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Abstract

We test whether the Nelson and Siegel (1987) yield curve model is
arbitrage-free in a statistical sense. Theoretically, the Nelson-Siegel
model does not ensure the absence of arbitrage opportunities, as shown
by Bjork and Christensen (1999). Still, central banks and public
wealth managers rely heavily on it. Using a non-parametric resam-
pling technique and zero-coupon yield curve data from the US market,
we find that the no-arbitrage parameters are not statistically different
from those obtained from the NS model, at a 95 percent confidence
level. We therefore conclude that the Nelson and Siegel yield curve
model is compatible with arbitrage-freeness. To corroborate this re-
sult, we show that the Nelson-Siegel model performs as well as its
no-arbitrage counterpart in an out-of-sample forecasting experiment.

JEL classification codes: C14, C15, G12
Keywords Nelson-Siegel model; No-arbitrage restrictions; affine term struc-

ture models; non-parametric test
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Non-technical summary

Academic literature and practitioner oriented publications show that the

parametric yield curve model suggested by Nelson and Siegel (1987) fits data

well. Due to its intuitive appeal and implementational easiness the Nelson-

Siegel model has grown to be very popular among practitioners, in particular

in central banks. A dynamic formulation of the model, suggested by Diebold

and Li (2006), has added significantly to the models popularity.

A concern that might be raised against the Nelson-Siegel model is that

it does not ensure consistency between the dynamic evolution of yields over

time, and the shape of the yield curve at a given point in time. Such con-

sistency is hard-coded into the so-called arbitrage-free yield curve models,

and is generally a desirable property. For example, arbitrage-free yield curve

models ensure that the expected future path of the yields is appropriately

accounted for in the curve that is estimated today. Although a similar consis-

tency is not guaranteed by the Nelson-Siegel model per se, it may be that the

Nelson-Siegel model fulfills the arbitrage constraints in a statistical sense. In

particular, if the Nelson-Siegel model is sufficiently flexible and if it is applied

to data that is generated in a competitive trading environment, it is likely

that most of the yield curves generated by the model fulfill the no-arbitrage

constraints.

In the current paper we test the hypothesis that the Nelson-Siegel model

fulfils the no-arbitrage constraints. The test is performed on resampled data,

i.e. re-generated from the original data. Our procedure can be summarised as

follows: (1) we generate a yield curve data sample with statistical properties
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similar to the original data sample; (2) we estimate the Nelson-Siegel yield

curve factors; (3) we use the estimated Nelson-Siegel yield curve factors as

exogenous input to a no-arbitrage model, and we estimate the parameters of

the no-arbitrage model. These steps are repeated many times and eventually

produce distributions for the no-arbitrage model parameters. On the basis

of these distributions we test whether the no-arbitrage and the Nelson-Siegel

factor loadings are statistically different.

We apply the framework to US yield curve data from January 1970 to

December 2000 and we cannot reject the null hypothesis that the loading

structures of the Nelson-Siegel and the no-arbitrage model are equal at a 95

percent level of confidence. Thus we conclude that the Nelson-Siegel model

is compatible with arbitrage-freeness.
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I Introduction

Fixed-income wealth managers in public organizations, investment banks and

central banks rely heavily on Nelson and Siegel (1987) type models to fit

and forecast yield curves. According to BIS (2005), the central banks of

Belgium, Finland, France, Germany, Italy, Norway, Spain, and Switzerland,

use these models for estimating zero-coupon yield curves. The European

Central Bank (ECB) publishes daily Eurosystem-wide yield curves on the

basis of the Soderlind and Svensson (1997) model, which is an extension

of the Nelson-Siegel model.1 In its foreign reserve management framework

the ECB uses a regime-switching extension of the Nelson-Siegel model, see

Bernadell, Coche and Nyholm (2005).

There are at least four reasons for the popularity of the Nelson-Siegel

model. First, it is easy to estimate. In fact, if the so-called time-decay-

parameter is fixed, then Nelson-Siegel curves are obtained by linear regression

techniques. If this parameter is not fixed, one has to resort to non-linear

regression techniques. In addition, the Nelson-Siegel model can be adapted

in a time-series context, as shown by Diebold and Li (2006). In this case

the Nelson-Siegel yield-curve model can be seen as the observation equation

in a state-space model, and the dynamic evolution of yield curve factors

constitutes the transition equation. As a state-space model, estimation can

be carried out via the Kalman filter. Second, by construction, the model

provides yields for all maturities, i.e. also maturities that are not covered by

the data sample. As such it lends itself as an interpolation and extrapolation

1For Eurosystem-wide yield curves see http://www.ecb.int/stats/money/
yc/html/index.en.html.
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tool for the analyst who often is interested in yields at maturities that are

not directly observable.2 Third, estimated yield curve factors obtained from

the Nelson and Siegel model have intuitive interpretations, as level, slope

(the difference between the long and the short end of the yield curve), and

curvature of the yield curve. This interpretation is akin to that obtained by

a principal component analysis (see, e.g. Litterman and Scheinkman (1991)

and Diebold and Li (2006)). Due to the intuitive appeal of the Nelson-Siegel

parameters, estimates and conclusions drawn on the basis of the model are

easy to communicate. Fourth, empirically the Nelson-Siegel model fits data

well and performs well in out-of-sample forecasting exercises, as shown by

e.g. Diebold and Li (2006) and De Pooter, Ravazzolo and van Dijk (2007).

Despite its empirical merits and wide-spread use in the finance commu-

nity, two theoretical concerns can be raised against the Nelson-Siegel model.

First, it is not theoretically arbitrage-free, as shown by Bjork and Christensen

(1999). Second, as demonstrated by Diebold, Ji and Li (2004), it falls outside

the class of affine yield curve models defined by Duffie and Kan (1996) and

Dai and Singleton (2000).

The Nelson-Siegel yield curve model operates at the level of yields, as they

are observed, i.e. under the so-called empirical measure. In contrast, affine

arbitrage-free yield curve models specify the dynamic evolution of yields un-

der a risk-neutral measure and then map this dynamic evolution back to the

physical measure via a functional form for the market price of risk. The ad-

vantage of the no-arbitrage approach is that it automatically ensures a certain

2This is relevant e.g. in a situation where fixed-income returns are calculated to take
into account the roll-down/maturity shortening effect.
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consistency between the parameters that describe the dynamic evolution of

the yield curve factors under the risk-neutral measure, and the translation of

yield curve factors into yields under the physical measure. An arbitrage-free

setup will, by construction, ensure internal consistency as it cross-sectionally

restricts, in an appropriate manner, the estimated parameters of the model.

It is this consistency that guarantees arbitrage freeness. Since a similar con-

sistency is not hard-coded into the Nelson-Siegel model, this model is not

necessarily arbitrage-free.3

The main contribution of the current paper is to conduct a statistical

test for the equality between the factor loadings of Nelson-Siegel model and

the implied arbitrage-free loadings. In the context of a Monte Carlo study,

the Nelson and Siegel factors are estimated and used as exogenous factors in

an essentially-affine term structure model to estimate the implied arbitrage-

free factor loadings. The no-arbitrage model with time-varying term premia

is estimated using the two-step approach of Ang, Piazzesi and Wei (2006),

while we use the re-parametrization suggested by Diebold and Li (2006) as

our specification of the Nelson-Siegel model.

In a recent study Christensen, Diebold and Rudebusch (2007) reconcile

the Nelson and Siegel modelling setup with the absence of arbitrage by de-

riving a class of dynamic Nelson-Siegel models that fulfill the no-arbitrage

constraints. They maintain the original Nelson-Siegel factor-loading struc-

ture and derive mathematically, a correction term that, when added to the

dynamic Nelson-Siegel model, ensures the fulfillments of the no-arbitrage

3An illustrative example of this issue for a two-factor Nelson-Siegel model is presented
by Diebold, Piazzesi and Rudebusch (2005).
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constraints. The correction term is shown to impact mainly very long matu-

rities, in particular maturities above the ten-year segment.

