one of these systems, and this, as we

shall see, raises the probability of the interest rate hitting zero.

3.3 Robust Control as a Game

It is useful to characterize the solution to the robust policy problem in terms of a dynamic

game between the monetary authority and nature. There is a third player in this game,

the private sector forming model-consistent expectations based on the model and the

monetary rule. As with all multi-person games there are a number of possible equilibria

in this game and each leads to a different solution to the robust policy problem. We now

consider three possible games, the first corresponding to the above robust control solution.

Game 1. This is a two-player zero-sum game with payoffs defined by (23). Each

player simultaneously commits to sequences {it} and {ŵt+1} at time t = 0 taking the

other players sequence of moves as given. Although the optimal solution can be expressed

as feedback rules it = Dyt and ŵt = D̂yt, the game is actually of an open-loop character

because this feed-back is not taken into account in the first-order conditions. Since the

players move simultaneously there is no leadership by the monetary authority although

there is commitment with respect to the private sector. We refer to the second game as

the time inconsistent open-loop Nash game.

Game 2. In this paper we wish to study robust simple commitment rules that provide

the best response of the policymaker to the worst possible outcome. The HS robust control

rule above does not achieve this. A robust rule responds to the worst possible shock from

the viewpoint of the authority which requires that nature chooses a sequence for {ŵt+1}



17
ECB

Working Paper Series No 899

May 2008

that is optimal ex ante at time t = 0. The monetary authority anticipates the response

of nature to its commitment rule and so exercises leadership. It then faces an economy

under the malign influence of nature of the form⎡
⎣ I 0

0 βA′

⎤
⎦

⎡
⎣ yt+1

pt+1

⎤
⎦ =

⎡
⎣ A DD′

Θ

−Q I

⎤
⎦

⎡
⎣ yt

pt

⎤
⎦ +

⎡
⎣ B

−U

⎤
⎦ it

+

⎡
⎣ C

0

⎤
⎦

⎡
⎢⎢⎢⎣

εa,t+1

εe,t+1

εC,t+1

⎤
⎥⎥⎥⎦

This is in the standard form for designing ex ante optimal policy, discretionary policy and

an optimized Taylor rule as in section 2 and described in general in the Appendix. We

call the first of these cases, the time inconsistent Stackelberg game.

Game 3. In this paper we again study the best response of the policymaker to the

worst possible outcome and the monetary authority anticipates the response of nature

to policy so exercises leadership. However the policymaker cannot commit and exercises

discretion, optimizing in each period on the assumption that a re-optimization will occur

in each subsequent period. We refer to this game the time consistent discretionary game.

3.4 Application to the Canonical Keynesian Model

First consider nature’s problem. Again by an appeal to certainty equivalence we can first

consider the deterministic problem and assume that the same policy rule applies to the

stochastic case. The former is calculated by setting up the Lagrangian

L =
1

2

∞∑
t=0

βt

[
− (σ + φ)o2

t − wππ2
t − wii

2
t + Θ(u2

t+1 + v2
t+1)

+ 2μ̂1,t+1(ρaat − at+1) + 2μ̂2,t+1(ρeet − et+1)

+ 2μ̂3,t+1(ρCuC,t − uC,t+1) + 2μ̂4,t+1 (πt + λ[(1 + φ)at − (σ + φ)yt]− βπt+1 − et − ut+1)

+ 2μ̂5,t+1

(
yt +

1

σ
(it − πt+1 + (ρC − 1)uC,t)− yt+1 − vt+1

)]
(30)

Nature then chooses {ut+1, vt+1} to maximize (30), given {it}. The first order condi-
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tions for this problem are:

ut+1 : Θut+1 − μ̂4,t+1 = 0 (31)

vt+1 : Θvt+1 − μ̂5,t+1 = 0 (32)

πt : −wππt + μ̂4,t+1 − μ̂4,t −
1

σβ
μ̂5,t = 0 (33)

yt : (σ + φ)ot − λ (σ + φ) μ̂4,t+1 + μ̂5,t+1 −
1

β
μ̂5,t = 0 (34)

plus foc for the shocks which we do not need, with initial conditions μ̂4,0 = μ̂5,0 = 0. We

can now eliminate μ̂4,t+1 and μ̂5,t+1 from (31) and (32) to obtain the following processes

for nature’s worst misspecification errors

Θ

[
ut+1 − ut −

1

σβ
vt

]
= wππt

Θ

[
vt+1 −

1

β
vt − λ (σ + φ) ut+1

]
= −(σ + φ)ot

We can express this system as

K

⎡
⎣ ut+1

vt+1

⎤
⎦ = L

⎡
⎣ ut

vt

⎤
⎦ + M

⎡
⎣ ot

πt

⎤
⎦ (35)

This then expresses the worst-case misspecification errors ut and vt of nature as a reaction

to past outcomes [ot−1, ot−2, · · ; πt−1, πt−2, · ·].

3.4.1 Robust Control: Game 1

In this open-loop Nash game the policymaker’s problem is the mirror-image of that of

nature: to choose {it} to minimize the welfare loss for which the Lagrangian is

L =
1

2

∞∑
t=0

βt

[
(σ + φ)o2

t + wππ2
t + wii

2
t + Θ(u2

t+1 + v2
t+1)

+ 2μ1,t+1(ρaat − at+1) + 2μ2,t+1(ρeet − et+1)

+ 2μ3,t+1(ρCuC,t − uC,t+1) + 2μ4,t+1 (πt + λ[(1 + φ)at − (σ + φ)yt]− βπt+1 − et − ut+1)

+ 2μ5,t+1

(
yt +

1

σ
(it − πt+1 + (ρC − 1)uC,t)− yt+1 − vt+1

)]

given {ut+1}, {vt+1}.
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The foc for this problem are

it : wiit +
1

σ
μ4,t+1 = 0 (36)

πt : wππt + μ4,t+1 − μ4,t −
1

σβ
μ5,t = 0 (37)

yt : −(σ + φ)ot − λ (σ + φ) μ4,t+1 + μ5,t+1 −
1

β
μ5,t = 0 (38)

Comparing these foc with those of nature, (33) and (34), we immediately see that μ4,t =

μ̂4,t and μ5,t = μ̂5,t. Hence the worst-case equilibrium for this game can be written in

state-space form as

at+1 = ρaat + εa,t+1 (39)

et+1 = ρeet + εe,t+1 (40)

uC,t+1 = ρCuC,t + εC,t+1 (41)

μ4,t+1 = μ4,t +
1

σβ
+ μ5,t − wππt (42)

μ5,t+1 =
1

β
μ5,t + λ (σ + φ) μ4,t+1 + (σ + φ)ot (43)

βEtπt+1 = πt − λmct − et − ut+1 (44)

Etyt+1 = yt +
1

σ
(it − Etπt+1 + EtuC,t+1 − uC,t)− vt+1 (45)

it = −
1

wiσ
μ4,t+1 (46)

mct = (σ + φ)yt − (1 + φ)at (47)

ut+1 = −
1

Θ
μ4,t+1 (48)

vt+1 = −
1

Θ
μ5,t+1 (49)

rt = it − Etπt+1 (50)

