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Abstract

We propose a theoretical framework for assessing whether a forecast model estimated over

one period can provide good forecasts over a subsequent period. We formalize this idea by

defining a forecast breakdown as a situation in which the out-of-sample performance of the

model, judged by some loss function, is significantly worse than its in-sample performance.

Our framework, which is valid under general conditions, can be used not only to detect past

forecast breakdowns but also to predict future ones. We show that main causes of forecast

breakdowns are instabilities in the data generating process and relate the properties of our

forecast breakdown test to those of existing structural break tests. The empirical application

finds evidence of a forecast breakdown in the Phillips’ curve forecasts of U.S. inflation, and links

it to inflation volatility and to changes in the monetary policy reaction function of the Fed.

Keywords: Structural change, Forecast evaluation, Forecast rationality testing, In-sample

evaluation, Out-of-sample evaluation

J.E.L. Codes: C22, C52, C53
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1 Summary

This paper proposes a new method for evaluating a forecasting model for a macroeconomic or

financial variable. Existing methods for forecast evaluation either rely on assessing the model’s

in-sample performance (e.g., the large literature on predictability of stock market returns, surveyed

in Goyal and Welch, 2004), or on evaluating the model’s out-of-sample performance (e.g., Stock

and Watson, 2003b). The reliability of conclusions reached by either in-sample or out-of-sample

evaluation of forecasting models is however challenged by the possibility that the economy - and

the forecasting ability of models - may not be stable over time, as has been shown by a number of

empirical works.

From the perspective of the forecaster, it is thus important to know whether a model estimated

over one period can provide good forecasts over a subsequent period, as a measure of how successful

a model is at adapting to changes in the economy. The goal of this paper is to develop a formal

testing framework for answering this question.

Formally, we define a forecast breakdown as a situation in which the out-of-sample performance

of a forecast model, judged by some loss function, is significantly worse than its in-sample per-

formance. We propose a forecast breakdown test for detecting whether a forecast model broke

down in the past and further suggest relating the differences between the model’s out-of-sample

and in-sample performance to economic factors, with the goal of predicting future breakdowns.

The analysis of the possible causes of forecast breakdowns reveals the prime role played by

instabilities in the data-generating process in causing forecast breakdowns, thus establishing a link

between this paper and the structural break testing literature. Among the differences, we note

that our forecast breakdown test is valid under more general assumptions, for example permitting

the model to be misspecified and the regressors to be unstable, arguably a closer representation

of the environment faced by actual forecasters. We further show that our test is related to the

forecast optimality literature. Our contribution to this literature is to show that the asymptotic

variance estimator to be used in the forecast unbiasedness test (and, more in general, in a forecast

rationality test) necessitates a correction in order for the test to have good size properties.

To illustrate the methods proposed in this paper, we investigate whether there is evidence of

a forecast breakdown in the Phillips curve model of inflation in the United States. Using both

real-time and revised data, we find some empirical evidence in favor of a forecast breakdown in

the Phillips curve. We further investigate whether monetary policy parameters would have been

useful predictors of forecast breakdowns and find that inflation volatility as well as changes in the

monetary policy behavior of the Fed played a key role.
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2 Introduction

This paper proposes a new method for evaluating a forecasting model for a macroeconomic or

financial variable. There is a large literature claiming that certain models are good at predicting

macroeconomic variables such as output growth and inflation (Stock and Watson, 2003b and Clark

and McCracken, 2003) and that a range of variables have predictive power for stock market returns

(e.g., the references in Goyal and Welch, 2004 and Campbell and Thompson, 2005). These claims

are based either on some measure of a model’s in-sample fit (most of the literature on stock return

predictability), or on the model’s out-of-sample performance (e.g., Stock and Watson, 2003b). The

robustness of these results has been however recently challenged. On the one hand, Goyal and

Welch (2004) showed that for models of stock returns good in-sample fit does not necessarily imply

good out-of-sample performance. On the other hand, even models that fare well out-of-sample may

not do so when different subsamples of a time series are considered (Stock and Watson, 2003a).

Underlying these findings is the possibility that the economy - and the forecasting ability of models

- may not be stable over time, as has been forcefully argued by Clements and Hendry (1998, 1999).

From the perspective of the forecaster, it is thus important to know whether a model estimated

over one period can provide good forecasts over a subsequent period. The goal of this paper is to

develop a formal testing framework for answering this question. Note that our question is different

from asking whether the model is a good approximation of the data-generating process. Rather,

our concern here is with whether a model’s future performance is consistent with what’s expected

based on its past performance, which fundamentally hinges on the success of the model at adapting

to changes in the economy. This in turn reflects a desire to mimic the environment faced by actual

forecasters, where models are likely misspecified, variables are inherently difficult to forecast, and

data-generating processes may be unstable, so that consistency with expected performance can be

viewed as a minimal requirement that a forecasting model should satisfy.

Formally, we define a forecast breakdown as a situation in which the out-of-sample performance

of a forecast model, judged by some loss function, is significantly worse than its in-sample per-

formance. We propose a forecast breakdown test for detecting whether a forecast model broke

down in the past and further suggest relating the differences between the model’s out-of-sample

and in-sample performance to economic factors, with the goal of predicting future breakdowns.

Our notion of forecast breakdown is a formalization and generalization of what Clements and

Hendry (1998, 1999) called a “forecast failure”, described as a “deterioration in forecast performance

relative to the anticipated outcome” (Clements and Hendry, 1999, p. 1). We formalize the definition

of a forecast breakdown by comparing the model’s out-of-sample performance to its in-sample

performance computed in one of three ways: (1) over a fixed initial sample (“fixed” scheme); (2)

over a rolling window that includes only most recent observations (“rolling scheme”); and (3) over
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an expanding window that includes all observations from the beginning of the sample (“recursive

scheme”). The fixed scheme presumes an interest in comparing performance before and after a

specific date, whereas the rolling and recursive schemes mimic adaptive forecasting.

We illustrate how to construct an appropriate estimator for the asymptotic variance for the

forecast breakdown test, that depends on the forecasting scheme and that explicitly takes into

account the effect of estimation uncertainty in the model’s parameters. Our test is valid under

general assumptions. In particular, we allow the data to be heterogeneous (e.g., the variables in

the model can have time-varying marginal distributions) and impose only weak restrictions on the

loss function used for evaluation and on the type of estimators used in constructing the forecasts.

We show, however, that in the common case in which the same loss function is used for estimation

and evaluation (e.g., OLS and quadratic loss), estimation uncertainty is asymptotically irrelevant

and the asymptotic variance is simpler to compute.

A further contribution aims at understanding the causes of forecast breakdowns. We show

that forecast breakdowns are caused by instability in the model’s parameters as well as by other

instabilities in the data-generating process that result in a non-constant expected loss (e.g., for

a quadratic loss, changes in the variance of the disturbances). We also investigate the role of

overfitting - which we define as the difference between in-sample and out-of-sample performance

present in finite samples when parameter estimates are chosen to minimize the average in-sample

loss - and propose a simple correction to the test statistic that eliminates its effects.

The two closest literatures to the present paper are the literature on forecast optimality testing

(e.g., Mincer and Zarnowitz, 1969, Patton and Timmermann, 2003, Elliott, Komunjer and Tim-

mermann, 2005) and the literature on structural break testing (e.g., Brown, Durbin and Evans,

1975; Andrews, 1993; Andrews and Ploberger, 1994; Dufour, Ghysels and Hall, 1994; Chu, Hornik

and Kuan, 1995a, 1995b; Bai and Perron, 1998; Ghysels and Hall, 1990; Elliott and Muller, 2003;

Rossi, 2005). Regarding the former, we point out that the same theory derived here can be applied

to forecast optimality testing, after suitably re-definining the loss function and the null hypothesis.

For example, a forecast unbiasedness test is related to a forecast breakdown test assessing whether

the first moment properties of the forecast errors are consistent in-sample and out-of-sample. Our

contribution to this literature is to show that the asymptotic variance estimator to be used in

the forecast unbiasedness test (and, more in general, in a forecast rationality test) necessitates a

correction in order for the test to have good size properties.

Regarding the structural break testing literature, although our focus is different from that of

structural break tests (stability of forecast performance vs. stability of model’s parameters), the

two are related since instability in model’s parameters is a cause of forecast breakdowns. In the

paper, we shed some light on the properties of our forecast breakdown test relative to those of

structural break tests both analytically and in Monte Carlo simulations. Our main findings can
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be summarized as follows: (1) the forecast breakdown test is robust to the presence of unstable

regressors, whereas most structural break tests cannot distinguish between instability in model’s

parameters and instability in the distribution of the regressors (an exception is the generalized

predictive tests proposed by Dufour, Ghysels and Hall, 1994; see also Hansen, 2000); (2) the

magnitude of the parameter instabilities that cause forecast breakdowns depend on whether the

loss functions used for estimation and evaluation are equal or different. When the losses are equal,

only parameter instabilities of greater magnitude than those considered by the structural break

testing literature cause a forecast breakdown; (3) structural break tests have greater power when

instabilities are permanent, whereas the forecast breakdown test can have greater power when there

are recurring instabilities that are not captured by the forecast model. A further difference with

structural break tests is that they only focus on past breaks and provide no information on the

likelihood of future breaks (an exception is Pesaran, Pettenuzzo and Timmermann, 2004). Instead,

an innovation of our approach with useful practical implications is the possibility of predicting the

likelihood that a forecast model will break down at a future date.

To illustrate the methods proposed in this paper, we investigate whether there is evidence of

a forecast breakdown in the Phillips curve model of inflation in the United States. Using both

real-time and revised data, we find some empirical evidence in favor of a forecast breakdown in

the Phillips curve. We further investigate whether monetary policy parameters would have been

useful predictors of forecast breakdowns and find that inflation volatility as well as changes in the

monetary policy behavior of the Fed played a key role.

3 Detecting forecast breakdowns

3.1 Description of the environment

Let W ≡ {Wt : Ω −→ Rs+1, s ∈ N, t = 1, . . . , T} be a stochastic process defined on a complete
probability space (Ω,F , P ) and partition the observed vector Wt as Wt ≡ (Yt,X 0

t)
0, where Yt : Ω→

R is the variable of interest and Xt : Ω→ Rs is a vector of predictors.

We generate a sequence of τ−step-ahead forecasts of Yt+τ using an out-of-sample procedure,
which involves dividing the sample of size T into an in-sample window of sizem and an out-of-sample

window of size n = T −m− τ + 1. Which data constitute the in-sample window depends on the

forecasting scheme. We allow for three forecasting schemes: (1) a fixed forecasting scheme, where

the in-sample window includes observations indexed 1, . . . ,m; (2) a rolling forecasting scheme,

where the in-sample window at time t contains observations indexed t − m + 1, . . . , t; and (3) a

recursive forecasting scheme, where the in-sample window includes observations indexed 1, . . . , t.