While being different in setup and analysis method, our paper confirms

the findings of Christensen et al. (2007). In particular, we find that the

Nelson-Siegel model is not significantly different from a three-factor no-

arbitrage model when it is applied to US zero-coupon yield-curve data. In ad-

dition, we outline a general method for empirically testing for the fulfillment

of the no-arbitrage constraints in yield curve models that are not necessarily

arbitrage-free. Our results furthermore indicate that non-compliance with

the no-arbitrage constraints is most likely to stem from ”mis-specification”

in the Nelson-Siegel factor loading structure pertaining to the third factor,

i.e. the one often referred to as the curvature factor.

Our test is conducted on U.S. Treasury zero-coupon yield data covering

the period from January 1970 to December 2000 and spanning 18 maturities

from 1 month to 10 years. We rely on a non-parametric resampling proce-

dure to generate multiple realizations of the original data. Our approach

to regenerate yield curve samples can be seen as a simplified version of the

yield-curve bootstrapping approach suggested by Rebonato, Mahal, Joshi,

Bucholz and Nyholm (2005).

In summary, we (1) generate a realization from the original yield curve

data using a block-bootstrapping technique; (2) estimate the Nelson-Siegel

model on the regenerated yield curve sample; (3) use the obtained Nelson-

Siegel yield curve factors as input for the essentially affine no-arbitrage model;

(4) estimate the implied no-arbitrage yield curve factor loadings on the re-

generated data sample. Steps (1) to (4) are repeated 1000 times in order



11
ECB

Working Paper Series No 874
February 2008

to obtain bootstrapped distributions for the no-arbitrage parameters. These

distributions are then used to test whether the implied no-arbitrage factor

loadings are significantly different from the Nelson-Siegel loadings.

Our results show that the Nelson Siegel factor loadings are not statisti-

cally different from the implied no-arbitrage factor loadings at a 95 percent

level of confidence. In an out-of-sample forecasting experiment, we show that

the performance of the Nelson-Siegel model is as good as the no-arbitrage

counterpart. We therefore conclude that the Nelson and Siegel model is

compatible with arbitrage-freeness at this level of confidence.

II Modeling framework

Term-structure factor models describe the relationship between observed

yields, yield curve factors and loadings as given by

yt = a + bXt + εt, (1)

where yt denotes a vector of yields observed at time t for N different matu-

rities; yt is then of dimension (N × 1). Xt denotes a (K × 1) vector of yield

curve factors, where K counts the number of factors included in the model.

The variable a is a (N × 1) vector of constants, b is of dimension (N × K)

and contains the yield curve factor loadings. εt is a zero-mean (N ×1) vector

of measurement errors.

The reason for the popularity of factor models in the area of yield curve

modeling is the empirical observation that yields at different maturities gen-
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erally are highly correlated. So, when the yield for one maturity changes, it

is very likely that yields at other maturities also change. As a consequence, a

parsimonious representation of the yield curve can be obtained by modeling

fewer factors than observed maturities.

This empirical feature of yields was first exploited in the continuous-time

one factor models, where, in terms of equation (1), Xt = rt, rt being the

short rate, see e.g. Merton (1973), Vasicek (1977), Cox, Ingersoll and Ross

(1985), Black, Derman and Toy (1990), and Black and Karasinski (1993).4

A richer structure for the dynamic evolution of yield curves can be obtained

by adding more yield curve factors to the model. Accordingly, Xt becomes

a column-vector with a dimension equal to the number of included factors.5

The multifactor representation of the yield curve is also supported empirically

by principal component analysis, see e.g. Litterman and Scheinkman (1991).

Multifactor yield curve models can be specified in different ways: the

yield curve factors can be observable or unobserved, in which case their

values have to be estimated alongside the other parameters of the model;

the structure of the factor loadings can be specified in a way such that a

particular interpretation is given to the unobserved yield curve factors, as

e.g. Nelson and Siegel (1987) and Soderlind and Svensson (1997); or the

factor loadings can be derived from no-arbitrage constraints, as in, among

many others, Duffee (2002), Ang and Piazzesi (2003) and Ang, Bekaert and

Wei (2007).

Yield curve models that are linear functions of the underlying factors can

4The merit of these models mainly lies in the area of derivatives pricing.
5Yield curve factor models are categorized by Duffie and Kan (1996) and Dai and

Singleton (2000).
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be written as special cases of equation (1).6 In this context, the two models

used in the current paper are presented below.

A The Nelson-Siegel model

The Nelson and Siegel (1987) model, as re-parameterized by Diebold and Li

(2006), can be seen as a restricted version of equation (1) by imposing the

following constraints:

aNS = 0 (2)

bNS =

[
1

1 − exp(−λτ)

λτ

1 − exp(−λτ)

λτ
− exp(−λτ)

]
, (3)

where λ is the exponential decay rate of the loadings for different maturities,

and τ is time to maturity. This particular loading structure implies that

the first factor is responsible for parallel yield curve shifts, since the effect of

this factor is identical for all maturities; the second factor represents minus

the yield curve slope, because it has a maximal impact on short maturities

and minimal effect on the longer maturity yields; and, the third factor can be

interpreted as the curvature of the yield curve, because its loading has a hump

in the middle part of the maturity spectrum, and little effect on both short

and long maturities. In summary, the three factors have the interpretation

of a yield curve level, slope and curvature.

[FIGURE 1 AROUND HERE]

6Excluded from this list are naturally the quadratic term structure models as proposed
by Ahn, Dittmar and Gallant (2002).
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A visual representation of the Nelson and Siegel factor loading structure is

given in Figure 1. By imposing the restrictions (2) to (3) on equation (1) we

obtain

yt = bNSXNS
t + εNS

t , (4)

where XNS
t = [Lt St Ct] represents the Nelson-Siegel yield curve factors:

Level, Slope and Curvature, at time t.

Empirically the Nelson-Siegel model fits data well, as shown by Nelson

and Siegel (1987), and performs relatively well in out-of-sample forecasting

exercises (see among others, Diebold and Li (2006) and De Pooter et al.

(2007)). However, as mentioned in the introduction, from a theoretical view-

point the Nelson-Siegel yield curve model is not necessarily arbitrage-free

(e.g. see Bjork and Christensen (1999)) and does not belong to the class of

affine yield curve models (e.g. see Diebold et al. (2004)).

B Gaussian arbitrage-free models

The Gaussian discrete-time arbitrage-free affine term structure model can

also be seen as a particular case of equation (1), where the factor loadings are

cross-sectionally restricted to ensure the absence of arbitrage opportunities.

This class of no-arbitrage (NA) models can be represented by

yt = aNA + bNAXNA
t + εNA

t , (5)
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where the underlying factors are assumed to follow a Gaussian VAR(1) pro-

cess

XNA
t = μ + ΦXNA

t−1 + ut,

with ut ∼ N(0, ΣΣ′) being a (K×1) vector of errors, μ is a (K ×1) vector of

means, and Φ is a (K ×K) matrix collecting the autocorrelation coefficients.

The elements of aNA and bNA in equation (5) are defined by

aNA
τ = −

Aτ

τ
, bNA

τ = −
Bτ

τ
, (6)

where, as shown by e.g. Ang and Piazzesi (2003), Aτ and Bτ satisfy the

following recursive formulas to preclude arbitrage opportunities

Aτ+1 =Aτ + B′
τ (μ − Σ λ0) +

1

2
B′

τΣΣ′Bτ − A1, (7)

B′
τ+1 =B′

τ (Φ − Σ λ1) − B′
1, (8)

with boundary conditions A0 = 0 and B0 = 0. The parameters λ0 and λ1

govern the time-varying market price of risk, specified as an affine function

of the yield curve factors

Λt = λ0 + λ1X
NA
t .