ŷt =

(
1 + φ

σ + φ

)
at (51)

ot = ŷt − yt (52)

It is of interest to note that after eliminating μ5,t and μ4,t from (42) and (43), the

interest rate rule (46) can be expressed as

it =

[
(β + 1)σ + λ(σ + φ)

σβ

]
it−1 −

1

β
it−2 −

1

wiσ
[(σ + φ)(ot − ot−1)− wπλ(σ + φ)πt]

so given {ut+1}, {vt+1}, the interest rate adjusts gradually, responding negatively to Δot

and positively to πt.
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The approximating equilibrium is the undisturbed model with the interest rate rule

designed for the worst case. This is given by

βEtπ
a
t+1 = πa

t − λmca
t − et (53)

Ety
a
t+1 = ya

t +
1

σ
(it − Etπ

a
t+1 + EtuC,t+1 − uC,t) (54)

mca
t = (σ + φ)ya

t − (1 + φ)at (55)

ra
t = it − Etπ

a
t+1 (56)

ŷt =

(
1 + φ

σ + φ

)
at (57)

oa
t = ŷt − ya

t (58)

where the interest rate rule is given by (46) in the worst-case equilibrium. An immediate

problem with this solution of the approximating equilibrium now emerges: it cannot be

saddle-path stable and in fact it is stable, but indeterminate. We return to this problem

in the context of our preferred game 2. Table 2 displays the properties of the worst-case

equilibrium as Θ decreases and the concern for robustness increases.

Θ = ∞ Θ = 100 Θ = 50 Θ = 25 Θ = 20

var(ot) 1.91 2.25 2.68 4.08 5.25

var(πt) 0.03 0.04 0.05 0.07 0.08

var(yt) 2.95 3.29 3.73 5.13 6.29

var(lt) 2.05 2.39 2.82 4.22 5.39

var(rt) 2.15 2.38 2.65 3.44 4.02

var(it) 2.40 2.66 2.98 3.89 4.56

Prob. ZLB 0.26 0.27 0.28 0.31 0.32

Ω0 4.286 5.030 5.990 9.020 11.53

ce(Θ)(%) 0 0.007 0.017 0.047 0.072

Table 2. worst-case Equilibrium in Game 1

Note: ce is the consumption-equivalent cost of robustness as a percentage of steady state

consumption.
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In Table 2 we define ce(Θ) as the cost of planning for the worst case scenario compared

with just designing a rule for the approximating model. Let the expected loss in the general

case of Θ �= ∞ be Ω0(Θ). Then in percentage terms we have that

ce(Θ) = (Ω0(Θ)− Ω0(∞)) × 10−2 (59)

Three main results emerge from Table 2. First as concern for robustness increases then so

do the volatilities of all variables in the economy under the robust rule increase, including

that of the nominal interest rate. Thus in contrast to the result of Brainard (1967), the

robust rule responds more aggressively in this environment of unstructured uncertainty

than in the case of no model uncertainty. Second, the welfare cost associated with the

worst-case compared to optimal policy without uncertainty rises as Θ falls to ce = 0.072

when Θ = 20. Finally robust control has a further cost: the frequency of hitting the ZLB

increases from just over a quarter with the unrobust rule to almost one third with the

robust rule and Θ = 20.

3.4.2 Robust Control: Game 2

Consider now the design of a robust rule by the monetary authority given (35) and the

perturbed model (60) where ut+1 and vt+1 are given by (35). We can write the worst-case

perturbed model in state-space form as⎡
⎢⎢⎢⎢⎢⎢⎣

zt+1

ut+1

vt+1

Etxt+1

⎤
⎥⎥⎥⎥⎥⎥⎦

= A∗(Θ)

⎡
⎢⎢⎢⎢⎢⎢⎣

zt

ut

vt

xt

⎤
⎥⎥⎥⎥⎥⎥⎦

+ B∗it + C∗

⎡
⎢⎢⎢⎣

εa,t+1

εe,t+1

εC,t+1

⎤
⎥⎥⎥⎦ (60)

⎡
⎢⎢⎢⎢⎢⎢⎣

yt

lt

rt

ot

⎤
⎥⎥⎥⎥⎥⎥⎦

= F

⎡
⎣ zt

xt

⎤
⎦ (61)

Optimized robust rules can now be found using the same method as for optimized rules

without uncertainty.

The approximating equilibrium is again given by (53)-(58) as before and again is not

saddle-path stable. However we can remedy this feature in a simple way. By modifying
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the policymaker’s loss function

(1− ω)Wt + ωW a
t = (1− ω)((σ + φ)o2

t + wππ2
t ) + ω((σ + φ)oa 2

t + wππa 2
t ) + wii

2
t

a small value of ω imposes a concern for stability of the approximating equilibrium and

makes the composite worst-case, approximating model saddle-path stable. Then in the

following table to compare the outcome with the previous game we take ω = 0 for the

worst-case equilibrium and ω = 0.1 to calculate the approximating equilibrium.

Θ = ∞ Θ = 100 Θ = 50 Θ = 25 Θ = 20

var(ot) 1.91 2.35 2.80 3.51 3.72

var(oa
t ) 1.91 2.08 2.10 1.76 1.51

var(πt) 0.03 0.03 0.03 0.04 0.05

var(πa
t ) 0.03 0.02 0.02 0.11 0.20

var(yt) 2.95 3.39 3.84 4.55 4.76

var(ya
t ) 2.95 3.12 3.14 2.80 2.56

var(lt) 2.05 2.49 2.94 3.65 3.86

var(lat ) 2.05 2.21 2.24 1.90 1.66

var(rt) 2.15 2.61 2.93 3.20 3.94

var(ra
t ) 2.15 2.45 2.73 2.79 2.80

var(it) 2.40 2.83 3.08 3.37 4.39

Prob. ZLB 0.26 0.28 0.29 0.29 0.32

Ω0(Θ) 4.286 4.983 5.737 7.254 8.007

Ωa
0(Θ) 4.286 4.347 4.423 5.674 7.345

ce (%) 0 0.007 0.014 0.030 0.037

ca
e (%) 0 0.001 0.001 0.014 0.031

Table 3. Robust Control in Game 2 (Commitment)

From Table 3 by comparing the expected welfare loss Ω0(Θ) with that in Table 2 we

see immediately the sub-optimal nature of the policymaker’s response to nature in game

2. The cost of achieving robustness, ce is now almost half that of game 2 at when concern

for robustness is set at Θ = 20. The cost in the approximating equilibrium rises to a
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similar level. As in game 1, the frequency of hitting the ZLB rises as the rule becomes

more robust.

