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Abstract

In a globalised world economy, global factors have become increasingly
important to explain trade �ows at the expense of country-speci�c deter-
minants. This paper shows empirically the superiority of direct forecasting
methods, in which world trade is directly forecasted at the aggregate lev-
els, relative to �bottom-up" approaches, where world trade results from
an aggregation of country-speci�c forecasts. Factor models in particular
prove rather accurate, where the factors summarise large-scale datasets
relevant in the determination of trade �ows.

Keywords: World trade, Factor models, Forecasts, Time series mod-
els.

JEL Classi�cation: C53, C32, E37, F17
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NON TECHNICAL SUMMARY

Traditionally, import volumes are forecasted on a country basis by relating

them to a domestic demand indicator and the forecasts for world trade result

simply from an aggregation of country-speci�c forecasts. However, despite a

positive correlation between imports and domestic demand, the growth rates

of the former are much more volatile than those of the latter. Therefore, this

traditional approach often yields import forecasts that are too smooth and leads

to a very poor forecast performance.

Moreover, trade volumes are also in�uenced by many factors that are not

only country-speci�c but also related to global developments. With increasing

globalisation, it is more likely that global factors have become more predominant

to explain international trade activity at the expense of country-speci�c tradi-

tional determinants. The development in the internationalisation of production

processes, the rise in intra-�rm trade and the increasing import content of ex-

port all support to have a more global view of the world trade outlook. World

trade might also have a speci�c cycle that could di¤er from country-speci�c

cycles. If world trade is synchronised more with industrial production at the

world level than with country-speci�c activity indicators, forecasting aggregate

world trade directly might give better results than aggregating country-speci�c

forecasts.

These ideas have been applied in this paper, which presents a number of

approaches to forecast monthly data for world trade and compares the rela-

tive forecasting performance of methods forecasting directly aggregate variables

(direct approaches) with methods based on the aggregation of country-speci�c

forecasts (bottom-up approaches).

This paper shows empirically the superiority of direct forecasting methods,
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in which world trade is directly forecasted at the aggregate levels, relative to

"bottom-up" approaches, where world trade results from an aggregation of indi-

vidual country forecasts. Factor models in particular prove rather accurate for

short-term horizons (1 to 3 months), where the factors summarise large-scale

datasets relevant in the determination of trade �ows. Simple time-series mod-

els, where trade volumes depend on leading indictors of manufacturing activity

outperforms other models for longer horizons (up to 12 months).
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1 Introduction

Traditionally, import volumes are forecasted on a country basis by relating them

to a domestic demand indicator (see for instance, Le Fouler et al., 2005)1 and the

forecasts for world trade result simply from an aggregation of country-speci�c

forecasts.

However, despite a positive correlation between imports and domestic de-

mand, the growth rates of the former are much more volatile than those of the

latter (see Keck and Raubold, 2006). Therefore, this traditional approach often

yields import forecasts that are too smooth and leads to a very poor forecast

performance2.

Moreover, trade volumes are also in�uenced by many factors that are not

only country-speci�c but also related to global developments. With increasing

globalisation, it is more likely that global factors have become more predominant

to explain international trade activity at the expense of country-speci�c tradi-

tional determinants. The development in the internationalisation of production

processes, the rise in intra-�rm trade and the increasing import content of ex-

port all support to have a more global view of the world trade outlook. World

trade might also have a speci�c cycle that could di¤er from country-speci�c

cycles. If world trade is synchronised more with industrial production at the

world level than with country-speci�c activity indicators, forecasting aggregate

world trade directly might give better results than aggregating country-speci�c

forecasts.

These ideas have been applied in this paper, which presents a number of

approaches to forecast monthly data for world trade and compares the rela-

1Changes in competitiveness also in�uence these forecasts. However, due to their limited
changes going forward (owing to the random walk assumption for exchange rates used by
most forecasters), relative prices do not in practice impact signi�cantly the trade projections
beyond the very short term.

2Keck and Raubold (2006) show that simple time series approaches outperform forecasts
based on such traditional models



8
ECB
Working Paper Series No 882
March 2008

tive forecasting performance of methods forecasting directly aggregate variables

(direct approaches) with methods based on the aggregation of country-speci�c

forecasts (bottom-up approaches). Overall, the results of this empirical analy-

sis support direct approaches, which perform well in terms of forecast accuracy

relative to other benchmarks.

Section 2 presents some theoretical considerations about the problem of ag-

gregation in the forecasting literature. Section 3 presents the di¤erent forecast-

ing models and the dataset used in the empirical analysis which is presented in

Section 4. Section 5 gives some concluding remarks.

2 Aggregating Forecasts or Forecasting Aggre-

gates: What Does the Literature Say?

The problem of aggregation in econometrics was �rst studied from a theoretical

viewpoint by Theil (1954), who analysed the aggregation error resulting from

aggregating "micro" equations. Grunfeld and Griliches (1960) extended this

analysis by showing that this aggregation error can actually become an aggre-

gation gain. They showed the existence of a relationship between micro and

macro correlation coe¢cients. Under certain assumptions3, they show that the

necessary conditions to have higher R2 for the aggregate equation relative to

the R2�s of the micro equations is that the cross-section correlation between

the errors of the micro equations is smaller than the cross-section correlation

of the explanatory variables of the micro equations. In this case, the aggregate

equation shows a higher R2 than those of the micro equations.