The coefficients A1 = −aNA
1 and B1 = −bNA

1 in equations (7) to (8) refer to

the short rate equation

rt = aNA
1 + bNA

1 XNA
t + vt,
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where usually rt is approximated by the one-month yield.

If the factors XNA
t driving the dynamics of the yield curve are assumed

to be unobservable, the estimation of affine term structure models requires a

joint procedure to extract the factors and to estimate the parameters of the

model. This is a difficult task, given the non-linearity of the model and that

the number of parameters grows with the number of included factors. As the

factors are latent, identifying restrictions have to be imposed. Moreover, as

mentioned by Ang and Piazzesi (2003), the likelihood function is flat in the

market-price-of-risk parameters and this further complicates the numerical

estimation process.

The most common procedure to estimate affine term structure models is

described by Chen and Scott (1993). It relies on the assumption that as many

yields, as factors, are observed without measurement error. Hence, it allows

for recovering the latent factors from the observed yields by inverting the yield

curve equation. Unfortunately, the estimation results will depend on which

yields are assumed to be measured without error and will vary according

to the choice made. Alternatively, to reduce the degree of arbitrariness,

observable factor can be used. For example, Ang et al. (2006) use the short

rate, the spread and the quarterly GDP growth rate as yield curve factors.

It is also possible to rely on pure statistical techniques in the determination

of yield curve factors, as e.g. De Pooter et al. (2007) who use extracted

principal components as yield curve factors.
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C Motivation

The affine no-arbitrage term structure models impose a structure on the load-

ings aNA and bNA, presented in equations (6) to (8), such that the resulting

yield curves, in the maturity dimension, are compatible with the estimated

time-series dynamics for the yield curve factors. This hard-coded internal

consistency between the dynamic evolution of the yield curve factors, and

hence the yields at different maturity segments of the curve, is what ensures

the absence of arbitrage opportunities. A similar constraint is not integrated

in the setup of the Nelson-Siegel model (see, Bjork and Christensen (1999)).

However, in practice, when the Nelson-Siegel model is estimated, it is

possible that the no-arbitrage constraints are approximately fulfilled, i.e. ful-

filled in a statistical sense, while not being explicitly imposed on the model.

It cannot be excluded that the functional form of the yield curve, as it is

imposed by the Nelson and Siegel factor loading structure in equations (2)

and (3), fulfils the no-arbitrage constraints most of the times.

As a preliminary check for the comparability of the Nelson-Siegel model

and the no-arbitrage model, Figure 2 compares extracted yield curve factors

i.e. X̂NA
t and X̂NS

t for US data from 1970 to 2000 (the data is presented

in Section III). We estimate the Nelson-Siegel factors as in Diebold and

Li (2006), and the no-arbitrage model as in Ang and Piazzesi (2003) using

the Chen and Scott (1993) method, and assuming that yields at maturities

3, 24, 120 months are observed without error.

[FIGURE 2 AROUND HERE]

Although the two models have different theoretical backgrounds and use
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different estimation procedures, the extracted factors are highly correlated.

Indeed, the estimated correlation between the Nelson-Siegel level factor and

the first latent factor from the no-arbitrage model is 0.95. The correlation

between the slope and the second latent factor is 0.96 and between the cur-

vature and the third latent factor is 0.65.7

On the basis of these results and in order to properly investigate whether

the Nelson-Siegel model is compatible with arbitrage-freeness, we conduct a

test for the equality of the Nelson-Siegel factor loadings to the implied no-

arbitrage ones obtained from an arbitrage-free model. To ensure correspon-

dence between the Nelson-Siegel model and its arbitrage-free counterpart, we

use extracted Nelson-Siegel factors as exogenous factors in the no-arbitrage

setup. The model that we estimate is the following

yt = aNA + bNAX̂NS
t + εNA

t , εNA
t ∼ (0, Ω), (9)

where X̂NS
t are the estimated Nelson-Siegel factors from equations (2) to (4),

the observation errors εNA
t are not assumed to be normally distributed and

aNA and bNA satisfy the no-arbitrage restrictions presented in equations (6)

to (8). In order to impose these no-arbitrage restrictions we have to fit a

VAR(1) on the estimated Nelson-Siegel factors

X̂NS
t = μ + ΦX̂NS

t−1 + ut, (10)

with ut ∼ N(0, ΣΣ′), to specify the market price of risk as an affine function

7Correlations are reported in absolute value.
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of the estimated Nelson-Siegel factors

Λt = λ0 + λ1X̂
NS
t , (11)

and the short rate equation as

rt = aNA
1 + bNA

1 X̂NS
t + vt. (12)

In this way, we estimate the no-arbitrage factor loading structure that emerges

when the underlying yield curve factors are identical to the Nelson-Siegel

yield curve factors. The test is then formulated in terms of the equality

between the interceps of the two models, aNS and aNA, and the relative

loadings, bNA and bNS .

III Data

We use U.S. Treasury zero-coupon yield curve data covering the period from

January 1970 to December 2000 constructed by Diebold and Li (2006), based

on end-of-month CRSP government bond files.8 The data is sampled at a

monthly frequency providing a total of 372 observations for each of the matu-

rities observed at the (1, 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, 120)

month segments.

[FIGURE 3 AROUND HERE]

8The data can be downloaded from http://www.ssc.upenn.edu/ fdiebold/papers/
paper49/FBFITTED.txt and Diebold and Li (2006, pp. 344-345) give a detailed descrip-
tion of the data treatment methodology applied.



20
ECB
Working Paper Series No 874
February 2008

The data is presented in Figure 3. The surface plot illustrates how the yield

curve evolves over time. Table 1 reports the mean, standard deviation and

autocorrelations to further illustrate the properties of the data.

[TABLE 1 AROUND HERE]

The estimated autocorrelation coefficients are significantly different from zero

at a 95 percent level of confidence for lag one through twelve, across all ma-

turities.9 Such high autocorrelations could suggest that the underlying yield

series are integrated of order one. If this is the case, we would need to

take first-differences to make the variables stationary before valid statisti-

cal inference could be drawn, or we would have to resort to co-integration

analysis. However, economic theory tells us that nominal yield series cannot

be integrated, since they have a lower bound support at zero and an upper

bound support lower than infinity. Consequently, and in accordance with the

yield-curve literature, we model yields in levels and thus disregard that their

in-sample properties could indicate otherwise.10

IV Estimation Procedure

To estimate the Nelson-Siegel factors X̂NS
t in equation (4), we follow Diebold

and Li (2006) by fixing the decay parameter λ = 0.0609 in equation (3) and

9A similar degree of persistence in yield curve data is also noted by Diebold and Li
(2006).

10It is often the case in yield-curve modeling that yields are in levels. See, among others,
Nelson and Siegel (1987), Diebold and Li (2006), Diebold, Rudebusch and Aruoba (2006),
Diebold, Ji and Yue (2007), Duffee (2006), Ang and Piazzesi (2003), Bansal and Zhou
(2002), and Dai and Singleton (2000).
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by using OLS.11 We treat the obtained Nelson-Siegel factors as observable in

the estimation of the no-arbitrage model presented in equations (6) to (12).

To estimate the parameters of the arbitrage-free model we standardize the

Nelson and Siegel factors and use the two-step procedure proposed by Ang

et al. (2006). In the first step, we fit a VAR(1) for the standardized Nelson-

Siegel factors to estimate μ̂, Φ̂ and Σ̂ from equation (10). And, we project the

short rate (one-month yield) on the standardized Nelson-Siegel yield curve

factors, to estimate the parameters in the short rate equation (12). In the

second step, we minimize the sum of squared residuals between observed

yields and fitted yields to estimate the market-price-of-risk parameters λ̂0

and λ̂1 of equation (11). Finally, we un-standardize the Nelson-Siegel factors

and compute âNA and b̂NA.