Figure 2, as with Figure 1, shows the impulse response to a mark-up shock but now

compares optimal policy without model uncertainty with the robust control worst-case and

approximating equilibria. In the worst-case equilibrium, nature adds to the inflationary

pressures resulting in the hump-shape as the effect of the mark-up shock declines. In

anticipation of this malign intervention, interest rate policy is more active than the non-

robust policy in the absence of model uncertainty, rising by more in the short-run and

falling by more in the medium term. This adds to the volatility of the interest rate seen

as a feature when all shocks are included as in Table 3. In the approximating equilibrium

the output gap and other real variables including the expected real interest rate, rt =

it − Etπt+1 are almost the same for the approximating equilibrium and the model under

non-robust optimal control without model uncertainty. As rt returns to its steady state of

zero the expected inflation rate in the approximating equilibrium must therefore follow the

interest rate path designed for the worst-case equilibrium and fall well below zero before

gradually returning to the steady state. The approximating equilibrium then experiences

a much lower volatility of the output gap but a much higher volatility of inflation for this

shock, a feature again seen for all shocks in Table 3. In the welfare loss the former effect

slightly outweighs the latter as can be seen from Ω0(Θ)a < Ω0(Θ) in Table 3.

As with optimal policy without model uncertainty, we now ask the question: can an

optimized simple Taylor-type rule mimic the fully optimal policy? We require a rule that

is saddle-path stable for both the worst-case and approximating models. 7A rule of the

form (17) will achieve saddle-path stability of the latter but not the former. This requires

an conventional Taylor-type rule that responds to nature’s malign misspecification errors:

i.e.,

it = ρit−1 + θππt + θy(yt − ŷt) + θuut+1 + θvvt+t

where ut+1 and vt+1 is given by (35). Note that since, in our complete information frame-

work, we are assuming that the current inflation rate and the output gap is observable at

time t, ut+1 and vt+1 as functions of outcomes [ot, ot−1, · · ; πt, πt−1, · ·] can be calculated

7If one is only interested in deterministic impulse responses this is not a requirement as the numerical

solution as a two-point boundary value problem can still be computed. Our stochastic problem however

does require staddle-path stability.
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Θ = ∞ Θ = 100 Θ = 50 Θ = 25 Θ = 15

[ρ, θπ, θy, [1.0, 8.96, 0.06, [0.91, 8.21, 0.22, [0.64, 10.0, 0.42, [0.48, 10.0, 0.0 [0.47, 10.0, 0.0.

θu, θv] 0, 0] 5.86, 10.0] 7.13, 10.0] 7.16, 6.37] 6.27, 5.35]

var(ot) 1.98 2.21 2.77 3.46 3.79

var(oa
t ) 1.98 1.86 2.13 2.26 2.27

var(πt) 0.03 0.06 0.03 0.05 0.07

var(πa
t ) 0.03 0.05 0.03 0.02 0.02

var(yt) 2.93 3.16 3.76 4.51 4.86

var(ya
t ) 2.93 2.78 3.08 3.22 3.24

var(lt) 2.16 2.38 2.93 3.61 3.92

var(lat ) 2.16 2.04 2.31 2.43 2.45

var(rt) 2.56 2.03 2.73 2.92 3.38

var(ra
t ) 2.56 1.64 2.37 2.74 2.81

var(it) 2.53 2.45 2.98 3.20 3.82

var(iat ) 2.53 1.98 2.57 2.82 2.88

Prob. ZLB 0.27 0.26 0.28 0.29 0.31

Prob. ZLB (a) 0.27 0.24 0.27 0.27 0.28

Ω0(Θ) 4.356 5.330 5.859 7.4570 8.417

Ωa
0(Θ) 4.356 4.488 4.505 4.688 4.722

ce 0 0.010 0.015 0.031 0.041

ca
e 0 0.001 0.001 0.003 0.004

Table 4. Robust Control in Game 2 with Optimized Taylor Rule:

it = ρit−1 + θππt + θy(yt − ŷt) + θuut+1 + θvvt+1

iat = ρiat−1 + θππa
t + θy(y

a
t − ŷt) + θuua

t+1 + θvv
a
t+1
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at time t and are also observable. The robust Taylor-type rule must therefore respond to

past realizations of the output gap and inflation and thereby loses an important feature

of such a rule, namely its simplicity.

Table 4 shows how the optimized rule changes as concern for robustness increases

and the outcomes under the rule. Regarding the former we see that the optimized rule

proceeds from an integral rule in the absence of model uncertainty to a rule with far

less interest-rate smoothing for the most robust case. The cost of robustness ce in the

worst-case equilibrium is rather higher than under the fully optimal rule, but interestingly

considerably lower in the approximating model. In a sense then, the simple rule is more

robust in that it trades a slightly worse performance in the worst-case equilibrium for a

much better outcome if the model is unperturbed. This is achieved by a rule that responds

to the observed current output gap and inflation rates in the worst-case scenario, ot and

πt, but to the observed counterparts oa
t = (ŷt−ya

t ) and πa
t if the economy is not perturbed.

In the two states of the world, the rule takes the form

it = ρit−1 + θππt + θy(yt − ŷt) + θuut+1 + θvvt+1

Θut+1 = Θ

[
ut +

1

σβ
vt

]
+ wππt

Θvt+1 = Θ

[
1

β
vt + λ (σ + φ) ut+1

]
+ (σ + φ)(yt − ŷt)

for the worst-case equilibrium, with the same rule responding to the undisturbed outcomes

iat = ρiat−1 + θππt + θy(y
a
t − ŷt) + θuua

t+1 + θvv
a
t+1

Θua
t+1 = Θ

[
ua

t +
1

σβ
va
t

]
+ wππa

t

Θva
t+1 = Θ

[
1

β
va
t + λ (σ + φ) ua

t+1

]
+ (σ + φ)(ya

t − ŷt)

for the approximating model. This contrasts with the fully optimal policies that are

designed as the same interest rate path conditional on initial displacements for both the

worst-case and approximating equilibria.

3.4.3 Robust Control: Game 3

In our final robustness game we consider the case where the policymaker cannot commit

and is forced to pursue a time consistent discretionary policy. Table 5 sets out the results

that correspond to the commitment case in Table 3.
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Two features of these results are worth highlighting. First, in the case of a very high

setting of Θ we do not revert to the time consistent solution without model uncertainty

of Table 1 and in fact the outcome is considerable better than for that case. This result

highlights the point raised by Blake and Kirsanova (2007) that it is possible to have

multiple discretionary equilibria. In our case this second equilibrium arose because we

expanded the state-space to include worst-case misspecification errors [ut, vt]. Even when

Θ → ∞, in which case these misspecification errors are purely exogenous processes, the

higher-order state space creates a new Markov-perfect equilibrium.