We let ft(bβt) be the time-t forecast produced by estimating a model over the in-sample window
at time t, with bβt indicating the k × 1 parameter estimate. We assume that multi-step forecasts
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are produced by the “direct method” (that is, the model specifies the relationship between Yt and

Xt−τ ). Each time−t forecast corresponds to a sequence of in-sample fitted values ŷj(bβt), with j

varying over the in-sample window.

The forecasts are evaluated by a loss L (·), with each out-of-sample loss Lt+τ (bβt) ≡ L(Yt+τ , ft(bβt))
corresponding to in-sample losses Lj(bβt) ≡ L(Yj , ŷj(bβt)). For example, for the linear model Yt =
X 0
t−τβ + εt estimated by OLS, the parameter estimate is bβt = ¡Pm−τ

s=1 XsX
0
s

¢−1Pm−τ
s=1 XsYs+τ

for the fixed scheme; bβt = ¡Pt−τ
s=t−m+1XsX

0
s

¢−1Pt−τ
s=t−m+1XsYs+τ for the rolling scheme andbβt = ¡Pt−τ

s=1XsX
0
s

¢−1Pt−τ
s=1XsYs+τ for the recursive scheme. The out-of-sample loss corresponding

to the forecast at time t is Lt+τ (bβt) ≡ L(Yt+τ ,X
0
t
bβt) and the corresponding in-sample losses are

Lj(bβt) ≡ L(Yj+τ ,X
0
j
bβt), where j = 1, . . . ,m− τ for the fixed scheme; j = t−m+ 1, . . . , t− τ for

the rolling scheme and j = 1, . . . , t− τ for the recursive scheme.

3.2 Assumptions

A1. {Wt} is mixing with α of size −r/(r−2), r > 2; A2. (a) Lt(β) is measurable and twice continu-

ously differentiable with respect to β; (b) Under H0 in (3) below, in a neighborhood N of β∗, there

exists a constant D < ∞ such that for all t, supβ∈N
¯̄
∂2Lt(β)/∂β∂β

0¯̄ < mt, for a measurable mt

such that E (mt) < D. A3. UnderH0, bβt−β∗ = B∗tH
∗
t +op(1), where bβt is k×1, B∗t is a (nonstochas-

tic) k× q matrix of rank k, such that supt≥1B∗t <∞; H∗
t = m−1

Pm
s=1 hs(β

∗) (fixed scheme), H∗
t =

m−1
Pt

s=t−m+1 hs(β
∗) (rolling scheme), H∗

t = t−1
Pt

s=1 hs(β
∗) (recursive scheme) for a q×1 orthog-

onality condition hs(β∗) such that E (hs(β∗)) = 0; A4. supt≥1E||[Lt(β
∗), ∂Lt(β

∗)/∂β, h0t(β
∗)]0||2r <

∞, where ∂Lt(β
∗)/∂β is 1× k; A5. T−1

PT
t=1E (∂Lt(β

∗)/∂β) <∞ for all T ;

A6. var
³
T−1/2

PT
t=1 Lt(β

∗)
´
> 0 for all T sufficiently large; A7. m,n→∞, n

m → π, 0 < π <∞.

Comments: 1. Assumption A1 restricts the memory in the data (ruling out, e.g., unit root

processes) but allows the data to be heterogeneous, for example permitting the marginal distribution

of the regressors to change over time. This is a more general assumption than the assumption of

stationarity made in the majority of the structural break testing literature.

2. Assumption A2 is the same as Assumption A1 of West (1996), allowing for a number of loss

functions typically used in the forecast evaluation literature. The assumption of differentiability is

adopted for convenience and can be relaxed along the lines of McCracken (2000).

3. Assumption A3 is related to Assumption A2 of West (1996), permitting a number of esti-

mation procedures for the model’s parameters, including OLS, (quasi-) maximum likelihood and

GMM. For example, for OLS estimation of the parameters in the linear model Ys = X 0
sβ
∗ + εs,

s = 1, . . . , t, we have B∗t =
³
E
³
t−1

Pt
s=1XsX

0
s

´´−1
and hs(β

∗) = Xsεs. For maximum likelihood

estimation, B∗t is the expectation of the inverse of the Hessian evaluated at β
∗ and H∗

t is the score.

The assumption also states that under the null hypothesis of no forecast breakdown the pseudo-

true values of the parameters are constant (note that we do not assume correct specification of the
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4. Assumption A5 is a regularity condition restricting the heterogeneity of the means of the

loss derivatives. The condition is trivially satisfied when the loss used for estimation is the same

as the loss used for evaluation, in which case E (∂Lt(β
∗)/∂β) = 0 for all t.

5. Assumption A7 shows that our asymptotics assume that the in-sample and out-of-sample

sizes go to infinity at the same rate. This assumption is necessary in order to obtain a non-

degenerate asymptotic distribution.

3.3 Forecast breakdown test

As motivated in the introduction, we define a forecast breakdown as a deterioration in the out-of-

sample performance of the forecast model relative to its in-sample performance. We formalize this

idea by defining a “surprise loss” at time t+ τ as the difference between the out-of-sample loss at

time t+ τ and the average in-sample loss:

SLt+τ (bβt) = Lt+τ (bβt)− L̄t(bβt) for t = m, . . . , T − τ , (1)

where L̄t(bβt) is the average in-sample loss computed over the in-sample window implied by the

forecasting scheme. We then consider the out-of-sample mean of the surprise losses

SLm,n ≡ n−1
T−τX
t=m

SLt+τ (bβt), (2)

and propose a test based on the idea that, if a forecast is reliable, this mean should be close to

zero. Specifically, we test

H0 : E

Ã
n−1

T−τX
t=m

SLt+τ (β
∗)

!
= 0 for all m,n. (3)

The forecast breakdown test statistic is

tm,n,τ =
√
nSLm,n/σ̂m,n, (4)

where the expression for the asymptotic variance estimator σ̂2m,n is given in Section 3.5.

A level α test rejects the null hypothesis whenever tm,n,τ > zα, where zα is the (1 − α) − th

quantile of a standard normal distribution. In the remainder of the paper, we focus on a one-sided

test to reflect the assumption that a lower-than-expected loss may be desirable and thus does not

constitute a forecast breakdown. In certain applications, however, it might be of interest to consider

deviations of the out-of-sample loss from its expected value in either direction, in which case a two-

sided test is appropriate. For example, for an investor forming a portfolio based on forecasts of

stock returns, the precision of the forecast is a key determinant of how much risk exposure to accept.
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Hence, if the out-of-sample forecast error variance is smaller than anticipated, this results in an

opportunity cost: had the forecaster known about the lower forecast error variance, he could have

chosen a different portfolio allocation.1 The asymptotic justification for the forecast breakdown

test is provided by Theorem 2 in Section 3.5.

3.4 Relationship with the literature

To see how the forecast breakdown test relates to forecast optimality tests, note that letting L(e) = e

in (1), where e is the forecast error, yields a test comparing the mean of out-of-sample forecast

errors to the mean of in-sample model residuals. When the parameters are estimated by OLS,

L̄t(bβt) = 0 by construction, so that the numerator of the test statistic (4) coincides with that of a
forecast unbiasedness test.2

To see how the forecast breakdown test relates to existing tests for structural change, first note

that H0 can be rewritten as H0 : E [Lt (β
∗)] = constant for all t, and thus one could in principle

use structural break tests to test H0. In particular, for a loss depending on the forecast errors, H0

postulates stability of some aspect of the distribution of the model’s residuals (e.g., their second

moment for a quadratic loss), which relates the forecast breakdown test to residual-based tests, such

as the CUSUM test (Brown et al., 1975) (related to the forecast breakdown test with a recursive

scheme) or the MOSUM test (Chu et al., 1995b) (related to the forecast breakdown test with a

rolling scheme). The main differences are that we allow for general transformations of the residuals

(through Lt (·)) and compare their in-sample and out-of-sample average properties, rather than
comparing the fluctuations of the empirical process based on the cumulative (or moving) sum of

residuals to the fluctuations of their limiting process.

Regarding the relationship with structural break tests based on the approach of Chow’s (1960),

Andrews (1993) and Andrews and Ploberger (1994), note that our fixed test could be related to

a Chow’s type of test, whereas our recursive test could be related to an Andrews’ (1993) type

of test. The approaches are similar since both split the sample in two subsamples and compare

the properties of regression residuals and/or forecast errors in the two samples. The difference is

that the forecast breakdown test compares regression residuals from the first subsample to forecast

errors from the second subsample, which are functions of the same parameter estimate based

on the first subsample. Chow’s (1960) test, instead, compares regression residuals from the first

subsample to regression residuals from either the second subsample (Chow’s test) or the full sample

(Chow’s predictive test), obtained by re-estimating the model on the corresponding sample. Since

it compares residuals that are functions of different parameter estimates, Chow’s test will capture

1We thank Allan Timmermann for point out the desirability of two-sided tests in such applications.
2Our null hypothesis however slightly differs from that of a forecast unbiasedness test (e.g., West, 1996): we test

E n−1 T−τ
t=m Lt+τ (β

∗)− L̄t(β
∗) = 0 rather than E n−1 T−τ

t=m Lt+τ (β
∗) = 0.

11
ECB

Working Paper Series No 638
June 2006



not only changes in the model’s parameters, but also changes in the marginal distribution of the

regressors. This is a drawback of most existing structural break tests, as pointed out by Hansen

(2000). The forecast breakdown test, instead, does not suffer from this problem, because it does

not involve re-estimating the parameters over different subsamples.

3.5 Asymptotic variance estimators

This section shows how to construct a valid asymptotic variance estimator for the forecast break-

down test statistic (4) and provides the asymptotic justification for the forecast breakdown test.

We provide three estimators: an estimator valid under general assumptions (Theorem 2) and

two estimators that are easier to compute under more restrictive conditions (Corollaries 3 and 4).

The following algorithm shows the steps involved in constructing the general asymptotic vari-

ance estimator. The basic intuition is to acknowledge that the average surprise loss (2) is a weighted

average of in-sample and out-of-sample losses, with weights depending on m, n and on the forecast-

ing scheme. When estimation uncertainty is asymptotically irrelevant, σ̂2m,n is simply a (rescaled)

heteroskedasticity- and autocorrelation-robust (HAC) estimator of the variance of the weighted

average of the full-sample losses. When estimation uncertainty matters, σ̂2m,n contains additional

terms that depend on the estimator used.