Our goal is to test whether the Nelson-Siegel model in equations (2) to

(4) is statistically different from the no-arbitrage model in equations (6) to

(12). Since the estimated factors, X̂NS
t are the same for both models we can

formulate our hypotheses is the following way:

H1

0 : aNA
τ = aNS

τ ≡ 0,

H2

0 : bNA
τ (1) = bNS

τ (1),

H3

0 : bNA
τ (2) = bNS

τ (2),

H4

0 : bNA
τ (3) = bNS

τ (3),

where bNA
τ (k) denotes the loadings on the k-th factor in the no-arbitrage

11This value of λ maximizes the loading on the curvature at 30 months maturity as
shown by Diebold and Li (2006).
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model at maturity τ , and bNS
τ (k) denotes the corresponding variable from

the Nelson-Siegel model.

We claim that the Nelson-Siegel model is compatible with arbitrage-

freeness if H1
0 to H4

0 are not rejected at traditional levels of confidence.

Notice that to test for H1
0 to H4

0 we only need to estimate aNA and bNA,

since the Nelson-Siegel loading structure is fixed from the model. To account

for the two-step estimation procedure of the no-arbitrage model and for the

generated regressor problem, we construct confidence intervals around âNA

and b̂NA using the resampling procedure described in the next section.

A Resampling procedure

To recover the empirical distributions of the estimated parameters we conduct

block resampling and reconstruct multiple yield curve data samples from the

original yield curve data in the following way. We denote with G the matrix

of observed yield ratios with elements yt,τ/yt−1,τ where t = (2, . . . , T ) and

τ = (1, . . . , N).

We first randomly select a starting yield curve yk, where the index k is an

integer drawn randomly from a discrete uniform distribution [1, . . . , T ]. The

resulting k marks the random index value at which the starting yield curve

is taken.

In a second step, blocks of length w are sampled from the matrix of

yield ratios G. The generic i-th block can be denoted by g̃z,i where z is a

random number from [2, . . . , T −w + 1] denoting the first observation of the

block and I is the maximum number of blocks drawn, i = 1 . . . I. 12 A full

12We use ∼ to indicate the re-sampled variables.
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data-sample of regenerated yield curve ratios G̃ can then be constructed by

vertical concatenation of the drawn data blocks g̃z,i for i = 1 . . . I.

Finally, a new data set of resampled yields can be constructed via:

⎧⎪⎪⎨
⎪⎪⎩

ỹ1 = yk

ỹs = ỹs−1 � {G̃}s, s = 2, . . . , S,

(13)

where {G̃}s denotes the sth row of the matrix of resampled ratios G̃, and �

denotes element by element multiplication.

We choose to resample from yield ratios for two reasons. First, it ensures

positiveness of the resampled yields. Second, as reported in Table 1, yields

are highly autocorrelated and close to I(1). Therefore, one could resample

from first differences, but as reported in Table 2, first differences of yields

are highly autocorrelated and not variance-stationary. Yield ratios display

better statistical properties regarding variance-stationarity, as can be seen

by comparing the correlation coefficients for squared differences and ratios

in Table 2. Block-bootstrapping is used to account for serial correlation in

the yield curve ratios.

[TABLE 2 AROUND HERE]

A similar resampling technique has been proposed by Rebonato et al.

(2005). They provide a detailed account for the desirable statistical features

of this approach. In the present context we recall that the method ensures: (i)

the exact asymptotic recovery of all the eigenvalues and eigenvectors of yields;

(ii) the correct reproduction of the distribution of curvatures of the yield
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curve across maturities; (iii) the correct qualitative recovery of the transition

from super- to sub-linearity as the yield maturity is increased in the variance

of n-day changes, and (iv) satisfactory accounting of the empirically-observed

positive serial correlations in the yields.

To test hypotheses H1
0 to H4

0 we employ the following scheme:

(1) Construct a yield curve sample ỹ following equation (13);

(2) Estimate the Nelson-Siegel yield curve factors X̃NS
t on ỹ;

(3) Use X̃NS
t to estimate the parameters ãNA and b̃NA from the arbitrage-

free model given in equations (6) - (12);

(4) Repeat steps 1 to 3, 1000 times to build a distribution for the parameter

estimates âNA and b̂NA;

(5) Construct confidence intervals for âNA and b̂NA using the sample quan-

tiles of the empirical distribution of the estimated parameters.

Note that by fixing λ in step 2, the Nelson-Siegel factor loading structure

remains unchanged from repetition to repetition. We set the block length

equal to 50 observations, i.e. w = 50, and generate a total of 370 yield curve

observations for each replication, i.e. S = 370.13

13The last block is drawn to contain 20 observations as to obtain a total number of
observations for each regenerated sample close to the number of observations of the original
sample, 372.
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V Results

This section presents three sets of results to help assess whether the Nelson-

Siegel model is compatible with arbitrage-freeness when applied to US zero-

coupon data. Our main result is a test of equality of the factor loadings on

the basis of the resampling technique outlined in section IV. In addition we

compare the in-sample and out-of-sample performance of the Nelson-Siegel

model, equations (2) - (4), to the no-arbitrage model based on exogenous

Nelson-Siegel yield curve factors, equations (6) - (12).

A Testing results

Using the resampling methodology outlined in section IV, we generate em-

pirical distributions for each factor loading of the no-arbitrage yield curve

model in equation (9). Results are presented for each maturity covered by

the original data sample. The Nelson-Siegel factor loading structure, in equa-

tions (2) and (3), is constant across all bootstrapped data sampled because λ

is treated as a known parameter.14 Hence, only the extracted Nelson-Siegel

factors vary across the bootstrap samples.

Parameter estimates and corresponding empirical confidence intervals for

the no-arbitrage model, equations (6) - (12), are shown in Table 3. The

diagonal elements of the matrices holding the estimated autoregressive co-

efficients Φ̂ and the covariance matrix of the VAR residuals Σ̂, in equation

(10), are significantly different from zero at a 95 percent level of confidence.

14The results presented in the paper are robust to changes in λ. We have performed the
calculations for other values of λ, namely λ = 0.08, λ = 0.045, and λ = 0.0996, and the
results for these values of λ are qualitatively the same as the ones presented in the paper.



26
ECB
Working Paper Series No 874
February 2008

In addition, the estimates of aNA
1 , and the two first elements of the (3 × 1)

vector bNA
1 in equation (12), are also different from zero, judged at the same

level of confidence.

[TABLE 3 AROUND HERE]

The estimated intercepts of the no-arbitrage model âNA, computed as in

equations (6)- (7), are presented in Table 4, for each maturity covered by

the original data. This table reports also the 95 percent confidence inter-

vals, obtained from the resampling, and the Nelson-Siegel intercepts, aNS .

Therefore, results in Table 4 allow for testing H1
0 for the equality between the

intercepts in the yield curve equations for the no-arbitrage and the Nelson-

Siegel models. Tables 5 to 7 present the corresponding results that allow us

to test H2
0 , H3

0 , and H4
0 , i.e. whether the corresponding yield curve factor

loadings are identical, in a statistical sense.

[TABLE 4 to 7 AROUND HERE]

Figure 4 gives a visual representation of the results contained in Tables

4 to 7. The figure shows the estimated no-arbitrage loadings, âNA and b̂NA,

with the relative 50 percent and 95 percent empirical confidence intervals

obtained from resampling, as well as the parameter values for the Nelson-

Siegel model, bNS , for comparison.