Θ = ∞ Θ = 100 Θ = 50 Θ = 25 Θ = 20

var(ot) 1.89 2.40 2.98 4.17 4.72

var(oa
t ) 1.89 2.97 2.90 2.33 2.03

var(πt) 0.04 0.04 0.03 0.01 0.02

var(πa
t ) 0.04 0.08 0.04 0.01 0.02

var(yt) 2.93 3.44 4.03 5.21 5.76

var(ya
t ) 2.93 4.02 3.94 3.37 3.08

var(lt) 2.04 2.54 3.13 4.31 4.86

var(lat ) 2.04 3.11 3.04 2.47 2.18

var(rt) 2.67 3.31 3.86 3.88 3.41

var(ra
t ) 2.67 2.69 3.12 3.34 3.22

var(it) 2.91 3.52 3.98 3.70 3.16

Prob. ZLB 0.28 0.30 0.31 0.30 0.29

Ω0(Θ) 4.436 5.220 6.097 7.991 9.042

Ωa
0(Θ) 4.436 7.313 6.293 4.538 4.484

ce 0.001 0.009 0.018 0.037 0.048

ca
e 0.001 0.030 0.020 0.003 0.002

Table 5. Robust Control in Game 3 (Discretion)

The second noteworthy feature of Table 5 concerns the costs of discretion when com-

bined with a concern for robustness. At Θ = 20, comparing Tables 3 and 5 we see that

commitment when combined with a concern for robustness raises welfare in the worst-case

equilibrium by a consumption equivalent of 0.048 − 0.037 = 0.011% which although still
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small is significantly higher than the commitment gain of ce = 0.007% reported in Table 1

without model uncertainty. This outcome is reached at a higher frequency of hitting the

interest rate ZLB constraint. The cost of discretion in the approximating equilibrium is

less clear cut as it rises for low levels of concern for robustness, reaches a peak somewhere

between Θ = 100 and Θ = 50 and then falls. This is an interesting phenomenon requiring

further investigation. But for low levels of concern for robustness, Table 5 suggests a new

result regarding commitment when combined with unstructured model uncertainty: that

robustness concerns increase the welfare gains from commitment.

4 Imposing the Interest Rate Zero Lower Bound

In one respect the modest consumption equivalent costs reported up to now are mis-

leading, especially for the discretionary policy. The reason for this is to be seen for the

unconditional variances reported in these which are very large and rise further when we

introduce robustness concerns. Such high variances imply that the interest rate under

these optimized or optimal rules will hit the interest rate zero lower bound frequently.8

We now address this design fault in the rules.

We modify our interest-rate rules to approximately impose an interest rate ZLB so that

this event hardly ever occurs. As in Woodford (2003), chapter 6, this is implemented by

increasing the weight on the interest rate variance wi in the single period welfare loss (12).

Then following Levine et al. (2007), the policymaker’s optimization problem is to choose

wi and the unconditional distribution for it (characterized by the steady state variance)

shifted to the right about a new non-zero steady state inflation rate and a higher nominal

interest rate, such that the probability, p, of the interest rate hitting the lower bound is

very low. This is implemented by calibrating the weight wi for each of our policy rules

so that z0(p)σr < Rn where z0(p) is the critical value of a standard normally distributed

variable Z such that prob (Z ≤ z0) = p, I = 1
β
− 1 + π∗ is the steady state nominal

interest rate, σ2
i = var(i) is the unconditional variance and π∗ is the new steady state

inflation rate. Given σi, the steady state positive inflation rate that will ensure it ≥ 0

8As Primiceri (2006) has pointed out, optimal rules with this feature are ‘not operational’.
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with probability 1− p is given by9

π∗ = max[z0(p)σr −

(
1

β
− 1

)
× 100, 0] (62)

In our linear-quadratic framework we can now write the inter-temporal expected welfare

loss at time t = 0 as the sum of stochastic plus deterministic components, Ω0 = Ω̃0 + Ω̄0.

Given wi, denote the expected inter-temporal loss (stochastic plus deterministic compo-

nents) at time t = 0 by Ω0(wi). This includes a term penalizing the variance of the

interest rate which does not contribute to utility loss as such, but rather represents the

interest rate lower bound constraint. Actual utility, found by subtracting the interest rate

term, is given by Ω0(0). Since in the new steady state the real interest rate is unchanged,

the steady state involving real variables are also unchanged, so from (12) we can write

Ω̄0(0) = 1
2wππ∗2. Both the ex-ante optimal and the optimal time-consistent deterministic

welfare loss that guide the economy from a zero-inflation steady state to π = π∗ differ

from Ω̄0(0) (but not by much because the steady-state contributions by far outweighs the

transitional one).

By increasing wi we can lower σi thereby decreasing π∗ and reducing the deterministic

component, but at the expense of increasing the stochastic component of the welfare loss.

By exploiting this trade-off, we can optimize over wi and π∗ to then arrive at the optimal

policy that, in the vicinity of the steady state, imposes the ZLB constraint, it ≥ 0 with

probability 1− p.

9If the inefficiency of the steady-state output is negligible, then π∗
≥ 0 is a credible new steady state

inflation rate. Note that in our LQ framework, the zero interest rate bound is very occasionally hit.

Then interest rate is allowed to become negative, possibly using a scheme proposed by Gesell (1934) and

Keynes (1936). Our approach to the ZLB constraint (following Woodford, 2003) in effect replaces it with

a nominal interest rate variability constraint which ensures the ZLB is hardly ever hit. By contrast the

work of a number of authors including Adam and Billi (2007), Coenen and Wieland (2003), Eggertsson

and Woodford (2003) and Eggertsson (2006) study optimal monetary policy with commitment in the face

of a non-linear constraint it ≥ 0 which allows for frequent episodes of liquidity traps in the form of it = 0.
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Rule Θ π∗ (%) Ω0 = Ω̃0(0) + Ω̄0(0) ce (%)

Optimal ∞ 0.08 5.4 0

Discretion ∞ 2.17 134 1.29

Optimal 50 0.66 29 0.24

Discretion 50 2.73 177 1.72

Table 6. Summary of Welfare Outcome of Rules in the Worst-Case

Equilibrium with a Nominal Interest Rate ZLB Imposed.

Figure 4 and Table 6 show the results of this optimization procedure for the optimal

commitment and discretionary rules respectively for the worst-case equilibrium. (Recall

that the latter refers to the case for which HS-robust rules are designed). We choose

p = 0.025. The steady-state inflation rate, π∗, that will ensure the lower bound is reached

only with probability p = 0.025 is computed using (62). Given π∗, we can then evaluate

the deterministic component of the welfare loss, Ω̄0(0).

Comparing Table 6 with a ZLB constraint with Tables 3 and 4 without the constraint

two results stand out: first, without robustness concerns (Θ = ∞) the gains from commit-

ment rise substantially from a very small value of ce = 0.007% in Table 1 to the substantial

ce = 1.29% in Table 6. This confirms the result obtained by Levine et al. (2007) using

an empirical DSGE model fitted to Euro-data. Second, the ZLB constraint substantially

increases the cost of achieving robustness with commitment in the face of unstructured

uncertainty from ce = 0.014% in Table 3 to ce = 0.24% in Table 6, and from ce = 0.018%

in Table 5 to ce = 1.72% in Table 6 under discretion. The combination of worst-case

robustness, lack of commitment and the interest rate ZLB constraint creates a substan-

tial welfare cost equivalent to a 1.72% permanent increase in steady state consumption.