Algorithm 1 (General variance estimator) Construct the following: (1) the 1 × T vector of

in-sample and out-of-sample losses, with element Lt :

L ≡ [L1(bβm), . . . , Lm(bβm)| {z }
m

, Lm+1(bβm+1), . . . , Lm+τ−1(bβm+τ−1)| {z }
τ−1

, Lm+τ (bβm), . . . , LT (bβT−τ )| {z }
n

]

and the corresponding vector eL of demeaned losses, where eLt ≡ Lt − T−1
PT

j=1 Lj ;
3 (2) the q × T

matrix of orthogonality conditions, with element ht :

h ≡ [h1(bβm), . . . , hm(bβm)| {z }
m

, hm+1(bβm+1), . . . , hT−τ (bβT−τ )| {z }
n−1

, 0, . . . , 0| {z }
τ

].4

Let Dt+τ ≡ ∂Lt+τ (bβt)/∂β−∂L̄t(bβt)/∂β, t = m, . . . , T −τ indicate the sequence of 1×k derivatives

of the surprise losses, and let Bt be a consistent estimate of B∗t from assumption A3 that substitutes

3The first m terms of L are in-sample losses from the first estimation window and the last n terms are out-of-

sample losses. For the fixed scheme L ≡ [L1(βm), ..., Lm(βm)

m

, 0, ..., 0

τ−1

, Lm+τ (βm), ..., LT (βm)

n

];. For the rolling and

recursive schemes, each of the middle τ − 1 terms is an in-sample loss from the estimation sample ending at the

corresponding date.
4The first m terms of h are orthogonality conditions from the first estimation window. For the fixed scheme

h = [h1(βm), ..., hm(βm)

m

, 0, ..., 0

T−m

]. For the rolling and recursive schemes, each of the middle n − 1 terms is the

orthogonality condition from the estimation sample ending at the corresponding date.
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bβt for β∗.5 Construct the following weights, depending on the forecasting scheme:
Fixed : wL

1×T
= [− n

m
, . . . ,− n

m| {z }
m

, 0, . . . , 0| {z }
τ−1

, 1, 1, . . . , 1| {z }
n

]; wh

1×qT
= [

Bm
PT−τ

t=mDt+τ

m
, . . . ,

Bm
PT−τ

t=mDt+τ

m| {z }
m

, 0, . . . , 0| {z }
T−m

].

Rolling (n < m): wL

1×T
= [− 1

m
, . . . ,− n

m| {z }
n

,− n

m
, ..,− n

m| {z }
m−n

,−n− 1
m

, . . . ,−n− τ + 1

m| {z }
τ−1

, 1− n− τ

m
, . . . , 1− 1

m| {z }
n−τ

,

1, . . . , 1| {z }
τ

];

wh

1×qT
= [

Dm+τBm

m
, . . . ,

PT−τ
t=mDt+τBt

m| {z }
n

,

PT−τ
t=mDt+τBt

m
, . . . ,

PT−τ
t=mDt+τBt

m| {z }
m−n

,

PT−τ
t=m+1Dt+τBt

m
, . . . ,

DTBT−τ
m| {z }

n−1

, 0, . . . , 0| {z }
τ

].

Rolling (n ≥ m) : wL

1×T
= [− 1

m
, . . . ,−m

m| {z }
m

,−m
m
, . . . ,−m

m| {z }
τ−1

, 0, . . . , 0| {z }
n−m−τ+1

, 1− m− 1
m

, . . . , 1− 1

m| {z }
m−1

, 1, . . . , 1| {z }
τ

];

wh

1×qT
= [

Dm+τBm

m
, . . . ,

P2m−1
t=m Dt+τBt

m| {z }
m

,

P2m
t=m+1Dt+τBt

m
, . . . ,

PT−τ
t=n Dt+τBt

m| {z }
n−m

,

PT−τ
t=n+1Dt+τBt

m
, . . . ,

DTBT−τ
m| {z }

m−1

, 0, . . . , 0| {z }
τ

].

Recursive: wL

1×T
= [−am,0, . . . ,−am,0| {z }

m

,−am,1, . . . ,−am,τ−1| {z }
τ−1

, 1− am,τ , . . . , 1− am,n−1| {z }
n−τ

, 1, . . . , 1| {z }
τ

];

wh

1×qT
= [bm,0, . . . , bm,0| {z }

m

, bm,1, . . . , bm,n−1| {z },
n−1

0, . . . , 0| {z }
τ

], where

am,j =
1

m+ j
+

1

m+ j + 1
+ . . .+

1

T − τ
; (5)

bm,j =
Dm+τ+jBm+j

m+ j
+

Dm+τ+j+1Bm+j+1

m+ j + 1
+ . . .+

DTBT−τ
T − τ

.

5For example, for OLS estimation of Ys = X0
sβ
∗ + εs, s = 1, ..., t, Bt = (t−1 t

s=1XsX
0
s)
−1. For maximum

likelihood estimation, Bt is the inverse of the Hessian evaluated at the parameter estimate.
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Let

VT =

Ã
V LL
T V Lh

T

V Lh
T V hh

T

!
, where (6)

V LL
T ≡ T−1

TX
t=1

(wL
t
eLt)

2 + 2T−1
pTX
j=1

vT,j

TX
t=j

wL
t
eLtw

L
t−j eLt−j ; (7)

V hh
T ≡ T−1

TX
t=1

wh
t hth

0
tw

h0
t + T−1

pTX
j=1

vT,j

TX
t=j

³
wh
t hth

0
t−jw

h0
t−j + wh

t−jht−jh
0
t−jw

h0
t

´
; (8)

V Lh
T ≡ T−1

TX
t=1

wL
t
eLth

0
tw

h0
t + T−1

pTX
j=1

vT,j

TX
t=j

³
wL
t
eLth

0
t−jw

h0
t−j +wL

t−j eLt−jh
0
t−jw

h0
t

´
, (9)

with {pT} a sequence of integers such that pT → ∞ as T → ∞, pT = o(T ) and {vT,j : T =

1, 2, . . . ; j = 1, . . . , pT} a triangular array such that |vT,j | < ∞, T = 1, 2, . . . ; j = 1, . . . , pT and

vT,j → 1 as T →∞ for each j = 1, . . . , pT (cf. Andrews, 1991 or Newey and West, 1987).

Theorem 2 (Asymptotic justification of forecast breakdown test) (a) If E (∂Lt(β
∗)/∂β)

is constant for all t, σ̂m,n =
q
(T/n)V LL

T , V LL
T given in (7). Then, tm,n,τ

d→ N(0, 1) under H0 in

(3). 6 (b) If VT in (6) is p.d., σ̂m,n =
q
(T/n) (V LL

T + V hh
T + 2V Lh

T ), V LL
T , V hh

T and V Lh
T given in

(7)-(9). Then, tm,n,τ
d→ N(0, 1) under H0 in (3).

Comments: 1. Theorem 2-(a) shows that if ∂Lt(β
∗)/∂β has constant mean under the null

hypothesis, then estimation uncertainty is asymptotically irrelevant and the asymptotic variance

estimator is easier to compute. Theorem 2-(b) gives the correction to the estimator needed when

estimation uncertainty does not vanish asymptotically. Whether the condition for asymptotic irrel-

evance is satisfied depends in general on the model, the loss function and the estimation procedure,

and its plausibility must thus be verified on a case-by-case basis. Corollary 3 below shows that an

important case in which this condition is satisfied is when the loss function used for estimation is

the same as that used for evaluation. This is a common situation in forecasting applications, where

parameters are typically estimated by OLS and forecasts are evaluated using a quadratic loss.

2. The use of a HAC estimator for the asymptotic variance is motivated by the possible presence

of serial correlation in the sequence of forecast losses. This is easy to see for a quadratic loss, in

which case serial correlation in the losses is induced by the presence of GARCH in the data.

Corollary 3 (Variance estimator under equal loss) If bβt = argminβ L̄t(β), then σ̂m,n =q
(T/n)V LL

T , V LL
T given in (7).

6A Matlab code computing σ̂m,n in the case of asymptotically irrelevant estimation uncertainty can be downloaded

from http:\\www.econ.ucla.edu\giacomin.
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Corollary 4 (Variance estimator under equal loss and covariance-stationarity) Given the

assumptions of Theorem 2-(a), further assume that Γj ≡ cov (Lt(β
∗), Lt−j(β

∗)) depends on j but

not on t under H0.
7 Then, σ̂m,n =

p
λSLL

n , where

Forecasting scheme λ

Fixed 1 + n
m

Rolling, n < m 1− 1
3

¡
n
m

¢2
Rolling, n ≥ m 2

3
m
n

Recursive 1

(10)

and SLL
n = n−1

PT−τ
t=m

eL2t+τ + 2n−1Ppn
j=1 vn,,j

PT−τ
t=m+j

eLt+τ
eLt+τ−j , whereeLt+τ ≡ Lt+τ (bβt)− n−1

PT−τ
j=m Lj+τ (bβj) and with {pn} a sequence of integers such that pn →∞ as

n→∞, pn = o(n) and {vn,j : n = 1, 2, . . . ; j = 1, . . . , pn} a triangular array such that |vn,j | <∞,

n = 1, 2, . . . ; j = 1, . . . , pn and vn,j → 1 as n → ∞ for each j = 1, . . . , pn (cf. Andrews, 1991 or

Newey and West, 1987).

Comment: As we discussed in Section 3.3, when L (e) = e, with e the forecast error, the

forecast breakdown test is analogous to a forecast unbiasedness test. Corollary 4 gives the correct

standard error for the test, provided that the condition for asymptotic irrelevance of estimation

uncertainty is satisfied (i.e., if E (∂L(β∗)/∂β) is constant, which for example is satisfied in a linear

regression model with constant-mean regressors). The corollary shows that for a recursive scheme

the asymptotic variance estimator does not necessitate a correction and it is simply a HAC estimator

of the variance of the average out-of-sample forecast error. For the fixed and rolling schemes,

instead, the estimator must be corrected.8 In Section 6 below, we further provide the correct

asymptotic variance estimator for forecast rationality tests, which was not previously available.

4 Causes of forecast breakdowns

To gain some insight into the causes of forecast breakdowns, we analyze the expectation of the

numerator of the forecast breakdown test statistic (4)9. For simplicity, in this section we assume

that parameters are estimated by maximum likelihood and let L (·) indicate the loss used for
estimation. We further define β∗t as E (∂Lt (β∗t ) /∂β) = 0, t = 1, 2, . . . , T, and let Σj denote the

relevant sample average depending on the forecasting scheme: Σj = t−1
Pt

j=1 for the recursive

7 In the case of quadratic loss, this rules out time-variation in the tail fatness of the forecast errors.
8For cases in which our null hypothesis coincides with the forecast unbiasedness null hypothesis, one can easily

see that our estimator for the forecast unbiasedness test coincides with the estimator proposed by McCracken (2000)

for the various forecasting schemes.
9We implicitly make the assumption that such expectation exists.
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scheme, Σj = m−1
Pt

j=t−m+1 for the rolling scheme, and m−1
Pm

j=1 for the fixed scheme. Also,

let bβt, β∗j β∗t+τ denote intermediate points between ³bβt, β∗t´, ¡β∗t , β∗j¢ , ¡β∗t , β∗t+τ¢ respectively. We
following proposition decomposes the expectation of the numerator of our test statistic into various

components, grouped under the three categories of parameter instabilities, other instabilities and

estimation uncertainty.

Proposition 5 (Causes of forecast breakdowns)

E

Ã
n−1/2

T−τX
t=m

SLt+τ (bβt)
!