It is clear from Figure 4 that the empirical distributions are highly skewed

for most of the maturities. Consider, for example, the plot for the intercept

estimates (the top left plot in Figure 4) at maturity 120. It is evident that

the distribution of the no-arbitrage coefficient is highly right skewed.
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[FIGURE 4 AROUND HERE]

This non-normality of the distributions for the estimated no-arbitrage param-

eters, is further analyzed in Table 8. This table shows that all distributions

display skewness, excess kurtosis, or both. Selected maturities are shown in

Table 8, however, this result holds for all maturities included in the sample.

We also perform the Jarque-Bera test for normality, and reject normality at

a 95 percent confidence level for all maturities.

[TABLE 8 AROUND HERE]

Visual confirmation of the documented non-normality is provided by Figures

5 to 6. For a representative selection of maturities, these figures show the

empirical distribution of the estimated no-arbitrage loadings, and a normal

distribution approximation. In addition, the figures show the 95 percent

confidence intervals derived from the empirical distribution and the normal

approximation.

[FIGURE 5 to 6 AROUND HERE]

The non-normality of the empirical distributions for the bootstrapped inter-

cepts âNA, and factor loadings b̂NA, indicates that the confidence intervals

should be constructed using the sample quantiles of the empirical distribu-

tion. The empirical 95 percent confidence intervals are included in Tables

4, 5, 6 and 7. The lower bound of the confidence intervals is denoted by a

subscript L, and the upper bound by a U .
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By inspecting the tables, we reach the following conclusions for the tested

hypotheses:

H1

0 : aNA
τ = aNS

τ ≡ 0 not rejected at a 95% level of confidence,

H2

0 : bNA
τ (1) = bNS

τ (1) not rejected at a 95% level of confidence,

H3

0 : bNA
τ (2) = bNS

τ (2) not rejected at a 95% level of confidence,

H4

0 : bNA
τ (3) = bNS

τ (3) not rejected at a 95% level of confidence.

For the test of the curvature parameter in H4
0 an additional comment is

warranted. As can be seen from Figure 4, the curvature parameter, at mid-

dle maturities, is the closest to violating the 95 percent confidence band,

and this parameter thus constitutes the “weak point” of the Nelson-Siegel

model in relation to the no-arbitrage constraints. This finding is in line with

Bjork and Christensen (1999) who prove that a Nelson-Siegel type model

with two additional curvature factors, each with its own λ, theoretically

would be arbitrage-free. However, when acknowledging that Litterman and

Scheinkman (1991) find that the curvature factor only accounts for approx-

imately 2 percent of the variation of yields, and in the light of our results,

one can question the significance of imposing constraints on parameters that

have an explanatory power in the range of 2 percent. Our empirical finding

is also supported by the theoretical results in Christensen et al. (2007) who

show that adding an additional term at very long maturities reconciles the

dynamic Nelson-Siegel model with the affine arbitrage-free term structure

models.

Using yield curve modeling for purposes other than relative pricing, as
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for example central bankers and fixed-income strategists do, one might be

tempted to use the Nelson-Siegel model on the basis of its compatibility with

arbitrage-freeness.

The hypothesis H1
0 through H4

0 test the equality between each no-arbitrage

factor loading and the corresponding Nelson-Siegel factor loading separately.

The results reported above are confirmed by a joint F test. To perform the

test we use the empirical variance-covariance matrix of the estimates. The

test statistic is 0.22 and the 95 percent critical F-value with 72 and 300 de-

grees of freedom is 1.34. Therefore, we also cannot reject the hypothesis that

the loading structures of the two models are equal in a statistical sense.

B In-sample comparison

To conduct an in-sample comparison of the two models, we estimate the

Nelson-Siegel model in equations (2) - (4) and the no-arbitrage model in

equations (6) - (12), where the latter model uses the yield curve factors

extracted from the former. Measures of fit are displayed in Table 9.

A general observation is that both models fit data well: the means of the

residuals for all maturities are close to zero and show low standard devia-

tions. The root mean squared error, RMSE, and the mean absolute deviation,

MAD, are also low and similar for both models.

More specifically, Table 9 shows that the averages of the residuals from the

fitted Nelson-Siegel model, ε̂NS , for the included maturities, are all lower than

16 basis points, in absolute value. In fact, the mean of the absolute residuals

across maturities is 5 basis points, while the corresponding number for ε̂NA
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is 3 basis points. The 3 months maturity is the worst fitted maturity for the

no-arbitrage model with a mean of the residuals of 8 basis points. For the

Nelson-Siegel model the worst fitted maturity is the 1 month segment with

a mean of the residuals close to -16 bp. Furthermore, the two models have

the same amount of autocorrelation in the residuals. A similar observation

is made for the Nelson-Siegel model alone by Diebold and Li (2006).

[TABLE 9 AROUND HERE]

Drawing a comparison on the basis of RMSE and MAD figures gives the

conclusion that both models fit data equally well.

C Out-of-sample comparison

As a last comparison-check of the equivalence of the Nelson-Siegel model

and the no-arbitrage counterpart, we perform an out-of-sample forecast ex-

periment. In particular, we generate h-steps ahead iterative forecasts in the

following way. First, the yield curve factors are projected forward using the

estimated VAR parameters from equation (10)

X̂NS
t+h|t =

h−1∑
s=0

Φ̂sμ̂ + Φ̂hX̂NS
t ,

where h ∈ {1, 6, 12} is the forecasting horizon in months. Second, out-

of-sample forecasts are calculated for the two models, given the projected
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factors,

ŷNS
t+h|t = bNSX̂NS

t+h|t,

ŷNA
t+h|t = âNA

t + b̂NA
t X̂NS

t+h|t,

where subscripts t on âNA
t and âNA

t indicate that parameters are estimated

using data until time t. To evaluate the prediction accuracy at a given fore-

casting horizon, we use the mean squared forecast error, MSFE, the average

squared error over the evaluation period, between t0 and t1, for the h-months

ahead forecast of the yield with maturity τ

MSFE(τ, h, m) =
1

t1 − t0 + 1

t1∑
t=t0

(
ŷm

t+h,τ |t − yt+h,τ

)2
, (14)

where m ∈ {NA, NS} denotes the model.

The results presented are expressed as ratios of the MSFEs of the two

models against the MSFE of a random walk. The random walk represents

a näıve forecasting model that historically has proven very difficult to out-

perform. The success of the random walk model in the area of yield curve

forecasting is due to the high degree of persistence exhibited by observed

yields. The random walk h-step ahead prediction, at time t, of the yield

with maturity τ is

ŷt+h,τ |t = yt,τ .

To produce the first set of forecasts, the model parameters are estimated

on a sample defined from 1970:01 to 1993:01, and yields are forecasted for the

chosen horizons, h. The data sample is then increased by one month and the
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parameters are re-estimated on the new data covering 1970:01 to 1993:02.

Again, forecasts are produced for the forecasting horizons. This procedure is

repeated for the full sample, generating forecasts on successively increasing

data samples. The forecasting performances are then evaluated over the

period 1994:01 to 2000:12 using the mean squared forecast error, as shown

in equation (14).

Table 10 reports on the out-of-sample forecast performance of the Nelson-

Siegel and the implied no-arbitrage model evaluated against the random walk

forecasts.

[FIGURE 10 AROUND HERE]

The well-known phenomenon of the good forecasting performance of the

random walk model is observed for the 1 month forecasting horizon. For the

6 and 12 month forecasting horizons, the Nelson-Siegel model and the no-

arbitrage counterpart generally perform better than the random walk model,

as shown by ratios being less than one.

Turning now to the relative comparison of the no-arbitrage model against

the Nelson-Siegel model, it can be concluded that they exhibit very similar

forecasting performances. If we consider every maturity for each forecasting

horizon as an individual observation, then there are in total 54 observations.