The issue of comparing forecast performance of methods forecasting the

3All micro units have the same parameters, the variance of the explanatory variables in
the micro equations is the same, the cross-section correlation of the explanatory variable is
the same for all pairs of micro units and the cross-section correlation of the micro equations
errors is also the same for all pairs of micro units. Most of these assumptions can be relaxed
without a¤ecting the conclusions (see appendices in the Grunfeld and Griliches paper).
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components of an aggregate variable and aggregating such forecasts, as against

directly forecasting the aggregate has also been widely studied in the literature.

Lütkepohl (1987) shows that if the data generation process (DGP) is known,

disaggregation as much as possible results in optimal forecasts. In practice,

however, this condition is always violated and estimated processes for forecasting

have to be used. Lütkepohl (1987) also shows that aggregating forecasts of the

individual components is optimal if the components of the disaggregated system

are uncorrelated. In other cases, the direct forecast of the aggregate might be

superior to the aggregation of the individual components� forecasts.

In practice, the issue remains largely empirical in nature. The empirical

studies of this issue have been applied to macroeconomic aggregates, where the

components are sub-indices of the aggregate measure, like a price index, or

the microeconomic data of a macroeconomic variable, like the di¤erent �rms

or sectors of a real variable. Empirical studies also focus on geographical ag-

gregates, where the components are states, countries or regions. For instance,

Marcellino, Stock and Watson (2003) show that, in the case of forecasting euro

area-wide in�ation and real activity, forecasts constructed by aggregating the

country-speci�c models are more accurate than forecasts constructed using the

aggregate data.

3 Forecasting models and data

We investigate several time series methods for forecasting world trade and con-

sider empirically whether it is better to build aggregate trade forecasting models,

or whether there are gains from aggregating country-speci�c forecasts. Our em-

pirical analysis is made at two di¤erent levels of aggregation. In a �rst step,

we aggregate country trade data for industrial countries only and compare the

aggregation of country-speci�c forecasts with the forecasts of the aggregated
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series. In a second step, we perform a similar exercise by including trade data

for emerging markets. Owing to data availability issues, the emerging markets

are treated as a single block. By taking into account such data, we can extend

our analysis to world trade.

3.1 Forecasting models

To ensure the robustness of our analysis, we use and compare several forecasting

models. We estimate �rst auto-regressive models, which serve as benchmarks

for the other models. We also estimate simple linear models that depend only on

Industrial Production and Composite Leading Indicators (CLIs). Finally, factor

models are estimated, where the factors are extracted out of a large set of pre-

dictors. As our analysis focuses on short-term forecasts, we have restricted our

study to time series models, whose explanatory variables are selected either by

their well-known leading properties in forecasting trade variables (linear mod-

els) or via a statistical analysis without any theoretical basis (factor models).

We have therefore excluded more structural approaches - like error correction

models -, which assume some theoretical relationships to hold -at least- in the

long run.

Forecasts are made at forecast horizons of one, three, six and twelve months.

Following Marcellino, Stock and Watson (2003), all models are speci�ed and es-

timated as a linear projection of a h-step ahead variable, Mh
t+h onto t-dated

predictors. In other words, di¤erent models are set up for each individual fore-

cast horizon (h = 1; 3; 6; 12) and used to predict explicitly at time t the variable

to be forecasted at horizon (t + h) based on the information available at time

t. This so-called "h-step ahead projection" approach contrasts with approaches

usually applied in literature. Standard approaches consist in estimating one-

step-ahead models and then iterating that model to obtain the "h-step-ahead"
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forecast. The h-step ahead method has mainly two advantages compared with

the standard approach. First, it implies less forecasting work, since the predic-

tor series themselves do not have to be forecasted. Second, as a consequence,

one does not have to face the problem of cumulated forecast errors.

The theoretical literature underlines the robustness and bias reduction of

the "h-step ahead" forecasts in contrast to the special parametric, �nite-lag

assumptions that underlie optimality properties for the iterated forecasts (e.g.

Bhansali, 1999 and Ing, 2003). However, it appears that, empirically (Mar-

cellino, Stock and Watson, 2006), the robustness and bias reduction obtained

using the "h-step ahead" forecasts have to be balanced with the price paid in

terms of increased sampling variance. This tradeo¤ is nevertheless irrelevant for

our purposes of comparing aggregation of forecasts and forecasts of aggregates

as the forecasting approach is the same across methods.

3.1.1 Auto-regressive models

The AR-model has the form:

ln(Mt+h)� ln(Mt) =  (L)d ln(Mt) + "t (1)

where Mt is the import volumes of goods at t, d ln(Mt) is the �rst log dif-

ference of Mt and  (L) is a scalar lag polynomial. "t is the error term.

The dependent variable of model (1) is represented by the log-di¤erence at

horizon h of monthly import data, i.e. the growth rate between t and t + h.

The regressors on the right side, however, are represented only by �rst log

di¤erences, i.e. the growth rate between the periods t� 1 and t. Although the

auto-regressive technique in model (1) di¤ers substantially from the standard

de�nition in literature of an auto-regressive model, we will nevertheless call it

AR-model, following Marcellino, Stock and Watson (2003). The number of lags
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to be included in the model is �xed a priori to 3 lags4.