Finally, for the approximating equilibrium a very similar result holds because the steady

state inflation rate required to satisfy the ZLB constraint is so high under discretion and

is the same for the worst-case and approximating equilibria.
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5 Robust Rules with Structured Model Uncertainty

5.1 A Rival Model Approach to Robustness

In this section we consider model uncertainty in the form of uncertain estimates of the

non-policy parameters of the model, Γ = (β, ξ, φ, σ, ζ, ρa, ρe, ρC , ζ, σ2
a,t, σ

2
e,t, σ

2
C,t). Suppose

the state of the world s is described by a model with Γ = Γs expressed in state-space form

as

⎡
⎣ z

s
t+1

Etx
s
t+1

⎤
⎦ = As

⎡
⎣ z

s
t

x
s
t

⎤
⎦ + Bsist + Cs

⎡
⎢⎢⎢⎣

εa,t+1

εe,t+1

εC,t+1

⎤
⎥⎥⎥⎦ (63)

os
i = Es

⎡
⎣ z

s
t

x
s
t

⎤
⎦ (64)

where z
s
t = [as

t , e
s
t , u

s
C,t, it−1] is a vector of predetermined variables at time t and xt =

[ys
t , π

s
t ] are non-predetermined variables in state s of the world. In (63) and (64) it is

important to stress that variables are in deviation form about a zero-inflation steady state

of the model in state s. For example output in deviation form is given by ys
t =

Y s
t
−Ȳ s

Ȳs

where

Ȳ s is the steady state of the model in state s defined by parameters Γs and ist = it − īs

where the natural rate of interest in model s, īs = 1
βs − 1.

Because each model is linearized about a possibly different steady state, we must now

set up the model in state s in terms of the actual interest rate, not the deviation about

the steady state. Then augmenting the state vector to become z
s
t = [1, as

t , e
s
t , u

s
C,t, it−1] we

still have a state-space form (63) and (64) and we minimize

Ω0 =
1

2

∞∑
t=0

βt

n∑
s=1

ps[y
′
tQyt + 2y′tUit + Ri2t ] (65)

where ps is the weight or probability attached to model s. This we refer to as model-

robustness. 10

10A more stringent robustness criterion is to design rules that are parameter-robust. Then (65) is replaced

with the average expected utility loss across a large number of draws from all models constructed using

both the estimated posterior model probabilities and the posterior parameter distributions for each model

found by Bayesian estimation (see Batini et al. (2006) and Levine et al. (2008)) In this paper we confine

ourselves to model-robustness.
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With model uncertainty even in the absence of initial displacements z0, there is still a

deterministic component of policy arising from differences in the natural rate of interest

compatible with zero inflation in the steady state, īs = 1
βs − 1. A non-integral rule

specifying it = īs in the long-run will only result in zero inflation in model s. From the

consumers’ Euler equation in model r with βr > βs, implementing the rule designed for

model s with ī = īs = 1
βs − 1 gives a steady state inflation rate π̄r that is no longer zero

but given by
βr(1 + īs)

(1 + π̄r)
=

βr

βs(1 + π̄r)
= 1 i.e., π̄r =

βr

βs
− 1 > 0 (66)

Our robust non-integral rule designed for any model specifies a natural zero inflation rate

of interest īR, corresponding to a discount factor βR = 1
1+īR

to result in an expected

long-run inflation rate across models of zero. This implies βR is determined by

n∑
s=1

ps

[
βs

βR

− 1

]
= 0 ⇒ βR =

n∑
s=1

psβs (67)

That is, βR is the expected value of βs across the model variants. The need to specify

a natural rate of interest, īR, only applies to non-integral rules. By contrast, a further

benefit of integral rules is that the economy is automatically driven to a zero-inflation

steady state whatever the state of the world without having to specify īR.

As in section 4 we impose the ZLB constraint by varying the weight wi. For Bayesian-

robust commitment rules the interest rate volatility is not great and the shift in the steady

state inflation rate needed to impose the ZLB constraint is small (as can be confirmed by

the Θ = ∞ results in Table 6). We therefore confine ourselves to the case where steady-

state inflation is zero (π∗ = 0). For each of the n models, we calculate the equilibrium

steady state variance of the interest rate. Then for each draw we use the variance of the

interest rate to calculate the probability of hitting the zero lower bound; once again the

average of these appears as Prob ZLB in the table and the average of these is included in

the last row of tables 7 and 9 below as σ2
i . Thus with an equilibrium interest rate of 1%

per quarter (4% per annum), the latter are given by

σ2
i =

1

n

n∑
j=1

σ2
i (j)

Prob ZLB =
1

n

n∑
j=1

Z

(
−

1

σi(j)

)
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where Z(x) is the probability that a standard normal random variable has a value less

than x.

5.2 Application to the Canonical Keynesian Model

We now apply this procedure to the canonical model. We limit the structural uncertainty

to the important parameter ξ that captures the degree of price stickiness in the model.

Other parameters remain unchanged, including β so that βR = β in (67). Four model

variants are considered with this parameter taking values ξ = 0.001, 1/2, 2/3, 3/4 corre-

sponding to near flexible prices and an average price contract length of 2, 3 and 4 quarters

respectively. We consider optimal policy and a simple current inflation rule of the form

it = ρit−1 + θππt (68)

The form of the optimal commitment rule has been shown to take the form:

it =

[
(β + 1)σ + λ(σ + φ)

σβ

]
it−1 −

1

β
it−2 −

1

wiσ
[(σ + φ)(ot − ot−1)−wπλ(σ + φ)πt]

= ρ1it−1 − ρ2it−2 − θΔo(ot − ot−1) + θππt (69)

say. Woodford (2003), page 584, describes this rule as ‘robustly optimal’ in the sense

that it is independent of the exogenous processes in the model. The coefficients have the

property that ρ1 − ρ2 > 1 (the rule is ‘super-inertial’) and it satisfies the modified Taylor

principle for rules with inertia, that θπ > 1−ρ1 +ρ2. Numerical values for [ρ1, ρ2, θΔo, θπ]

are given in table 7 for the 4 model variants with the M-robust rule in the final row. Re-

garding the latter it is super-inertial and satisfies the Taylor principle. Moreover, unlike

the HS robust rule, the M-robust rule does not call for a more aggressive policy than any

of the non-robust rules, but neither does it exhibit the Brainard property that uncertainty

calls for more policy caution.
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Rule ξ [ρ1, ρ2, θΔo, θπ] wi σ2
i Ω̃0(0)

OPT(1) 10−3 [1867, 1.01, 463, 461580] 0.004 0.24 0.0002

OPT(2) 1
2 [2.953, 1.01, 0.370, 0.187] 5 0.25 1.041

OPT(3) 2
3 [2.328, 1.01, 0.116, 0.020] 16 0.25 7.321

OPT(4) 3
4 [2.171, 1.01, 0.053, 0.005] 35 0.24 23.87

M-Robust Aggregate [2.161, 0.96, 0.055, 0.692] 15 0.25 7.56

Table 7. Optimal Commitment with π∗ = 0 and Interest Rate ZLB Imposed.11

Table 8 shows the welfare and ZLB outcomes when each rule designed for model i is

implemented in model j, i = 1, · · ·4, j = 1, · · ·4. These outcomes are compared with those

under the M-robust rule in the last row of table 7. The table shows that non-robustness

can take one of two forms. In the off-diagonal cells above the diagonal the welfare losses

are below the optimal values but at a cost of severe violations of the ZLB constraint. In the

most extreme case, the optimal rule for model 1 implemented in model 4 the probability

of hitting the ZLB is 0.41 per period and this is compensated by only a small reduction

of welfare loss. The other form of non-robustness shows itself in off-diagonal losses below

the diagonal which are substantially higher than the optimal values. Thus in the case of

the rule designed for model 4 implemented in model 2, the welfare loss is over three times

that of the optimal value with the compensation that the ZLB probability is almost zero.