= E

Ã
n−1/2

T−τX
t=m

SLt+τ (β
∗
t )

!
| {z }

“other instabilities”

+ n−1/2
T−τX
t=m

E

Ã
∂Lt+τ

¡
β∗t+τ

¢
∂β

!¡
β∗t − β∗t+τ

¢
| {z }

“parameter instabilities I”

−n−1/2
T−τX
t=m

X
j
E

Ã
∂Lj

¡
β∗j
¢

∂β

!¡
β∗t − β∗j

¢
| {z }

“parameter instabilities I”

(11)

+
1

2
n−1/2

T−τX
t=m

⎡⎣¡β∗t − β∗t+τ
¢0
E

⎛⎝∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

⎞⎠ ¡β∗t − β∗t+τ
¢

| {z }
“parameter instabilities II”

−
X

j

¡
β∗t − β∗j

¢0
E

⎛⎝∂2Lj

³
β∗j

´
∂β∂β0

⎞⎠ ¡β∗t − β∗j
¢⎤⎦

| {z }
“parameter instabilities II”

+n−1/2
T−τX
t=m

E

∙µ
∂Lt+τ (β

∗
t )

∂β

¶³bβt − β∗t

´¸
| {z }

“estimation uncertainty I”

+n−1/2
T−τX
t=m

E

("³bβt − β∗t

´0 ∂2Lt(bβt)
∂β∂β0

− ∂Lt (β
∗
t )

∂β
+

∂Lt (β∗t )
∂β

#³bβt − β∗t

´)
| {z }

“estimation uncertainty II”

+
1

2
n−1/2

T−τX
t=m

E

"³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´#
| {z }

“estimation uncertainty III”

.

The component “other instabilities” captures any changes in the data-generating process -

beyond parameter instabilities - that result in a non-constant expected loss. The “parameter

instabilities I” component captures instabilities of the type β∗t − β∗ = Op

¡
n−1/2

¢
(which are the

same instabilities considered by the structural break testing literature), whereas the “parameter

instabilities II” component captures instabilities of the type β∗t − β∗ = Op

¡
n−1/4

¢
. Note that

when the loss functions used for estimation and for evaluation are equal the component “parameter

instabilities I” disappears due to E
¡
∂Lt+τ

¡
β∗t+τ

¢
/∂β

¢
= 0, implying that forecast breakdowns are
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in this case caused by instabilities of greater magnitude than those considered by the structural

break testing literature.

Regarding the remaining components, note that when the estimation and evaluation losses are

equal, the “estimation uncertainty II” component is a quadratic form, and is thus always positive.

Intuitively, this is because in this case the average in-sample loss computed at the parameter

estimates is minimized by construction, and is thus smaller than the expected out-of-sample loss

in finite samples. We therefore interpret this component as a measure of “overfitting”.

The following proposition characterizes the causes of forecast breakdowns in the special case of

a linear regression model, a fixed forecasting scheme and a quadratic loss.

Proposition 6 (Special case: linear model and quadratic loss) Consider a quadratic loss :

L (e) = L (e) = e2, a fixed forecasting scheme, and a linear and correctly specified model Yt =

X 0
tβt

+ εt, εt ∼ i.i.d.
¡
0, σ2t

¢
, where the k × 1 vector Xt is i.i.d. Let E (XtX

0
t) ≡ J. Suppose there

are two breaks: a permanent break in the parameters and a permanent break in the variance of the

disturbances, so that βt = β + n−1/4g1 · 1 (t ≥ m) and σ2t = σ2 + n−1/2g21 (t ≥ m) . We have:

E
¡√

nSLm,n

¢
= g2|{z}

“other instabilities”

+
1

2
g01Jg1| {z }

“parameter instabilities II”

+2

√
n

m
σ2k| {z } .

“overfitting"

(12)

From Proposition 6, we see that a forecast breakdown for a quadratic loss can be caused by

a “small” positive break in the variance of the disturbances and/or a “large” break (positive or

negative) in the conditional mean parameters. Overfitting is present only in finite samples and is

proportional to the number of parameters, the variance of the disturbances and the relative sizes

of in-sample and out-of-sample windows (through the factor
√
n/m).

5 An overfitting-corrected forecast breakdown test

We propose a simple correction to the forecast breakdown test statistic (4) that eliminates the

systematic difference between in-sample and out-of-sample loss that is present in finite samples when

a quadratic loss is used for both estimation and evaluation. Specifically, we propose subtracting

from the numerator of our test statistic an estimate of the “estimation uncertainty II” component

in (11), which can be interpreted as a measure of overfitting. Using similar reasonings to those

in the proof of Proposition 6, we obtain an estimate of this component in the context of a linear

model with k covariance-stationary regressors, Yt = X 0
tβ + εt. The test statistic is modified as:

tcm,n,τ =
¡√

nSLm,n − c
¢
/σ̂m,n; (13)

c = 2 · γ · tr
µ
X 0X

T
· bV β

T

¶
,
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where: γ =
√
n/m for the fixed and rolling schemes and γ = n−1/2 ln(1 + n/m) for the recursive

scheme; X ≡ [X 0
1, . . . ,X

0
T ];

bV β
T is a consistent estimator of the asymptotic variance of the full-sample

parameter estimate bV β
T = \asyvar(

√
TbβT ); σ̂m,n is as in Theorem 2-(b) or Corollary 3.

It is interesting to note that, if the asymptotic variance of the parameter estimates can be

consistently estimated by bV β
T = σ2(T−1X 0X)−1, the overfitting correction simply becomes

c = 2γσ2k, (14)

where σ2 = var(εt). Direct calculations further show that in this case tcm,n,τ may be equivalently

obtained by re-defining the surprise losses as the difference between the out-of-sample loss and the

average in-sample loss penalized using Akaike’s information criterion (AIC).10

6 Predicting future forecast breakdowns

In Section 3.3, we proposed a test for detecting whether a forecast method broke down in the past.

A question that may be of further interest to forecasters is whether the forecast method will break

down in the future. This is of course related to finding past breakdowns: if the surprise losses had

positive mean in the past, we expect them to continue being positive in the future. However, it is

possible that one could find additional information that predicts whether there will be a forecast

breakdown. For example, the surprise losses may be persistent (in the case of a quadratic loss, for

example, the presence of GARCH in the data will induce serial correlation in the surprise losses)

or they may be correlated with indicators of the state of the economy.

The idea is to find variables that predict the difference between in-sample and out-of-sample

performance by regressing the surprise losses on a set of explanatory variables, including, e.g., a

constant, lagged surprise losses, economically meaningful variables such as business cycle leading

indicators, measures of stock market volatility, interest rates etc.

Denote by Zt the r×1 vector collecting such variables and let bδn be the OLS parameter estimate
obtained by estimating the predictive regression

SLt+τ (bβt) = Z
0
tδ + εt+τ (15)

over the out-of-sample period t = m, . . . , T − τ , where the regression always includes a constant.

A Wald test of H0 : E
³
n−1

PT−τ
t=m ZtSLt+τ (β

∗)
´
= 0 can be performed by considering the test

statistic Wm,n,τ = nbδ0nΩ̂−1m,n
bδn, with Ω̂m,n given in Proposition 7 below and rejecting H0 whenever

Wm,n,τ > χ2r,1−α, where χ
2
r,1−α is the (1−α)− th quantile of a χ2r distribution. Proposition 7 below

provides the asymptotic justification for the test.
10To see this, note that (for the fixed scheme) the AIC penalizes the in-sample log-likelihood as logLm + 2k/m,

which corresponds to penalizing the in-sample loss as Lm(1 + exp(2k/m)) ' Lm(1 + 2k/m). The claim then follows

from redefining SLt+τ as Lt+τ − Lm(1 + 2k/m).
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To analyze the behavior of the surprise losses over time, one may further consider the plot of

the fitted values {Z 0
t
bδn}T−τt=m from the regression (15) together with a one-sided (1−α)% confidence

interval:
µ
Z
0
t
bδn − zα

³
Z 0t

³
Ω̂m,n/n

´
Zt

´1/2
,+∞

¶
, where zα is the (1−α)−th quantile of a standard

normal distribution.

Proposition 7 (Asymptotic justification of the Wald test) Let Zt = [1, z
0
t]
0 and ezt ≡ zt− z,

z ≡ 1
n

PT−τ
t=m zt. Under assumptions A1-A3 and A7, further suppose that the same loss function is

used for estimation and evaluation and that, under H0: B1. {zt}T−τt=m and {Lt(β
∗)}Tt=1 are fourth

order stationary; B2. z →
p
E (zt) ; B3. Szz ≡ n−1

PT−τ
t=m eztez0t →p Σzz ≡ E [eztez0t] non-singular; B4.

For some d > 1, supt≥1E ||z0t, Lt||4d <∞.11 Let

bΩm,n =

Ã
1 −z0S−1zz
0 S−1zz

!Ã bσ2m,n ΛSL,zL

ΛS
zL,L

S
zL,zL

!Ã
1 −z0S−1zz
0 S−1zz

!0
(16)

where bσ2m,n is defined in Corollary 4, Szz ≡ n−1
PT−τ

t=m eztez0t+n−1Ppn
j=1 vn,j

PT−τ
t=m+j

³eztez0t−j + ezt−jez0t´ ;
S
zL,L = n−1

PT−τ
t=m ezteL2t+n−1Ppn

j=1 vn,j
PT−τ

t=m+j

³ezteLt
eLt−j + ezt−j eLt−j eLt

´
; SzL,zL = n−1

PT−τ
t=m eztez0teL2t+

n−1
Ppn

j=1 vn,j
PT−τ

t=m+j

³ezteLt
eLt−jez0t−j + ezt−j eLt−j eLtez0t´, where eLt is as in Algorithm 1 and pn and

vn,j are as in Proposition 4; Λ =
£
π−1 ln (1 + π)

¤
for the recursive scheme, Λ = 1 − π/2 for the

rolling scheme when n ≤ m, Λ = (2π)−1 for the rolling scheme when n > m, and Λ = 1 for the

fixed scheme. Then Wm,n,τ
d→ χ2r under H0 : E

³
n−1

PT−τ
t=m ZtSLt+τ (β

∗)
´
= 0.12

Corollary 8 (Asymptotic justification of the Wald test under conditional homoskedasticity)

Under the assumptions of Proposition 7, further suppose that, under H0, E
³eLt (β

∗) eLt−j (β
∗) | {zt}T−τt=m

´
≡

γLLj . Then:

bΩm,n =

Ã
σ2m,n + z0S−1zz SzL,zLS

−1
zz z −z0S−1zz SzL,zLS

−1
zz

−S−1zz SzL,zLS
−1
zz z S−1zz SzL,zLS

−1
zz

!
. (17)

Comments: 1. Under the assumption of conditional homoskedasticity, the asymptotic variance

of the parameter estimates other than the intercept does not require any correction depending on

the forecasting scheme.

2. Note that equation (15) can be interpreted as a forecast rationality regression, by letting

L(e) = e in (1), where e is the forecast error, and when parameters are estimated by OLS, so

that L̄t(bβt) = 0. Proposition 7 thus provides the appropriate asymptotic variance estimator for

11The latter assumption ensures that third and fourth order cumulants are finite. This assumption is trivially

satisfied if the variables are Normal, and it is a standard assumption — see Brillinger (1981, p. 26, Assumption 2.6.1).