3.1.2 Simple linear models

The second type of models used are simple linear models that depend on indica-

tors or variables that have proved to have some leading properties in forecasting

trade variables5 . The indicators used in theses models are Industrial Production

(IP) and the Composite Leading Indicator (CLI) provided by the OECD. The

models have a form as follows:

ln(Mt+h)� ln(Mt) =  (L)d ln(Mt) + �(L)d ln(X1
t ) + "t (2)

ln(Mt+h)� ln(Mt) =  (L)d ln(Mt) + �(L)d ln(X2
t ) + "t (3)

ln(Mt+h)� ln(Mt) =  (L)d ln(Mt) + �(L)d ln(X3
t ) + "t (4)

where X1
t = (IP ); X2

t = (CLI); X3
t = (IP;CLI) and  (L) and �(L) are

scalar lag polynomials. "t is the error term.

We decide furthermore to include lagged values of the dependent variable on

the right side of models (2), (3) and (4). The number of lags in these models

has also been �xed to 3 lags, which is in most cases consistent with the optimal

lag order selected using an information criteria (BIC).

3.1.3 Factor Models

The factor-model forecasts are based on setting the regressors to be the principal

components of a large number of predictor series. The goal of a factor analysis is

actually to extract a maximum of information out of a panel of time series. It is

4Alternatively, we have used an information criteria (BIC) to select the optimal lag order.
However, for some countries, the number of lags varying too much from a period to another, we
have prefered �xing ex-ante the number of lags, avoiding results that were otherwise di¢cult
to justify.

5We are grateful to Gerard van Welzenis for suggesting this type of models.
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a way to sum up the enormous amount of information that can be found in the

series and extract common trends that are likely to drive the dependent variable.

The literature on factors models suggest di¤erent methods of extracting the

factors (for a survey, see Kapetanios and Marcellino (2003)). Here, we use the

method suggested by Stock and Watson (2002a, 2002b), consisting in a Principal

Components Analysis on the series, which means that the k factors used are

the eigenvectors associated to the k largest eigenvalues of the contemporaneous

variance-covariance matrix of the series.

The following four types of factor models are applied:

ln(Mt+h)� ln(Mt) = �Ft + "t (5)

ln(Mt+h)� ln(Mt) =  (L)d ln(Mt) + �Ft + "t (6)

ln(Mt+h)� ln(Mt) = �(L)Ft + "t (7)

ln(Mt+h)� ln(Mt) =  (L)d ln(Mt) + �(L)Ft + "t (8)

where Ft denotes the factor matrix,  (L) and �(L) are scalar lag polynomi-

als. "t is the error term.

Model (5) represents the simple factor model which includes only the factors.

We �x the number of factors to be applied to four6. Model (6) takes into account

the lagged structure of the variable to be explained. Model (7) imposes a lagged

structure among the factors. We include therefore the four factors, this time,

each with two lags. By including the lagged factors, we allow in this model for

some dynamics in the factors. Nevertheless, this method should not in every

case be confused with the dynamic factor models (see Forni, Hallin, Lippi and

Reichlin (2000 and 2005)). However, Stock and Watson (1998) show under

certain conditions the equivalence between principal components forecasts and

6The choice of the number of factors follows the selection criteria determined by Bai and
Ng (2002).
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dynamic factor models. In model (8) we include lagged dependent variables to

the previous model.

3.2 Data

We use a large database including information on a monthly basis to explain

trade developments over the period 1991:1 - 2006:4. The dataset can be divided

into three groups:

� Trade data (dependent variables): The trade data are monthly volumes

of imports of goods in 1995 constant prices. The series are published by

the Central Planning Bureau (CPB) and are available for the majority

of industrial countries and for emerging markets considered as a single

block7.

� Country-speci�c macroeconomic and �nancial data (explanatory variables):

The country-speci�c macroeconomic data are represented by OECD�s Com-

posite Leading Indicators, other composite indicators, industrial produc-

tion (total and components), retail sales, consumer and producer prices

and labour market variables. Financial and monetary data at a country

speci�c level include series on interest rates and money supply, as well as

bilateral exchange rates vis-a-vis the US dollar and in e¤ective terms.

� Global data (explanatory variables): As for the series at the global level,

which are supposed to have an impact on domestic developments, we in-

troduce variables such as oil prices and non-oil commodity prices. The set

of global series is completed by semi-conductor sales, stock market prices

for the major �nancial centres and the Baltic Dry Index8.

7For more details about the trade data, see van Welzenis and Suyker (2005).
8The Baltic Dry Index is produced daily by the London-based Baltic Exchange. Using a

panel of international shipbrokers, it provides an assessment of the price of moving the major
raw materials by sea. It is therefore a good leading indicator for trade and economic growth.
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The countries included in our industrial country sample are: the United

States, Canada, Japan, the euro area and the United Kingdom. Taken together

these countries represent more than 90% of the industrial countries in terms

of import volumes in 19959. When extending the analysis to world trade, we

include, in addition to the countries listed above, emerging markets, treated

as a single block. While the trade data for emerging markets are available

(from the CPB), there are data availability problems at the level of aggregate

macroeconomic and �nancial data as well as at the level of the various countries

in the block. We prefer therefore to only select data for a few countries that

are representative of emerging markets. These countries are: China, Brazil,

Russia, Indonesia, South Africa, Thailand, Argentina, South Korea, Taiwan,

Singapore and Malaysia. Although these countries only represent around 50%

of emerging markets� importations in 1995, we reasonably assume that they

are su¢cient to give a good approximation for the whole aggregate. This is

con�rmed by inspecting and comparing the series visually and by conducting

some simple statistical analysis of co-movements between the individual series

and the emerging markets� aggregates.