In 18 of these cases the Nelson-Siegel model is better, in 24 cases the no-

arbitrage model is better, and in the remaining 12 cases the models perform

equally well. Even when one model is judged to be better than its competi-

tor, the differences in the performance ratios are very small. Typically, a

difference is only seen at the second decimal with a magnitude of 1 to 3 basis
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points.

In summary, it can be concluded that there is no systematic pattern across

maturities and forecasting horizons showing when one model is better than

its competitor. Indeed, to formally compare the forecasting performance of

the two models we calculate the Diebold-Mariano statistic for each maturity

and forecasting horizon. At a 5 percent level we do not reject the hypothesis

that the no-arbitrage model and the Nelson-Siegel model forecast equally

well, see Table 11.

[TABLE 11 AROUND HERE]

VI Conclusion

In this paper we show that the model proposed by Nelson and Siegel (1987) is

compatible with arbitrage-freeness, in the sense that the factor loadings from

the model are not statistically different from those derived from an arbitrage-

free model which uses the Nelson-Siegel factors as exogenous factors, at a 95

percent level of confidence.

In theory, the Nelson-Siegel model is not arbitrage-free as shown by Bjork

and Christensen (1999). However, using US zero-coupon data from 1970 to

2000, a yield curve bootstrapping approach and the implied arbitrage-free

factor loadings, we cannot reject the hypothesis that Nelson-Siegel factor

loadings fulfill the no-arbitrage constraints, at a 95 percent confidence level.

Furthermore, we show that the Nelson-Siegel model performs as well as the

no-arbitrage counterpart in an out-of-sample forecasting experiment. Based
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on these empirical observations, we conclude that the Nelson-Siegel model is

compatible with arbitrage-freeness.

This conclusion is of relevance to fixed-income money managers and cen-

tral banks in particular, since such organizations traditionally rely heavily

on the Nelson-Siegel model for policy and strategic investment decisions.
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Tables and Graphs

Table 1: Summary statistics of the US zero-coupon data

τ mean std dev min max ρ(1) ρ(2) ρ(3) ρ(12)

1 6.44 2.58 2.69 16.16 0.97* 0.93* 0.89* 0.69*
3 6.75 2.66 2.73 16.02 0.97* 0.94* 0.91* 0.71*
6 6.98 2.66 2.89 16.48 0.97* 0.94* 0.91* 0.73*
9 7.10 2.64 2.98 16.39 0.97* 0.94* 0.91* 0.73*
12 7.20 2.57 3.11 15.82 0.97* 0.94* 0.91* 0.74*
15 7.31 2.52 3.29 16.04 0.97* 0.94* 0.91* 0.75*
18 7.38 2.50 3.48 16.23 0.98* 0.94* 0.92* 0.75*
21 7.44 2.49 3.64 16.18 0.98* 0.95* 0.92* 0.76*
24 7.46 2.44 3.78 15.65 0.98* 0.94* 0.92* 0.75*
30 7.55 2.36 4.04 15.40 0.98* 0.95* 0.92* 0.76*
36 7.63 2.34 4.20 15.77 0.98* 0.95* 0.93* 0.77*
48 7.77 2.28 4.31 15.82 0.98* 0.95* 0.93* 0.78*
60 7.84 2.25 4.35 15.01 0.98* 0.96* 0.94* 0.79*
72 7.96 2.22 4.38 14.98 0.98* 0.96* 0.94* 0.80*
84 7.99 2.18 4.35 14.98 0.98* 0.96* 0.94* 0.78*
96 8.05 2.17 4.43 14.94 0.98* 0.96* 0.95* 0.81*
108 8.08 2.18 4.43 15.02 0.98* 0.96* 0.95* 0.81*
120 8.05 2.14 4.44 14.93 0.98* 0.96* 0.94* 0.78*
Descriptive statistics of monthly yields at different maturities, τ , for the sample
from January 1970 to December 2000. ρ(p) refers to the sample autocorrelation
of the series at lag p and * denotes significance at 95 percent confidence level.
Confidence intervals are computed according to Box and Jenkins (1976).
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Table 2: Autocorrelations

Yield differences
τ ρ(1) ρ(3) ρ(12) ρ2(1) ρ2(3) ρ2(12)

1 0.06 -0.07 -0.06 0.23* 0.08 0.08
3 0.12* -0.05 -0.13* 0.34* 0.07 0.22*
6 0.16* -0.09 -0.08 0.32* 0.09 0.20*
12 0.15* -0.10 -0.05 0.16* 0.11* 0.13*
24 0.18* -0.11* 0.00 0.21* 0.13* 0.13*
36 0.14* -0.11* 0.03 0.12* 0.14* 0.14*
60 0.13* -0.07 0.03 0.09 0.13* 0.13*
84 0.10 -0.09 -0.03 0.17* 0.22* 0.18*
120 0.10 -0.05 -0.03 0.15* 0.19* 0.23*

Yield ratios
τ ρ(1) ρ(3) ρ(12) ρ2(1) ρ2(3) ρ2(12)

1 0.07 -0.05 0.10 0.23* 0.12* 0.02
3 0.11* 0.00 0.01 0.34* 0.10 0.16*
6 0.16* 0.00 0.04 0.25* 0.13* 0.13*
12 0.16* -0.04 0.04 0.10 0.13* 0.07
24 0.16* -0.07 0.03 0.06 0.12* 0.03
36 0.13* -0.09 0.06 0.01 0.06 0.05
60 0.12* -0.04 0.05 0.01 0.01 0.01
84 0.11* -0.04 0.00 0.04 0.07 0.03
120 0.08 -0.03 0.00 0.03 0.06 0.06

Sample autocorrelations of first yield differences �y,
squared first yield differences �y2, yield ratios yt

yt−1

and

squared demeaned yield ratios
(

yt

yt−1

− μ̄
)2

, for selected

maturities τ , at lags 1, 3 and 12. ∗ denotes significance at
95 percent confidence level. Confidence intervals are com-
puted according to Box and Jenkins (1976). ρ(p) and ρ2(p)
denote, respectively, the correlation of the variables and
their squares, at lag p.
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Table 3: Parameter estimates

Parameter Estimated value Q2.5 Q97.5

μ̂1 -0.247 -1.170 0.911
μ̂2 -0.006 -0.992 1.158
μ̂3 -0.408 -1.164 0.895

Φ̂11 0.991* 0.926 1.021

Φ̂21 -0.031 -0.094 0.032

Φ̂31 0.070 -0.102 0.154

Φ̂12 0.024 -0.037 0.068

Φ̂22 0.933* 0.888 1.013

Φ̂32 0.036 -0.140 0.185

Φ̂13 0.000 -0.035 0.062

Φ̂23 0.038 -0.015 0.082

Φ̂33 0.771* 0.755 0.975

Σ̂11 0.162* 0.086 0.306

Σ̂21 -0.051 -0.192 0.042

Σ̂31 -0.110 -0.302 0.014

Σ̂22 0.324* 0.067 0.305

Σ̂32 0.009 -0.170 0.071

Σ̂33 0.596* 0.150 0.532
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Parameter estimates (continued)

Parameter Estimated value Q2.5 Q97.5

λ̂0,1 -0.215 -3.672 1.967

λ̂0,2 -0.354 -3.043 1.995

λ̂0,3 0.297 -2.390 3.053

λ̂1,11 -0.062 -0.470 1.262

λ̂1,21 -0.123 -0.799 0.523

λ̂1,31 0.124 -1.098 0.728

λ̂1,12 0.117 -2.734 1.051

λ̂1,22 -0.049 -0.633 1.343

λ̂1,32 0.150 -1.080 1.378

λ̂1,13 -0.187 -4.208 0.209

λ̂1,23 -0.169 -2.238 -0.019

λ̂1,33 -0.024 -0.399 3.209

âNA
1 0.537* 0.115 1.202

b̂NA
1 (1) 0.168* 0.064 0.390

b̂NA
1 (2) 0.146* 0.061 0.623

b̂NA
1 (3) 0.000 -0.039 0.023

Estimated parameters from the no-arbitrage model
in equations (6) to (12) with the 95 percent confi-
dence intervals obtained by resampling. The confi-
dence intervals [Q2.5 Q97.5] refer to the empirical 2.5
percent and 97.5 percent quantiles of the distribu-
tions of the parameters. A star * is used to indicate
when a parameter estimate is significantly different
from zero at a 95 percent level of confidence.
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Table 4: Estimation results for aNA