Also, note that fourth order stationarity implies covariance stationarity.
12Matlab code to implement the Wald test under the assumptions of Proposition 7 is available at

http:\\www.econ.duke.edu\~brossi. Matlab code to implement the Wald test under the more general assumption of
heterogeneity of the losses is further available at http:\\www.econ.ucla.edu\giacomin.
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the forecast rationality test, and shows that a correction is only required for the standard error of

the intercept (which is the same correction that applies to the forecast unbiasedness test; see the

comment after Corollary 4). The same remarks hold for a Mincer and Zarnowitz (1969) regression,

where the regressor is the forecast, provided a two-step estimator is used for the standard errors to

account for the generated-regressor problem.

7 Implications of forecast breakdowns

A natural question that arises if a forecast breakdown is detected or predicted is whether the forecast

model should be changed or not. In general, the answer to this question depends on the type of

forecast (point, interval, density) and on the type of loss function (symmetric or asymmetric).

For example, when the forecast is a point forecast and the loss function is symmetric, finding a

forecast breakdown does not necessarily imply that the model should be changed. The reason is

that the forecast breakdown could be caused by instabilities - such as increases in the variance of

the disturbances - that do not affect the optimal forecast (for a symmetric loss, the optimal point

forecast does not depend on the variance, unlike for an asymmetric loss, as shown by Christoffersen

and Diebold, 1997). Since the forecast breakdown test cannot distinguish among the different types

of instabilities, the finding of a forecast breakdown does not in this case suggest a course of action.

However, when the loss is asymmetric or when the forecaster is interested in accompanying the

point forecast with some measure of its uncertainty (e.g., an interval or a density forecast), then

the finding of a forecast breakdown indicates unreliability of the forecast, regardless of its cause.

8 Monte Carlo evidence

We analyze the size and power properties of our forecast breakdown test in finite samples, relative to

the properties of in-sample structural break tests (Elliott and Muller, 2003).13 We further compare

the size properties of commonly used forecast rationality tests and those of our corrected forecast

rationality test (see comment 2 after Corollary 8).

8.1 Size properties of forecast breakdown tests

We investigate the size of the forecast breakdown test, in particular with regards to its robustness

to the presence of instability in the marginal distribution of the regressors and to the presence of

13Andrews’ (1991) and Andrews and Ploberger’s (1995) test results were qualitatively similar to those obtained by

using the Elliott and Muller’s (2003) test in the case of a single break, and are therefore not reported.
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conditionally heteroskedastic disturbances. We let the data-generating process (DGP) be:

Yt = 2.73− 0.44ut−1 + σtεt, (18)

σ2t = 1 + α ∗ ε2t−1, εt ∼ i.i.d.N(0, 1),

and consider two experiment designs. The first (MC1) has i.i.d. regressors and conditionally

homoskedastic errors: ut ∼ i.i.d.N(0, 1) and α = 0 . The second (MC2), inspired by our empirical

application to the Phillips curve model of U.S. inflation, lets ut be monthly U.S. unemployment

and α = .5.14 The DGP specification and parameters are from Staiger, Stock and Watson (1997).

We use an actual time series for unemployment in order to generate data that exhibit realistic

heterogeneous behavior. Throughout, we restrict attention to the one-step-ahead forecast horizon

and use a quadratic loss for both estimation and evaluation.

For each pair of in-sample and out-of-sample sizes (m,n) and for each of 5000 Monte Carlo

replications, we generate T = m + n data as in (18). In MC2, we use the last T data in the ut

time series, up to 2005:8. We estimate the model Yt = β1 + β2ut−1 + et by OLS using either a

fixed, a rolling or a recursive forecasting scheme. We consider the test proposed by Elliott and

Muller (2003) (denoted EM) and our forecast breakdown test for the three forecasting schemes,

using either the general asymptotic variance estimator of Corollary 3 (tm,n,τ ) or the estimator of

Corollary 4 (tstatm,n,τ ) (the truncation lags for the HAC estimators are pT = pn = 0 in MC1 and

pT = pn = n1/3 in MC2). Table 1(a) contains the rejection frequencies of the tests for various

(m,n) pairs.

[TABLES 1(a) AND 1(b) HERE]

The forecast breakdown test has good size properties for large in-sample and out-of-sample sizes

(m,n ≥ 100). The tstatm,n,τ test is well-sized, if conservative. Both tests (in particular tm,n,τ ) tend

to over-reject when the in-sample size is small (m = 50), partly due to the effects of overfitting.

To verify this claim, Table 1(b) reports the rejection frequencies of the overfitting-corrected test

of Section 5, using the simple correction (14) in both MC1 and MC2. As expected, the use of

the overfitting correction substantially improves the size properties of the test. The overfitting-

corrected test is well-sized in all cases except for the fixed scheme when the in-sample size is small

(m = 50).

Comparing the results from MC1 and MC2, we see that the forecast breakdown test is robust

to the presence of heterogeneous regressors and of ARCH disturbances. In MC2, our test correctly

concludes that the forecasting model is reliable. The EM test, instead, has correct size when the

14The unemployment series is the seasonally adjusted civilian unemployment rate from FRED II. The results are

robust to higher values of α, even close to one.
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regressor is i.i.d., but erroneously detects instability in model’s parameters when the regressor is

the actual time series of U.S. unemployment (in this case, the EM rejects 100% of the time).

8.2 Size properties of forecast rationality tests

Finally, we document size distortions of conventional forecast rationality tests and the good size

properties of a test based on the “corrected” variance estimator of Proposition 7. The DGP is:

Yt = β0 + β1Xt + εt, where β0 = β1 = 0, εt ∼ i.i.d.N(0, 1), Xt ∼ i.i.d.N(0, 1) and forecasts are

based on a model with a constant and Xt estimated using the various forecasting schemes. The

forecast rationality test is performed by estimating the regression: et+1 = δ0 + δ1Zt + ut, where

et+1 is the estimated out-of-sample forecast error and Zt ∼ i.i.d.N(0, 1) independent of Xt. Table

2 reports rejection frequencies of forecast rationality tests using conventional OLS standard errors

and of the corresponding test using the variance estimator (17) with L(e) = e. The nominal size

is 5%. As the columns labeled “uncorrected” in Table 2 show, both a standard t-test on δ0 (tδ0)

and a Wald test on both δ0 and δ1 (W ) have considerable size distortions except for the recursive

scheme, whereas a t-test on δ1 (tδ1) has no size distortions for any scheme. The columns labeled

“corrected” show instead that our correction performs very well in all cases.

[TABLE 2 HERE]

8.3 Power properties

In this section we consider various sources of forecast breakdowns and analyze the power of the

tests considered in Section 8.1 and of a forecast unbiasedness test for the recursive scheme forecasts

(UNB). In all designs, we estimate the model Yt = α + et by OLS and consider a quadratic

and a linex loss for evaluation. The total sample size T and the in-sample size m for the forecast

breakdown and the unbiasedness tests are specified in each design. In all cases, m is set at the time

of the first break, which represents the “worst-case scenario” from the perspective of a forecaster.

Design 1: Changes in mean. We consider either one-time or recurring changes in mean. The

first corresponds to a single structural break in mean

Yt = βA · 1 (t > T/2) + εt, εt ∼ i.i.d.N(0, 1). (19)

We let (T,m) = (300, 150). In the recurring change DGP, we let Yt = µt + εt, where µt switches

between −βA and βA every 50 periods and let (T,m) = (600, 50).

Design 2: Changes in variance. Again, we consider both one-time and recurring changes. The

one-time change DGP is

Yt = εt, εt ∼ i.i.d.N
¡
0, σ2t

¢
(20)
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where σ2t = 1+βA ·1 (t > T/2) . and. We choose (T,m) = (300, 150). In the recurring changes case,

we let σ2t switch between 1 and (1 + βA) every 50 periods, and let (T,m) = (600, 50).

Design 3: Other DGP changes. Here we assume that the conditional mean undergoes a one-

time change but the two specifications are not nested, so that structural break tests are not optimal

in this context. We let

Yt = βA · 1 (t ≤ T/4)− 3βA · 1 (T/4 < t ≤ T/2) +Xt · 1 (t > T/2) + εt, (21)

Xt = .6Xt−1 + ηt, εt, ηt ∼ i.i.d.N (0, 1) independent.

We consider (T,m) = (400, 100).

[FIGURE 1 HERE]

For all designs, we obtain power curves by letting βA vary between 0 and 2 and considering

5000 Monte Carlo replications. Figure 1(a) shows that the forecast breakdown test has power

against changes in mean. In the case of a permanent break in mean (upper left panel), the forecast

breakdown test has lower power than both the EM and the UNB tests, but its power improves when

the losses used for estimation and evaluation differ (upper right panel). In the case of recurring

changes in mean (lower panels), the forecast breakdown test with a rolling scheme has the highest

power. When the permanent change in DGP is as in Design 3 (Figure 1(c), right panel), the power

loss of the forecast breakdown relative to the EM and UNB tests is substantially lower. Figure 1(b)

shows that the forecast breakdown test is the only test that has power against changes in variance.

The one-sided nature of the test implies that only increases in variance (Figure 1(b), upper panels)

or, to a lesser extent, recurring changes in variance (Figure 1(b), lower panels) can cause forecast

breakdowns. Decreases in variance, obtained by substituting βA with −βA in design 2, instead do
not cause forecast breakdowns, as can be seen from the left panel of Figure 1(c).

9 The Phillips curve and inflation forecast breakdowns

The Phillips curve as a forecasting model of inflation has traditionally been a useful guide for

monetary policy in the United States, and its forecasting ability is thus of practical relevance. The

model relates changes in inflation to past values of the unemployment gap (the difference between

the unemployment rate and the NAIRU) and past values of inflation. The forecasting ability of

the Phillips curve as well as its stability have been investigated in a number of works, including

Staiger, Stock and Watson (1997), Stock and Watson (1999) and Fisher, Liu and Zhou (2002). The

latter, in particular, conclude that the forecasting ability of the Phillips curve depends upon the

period: the Phillips curve appears to forecast well one year ahead during the 1977-1984 period but
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not during the 1993-2000 period. Thus, as an empirical application of the methods proposed in

this paper, we investigate the robustness of the Phillips curve to forecast breakdowns.

Following Stock and Watson (1999), let πτt = (1200/τ) ln (Pt/Pt−τ ) denote the τ -period inflation

in the price level Pt reported at an annual rate, πt denote monthly inflation at an annual rate at

time t (πt ≡ π1t = (1200) ln (Pt/Pt−1)), and ut denote the unemployment rate. Then the Phillips

curve can be expressed as:

πτt+τ − πt = θ0 + θ1 (L)ut + θ2 (L) (πt − πt−1) + εt+τ (22)

where θ0 implicitly embodies a time-invariant NAIRU, and θ1 (L) and θ2 (L) are lag polynomials

with qu and qπ lags, respectively.