Overall, the dataset includes 171 series at the industrial countries� level and

352 series at the world level10 .

Before using the data for forecasting purposes, we have made several trans-

formation. First, the stationarity properties of the series have been checked.

As reported in Table 1, the dependent variables are all stationary. Unit roots

have also been tested for all series used as explanatory variables11 . If not sta-

tionary, the series have been transformed as �rst log-di¤erence in the case of

9 Industrial countries is de�ned as OECD coutries excluding Turkey, Czech Republic, Hun-
gary, Poland, Slovak Republic, Mexico and Korea. In our analysis, the missing countries are:
Switzerland, Norway, Iceland, Denmark, Sweden, Australia and New Zealand. The weight of
these countries in the aggregate "industrial countries" being too small, their omission should
not a¤ect the main results of this study.
10Further information on the dataset is available upon request.
11Unit root test results are available upon request.
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non-negative series that are not already in percentage rates (real series and in-

dices). Negative series and series in percentage rates have been transformed by

applying �rst di¤erences (interest rates and labour market series).

[TABLE 1 HERE]

Second, we have checked the seasonal patterns in the series. As only part of

the raw series is seasonally adjusted, a harmonization of the seasonal adjustment

has been necessary. As a consequence, we have decided to treat all the series,

whether already seasonally adjusted, or not, in the same way. All the series

have gone through a two step-seasonal adjustment procedure. In a �rst step, we

have regressed the series against eleven monthly indicators and a constant. In a

second step, based on the results a Fisher test for joint nullity of the coe¢cients,

the seasonal adjustment procedure has been applied in the eight steps suggested

by Wallis (1974).

Third, the series, after transformation and seasonal adjustment, have been

adjusted for outliers, omittimg observations that exceed six times the interquar-

tile range, treated subsequently as missing values. The proportion of outliers

remain however very marginal, as around 3% of the observations are treated

as such (less than 1% for industrial countries and less than 5% for emerging

markets).

3.3 Estimation and forecast aggregation

We estimate separately forecasting models for countries (US, Japan, euro area,

UK and Canada) and for emerging markets. For the estimation of country/region-

speci�c factor models, the factors are extracted out of a panel of country-speci�c

series and global series. For the aggregate factor models, we estimate models

using factors extracted out of the whole database, including also country-speci�c

information. The advantage of the latter method is that a wider set of infor-
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mation can be included to determine the factors, since all the country-speci�c

series are taken into account for the determination of the factors. Moreover, as

the Principal Component Analysis provides composite indicators � the factors

�, we do not need in principle to aggregate country-speci�c series. However, to

check the importance of disaggregate information when forecasting aggregate

variables, we also envisage, as a robstness check, cases where the factors are

extracted only from aggregated series (results are also reported in Section 4).

To deal with non-available data or di¤erent dates in data releases, we use

the method suggested by Stock and Watson (1998), applying the Expectation

Maximisation algorithm (thereafter EM algorithm) to extract factors out of

an unbalanced panel. The EM algorithm is an iterative method for maximum

likelihood estimation that allows to �nd missing values under the assumption

that the estimators converge. In the �rst step of the algorithm, the missing

values are replaced by the �tted values obtained by the regression of the series

on the factors which were obtained from a principal component analysis on the

equivalent balanced panel. In the second step the missing values are replaced by

the �tted values that were this time obtained from the regression of the series on

the factors derived from a principal components analysis on the adjusted panel

obtained in the �rst step. The second step is subsequently repeated, using the

factors obtained from the previous step, until the regressors have converged.

Finally, we compute bottom-up forecasts for the aggregate series, by aggre-

gating the country/region-speci�c forecasts using the same weighting scheme

applied to the CPB trade series (based on country shares in total trade).

4 Empirical Results

The empirical analysis is conducted in three steps. First, we start computing

cross-country correlations to check whether it is optimal or not to aggregate
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country-speci�c trade forecasts. Second, we compute model quality measures

to check whether the quality of aggregate models is higher than that of the

country-speci�c ones. Finally, we perform forecast performance tests between

direct models and bottom-up approaches.

4.1 Correlations between countries and aggregate

As seen in the previous section, some results of the theory of aggregation in

econometrics are related to the degree of correlation between the sub-components

of an aggregate. More precisely, Lütkepohl (1987) shows that in univariate mod-

els, predictors that originate in pooling disaggregate predictions are optimal, if

the components of the disaggregate system are uncorrelated. By showing strong

correlations between the country-speci�c trade data, this assumption would be

invalid and the optimality of bottom-up forecasts could be questioned. There-

fore, preliminary to a more comprehensive econometric analysis, we start with

a simple statistical analysis of the correlation between the di¤erent trade series.

Such an analysis would also allow us to draw some �rst conclusions on the links

between the trade series of the di¤erent countries and regions. Table 2 shows the

correlations between growth rates of import volumes across the di¤erent coun-

tries and regions on the sample 1991:1 - 2006:4. It also includes the correlations

with respect to the aggregates (industrial countries and world).