τ aNS âNA ãNA
L ãNA

U

1 0.00 0.00 -0.10 0.05
3 0.00 0.00 -0.04 0.05
6 0.00 0.00 -0.02 0.06
9 0.00 0.01 -0.02 0.05
12 0.00 0.01 -0.02 0.05
15 0.00 0.00 -0.02 0.04
18 0.00 0.00 -0.02 0.03
21 0.00 0.00 -0.03 0.02
24 0.00 0.00 -0.04 0.01
30 0.00 0.00 -0.05 0.01
36 0.00 -0.01 -0.06 0.02
48 0.00 -0.01 -0.07 0.03
60 0.00 -0.01 -0.06 0.03
72 0.00 0.00 -0.04 0.03
84 0.00 0.00 -0.02 0.02
96 0.00 0.00 -0.01 0.04
108 0.00 0.01 -0.02 0.07
120 0.00 0.01 -0.04 0.10
Estimated intercepts from the no-arbitrage
model âNA with the 95 percent confi-
dence intervals obtained from the resampling
[ãNA

L ãNA
U ]. The confidence intervals refer

to the empirical 2.5 percent and 97.5 percent
quantiles of the distribution of the parame-
ters. The second column of the Table reports
the Nelson-Siegel loadings.
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Table 5: Estimation results for bNA(1)

τ bNS(1) b̂NA(1) b̃NA
L (1) b̃NA

U (1)

1 1.00 0.98 0.87 1.16
3 1.00 0.99 0.90 1.06
6 1.00 0.99 0.89 1.04
9 1.00 1.00 0.92 1.04
12 1.00 1.00 0.93 1.04
15 1.00 1.00 0.94 1.04
18 1.00 1.00 0.96 1.05
21 1.00 1.00 0.97 1.06
24 1.00 1.00 0.98 1.06
30 1.00 1.01 0.98 1.08
36 1.00 1.01 0.96 1.10
48 1.00 1.00 0.95 1.10
60 1.00 1.00 0.95 1.09
72 1.00 1.00 0.95 1.06
84 1.00 1.00 0.96 1.03
96 1.00 1.00 0.92 1.01
108 1.00 0.99 0.88 1.04
120 1.00 0.99 0.82 1.08

Estimated loadings of the level factor from the
no-arbitrage model b̂NA(1) with the 95 per-
cent confidence intervals obtained from the re-
sampling [̃bNA

L (1) b̃NA
U (1)]. The confidence in-

tervals refer to the empirical 2.5 percent and
97.5 percent quantiles of the distribution of
the parameters. The second column of the Ta-
ble reports the Nelson-Siegel loadings on the
level.
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Table 6: Estimation results for bNA(2)

τ bNS(2) b̂NA(2) b̃NA
L (2) b̃NA

U (2)

1 0.97 0.93 0.83 1.08
3 0.91 0.89 0.83 0.98
6 0.84 0.83 0.77 0.92
9 0.77 0.77 0.71 0.84
12 0.71 0.72 0.66 0.76
15 0.66 0.66 0.62 0.70
18 0.61 0.62 0.57 0.64
21 0.56 0.57 0.52 0.59
24 0.53 0.53 0.48 0.56
30 0.46 0.46 0.40 0.50
36 0.41 0.41 0.35 0.45
48 0.32 0.32 0.27 0.38
60 0.27 0.26 0.23 0.32
72 0.23 0.22 0.20 0.26
84 0.19 0.19 0.18 0.22
96 0.17 0.17 0.15 0.21
108 0.15 0.15 0.11 0.20
120 0.14 0.13 0.07 0.19

Estimated loadings of the slope factor from
the no-arbitrage model b̂NA(2) with the 95
percent confidence intervals obtained from the
resampling [̃bNA

L (2) b̃NA
U (2)]. The confidence

intervals refer to the empirical 2.5 percent and
97.5 percent quantiles of the distribution of
the parameters. The second column of the Ta-
ble reports the Nelson-Siegel loadings on the
slope.
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Table 7: Estimation results for bNA(3)

τ bNS(3) b̂NA(3) b̃NA
L (3) b̃NA

U (3)

1 0.03 0.00 -0.10 0.06
3 0.08 0.10 0.05 0.18
6 0.14 0.19 0.13 0.26
9 0.19 0.24 0.17 0.27
12 0.23 0.26 0.21 0.28
15 0.25 0.27 0.23 0.29
18 0.27 0.28 0.24 0.30
21 0.29 0.28 0.23 0.30
24 0.29 0.27 0.24 0.30
30 0.30 0.26 0.23 0.31
36 0.29 0.25 0.23 0.31
48 0.27 0.23 0.22 0.29
60 0.24 0.21 0.20 0.27
72 0.21 0.20 0.19 0.23
84 0.19 0.19 0.18 0.22
96 0.17 0.19 0.16 0.21
108 0.15 0.18 0.13 0.21
120 0.14 0.18 0.11 0.21

Estimated loadings of the curvature factor
from the no-arbitrage model b̂NA(3) with the
95 percent confidence intervals obtained from
the resampling [̃bNA

L (3) b̃NA
U (3)]. The confi-

dence intervals refer to the empirical 2.5 per-
cent and 97.5 percent quantiles of the distri-
bution of the parameters. The second column
of the Table reports the Nelson-Siegel loadings
on the curvature.
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Table 8: Summary statistics for the resampled parameters

Intercept ãNA

τ mean st.dev. skewness kurtosis

3 0.00 0.02 0.11 9.66
12 0.01 0.02 -0.24 8.91
24 0.00 0.01 -3.11 18.77
60 -0.01 0.02 0.34 9.25
84 0.00 0.01 5.49 57.71
120 0.02 0.04 1.06 7.71

Loading of the level b̃NA(1)
τ mean st.dev. skewness kurtosis

3 0.99 0.04 0.28 9.39
12 0.99 0.03 0.76 9.02
24 1.01 0.02 2.85 17.25
60 1.01 0.04 -0.88 10.97
84 1.00 0.02 -5.66 60.42
120 0.97 0.06 -1.03 8.17

Loading of the slope b̃NA(2)
τ mean st.dev. skewness kurtosis

3 0.91 0.03 0.47 5.56
12 0.71 0.02 -0.08 3.45
24 0.53 0.02 -0.99 6.67
60 0.27 0.02 0.52 5.01
84 0.20 0.01 3.00 34.43
120 0.14 0.03 -0.10 3.97

Loading of the curvature b̃NA(3)
τ mean st.dev. skewness kurtosis

3 0.10 0.03 0.93 3.39
12 0.25 0.02 -0.52 4.59
24 0.28 0.02 -0.73 2.71
60 0.22 0.02 1.72 8.99
84 0.19 0.01 1.05 5.42
120 0.16 0.02 -0.85 6.80

Summary statistics of the empirical distributions
of the estimated parameters obtained using re-
sampled data.
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Table 9: Measures of Fit

Residuals from the Nelson-Siegel model
τ mean st dev min max RMSE MAD ρ(1) ρ(6) ρ(12)