When analyzing whether unemployment was a useful predictor for inflation, it is important to

assess its predictive ability using data that were available to the policymakers at that time. For

example, Ghysels, Swanson and Callan (2002) analyze the performance of monetary policy rules in

the presence of real-time data, and note their relationship with changes in the Fed Chairmen. For

this reason, we use real-time data from the Federal Reserve Bank of Philadelphia database. The

data are discussed in Croushore and Stark (2001). Since the real-time series of consumer prices from

the same data set is available only from the 1994 vintage, for this series we use the Swanson, van

Dijk, and Callan dataset (available at http://econweb.rutgers.edu/nswanson/realtime.htm). We

focus on seasonally adjusted inflation, as in Stock and Watson (1999). The data are from 1961:1

(with a first vintage in 1978:2) until 2001:12. Due to the data limitations, we restrict estimation

from 1978:2 until 2001:12, using quarterly vintages.15

The first column of Table 3 reports the p-values of the forecast breakdown test of Section 3.3

for a quadratic loss and a rolling scheme with m = 60 (so that the one-step ahead forecasts begin

in 1993:1, corresponding to the change in monetary policy identified in Fisher et al., 2002). We

consider forecast horizons τ = 3 and τ = 12 months and several choices of qu and qπ. The row

labeled “BIC” reports results for the case in which the lag length is determined by the Bayesian

Information Criterion (BIC) (assuming that all regressors have the same number of lags). The

table shows strong evidence of a forecast breakdown at the one year horizon when using real-time

data, whereas there is little evidence of forecast breakdowns at shorter horizons. Because of small

sample concerns associated with real-time data, we repeat the above exercise using revised monthly

data. We consider the most recent observations collected by the Philadelphia Fed (2004:8) for both

15The sample used in Fisher et al. (2002) begins in January 1977 and that used in Stock and Watson (1999) begins

in January 1959. Note that while in the real-time database unemployment is revised at a quarterly frequency, data

are still available at a monthly frequency. However, there will be missing data if one tried to extend the quarterly

data to a monthly frequency. For this reason, we calculated the annualized inflation rate at a monthly frequency,

then used observations only for February, May, August and November, which correspond to the available vintage

quarters.
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seasonally unadjusted CPI and unemployment. The largest available sample for both variables is

from 1948:1 until 2004:6. The second column in Table 3 shows that the forecast breakdown test

finds some evidence of a forecast breakdown at the one month horizon, but not at longer horizons.

[TABLE 3 HERE]

Given the evidence in favor of forecast breakdowns in the Phillips curve, we next investigate

its possible economic causes. Fisher et al. (2002) argue that periods of low inflation volatility

and periods after regime shifts in monetary policy appear to be associated with changes in the

forecasting ability of the Phillips curve. Thus, we construct a forecasting model that relates the

surprise losses to inflation volatility and to a measure of changes in the monetary policy behavior of

the Fed. We estimate inflation volatility (bσ2π,t) as the sample variance of the change in the annual
inflation over a rolling window of size 241.16 To measure changes in the monetary policy behavior

of the Fed, we consider rolling two-step efficient GMM estimates (with 2SLS in the first step) of

the coefficients of the Federal Fund Rate (FFR) reaction function to the output gap and to the

deviation of inflation from its target proposed by Clarida, Gali and Gertler (2000), given by

E (rt − (1− ρ) [rr∗ − (β − 1)π∗ + βπt,k + γxt,q] + ρ (L) rt−1|=t) = 0, (23)

with rt the nominal FFR; πt,k the annualized percentage change in the price level between t and

t+k; xt,q the average output gap between t and t+ q, defined as minus the percentage deviation of

actual unemployment from its target (a fitted quadratic function of time); and =t the information

set at time t. As in Clarida et al. (2000), we let ρ (L) ≡ ρ1 + ρ2L, rr
∗ be the average FFR over

the estimation window, and we choose as instruments a constant and four lags of the following

variables: inflation, output gap, FFR, commodity price inflation, M2 growth rate, spread between

the long-term bond rate and the three-month Treasury Bill rate.17 k and q are set at 1 quarter. Our

measures of changes in monetary policy behavior are sequences of estimates of β, γ and ρ ≡ ρ(1) in

(23) over a rolling window of size 241. Even though our database is different from that of Clarida

et al. (2000), our parameter estimates - which we do not report to conserve space - are similar.

We next investigate whether the estimates of the FFR reaction function coefficients and inflation

16 I.e. we use lagged values of the sample variance of (πτt+τ − πt) as a potential predictor.
17Unlike in Clarida et al. (2000), the long-term bond rate used here is not FYGL because that series has been

discontinued. Our proxy for the long-term bond rate is instead the ten-year monthly rate of interest on government

securities provided by the Fed (we checked that in the overlapping portion with FYGL the data look similar). Similar

problems lead us to choose the 3-month U.S. Treasury Bills quoted on the secondary market as a proxy for the

3-month Treasury Bill rate. Finally, for commodity prices we used n.s.a. CPI for all items all urban consumers

(U.S. city average) and we collected data for M2 from the Federal Reserve Board database. The abuse of notation in

denoting the degree of inflation aversion by β is to make our notation consistent with that of Clarida et al. (2000).
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coefficients in the following equation:

SLt+τ = δ0 + z0tδ1 + εt+τ (24)

where zt is either bβt, bγt, bρt (the rolling estimates of the parameters in (23)), or bσ2π,t, and τ = 1, 3, 12
months. The table reports estimates of δ1 and (in parentheses) the p-values associated with testing

whether δ1 equals zero.18 It is clear that the degree of inflation targeting smoothing operated by

the central bank (bρt) and the degree of inflation volatility (bσ2π,t) explain the behavior of the surprise
losses at the 12 month horizon, whereas inflation volatility and the degree of the Fed’s risk aversion

to the unemployment gap (bγt) are significant at the one month horizon. We also estimate (24)
with zt = (bβt, bγt, bρt) and find strong evidence of joint significance at horizons of one and twelve
months (last column of Table 4). To conclude, Figure 2 plots the sequence of surprise losses cSLt+12

along with its one-sided 95% confidence band, and shows empirical evidence of forecast breakdowns

during the Volker era (1979:3-1987:7) but not during the Greenspan era (1987:7 onwards).

[TABLE 4 AND FIGURE 2 HERE]

10 Conclusion

This paper proposed a method for detecting and predicting forecast breakdowns, defined as a

situation in which the out-of-sample performance of a forecast model is significantly worse than its

in-sample performance. Unlike the literature evaluating a forecasting model from the perspective

of whether it produces optimal forecasts, we focus on whether the model’s forecast performance -

measured by a general loss function - is consistent with expectations based on the model’s earlier

fit. The analysis of the possible causes of forecast breakdowns reveals the prime role played by

instabilities in the data-generating process in causing forecast breakdowns, thus establishing a link

between this paper and the structural break testing literature. Among the differences, we note that

our forecast breakdown test is valid under more general assumptions, for example permitting the

model to be misspecified and the regressors to be unstable, arguably a closer representation of the

environment faced by actual forecasters. Further, our testing framework allows the forecaster to

predict the likelihood that the forecast model will break down at a future date, a question that is

not typically addressed by the structural break testing literature.

While our method is a first step towards assessing how well a forecasting model adapts to

changes in the economy, an important question that we touched upon but that deserves further

investigation is what to do in case a forecast breakdown is detected or predicted. We leave this

avenue of research for future work.
18The test statistic is implemented with a Newey and West (1987) HAC estimator with a bandwidth equal to n1/3

and the p-values are calculated from (8).
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Appendix. Proofs

Notation 9 Let L∗t ≡ Lt(β
∗), h∗t ≡ ht(β

∗), ∂L∗t ≡ ∂Lt(β
∗), t = 1, . . . , T , with Lt and ht defined in

Algorithm 1; D∗t+τ ≡ ∂SLt+τ (β
∗)/∂β, t = m, . . . , T−τ ; eL∗t ≡ L∗t−E (L∗t ) ; D̃∗t+τ = D∗t+τ−E(D∗t+τ );f∂L∗t = ∂L∗t −E (∂L∗t ) . For a matrix A, |A| = maxi,j |aij |. Limits are for m,n→∞.

Lemma 10 (a) R1 ≡ n−1/2
PT−τ

t=m
eD∗t+τB∗tH∗

t = op(1);

(b) R2 ≡ .5n−1/2
PT−τ

t=m

³bβt − β∗
´0 ³

∂2SLt+τ (β
∗
t )/∂β∂β

0
´³bβt − β∗

´
= op(1), where β∗t is an inter-

mediate point between bβt and β∗.

Proof of Lemma 10. (a) We focus for simplicity on the recursive scheme. The proofs for

the fixed and rolling schemes are similar and are available upon request. Direct calculations show

that R1 = n−1/2
PT

t=1 w̃
h
t h
∗
t , where

w̃h = [cm,0, . . . , cm,0| {z }
m

, cm,1, . . . , cm,n−1| {z }
n−1

, 0, . . . , 0| {z }
τ

], cm,j =

n−jX
i=1

eD∗m+τ+j+i−1B∗m+j+i−1
m+ j + i− 1 .

We will show that (i)
¯̄̄
E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´¯̄̄
p→ 0 and (ii) E

³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´2 p→ 0 from

which the result follows by Chebyshev’s inequality.

(i) First note that w̃h
t can be written as a weighted average of the scores: w̃

h
t = T−1

PT
j=1

f∂L∗jPt,j .
For example, w̃h

1 = cm,0 = T−1
PT

j=1
f∂L∗jP1,j with (nonstochastic) weights

P1 = T [dm,0, . . . , dm,0| {z }
m

, dm,1, . . . , dm,τ−1| {z }
τ−1

,
B∗m
m
− dm,τ , . . . ,

B∗m+n−τ−1
m+ n− τ − 1 − dm,n−1| {z }
n−τ

,

B∗m+n−τ
m+ n− τ

, . . . ,
B∗T−τ
T − τ| {z }

τ

], where

dm,j =

n−jX
i=1

B∗m+j+i−1

(m+ j + i− 1)2
.