[TABLE 2 HERE]

Table 2 shows that the correlation across countries is overall high (0.44 on

average), especially between traditional trade partners, like the US and Canada

(0.80). Similarly, the correlation between the United Kingdom and the euro area

is much higher than the average (0.61). The correlations between Japan and the

other industrial countries are noticeably lower than the overall average (between

0.23 and 0.35) and all the industrial countries have their lowest correlations with
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Japan. A possible explanation for the low correlation of the Japanese trade with

the other industrial country trade might be explained by the large share of other

Asian economies in the Japanese trade, as shown by the high correlation with

emerging markets.

Interestingly, the cross-section correlations are stronger between the country-

speci�c and the aggregates� import volume growth rates (around 0.7 on average

at the industrial countries and world levels), con�rming our prior beliefs that

trade appears to be driven by global rather than country-speci�c factors. Based

only on a correlation analysis, forecasting methods based on direct approaches

are therefore likely to provide good models of trade developments.

4.2 Model performance

As seen in Section 2, Grundfeld and Griliches (1960) show that under certain

assumptions, aggregate R2s are higher than those of the disaggregate equations

if the cross-section correlation between errors of the disaggregate equations are

smaller than the cross-section correlation of the explanatory variables.

[TABLES 3 AND 4 HERE]

Tables 3 and 4 give cross-section correlations for a sample of country-speci�c

models at a one-month horizon (model (3) and model (5))12 . The large �gures

indicate the average cross-section correlations between country-speci�c explana-

tory variables. The small �gure indicates the cross-section correlation between

models� errors estimated over the sample 1992:01-2006:04.

In all the cases, the correlation between regressors is higher than the corre-

lation between the errors. These results are therefore in line with the Grunfeld-

Griliches conditions to obtain higher R2 for the aggregate equations relative to

those of the country-speci�c ones.

12Cross-section correlations corresponding to the other models and other horizons are avail-
able upon request. They con�rm the results presented here.
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[TABLE 5 HERE]

Table 5 con�rms the theoretical �ndings by Grunfeld and Griliches (1960).

The adjusted R2 at the aggregate levels are on average higher than at the

country-speci�c levels. Empirically, we show then that when the pair-wise cor-

relations of the explanatory variables is higher than those of the errors, aggre-

gated models are likely to have a higher goodness-of-�t than country-speci�c

ones.

Such a result gives us some interesting indications supporting direct ap-

proaches at the expense of bottom-up ones. However, it is far from being con-

clusive in what concerns the forecasting performance of the di¤erent approaches.

This aspect is studied next.

4.3 Forecasting performance

In order to measure the forecasting performance of our models we compute the

Root Mean Square Forecast Error (RMSFE) of the di¤erent models13 . We chose

as benchmarks the AR models estimated for the aggregates (AR - direct) and

report results for the other models relative to this benchmark. Therefore, when

a model outperforms the AR benchmark, the relative RMFSE is lower than 1.

Each model (models (1) to (8)) is estimated at the aggregate level (for industrial

countries �rst and for the world as the whole thereafter) and at the country-

speci�c level. Country-speci�c forecasts are thereafter aggregated to obtain

bottom-up forecasts. These bottom-up forecasts are then compared with the

aggregate forecasts (direct methods)14 . In the forecast performance comparison,

we also indicate the levels of signi�cance of the di¤erence between the candidate

forecast models and the benchmark by using the test statistics suggested by

13We also computed Mean Absolute Forecast Errors (MAFE). For the sake of readibility of
the result tables, we do not present such statistics. They are however available upon request.
14The out-of-sample forecasting exercise has not been conducted using real-time data (i.e.

publication lags in the series have not been taken into account when conducting the exercise).
Such real-time data are not available for the series used in this paper.
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Diebold and Mariano (1995). As the Diebold-Mariano tests are only valid for

the comparison of non-nested models, we use the out-of-sample F (or OOS-F)

statistics (see West, 2006, and McCracken,2004) and the corresponding critical

values reported in McCracken (2004), when comparing a model including an

AR term with the AR benchmark model. The OOS-F test is indeed the right

test when comparing the predictive ability of two nested models.

4.3.1 Results at the level of industrial countries

Table 6 indicates the forecast results at the industrial economies� level for the

four di¤erent horizons.

[TABLE 6 HERE]

In line with the prediction that the forecast accuracy deteriorates with the

length of the forecast horizon (Dua, 1988), the RMSFE for the benchmark model

increases with the horizon. In most cases (51 out of 60), the proposed models

perform better than the benchmark AR, especially for horizons higher than one

month. Except the bottom-up model with industrial production (model (2) -

bottom-up), all models outperform the benchmark for horizons 3, 6 and 12.

Moreover, among the factor models, the models including the lagged dependent

variable (models (6) and (8)) perform slightly better than those excluding it.

In particular, in 11 cases out of 16, the factor model that includes the lagged

dependent variable performs better than the "pure" factor model (model (5)).

Interestingly, 3 out of the 4 best-performers per horizon come from the static

factor models including lags in the factors (models (7) and (8)). In particular,

"model (8) - direct" outperforms all the models at horizons 1 and 6 and "model

(7) - direct" is the best performer at a 3-month horizon. The best-performer for

the one year ahead horizon can be found among the linear models (model (3) -

direct).