The final row of table 8 provides provides the cost of robustness analogous to (59).

For the M-robust rule this is defined as follows. Let Ω0(i) be the minimum welfare loss

for model i under optimal policy designed for i. Let ΩM
0 (i) be the welfare loss under the

M-robust rule given in the penultimate row. The M-robust optimal rule is obtained by

searching over rules of the form of (69), and finding the lowest average loss over all four

models. The cost of robustness is defined by

ce = (ΩM
0 (i) − Ω0(i))× 10−2

in consumption equivalent percentage units.

11For the M-robust rule in tables 7 and 9, σ2
i and Ω̃0(0) are simple averages over the 4 model variants;

i.e., we put ps = 1

4
in (65).
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Rule OPT(i) Model 1 Model 2 Model 3 Model 4

OPT(1) 0.0002 0.6028 5.320 20.87

(0.021) (0.17) (0.33) (0.41)

OPT(2) 0.002 1.041 4.837 15.72

(0.000) (0.023) (0.17) (0.32)

OPT(3) 0.003 2.231 7.321 18.42

(0.000) (0.000) (0.023) (0.15)

OPT(4) 0.003 3.213 10.16 23.87

(0.000) (0.000) (0.000) (0.021)

Robust Rule 0.001 1.462 7.335 21.442

(0.009) (0.006) (0.023) (0.064)

ce (%) 10−5 0.004 0.0001 −0.02

Table 8. Optimal Commitment with Model Uncertainty.

Note: OPT(i) is the optimal rule designed for model i as given in Table 7. Cell ij con-

tains the welfare loss under OPT(i) in the model j. Values in brackets are ZLB violation

probabilities.

Model ξ Rule [ρ, θπ] wi σ2
i Ω̃0(0)

INF(1) 10−3 [1, 0.6203] 0.25 0.25 0.001

INF(2) 1
2 [1, 0.7618] 15 0.24 1.892

INF(3) 2
3 [1, 0.5653] 30 0.25 9.936

INF(4) 3
4 [1, 0.4280] 50 0.25 29.47

M-robust Aggregate [1, 0.5517] 25.5 0.25 9.909

Table 9. Optimal Current Inflation Rule with π∗ = 0 and Interest Rate ZLB

Imposed.

Tables 9 and 10 repeat this exercise for the optimized inflation rule of the form (68). A

number of features stand out. First unlike the HS robust rule, the M-robust rule does come

close to exhibiting the Brainard property that uncertainty calls for more policy caution
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in that the robust rule is less aggressive than all but the final non-robust rule. Second,

examining the off-diagonal welfare losses and ZLB probabilities in table 10, by comparison

with those for the optimal rule in table 8 they show far less variation. The proportional

drop in welfare below the diagonal are far less and indeed in many cells the absolute

welfare loss for the optimized (but sub-optimal) simple rule are less than their ‘optimal’

counterparts. Above the diagonal the ZLB constraint violations are far less serious than

the optimal rule. As with the latter a robust rule can be designed that on average across

models satisfies the ZLB constraint and reduces the welfare loss variations. As in (59) we

calculate the cost of robustness in the final row and here we see that these costs are very

similar to (and in fact slightly greater than) those for the optimal counterpart in Table 8.

We conclude that simple rules designed for one model implemented in the wrong model

are far more robust than the optimal counterpart. However when both types of rules are

designed to M-robust, the penultimate rows of tables 8 and 10 indicate that the costs of

robustness for the optimal rules are slightly lower.

Rule Model 1 Model 2 Model 3 Model 4

INF(1) 0.001 2.214 9.532 26.13

(0.023) (0.013) (0.030) (0.064)

INF(2) 0.001 1.892 8.678 24.36

(0.029) (0.021) (0.05) (0.093)

INF(3) 0.002 2.374 9.936 26.95

(0.021) (0.011) (0.023) (0.053)

INF(4) 0.002 2.908 11.21 29.47

(0.011) (0.004) (0.009) (0.025)

M-Robust 0.002 2.418 10.05 27.17

(0.019) (0.009) (0.023) (0.051)

ce (%) 10−5 0.005 0.001 −0.02

Table 10. Optimal Current Inflation Rule with Model Uncertainty.

Note: INF(i) is the optimized current inflation rule designed for model i. Cell ij con-

tains the welfare loss under INF(i) in the model j. Values in brackets are ZLB violation

probabilities.
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6 Conclusions

In this paper we have carried out two robust policy exercises for interest rate rules using

a work-horse New Keynesian model, one following a HS minimax approach with unstruc-

tured model uncertainty, and the other adopting an older tradition where model uncer-

tainty is structures and takes the form of rival models.

For the HS approach a number of results are worth highlighting. First, robust policy

in this case calls for a more aggressive monetary response to shocks than in the absence

of model uncertainty. This is not a new result (see, for example, Giannoni (2002) and

Tetlow and von zur Muehlen (2001)), but we pursue an important consequence of this

feature that has not appeared in the literature. A high interest rate variability in both

the worst-case and approximating equilibria means that, in both scenarios, the robust rule

leads to a serious violation of the ZLB constraint. The latter can be taken into account

by choosing a steady state inflation rate sufficiently large, but then the costs of achieving

robustness are substantial.

Second, HS robust control can be seen as a non-cooperative game between malign

nature and the policymaker. As in any game, the equilibrium concept needs close atten-

tion. In Hansen and Sargent (2003) and most applications of HS, the latter is an open-loop

Nash equilibrium. We argue that this is not always a minimax solution as the policymaker

who can commit can do better in the face of the worst environment by anticipating na-

ture’s strategy and acting as a leader in a time-inconsistent Stackelberg game. However if

commitment is not possible and the policymakers exercises discretion, the worst-case equi-

librium deteriorates sharply and with it the cost of robustness. The corresponding result

for the approximating equilibrium is less straightforward in that we have found that as a

concern for robustness increases, the cost under discretion is hump-shaped, an interesting

result that merits further research. Taking these two points together, a combination of

an inability to commit and the ZLB constraint imposes a substantial welfare cost mainly

driven by a high steady state inflation rate for both the worst-case and approximating

equilibria. But even if commitment is possible, the high volatility of the interest rate and

the ZLB constraint results in a high cost of achieving HS robustness.

Finally, in the context of the time-inconsistent Stackelberg game, we examined Taylor-

type HS-robust rules that mimic the optimal commitment rule. We find they take an
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unconventional form in that to be saddle-path stable for both the worst-case and approx-

imating models they must ‘prepare for the worst’ in that they respond to nature’s malign

anticipated worst-case misspecification errors.