Similar expressions can be derived for cm,j , j = 1, . . . , n − 1. Each component of P1 is bounded
since |Tdm,0| ≤ supt |B∗t |

PT−τ
i=m(T/i

2) ≤ supt |B∗t |(Tn/m2) <∞ by assumptions A3 and A7.We can
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similarly show that Pt has bounded components for all t, which allows us to define P sup ≡ supt Pt.
We thus have ¯̄̄̄

¯E
Ã
n−1/2

TX
t=1

w̃h
t h
∗
t

!¯̄̄̄
¯ =

¯̄̄̄
¯̄E
⎛⎝n−1/2

TX
t=1

⎡⎣T−1 TX
j=1

f∂L∗jPt,j
⎤⎦h∗t

⎞⎠¯̄̄̄¯̄
≤

¯̄̄̄
¯̄E
⎛⎝n−1/2

TX
t=1

⎡⎣T−1 TX
j=1

f∂L∗jP supj

⎤⎦h∗t
⎞⎠¯̄̄̄¯̄

=

¯̄̄̄
¯̄E
⎛⎝⎡⎣T−1 TX

j=1

f∂L∗j
⎤⎦n−1/2 TX

t=1

h∗t

⎞⎠¯̄̄̄¯̄ (25)

≤ T−1n−1/2
TX
j=1

TX
t=1

|E(f∂L∗jh∗t+j)|
where we redefined f∂L∗jP supj as f∂L∗j in (25) without loss of generality. By Corollary 6.17 of White
(2001), T−1n−1/2

PT
j=1

PT
t=1 |E(f∂L∗jh∗t+j)| ≤ T−1n−1/2C1

P∞
j=0 jα(j)

1−1/2r, where C1 is some

positive and finite constant and α(j) are the mixing coefficients. By Davidson (1994), p. 210,P∞
j=0 jα(j)

1−1/2r is positive and finite, which implies that
¯̄̄
E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´¯̄̄
→ 0.

(ii) From (i), E
³
n−1/2

PT
t=1 w̃

h
t h
∗
t

´2
= E

³
n−1/2

PT
t=1

h
T−1

PT
j=1

f∂L∗jPt,jih∗t´2 . We have
E
³
n−1/2

PT
t=1

h
T−1

PT
j=1

f∂L∗jPt,jih∗t´2 = A1T +A2T +A3T , where

A1T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

E
¡
h∗0t h

∗
s

¢
E
³f∂L∗iPt,iP 0s,jf∂L∗0j ´ ,

A2T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

h
E
³
h∗0t P

0
t,i
f∂L∗0i ´E ³h∗0s P 0s,jf∂L∗0j ´+E

³
h∗0t P

0
s,j
f∂L∗0j ´E ³h∗0s P 0t,if∂L∗0i ´i ,

A3T ≡
¡
nT 2

¢−1 TX
t=1

TX
s=1

TX
i=1

TX
j=1

κ(t, t− s, t− i, t− j),

where κ(t, t− s, t− i, t− j) is the fourth cumulant

κ(t, t− s, t− i, t− j) = E
³
h∗0t h

∗
s
f∂L∗iPt,iP 0s,jf∂L∗0j ´−E

¡
h∗0t h

∗
s

¢
E
³f∂L∗iPt,iP 0s,jf∂L∗0j ´

−E
³
h∗0t P

0
t,i
f∂L∗0i ´E ³h∗0s P 0s,jf∂L∗0j ´−E

³
h∗0t P

0
s,j
f∂L∗0j ´E ³h∗0s P 0t,if∂L∗0i ´ .

Note that |A1T | ≤
¡
nT 2

¢−1PT
t=1

PT
s=1

PT
i=1

PT
j=1 |E (h∗0t h∗s)|

¯̄̄
E
³f∂L∗iP supi P sup 0j

f∂L∗0j ´¯̄̄ . Redefin-
ing f∂L∗iP supi as f∂L∗i , we thus have |A1T | ≤ ¡nT 2¢−1PT

t=1

PT
s=1 |E (h∗0t h∗s)|

PT
i=1

PT
j=1

¯̄̄
E
³f∂L∗i f∂L∗0j ´¯̄̄

≤
¡
nT 2

¢−1
C2

³P∞
j=0 jα(j)

1−1/2r
´2
, where C2 is some positive and finite constant and α(j) are the

mixing coefficients. As shown in point (i),
P∞

j=0 jα(j)
1−1/2r <∞, which implies that A1T → 0. A
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similar argument can be used to show that A2T → 0. For A3T , we have

|A3T | ≤
¡
nT 2

¢−1 ∞X
s=1

∞X
i=1

∞X
j=1

sup
t≥1

|κ(t, t− s, t− i, t− j)|→ 0,

since
P∞

s=1

P∞
i=1

P∞
j=1 supt≥1 |κ(t, t− s, t− i, t− j)| < ∞, by assumptions A1 and A4, as shown

by Andrews (1991).

(b) For some a, 0 < a < .5, C a positive constant, mt defined in assumption A2(b) and denoting

by mt the mean of the m0
ts over the relevant in-sample window at time t, we have

R2 =

¯̄̄̄
¯.5n−1/2

T−τX
t=m

t1−a
³bβt − β∗

´0Ã
t1−a

∂2SLt+τ (β
∗
t )

∂β∂β0

!³bβt − β∗
´¯̄̄̄¯

≤ C sup
m≤t≤T−τ

|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1

¯̄̄̄
¯∂2SLt+τ (β

∗
t )

∂β∂β0

¯̄̄̄
¯

≤ C sup
m≤t≤T−τ

|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1
Ã¯̄̄̄
¯∂2Lt+τ (β

∗
t )

∂β∂β0

¯̄̄̄
¯+

¯̄̄̄
¯∂2Lt(β

∗
t )

∂β∂β0

¯̄̄̄
¯
!

≤ C sup
m≤t≤T−τ

|t.5−.5a
³bβt − β∗

´
|2n−1/2

T−τX
t=m

ta−1 (mt+τ +mt) = op(1)

by Lemmas A1(a) and A3(b) of West (1996), Assumption A2(b) and Markov’s inequality.

Lemma 11 T
nV

LL∗
T = var

³
n−1/2

PT
t=1w

L
t
eL∗t´ > 0 for all T sufficiently large.

Proof of Lemma 11. We prove Lemma 11 for the recursive scheme. The proofs for the fixed

and rolling schemes are similar and are available upon request. Write T
nV

LL∗
T = var(A1+A2+A3+

A4), where A1 = −n−1/2am,0(eL∗1 + . . . + eL∗m); A2 = −n−1/2 ³am,1
eL∗m+1 + . . .+ am,τ−1eL∗m+τ−1´ ;

A3 = n−1/2
h
(1− am,τ ) eL∗m+τ + . . .+ (1− am,n−1) eL∗T−τi ; A4 = n−1/2

³eLT−τ+1 + . . .+ eLT

´
. We

first show that |cov(Ai, Aj)|→ 0 for i 6= j. Since am,j ≤ am,0, |cov(A1, A2)| ≤ n−1a2m,0

|cov(
Pm

t=1
eL∗t ,Pm+τ−1

t=m+1
eL∗t )| | ≤ n−1a2m,0

Pm
t=1

Pτ−1
j=1 |E(L̃∗t L̃∗t+j)| ≤ n−1a2m,0C

P∞
j=0 jα(j)

1−1/2r by

Corollary 6.17 of White (2001), where C is some positive and finite constant and α(j) are the

mixing coefficients. By Davidson (1994), p. 210,
P∞

j=0 jα(j)
1−1/2r is positive and finite. Fur-

ther, a2m,0 → ln2(1 + π), which is finite (cf. West, 1996, pg. 1082). As a result, cov(A1, A2) →
0. Using analogous reasonings and the fact that 1 − am,t−m ≤ 1 for all t, one can show that

|cov(Ai, Aj)| → 0 for the remaining (i, j) pairs. We thus have that var
³
n−1/2

PT
t=1w

L
t
eL∗t´

can be approximated by
P4

i=1 var(Ai) and the desired result follows from the fact that, e.g.,

var(A1) = (m/n)a2m,0var(m
−1/2Pm

t=1
eL∗t ) > 0 since m/n → π−1 > 0, a2m,0 → ln2(1 + π) > 0, and

var(m−1/2
Pm

t=1
eL∗t ) > 0 by assumption A6.

Proof of Theorem 2. (b) A second order mean value expansion of SLt+τ (bβt) = Lt+τ

³bβt´−
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L̄t

³bβt´ around β∗ gives

n1/2

"
n−1

T−τX
t=m

SLt+τ (bβt)−E

Ã
n−1

T−τX
t=m

SLt+τ (β
∗)

!#
(26)

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

∂SLt+τ (β
∗)

∂β

³bβt − β∗
´

+
1

2
n−1/2

T−τX
t=m

³bβt − β∗
´0 ∂2SLt+τ (β

∗
t )

∂β∂β0

³bβt − β∗
´

. = n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t +

n−1/2
T−τX
t=m

eD∗t+τB∗tH∗
t +

1

2
n−1/2

T−τX
t=m

³bβt − β∗
´0 ∂2SLt+τ (β

∗
t )

∂β∂β0

³bβt − β∗
´

= n−1/2
T−τX
t=m

[SLt+τ (β
∗)−E (SLt+τ (β

∗))] + n−1/2
T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t + op(1)

where β∗t is some intermediate point between bβt and β∗ and where we have used assumption A3

and Lemma 10. We show that, under H0,µ
T

n
VT

¶−1/2
n−1/2

"
T−τX
t=m

SLt+τ (β
∗) ,

T−τX
t=m

E
¡
D∗t+τ

¢
B∗tH

∗
t

#0
d→ N(0, I2),

with VT defined in (6), from which the theorem follows. Direct calculations show that¡
T
nVT

¢−1/2
n−1/2

hPT−τ
t=m SLt+τ (β

∗) ,
PT−τ

t=m E
¡
D∗t+τ

¢
B∗tH

∗
t

i0
= V

−1/2
T T−1/2

hPT
t=1w

L
t L

∗
t ,
PT

t=1w
h∗
t h∗t

i0
,

where wh∗
t equals wh defined in Algorithm 1 with bβt, Bt, Dt+τ replaced respectively by β∗, B∗t and

E(D∗t+τ ). Under H0, we have T−1/2
PT

t=1w
L
t L

∗
t = T−1/2

PT
t=1w

L
t
eL∗t , since T−1/2PT

t=1w
L
t E (L

∗
t ) =

nT−1/2E
³
n−1

PT−τ
t=m SLt+τ (β

∗)
´
= 0. We show that

V
∗−1/2
T T−1/2

"
TX
t=1

wL
t
eL∗t , TX

t=1

wh∗
t h∗t

#0
d→ N(0, I2),

where V ∗T = var

µ
T−1/2

hPT
t=1w

L
t
eL∗t ,PT

t=1w
h∗
t h∗t

i0¶
. The result follows from the fact that VT −

V ∗T
p→ 0, due to consistency of bβt for β∗ under H0. We verify that the zero-mean vector sequence

{
h
V
∗−1/2
T wL

t
eL∗t , V ∗−1/2T wh∗

t h∗t

i0
} satisfies the conditions of Wooldridge and White’s (1988) CLT for

mixing processes. Since Zt ≡
h
V
∗−1/2
T wL

t
eL∗t , V ∗−1/2T wh∗

t h∗t

i
is a function of only a finite number of

leads and lags of Wt, it follows from Lemma 2.1 of White and Domowitz (1984) that it is mixing of

the same size as Wt. For the first component of Zt, we have E|V ∗−1/2T wL
t
eL∗t |2r <∞ by assumption

A4 and by the fact that VT is p.d. and |wL
t | < ∞ for all t (for the fixed and rolling schemes, this
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follows from assumption A7; for the recursive scheme, it follows from the fact that am,j ≤ am,0

→ ln(1 + π) < ∞, as shown in the proof of Lemma 11. For the second component of Zt, writing

wh∗
t = T−1

PT
j=1E

³
∂L∗j

´
Pt,j - using similar reasonings as those in the proof of Lemma 10-(a) - we

have E|V ∗−1/2T wh∗
t h∗t |2r = E|V ∗−1/2T T−1

PT
j=1E

³
∂L∗j

´
Pt,jh

∗
t |2r ≡ E|λth∗t |2r. Note that |λt,i| <∞

for all t, i, by assumption A5, by Pt,j having bounded components (as shown in the proof of Lemma

10-(a)) and by V ∗T p.d. Further, by Minkowski’s inequality,

E|V ∗−1/2T wh∗
t h∗t |2r = E|λ0th∗t |2r = E|

qX
i=1

λt,ih
∗
t,i|2r ≤ [

qX
i=1

|λt,i|(E|h∗t,i|2r)1/2r]2r <∞

by assumption A4. This implies that V ∗−1/2T T−1/2
hPT

t=1w
L
t
eL∗t ,PT

t=1w
h∗
t h∗t

i0 d→ N(0, I2). The

desired result then follows from consistency of VT for V ∗T due to bβt − β∗
p→ 0 under H0.