From the perspective of comparing the performance of direct vs. bottom-up
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approaches, we �nd that in most cases the relative RMSFE of the direct forecasts

are smaller than those of the bottom-up ones. In 27 cases out of 32, the forecasts

of the aggregate performs better than the aggregate of the forecast. Especially

for horizons higher than 1 month, the performance of the direct approach seems

to be even more clear-cut.

Overall, we can conclude that the proposed models perform better than

the benchmark AR model and that the forecasting performance of the factor

models is relatively good. Moreover, the longer the horizon, the less important

the lagged dependant variable among the explanatory variables becomes, as the

RMSFE of models (6) and (8) seem to converge for long horizons to that of

the factor models (5) and (7). Finally, the superiority of the direct approach is

veri�ed in most cases.

Figure 1 shows a simple time plot of the actual and the forecast values for

various models, illustrating the ability of the forecast models to capture (espe-

cially for short horizons) the main turning points of the series in the sampling

period.

4.3.2 Results at the world level

Table 7 shows the results for the out-of-sample forecasts at the world level.

[TABLE 7 HERE]

As observed previously for industrial countries, the forecasting performance

of all the proposed models, is in most cases better compared to the benchmark

(53 out of 60 cases). Also, in 11 cases out of 16 the factor models with the

lagged dependent variable (models (6) and (8)) performs better than the factor

models excluding it (models (5) and (7)).

As regards the conclusions in terms of direct vs. bottom-up approach com-

parison, the results are more mixed, as on the one hand, we cannot show the

superiority of direct approaches for the linear models (models (2) to (4)) while,
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on the other hand, the factor-model based forecats of the aggregates outperforms

in all cases the aggregation of the forecasts (models (5) to (8)).

The best performers per horizon for the short-term (one to three months

ahead) can again be found among the factors models with a lagged structure

on the factors (models (7) and (8)). For the medium-term (half a year to one

year), the linear model with industrial production and CLI (model (4)) performs

slightly better than the factor models.

The conclusions at the world level are therefore somewhat weaker than those

obtained at the industrial countries� level. Nevertheless, among the factor mod-

els, the direct approach still seems to be superior to the bottom-up one. Simi-

larly to Figure 1, Figure 2 gives a time plot of the actual and the forecast values

for various models at the world level, con�rming the visual demonstration of

the ability of the models to forecast relatively well the main turning points.

4.3.3 The role of disaggregate information in forecasting aggregates

with factor models

In the previous analysis, the factor models used to forecast aggregate variables

were based on a large set of indicators including disaggregate information (i.e.

country-speci�c indicators). Hendry and Hubrich (2006) show that disaggregate

information should usually improve predictability. Lütkepohl (1987) also shows

that the relative forecast e¢ciency increases in general if disaggregate data is

used for estimating the process of an aggregated variable. To assess the role of

disaggregate information, we also estimate models using factors extracted only

from aggregated series. For data availability reasons, we restrict such an analysis

to forecasts at the industrial countries� level. The aggregated series for indus-

trial countries are indicators computed by the OECD. Overall, 29 indicators

are available at the OECD aggregate level. They cover most macroeconomic

and �nancial series as described in Section 3.2. In order to make the forecast
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performance comparable across methods, we had to reduce the data coverage

at the country level to match exactly the number of indicators available at the

aggregate level. Using this information set, we perform forecast comparisons

between three di¤erent methods: (1) Direct using disaggregate information, (2)

Direct using aggregate information, and (3) Bottom-up. Cases (1) and (3) cor-

respond to those studied above. Only approach (2) is added to check whether

restrincting the information set to aggregated variables changes the previous

results.

[TABLE 8 HERE]

Table 8 reports the forecast results at the industrial economies� level using

these three approaches15 . In 11 cases out of 16, the direct method using disag-

gregate information outperforms the two other approaches and in 10 cases out of

16, the direct method using aggregate information outperforms the bottom-up

one. In line with Hendry and Hubrich (2006) or Lütkepohl (1987), these results

show therefore that using disaggregate information improves the forecast per-

formance of the direct approaches. The overperformance of direct approaches

with respect to bottom-up ones remains however valid whatever information set

used.

5 Conclusion

In a globalised world economy, global factors have become increasingly impor-

tant to explain trade �ows at the expense of country-speci�c determinants. This

paper shows empirically the superiority of direct forecasting methods, in which

world trade is directly forecasted at the aggregate levels, relative to �bottom-up�

approaches, where world trade results from an aggregation of individual country

15 In the table, cases (1), (2) and (3) are labelled respectively "direct with disaggr", "direct
with aggr" and "bottom-up".
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forecasts. Factor models in particular prove rather accurate for short-term hori-

zons (1 to 3 months), where the factors summarise large-scale datasets relevant

in the determination of trade �ows. Simple time-series models, where trade vol-

umes depend on leading indictors of manufacturing activity outperforms other

models for longer horizons (up to 12 months).
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Table 1: ADF (1st line) and KPSS (2nd line) Tests for Dependent Variables

World IC US Japan Canada euro area UK EM
ln (M t)� ln (M t�1) -3.99 -4.17 -4.56 -4.61 -4.07 -3.82 -8.08 -3.70

0.06 0.08 0.40 0.06 0.28 0.10 0.07 0.07
ln (M t)� ln (M t�3) -4.24 -3.25 -3.91 -2.69 -4.41 -3.65 -3.90 -3.81

0.06 0.08 0.35 0.07 0.26 0.09 0.07 0.07
ln (M t)� ln (M t�6) -3.46 -3.49 -3.35 -2.46 -3.58 -4.17 -2.97 -4.11

0.06 0.09 0.34 0.06 0.23 0.10 0.09 0.07
ln (M t)� ln (M t�12) -4.28 -3.82 -3.85 -3.57 -2.65 -2.60 -2.52 -3.08

0.07 0.11 0.44 0.07 0.27 0.11 0.12 0.10

Critical values 1% 5% 10%
ADF -3.43 -2.86 -2.57
KPSS 0.74 0.46 0.35

Note: IC: Industrial countries; EM: Emerging markets.