The HS approach to robustness is a very powerful and elegant tool for a broad class of

economic decision-making. However for monetary policy design our results have raised a

number of question marks. HS robust control is appropriate if little information is available

on the underlying uncertainty facing the policymaker, originating from the model or the

manner in which agents form expectations. But is this really the case with respect to

the effect of particular monetary rules on the macro-economy? Central banks devote

considerable resources to this end in their assessment of the forecasting properties of the

approximating model, those of rival models and estimates of parameter uncertainty gleaned

from various estimation methods. The Bayesian approach set out in the final section of the

paper, and developed further in Levine et al. (2008), attempts to fully utilize the fruits

of this activity. Again we incorporate a ZLB constraint in construction of our robust

rules, but in notable contrast with HS robustness the Bayesian approach does not result

in aggressive monetary responses to shocks and a high interest rate volatility.

In our Bayesian exercise we have confined ourselves to a very simple form of structured

uncertainty in the form of uncertainty surrounding an important parameter capturing the

degree of price stickiness. We have compared a robust interest rate rule of the form that

is optimal in the absence of any model uncertainty, with a simple rule feeding back on

current inflation. We find that simple rules designed for one model implemented in the

wrong model are far more robust than its optimal counterpart, in the sense that the

proportional increase in welfare loss and violations of the ZLB constraint are far less.

This in a sense is an additional argument for simple rules to be considered alongside their

transparency and ease of implementation. When both types of rules are designed to be

robust across the possible views of the world, they perform similarly, so simple rules still

remain attractive. This exercise then suggests that some types of rule may be more robust

than others and robust design using a Bayesian approach should investigate a range of

rules with that in mind.
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A Details of Policy Rules

First consider the purely deterministic problem. In general policy involving several (for

example monetary and fiscal) instruments starts with a model in state-space form:⎡
⎣ zt+1

x
e
t+1,t

⎤
⎦ = A

⎡
⎣ zt

xt

⎤
⎦ + Bwt (A.1)

where zt is an (n − m) × 1 vector of predetermined variables including non-stationary

processed, z0 is given, wt is a vector of policy variables, xt is an m × 1 vector of non-

predetermined variables and x
e
t+1,t denotes rational (model consistent) expectations of

xt+1 formed at time t. Then x
e
t+1,t = xt+1 and letting y

′
t = [z′t x

′
t] (A.1) becomes

yt+1 = Ayt + Bwt (A.2)

Define target variables st by

st = Myt + Hwt (A.3)

and the policy-maker’s loss function at time t by

Ωt =
1

2

∞∑
i=0

βt[s′t+iQ1st+i + w
′
t+iQ2wt+i] (A.4)

which we can rewrite as

Ωt =
1

2

∞∑
i=0

βt[y′t+iQyt+i + 2y′t+iUwt+i + w
′
t+iRwt+i] (A.5)

where Q = M ′Q1M , U = M ′Q1H, R = Q2 +H ′Q1H, Q1 and Q2 are symmetric and non-

negative definite, R is required to be positive definite and β ∈ (0, 1) is discount factor. The

procedures for evaluating the three policy rules are outlined in the rest of this appendix

(or Currie and Levine (1993) for a more detailed treatment).

A.1 The Optimal Policy with Commitment

Consider the policy-maker’s ex-ante optimal policy at t = 0. This is found by minimizing

Ω0 given by (A.5) subject to (A.2) and (A.3) and given z0. We proceed by defining the

Hamiltonian

Ht(yt, yt+1, μt+1) =
1

2
βt(y′tQyt + 2y′tUwt + w

′
tRwt) + μt+1(Ayt + Bwt − yt+1) (A.6)
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where μt is a row vector of costate variables. By standard Lagrange multiplier theory we

minimize

L0(y0, y1, . . . , w0, w1, . . . , μ1, μ2, . . .) =
∞∑
t=0

Ht (A.7)

with respect to the arguments of L0 (except z0 which is given). Then at the optimum,

L0 = Ω0.

Redefining a new costate column vector pt = β−tμ′t, the first-order conditions lead to

wt = −R−1(βB′pt+1 + U ′yt) (A.8)

βA′pt+1 − pt = −(Qyt + Uwt) (A.9)

Substituting (A.8) into (A.2)) we arrive at the following system under control⎡
⎣ I βBR−1B′

0 β(A′ − UR−1B′)

⎤
⎦

⎡
⎣ yt+1

pt+1

⎤
⎦ =

⎡
⎣ A−BR−1U ′ 0

−(Q− UR−1U ′) I

⎤
⎦

⎡
⎣ yt

pt

⎤
⎦ (A.10)

To complete the solution we require 2n boundary conditions for (A.10). Specifying z0

gives us n−m of these conditions. The remaining condition is the ‘transversality condition’

lim
t→∞

μ′t = lim
t→∞

βt
pt = 0 (A.11)

and the initial condition

p20 = 0 (A.12)

where p
′
t = [p′1t p

′
2t] is partitioned so that p1t is of dimension (n − m) × 1. Equation

(A.3), (A.8), (A.10) together with the 2n boundary conditions constitute the system under

optimal control.

Solving the system under control leads to the following rule

wt = −F

⎡
⎣ I 0

−N21 −N22

⎤
⎦

⎡
⎣ zt

p2t

⎤
⎦ ≡ D

⎡
⎣ zt

p2t

⎤
⎦ = −F

⎡
⎣ zt

x2t

⎤
⎦ (A.13)

where ⎡
⎣ zt+1

p2t+1

⎤
⎦ =

⎡
⎣ I 0

S21 S22

⎤
⎦ G

⎡
⎣ I 0

−N21 −N22

⎤
⎦

⎡
⎣ zt

p2t

⎤
⎦ ≡ H

⎡
⎣ zt

p2t

⎤
⎦ (A.14)

N =

⎡
⎣ S11 − S12S

−1
22 S21 S12S

−1
22

−S−1
22 S21 S−1

22

⎤
⎦ =

⎡
⎣ N11 N12

N21 N22

⎤
⎦ (A.15)
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xt = −
[

N21 N22

]⎡
⎣ zt

p2t

⎤
⎦ (A.16)

where F = −(R + B′SB)−1(B′SA + U ′), G = A−BF and

S =

⎡
⎣ S11 S12

S21 S22

⎤
⎦ (A.17)

partitioned so that S11 is (n − m) × (n − m) and S22 is m × m is the solution to the

steady-state Ricatti equation

S = Q− UF − F ′U ′ + F ′RF + β(A−BF )′S(A−BF ) (A.18)

The cost-to-go for the optimal policy (OP) at time t is

ΩOP
t = −

1

2
(tr(N11Zt) + tr(N22p2tp

′
2t)) (A.19)

where Zt = ztz
′
t. To achieve optimality the policy-maker sets p20 = 0 at time t = 0. At

time t > 0 there exists a gain from reneging by resetting p2t = 0. It can be shown that

N11 < 0 and N22 < 0.12, so the incentive to renege exists at all points along the trajectory

of the optimal policy. This is the time-inconsistency problem.

A.1.1 Implementation

The rule may also be expressed in two other forms: First as

wt = D1zt + D2H21

t∑
τ=1

(H22)
τ−1

zt−τ (A.20)

where D = [D1 D2] is partitioned conformably with zt and p2t. The rule then consists

of a feedback on the lagged predetermined variables with geometrically declining weights

with lags extending back to time t = 0, the time of the formulation and announcement of

the policy.