1 -0.159 0.200 -1.046 0.387 0.200 0.040 0.513 0.332 0.443
3 0.027 0.114 -0.496 0.584 0.114 0.013 0.274 0.159 0.326
6 0.091 0.135 -0.412 0.680 0.135 0.018 0.543 0.346 0.471
12 0.046 0.122 -0.279 0.483 0.122 0.015 0.586 0.127 0.289
24 -0.040 0.073 -0.398 0.261 0.073 0.005 0.493 0.044 0.153
36 -0.066 0.090 -0.432 0.339 0.089 0.008 0.417 0.256 0.183
60 -0.053 0.096 -0.520 0.292 0.096 0.009 0.655 0.312 -0.037
84 0.006 0.097 -0.446 0.337 0.096 0.009 0.518 0.159 -0.083
120 0.002 0.140 -0.763 0.436 0.140 0.020 0.699 0.345 0.091

Residuals from no-arbitrage model
τ Mean st dev min max RMSE MAD ρ(1) ρ(6) ρ(12)

1 0.000 0.168 -0.730 0.752 0.168 0.028 0.361 0.197 0.363
3 0.080 0.132 -0.508 0.817 0.132 0.018 0.448 0.219 0.312
6 0.060 0.135 -0.295 0.795 0.134 0.018 0.579 0.361 0.432
12 -0.019 0.109 -0.355 0.439 0.109 0.012 0.514 0.147 0.306
24 -0.041 0.071 -0.323 0.217 0.071 0.005 0.491 0.134 0.096
36 -0.018 0.088 -0.286 0.405 0.088 0.008 0.474 0.320 0.263
60 0.004 0.100 -0.332 0.379 0.100 0.010 0.688 0.350 0.101
84 0.019 0.097 -0.479 0.343 0.097 0.009 0.527 0.157 -0.070
120 -0.060 0.144 -0.801 0.375 0.144 0.021 0.705 0.464 0.249

Summary statistics of residuals of the Nelson-Siegel and the no-arbitrage models. The
Nelson-Siegel model is estimated according to equations (2) - (4). The no-arbitrage yield
curve model is estimated according to equations (6) - (12). Statistics are shown for
selected maturities, τ . RMSE is the root mean squared error and MAD is the mean
absolute deviation. Autocorrelations are denoted by ρ(p), where p is the lag.
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Table 10: Out-of-sample performance

1-m ahead 6-m ahead 12-m ahead
τ NS NA NS NA NS NA

1 0.82 0.67 0.67 0.56 0.66 0.59

3 0.91 0.89 0.72 0.70 0.64 0.63

6 1.08 1.03 0.81 0.82 0.65 0.67
9 1.06 1.21 0.80 0.83 0.64 0.66
12 1.01 1.00 0.80 0.81 0.64 0.65
15 1.06 0.98 0.79 0.79 0.64 0.65
18 1.04 1.03 0.80 0.80 0.65 0.65
21 1.06 1.07 0.80 0.80 0.66 0.66
24 1.09 1.11 0.80 0.80 0.67 0.67
30 1.04 1.04 0.80 0.78 0.68 0.67

36 0.99 0.98 0.80 0.78 0.70 0.69

48 0.98 0.98 0.84 0.81 0.76 0.73

60 1.10 1.04 0.88 0.85 0.81 0.79

72 1.02 1.01 0.90 0.88 0.85 0.84

84 1.08 1.08 0.91 0.91 0.87 0.86

96 1.03 1.03 0.93 0.94 0.91 0.92
108 1.04 1.08 0.95 0.98 0.93 0.96
120 1.08 1.32 1.02 1.08 1.00 1.05
Ratios of the Mean Squared Forecast Error (MSFE) of the no-
arbitrage model (NA) and the Nelson-Siegel model (NS) both mea-
sured against the performance of the random walk model. A ratio
lower than 1 means that the MSFE for the respective model is lower
than the forecast error generated by the random walk, and hence that
the model performs better than the random walk model. The models
are estimated on successively increasing data samples starting 1970:1
until the time the forecast is made, and expanded by one month each
time a new set of forecasts are generated. Forecasts for horizons of
1, 6 and 12 months ahead are evaluated on the sample from 1994:1
to 2000:12. Bold entries in the table indicate superior performance
of one model (NA or NS) against the other model.
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Table 11: Diebold-Mariano test statistics

τ 1-m ahead 6-m ahead 12-m ahead

1 -0.080 -0.214 -0.250
3 -0.037 -0.129 -0.146
6 -0.051 0.132 0.262
9 0.147 0.159 0.222
12 -0.015 0.085 0.154
15 -0.117 0.021 0.098
18 -0.040 0.017 0.086
21 0.048 -0.025 0.046
24 0.070 -0.318 - 0.165
30 -0.003 -0.174 -0.290
36 -0.022 -0.149 -0.239
48 0.002 -0.128 - 0.215
60 -0.082 -0.153 -0.233
72 -0.025 -0.121 -0.215
84 -0.007 -0.047 - 0.166
96 -0.016 0.315 0.447
108 0.069 0.231 0.322
120 0.266 0.290 0.366
Diebold-Mariano test statistic to compare forecast accu-
racy of two models. We compare the no-arbitrage model
against the Nelson-Siegel model. Negative numbers reflect
superiority of the no-arbitrage model, and positive numbers
indicate that the Nelson-Siegel model performs better. The
null hypothesis is that the mean squared forecast error of
the two models is identical. A number larger than 1.96 in
absolute terms indicates that the forecasts produced by the
models are significantly different at a 5 percent level.
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Figure 1: Nelson-Siegel factor loadings
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Nelson and Siegel (1987) factor loadings using the re-parameterized version of the model

as presented by Diebold and Li (2006). The factor loadings bNS are computed using

λ = 0.0609 and equation (3).
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Figure 2: No-Arbitrage Latent factors and Nelson and Siegel factors
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Extracted yield curve factors using US zero-coupon data observed at a monthly frequency

and covering the period from 1970:1 to 2000:12. Factors are extracted from the Nelson-

Siegel model and from the no-arbitrage model. “NS level” and “NA factor 1” refer to

the first extracted factor from each model. The second and third extracted factors are

correspondingly labeled “NS slope”, “NA factor 2” and “NS curvature”, “NA factor 3”.
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Figure 3: Zero-coupon yields data
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Figure 4: No-Arbitrage loadings of the Nelson and Siegel factors
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Estimated factor loadings and empirical 50 and 95 percent confidence intervals. Star *

indicate the factor loadings from the Nelson-Siegel model, i.e. aNS and bNS in equations

(2) and (3), while the continuous lines indicate the corresponding factor loadings estimated

from the no-arbitrage model, i.e. âNA and b̂NA in equations (6) to (8). The distributions

of the latter are obtained through resampling. The dark-shaded areas are the 50 percent

confidence intervals, while the light-shaded areas show the 95 percent confidence intervals.

These are computed as empirical quantiles.
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Figure 5: Distribution of the estimated no-arbitrage loadings
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Empirical distributions, for selected maturities, of the no-arbitrage intercepts (first panel)

and loadings of the level (second panel)obtained from the resampling (continuous line),

with the relative 95 percent confidence interval (asterisks). The dashed line is the Gaussian

approximation with the relative 95 percent confidence intervals (circles). The diamonds

are the estimated no-arbitrage parameters and the dashed vertical line indicates the Nelson

and Siegel ones.
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Figure 6: Distribution of the estimated no-arbitrage loadings
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Empirical distributions, for selected maturities, of the no-arbitrage loadings of the slope

(first panel) and of the curvature (second panel) obtained from the resampling (continuous

line), with the relative 95 percent confidence interval (asterisks). The dashed line is the

Gaussian approximation with the relative 95 percent confidence intervals (circles). The

diamonds are the estimated no-arbitrage parameters and the dashed vertical line indicates

the Nelson and Siegel ones.
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