For the Augmented Dickey-Fuller (ADF) test, the null hypothesis is: the series has a unit

root.

For the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, the null hypothesis is: the series is

stationary. See Kwiatkowski et al. (1992).

Table 2: Cross-section correlations for import volume growth rates

World IC US Japan Canada euro area UK EM
World 1.000
IC 0.874 1.000
US 0.704 0.777 1.000
Japan 0.538 0.493 0.297 1.000
Canada 0.682 0.711 0.803 0.230 1.000
euro area 0.774 0.935 0.547 0.346 0.531 1.000
UK 0.604 0.620 0.462 0.244 0.324 0.612 1.000
EM 0.758 0.348 0.345 0.370 0.376 0.297 0.339 1.000

Note: IC: Industrial countries; EM: Emerging markets.
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Table 3: Cross-section correlation across regressors (large) and residuals (small)
over the sample 1992:01-2006:04 for model (3) at horizon 1

US Japan Canada euro area UK EM
US 1.00

1.00
Japan 0.20 1.00

-0.01 1.00
Canada 0.62 0.19 1.00

0.14 0.04 1.00
euro area 0.45 0.39 0.38 1.00

-0.03 0.05 0.18 1.00
UK 0.42 0.34 0.29 0.35 1.00

0.02 -0.09 0.08 0.28 1.00
EM 0.34 0.43 0.36 0.39 0.31 1.00

-0.04 0.07 0.11 0.32 0.22 1.00

Note: EM: Emerging markets.

Table 4: Cross-section correlation across regressors (large) and residuals (small)
over the sample 1992:01-2006:04 for model (5) at horizon 1

US Japan Canada euro area UK EM
US 1.00

1.00
Japan 0.84 1.00

0.16 1.00
Canada 0.76 0.64 1.00

0.27 -0.02 1.00
euro area 0.85 0.73 0.78 1.00

0.13 0.17 0.21 1.00
UK 0.78 0.71 0.85 0.83 1.00

0.15 0.14 0.09 0.47 1.00
EM 0.81 0.79 0.80 0.82 0.84 1.00

0.21 0.00 0.11 0.26 0.23 1.00

Note: EM: Emerging markets.
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Table 5: Adjusted R2 of aggregate and disaggregate models over the sample
1992:01-2006:04

Horizons World IC US Jap. Can. EA UK EM
AR model (1) 1 0.36 0.50 0.44 0.29 0.43 0.51 0.24 0.28

3 0.19 0.27 0.14 0.01 0.08 0.25 0.00 0.05
6 0.22 0.28 0.15 0.01 0.08 0.25 0.00 0.08
12 0.04 0.08 0.04 0.00 0.02 0.08 0.00 0.01

Linear Model (2) 1 0.36 0.53 0.51 0.32 0.50 0.51 0.26 0.27
3 0.41 0.39 0.29 0.05 0.25 0.35 0.00 0.22
6 0.39 0.39 0.33 0.10 0.17 0.35 0.00 0.18
12 0.13 0.16 0.21 0.02 0.04 0.15 -0.02 0.03

Linear model (3) 1 0.28 0.48 0.48 0.34 0.47 0.51 0.23 0.26
3 0.43 0.38 0.25 0.12 0.26 0.46 -0.01 0.26
6 0.57 0.50 0.35 0.21 0.34 0.63 -0.01 0.35
12 0.52 0.46 0.32 0.30 0.26 0.58 -0.01 0.27

Linear model (4) 1 0.36 0.55 0.51 0.34 0.53 0.53 0.25 0.27
3 0.50 0.48 0.33 0.12 0.39 0.47 -0.01 0.26
6 0.61 0.58 0.45 0.23 0.38 0.62 -0.02 0.35
12 0.51 0.48 0.37 0.28 0.27 0.57 -0.02 0.28

Factor model (5) 1 0.21 0.28 0.17 0.02 0.11 0.21 0.00 0.13
3 0.45 0.44 0.24 0.06 0.23 0.32 0.00 0.33
6 0.55 0.42 0.35 0.17 0.33 0.36 0.02 0.48
12 0.51 0.35 0.22 0.20 0.23 0.36 0.02 0.48

Factor model (6) 1 0.44 0.55 0.47 0.28 0.44 0.54 0.27 0.33
3 0.47 0.40 0.28 0.06 0.23 0.41 0.00 0.33
6 0.57 0.50 0.24 0.06 0.23 0.32 0.00 0.48
12 0.52 0.36 0.21 0.19 0.22 0.37 0.01 0.48