The final way of expressing the rule is express the process for wt in terms of the target

variables only, st, in the loss function. This in particular eliminates feedback from the

exogenous processes in the vector zt. Since the rule does not require knowledge of these

12See Currie and Levine (1993), chapter 5.
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processes to design, Woodford (2003) refers to this as “robust” in describing it as the

Robust Optimal Explicit rule.

A.1.2 Optimal Policy from a Timeless Perspective

Noting from (A.16) that long the optimal policy we have xt = −N21zt − N22p2t, the

optimal policy “from a timeless perspective” proposed by Woodford (2003) replaces the

initial condition for optimality p20 = 0 with

Jx0 = −N21z0 −N22p20 (A.21)

where J is some 1×m matrix. Typically in New Keynesian models the particular choice

of condition is π0 = 0 thus avoiding any once-and-for-all initial surprise inflation. This

initial condition applies only at t = 0 and only affects the deterministic component of

policy and not the stochastic, stabilization component.

A.2 The Dynamic Programming Discretionary Policy

The evaluate the discretionary (time-consistent) policy we rewrite the cost-to-go Ωt given

by (A.5) as

Ωt =
1

2
[y′tQyt + 2y′tUwt + w

′
tRwt + βΩt+1] (A.22)

The dynamic programming solution then seeks a stationary solution of the form wt =

−Fzt in which Ωt is minimized at time t subject to (1) in the knowledge that a similar

procedure will be used to minimize Ωt+1 at time t + 1.

Suppose that the policy-maker at time t expects a private-sector response from t + 1

onwards, determined by subsequent re-optimization, of the form

xt+τ = −Nt+1zt+τ , τ ≥ 1 (A.23)

The loss at time t for the ex ante optimal policy was from (A.19) found to be a

quadratic function of xt and p2t. We have seen that the inclusion of p2t was the source of

the time inconsistency in that case. We therefore seek a lower-order controller

wt = −F zt (A.24)
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with the cost-to-go quadratic in zt only. We then write Ωt+1 = 1
2z
′
t+1St+1zt+1 in (A.22).

This leads to the following iterative process for Ft

wt = −Ftzt (A.25)

where

Ft = (Rt + λB
′
tSt+1Bt)

−1(U
′
t + βB

′
tSt+1At)

Rt = R + K ′
tQ22Kt + U2T Kt + K ′

tU
2

Kt = −(A22 + Nt+1A12)
−1(Nt+1B

1 + B2)

Bt = B1 + A12Kt

U t = U1 + Q12Kt + J ′tU
2 + J ′tQ22Jt

J t = −(A22 + Nt+1A12)
−1(Nt+1A11 + A12)

At = A11 + A12Jt

St = Qt − U tFt − F ′tU
′
+ F

′
tRtFt + β(At −BtFt)

′St+1(At −BtF t)

Qt = Q11 + J ′tQ21 + Q12Jt + J ′tQ22Jt

Nt = −Jt + KtFt

where B =

⎡
⎣ B1

B2

⎤
⎦, U =

⎡
⎣ U1

U2

⎤
⎦, A =

⎡
⎣ A11 A12

A21 A22

⎤
⎦, and Q similarly are partitioned

conformably with the predetermined and non-predetermined components of the state vec-

tor.

The sequence above describes an iterative process for Ft, Nt, and St starting with some

initial values for Nt and St. If the process converges to stationary values, F,N and S say,

then the time-consistent feedback rule is wt = −Fzt with loss at time t given by

ΩTC
t =

1

2
z
′
tSzt =

1

2
tr(SZt) (A.26)

A.3 Optimized Simple Rules

We now consider simple sub-optimal rules of the form

wt = Dyt = D

⎡
⎣ zt

xt

⎤
⎦ (A.27)
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where D is constrained to be sparse in some specified way. Rule (A.27) can be quite

general. By augmenting the state vector in an appropriate way it can represent a PID

(proportional-integral-derivative)controller.

Substituting (A.27) into (A.5) gives

Ωt =
1

2

∞∑
i=0

βt
y
′
t+iPt+iyt+i (A.28)

where P = Q + UD + D′U ′ + D′RD. The system under control (A.1), with wt given by

(A.27), has a rational expectations solution with xt = −Nzt where N = N(D). Hence

y
′
tP yt = z

′
tT zt (A.29)

where T = P11 − N ′P21 − P12N + N ′P22N , P is partitioned as for S in (A.17) onwards

and

zt+1 = (G11 −G12N)zt (A.30)

where G = A + BD is partitioned as for P . Solving (A.30) we have

zt = (G11 −G12N)tz0 (A.31)

Hence from (A.32), (A.29) and (A.31) we may write at time t

ΩSIM
t =

1

2
z′tV zt =

1

2
tr(V Zt) (A.32)

where Zt = ztz
′
t and V satisfies the Lyapunov equation

V = T + H ′V H (A.33)

where H = G11 − G12N . At time t = 0 the optimized simple rule is then found by

minimizing Ω0 given by (A.32) with respect to the non-zero elements of D given z0 using

a standard numerical technique. An important feature of the result is that unlike the

previous solution the optimal value of D, D∗ say, is not independent of z0. That is to say

D∗ = D∗(z0)

A.4 The Stochastic Case

Consider the stochastic generalization of (A.1)⎡
⎣ zt+1

x
e
t+1,t

⎤
⎦ = A

⎡
⎣ zt

xt

⎤
⎦ + Bwt +

⎡
⎣ ut

0

⎤
⎦ (A.34)



46
ECB

Working Paper Series No 899

May 2008

where ut is an n × 1 vector of white noise disturbances independently distributed with

cov(ut) = Σ. Then, it can be shown that certainty equivalence applies to all the policy

rules apart from the simple rules (see Currie and Levine (1993)). The expected loss at

time t is as before with quadratic terms of the form z
′
tXzt = tr(Xzt, Z

′
t) replaced with

Et

(
tr

[
X

(
ztz

′
t +

∞∑
i=1

βt
ut+iu

′
t+i

)])
= tr

[
X

(
z′tzt +

λ

1− λ
Σ

)]
(A.35)

where Et is the expectations operator with expectations formed at time t.

Thus for the optimal policy with commitment (A.19) becomes in the stochastic case

ΩOP
t = −

1

2
tr

(
N11

(
Zt +

β

1− β
Σ

)
+ N22p2tp

′
2t

)
(A.36)

For the time-consistent policy (A.26) becomes

ΩTC
t = −

1

2
tr

(
S

(
Zt +

β

1− β
Σ

))
(A.37)

and for the simple rule, generalizing (A.32)

ΩSIM
t = −

1

2
tr

(
V

(
Zt +

β

1− β
Σ

))
(A.38)

The optimized simple rule is found at time t = 0 by minimizing ΩSIM
0 given by (A.38).

Now we find that

D∗ = D∗

(
z0z

′
0 +

β

1− β
Σ

)
(A.39)

or, in other words, the optimized rule depends both on the initial displacement z0 and on

the covariance matrix of disturbances Σ.
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Figure 1: Optimal Policy without Model Uncertainty
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Figure 2: Optimal Policy with Model Uncertainty
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Figure 3: Optimal Policy without Model Uncertainty with ZLB Constraint
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