Factor model (7) 1 0.40 0.41 0.22 0.20 0.25 0.35 0.00 0.30
3 0.56 0.53 0.37 0.18 0.36 0.48 0.01 0.36
6 0.59 0.48 0.46 0.26 0.48 0.47 0.02 0.51
12 0.51 0.35 0.30 0.22 0.26 0.39 -0.02 0.48

Factor model (8) 1 0.57 0.59 0.49 0.38 0.49 0.58 0.29 0.42
3 0.55 0.54 0.39 0.18 0.37 0.50 0.02 0.36
6 0.60 0.52 0.47 0.26 0.48 0.50 0.02 0.51
12 0.51 0.35 0.30 0.21 0.25 0.39 -0.02 0.49

Average 0.43 0.42 0.32 0.18 0.29 0.42 0.05 0.31
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Table 6: Results for simulated out of sample forecasts for industrial country
import volumes

Models Horizons
1 3 6 12

RMSFE
AR model (1) - direct 0.0041 0.0140 0.0269 0.0538

RMSFE relative to AR model (1) - direct
AR model (1) - direct 1.000 1.000 1.000 1.000
AR model (1) - bottom-up 1.025 1.021 1.033** 1.023**
Linear model (2) - direct 0.960 0.931y 0.964 0.981
Linear model (2) - bottom-up 0.960 0.948 1.019 1.051
Linear model (3) - direct 0.967 0.902yy 0.806yy 0.773yy

Linear model (3) - bottom-up 0.965 0.928* 0.900** 0.854**
Linear model (4) - direct 0.940 0.875yy 0.826yy 0.802yy

Linear model (4) - bottom-up 0.941 0.887** 0.872** 0.852**
Factor model (5) -direct 1.244** 0.838** 0.853** 0.849**
Factor model (5) -bottom-up 1.336** 0.946 0.916* 0.878**
Factor model (6) -direct 0.952yy 0.825yy 0.827yy 0.859yy

Factor model (6) -bottom-up 0.998 0.894** 0.878** 0.888**
Factor model (7) -direct 1.129** 0.764** 0.830** 0.882**
Factor model (7) -bottom-up 1.224** 0.841** 0.827** 0.850**
Factor model (8) -direct 0.910yy 0.773yy 0.814yy 0.887yy

Factor model (8) -bottom-up 0.980 0.839** 0.820** 0.868**

Note: *, ** di¤erence signi�cant at resp. 10 and. 5 % (Diebold-Mariano); y,yy unrestricted

model performs signi�cantly better at 10 resp. 5% (McCracken).
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Table 7: Results for simulated out of sample forecasts for world import volumes

Models Horizons
1 3 6 12

RMSFE
AR model (1) - direct 0.0049 0.0144 0.0264 0.0506

RMSFE relative to AR model (1) - direct
AR model (1) - direct 1.000 1.000 1.000 1.000
AR model (1) - bottom-up 0.989 1.011 1.025** 1.016**
Linear model (2) - direct 0.899yy 0.876yy 0.916yy 0.952yy

Linear model (2) - bottom-up 0.862** 0.855** 0.919** 0.997
Linear model (3) - direct 0.941yy 0.829yy 0.736yy 0.764yy

Linear model (3) - bottom-up 0.902** 0.814** 0.714** 0.733**
Linear model (4) - direct 0.897yy 0.793yy 0.755yy 0.784yy

Linear model (4) - bottom-up 0.864** 0.782** 0.708** 0.709**
Factor model (5) -direct 1.116** 0.814** 0.801** 0.802**
Factor model (5) -bottom-up 1.182** 0.911** 0.876** 0.850**
Factor model (6) -direct 0.926yy 0.805yy 0.776yy 0.793yy

Factor model (6) -bottom-up 0.958 0.883** 0.855** 0.853**
Factor model (7) -direct 1.050** 0.767** 0.800** 0.782**
Factor model (7) -bottom-up 1.143** 0.876** 0.877** 0.920**
Factor model (8) -direct 0.843yy 0.769yy 0.790yy 0.794yy

Factor model (8) -bottom-up 0.998 0.879** 0.875** 0.929*

Note: *, ** di¤erence signi�cant at resp. 10 and. 5 % (Diebold-Mariano); y,yy unrestricted

model performs signi�cantly better at 10 resp. 5% (McCracken).
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Table 8: Results for simulated out of sample forecasts for industrial countries�
import volumes - factor models using di¤erent information set

Models Horizons
1 3 6 12

RMSFE relative to AR model (1) - direct
Model (5) -direct with disaggr 1.211 0.842 0.842 0.813
Model (5) -direct with aggr 1.242 0.877 0.860 0.851
Model (5) -bottom-up 1.265 0.882 0.861 0.831
Model (6) -direct with disaggr 0.948 0.838 0.825 0.824
Model (6) -direct with aggr 0.958 0.854 0.830 0.871
Model (6) -bottom-up 0.969 0.851 0.838 0.842
Model (7) -direct with disaggr 1.178 0.839 0.835 0.826
Model (7) -direct with aggr 0.972 0.840 0.818 0.873
Model (7) -bottom-up 0.982 0.850 0.810 0.842
Model (8) -direct with disaggr 0.922 0.855 0.831 0.840
Model (8) -direct with aggr 1.167 0.832 0.823 0.864
Model (8) -bottom-up 1.212 0.844 0.807 0.824

Note: "direct with disaggr", "direct with aggr" and "bottom-up" corresponds to
respectively cases (1), (2) and (3) in the main text.
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