(a) E
¡
D∗t+τ

¢
= E (∂SLt+τ (β

∗)/∂β) = E (∂Lt+τ (β
∗)/∂β) − E

¡
∂Lt(β

∗)/∂β
¢
= 0, and thus ex-

pression (26) reduces to n−1/2
PT−τ

t=m [SLt+τ (β
∗)−E (SLt+τ (β

∗))]+op (1) . The result then follows

from reasonings analogous to those in part (b) above and from Lemma 11.

Proof of Corollary 3. Follows from the fact that, under H0, E
¡
∂Lt(β

∗)/∂β
¢
= 0 for all t,

which implies that the condition of Theorem 2-(a) is satisfied.

Lemma 12 For am,j as defined in (5), we have: (i) am,j ' ln(m+n−1/ (m+ j)); (ii) n−1
Pn−1

j=τ am,j

' 1− π−1 ln(1 + π); (iii) n−1
Pn−1

j=τ a
2
m,j ' 2

£
1− π−1 ln(1 + π)

¤
− π−1 ln(1 + π).

Proof of Lemma 12. (i) am,j =
Pn−1

i=j (m+ i)−1 '
R n−1
j (m + x)−1dx = ln(m + n −

1/ (m+ j)); (ii) n−1
Pn−1

j=τ am,j ' n−1
R n−1
τ ln (m+ n− 1/ (m+ x)) dx =

n−1 [n− 1− τ − (m− τ) ln(m+ n− 1/ (m+ τ))]→ 1− π−1 ln(1 + π);

(iii) n−1
Pn−1

j=τ a
2
m,j ' n−1

R n−1
τ ln2 (m+ n− 1/ (m+ x)) dx =

n−1
£
2(n− τ)− 2(m+ τ) ln(m+ n− 1/ (m+ τ))− (m+ τ) ln2(m+ n− 1/ (m+ τ))

¤
→ 2

£
1− π−1 ln(1 + π)

¤
− π−1 ln(1 + π).

Proof of Proposition 4. We show that lim var(n−1/2
PT

t=1w
L
t
eL∗t ) = λ∗

P∞
j=−∞ Γj , where

λ∗ = 1 + π for the fixed scheme; λ∗ = 1− (1/3)π2 for the rolling (n < m) scheme; λ∗ = (2/3)π−1

for the rolling (n ≥ m) scheme; λ∗ = 1 for the recursive scheme. The desired result then follows

from λSLL
n being a consistent estimator of λ∗

P∞
j=−∞ Γj under H0. For conciseness, we focus on the

recursive scheme. As shown in the proof of Lemma 11, var(n−1/2
PT

t=1w
L
t
eL∗t ) =P4

i=1 var(Ai).We

have var(A1) = (m/n) a2m,0var(m
−1/2Pm

t=1
eL∗t ) and thus lim var(A1) = π−1 ln(1 + π)

P∞
j=−∞ Γj

by Lemma 12-(i). Further, var (A2) = n−1var
³
am,1

eL∗m+1 + . . .+ am,τ−1eL∗m+τ−1´ → 0 since

τ is fixed. For A3, it follows from West (1996), pg. 1082-1083, (with (1 − am,j) substitut-

ing am,j) that var(A3) = n−1d0
Pn−2

j=−n+2 Γj + o(1), where d0 =
Pn−1

j=τ (1 − am,j)
2. By Lemma

12, n−1d0 = (n− τ) /n − 2n−1
Pn−1

j=τ am,j + n−1
Pn−1

j=τ a
2
m,j → 1 − π−1 ln(1 + π), and thus lim

var(A3) =
£
1− π−1 ln(1 + π)

¤P∞
j=−∞ Γj . Finally, var(A4) = n−1var(eLT−τ+1 + . . . + eLT ) → 0
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since τ is fixed. In sum, we have var(n−1/2
PT

t=1w
L
t
eL∗t ) =P∞

j=−∞ Γj and thus λ
∗ = 1. The proofs

for the fixed and rolling schemes follow from similar reasonings.

Proof of Proposition 5. A mean value expansion of n−1/2
PT−τ

t=m SLt+τ (bβt) ≡
n−1/2

PT−τ
t=m

h
Lt+τ

³bβt´− Lt

³bβt´i around β∗t gives:

n−1/2
T−τX
t=m

SLt+τ (bβt) = n−1/2
T−τX
t=m

SLt+τ (β
∗
t ) + n−1/2

T−τX
t=m

µ
∂Lt+τ (β

∗
t )

∂β
− ∂Lt (β

∗
t )

∂β

¶³bβt − β∗t

´
+

+
1

2
n−1/2

T−τX
t=m

³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´
(27)

where bβt is an intermediate point between β∗t and bβt. Note also that:
Lt+τ (β

∗
t ) = Lt+τ

¡
β∗t+τ

¢
+

∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
+ (28)

+
1

2

¡
β∗t − β∗t+τ

¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢

Lj (β
∗
t ) = Lj

¡
β∗j
¢
+

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢
+ (29)

+
1

2

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢
where β∗t+τ is an intermediate point between β

∗
t and β

∗
t+τ , and β

∗
j is an intermediate point between

β∗t and β∗j . From (28) and (29) above, it follows that

SLt+τ (β
∗
t ) = Lt+τ

¡
β∗t+τ

¢
−
X

j
Lj

¡
β∗j
¢
+

+
∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
−
X

j

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢
+
1

2

⎡⎣¡β∗t − β∗t+τ
¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢⎤⎦ (30)

−1
2

X
j

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢
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Substituting (30) into (27) gives:

n−1/2
T−τX
t=m

SLt+τ (bβt) = n−1/2
T−τX
t=m

SLt+τ (β
∗
t ) + n−1/2

T−τX
t=m

"
∂Lt+τ

¡
β∗t+τ

¢
∂β

¡
β∗t − β∗t+τ

¢
(31)

−
X

j

∂Lj

¡
β∗j
¢

∂β

¡
β∗t − β∗j

¢#

+
1

2
n−1/2

T−τX
t=m

⎡⎣¡β∗t − β∗t+τ
¢0 ∂2Lt+τ

³
β∗t+τ

´
∂β∂β0

¡
β∗t − β∗t+τ

¢

−
X

j

¡
β∗t − β∗j

¢0 ∂2Lj

³
β∗j

´
∂β∂β0

¡
β∗t − β∗j

¢⎤⎦
+n−1/2

T−τX
t=m

µ
∂Lt+τ (β

∗
t )

∂β
− ∂Lt (β

∗
t )

∂β

¶³bβt − β∗t

´
+
1

2
n−1/2

T−τX
t=m

³bβt − β∗t

´0Ã∂2Lt+τ (bβt)
∂β∂β0

− ∂2Lt(bβt)
∂β∂β0

!³bβt − β∗t

´
Note that, since 0 = ∂Lt

³bβt´ /∂β = ∂Lt (β∗t ) /∂β +
³
∂2Lt(bβt)/∂β∂β0´³bβt − β∗t

´
, then

∂Lt+τ (β
∗
t ) /∂β − ∂Lt (β

∗
t ) /∂β = ∂Lt+τ (β

∗
t ) /∂β −∂

¡
Lt (β

∗
t )− Lt (β∗t )

¢
/∂β+³bβt − β∗t

´0 ³
∂2Lt(bβt)/∂β∂β0´. Therefore, by taking expectations of (31), we have (11).

Proof of Proposition 6. Since E (∂Lt (βt) /∂β − ∂Lt (βt) /∂β) = 0 ∀t, the “parameter in-
stabilities I” component is zero. The “parameter instabilities II” component is

(1/2)n−1/2
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t=m E
h¡
β −

¡
β + n−1/4g1

¢¢0
J
¡
β −

¡
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¡
Yt+τ −X 0

t+τβt
¢
is uncorrelated with³bβt − βt

´
, the “estimation uncertainty I” component is zero. Since E

¡
∂2Lj (β) /∂β∂β

0¢ =
E
¡
∂2Lj (β) /∂β∂β0

¢
= 2J ∀j, the “estimation uncertainty III” component in (11) is also zero. Fi-

nally, the “estimation uncertainty II” component equals
√
nE

³bβm − β
´0 ¡
2m−1

Pm
s=1XsX

0
s

¢ ³bβm − β
´
=

2(
√
n/m)E

¡
m−1/2
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s=1Xsεs

¢0 ¡
m−1
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s=1XsX

0
s
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m−1/2
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s=1Xsεs

¢
→
p
2 (
√
n/m)σ2E

¡
χ2k
¢
=

2 (
√
n/m)σ2k.

Proof of Proposition 7. We focus on the recursive scheme and, for simplicity, assume that zt

is scalar. Let bδ∗n ≡
Ã
1 −z0S−1zz
0 S−1zz

!Ã
SL

∗
m,n

1
n

PT−τ
t=m ezt(SL∗t+τ − SL

∗
m,n)

!
. Given assumptions B2 and

B3, var
³√

nbδ∗n´ =
Ã
1 −E (zt)0Σ−1zz
0 Σ−1zz

!
var

⎛⎝ 1√
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t=m ezt ¡SL∗t+τ −E
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⎞⎠Ã 1 −E (zt)0Σ−1zz

0 Σ−1zz

!0
+op (1). As shown in Corollary 4, the upper diagonal element σ2m,n of var

³√
nbδ∗n´ can be con-

sistently estimated under H0 by σ̂2m,n, given in the same corollary. Letting eLt ≡ Lt−E (Lt) , the re-

maining elements are as follows: (I) var
³
1√
n

PT−τ
t=m ezt ¡SL∗t+τ −E

¡
SL∗t+τ

¢¢´
= var

³
1√
n

PT−τ
t=m ezteL∗t+τ´
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n

PT−τ
t=m ezt ³1t Pt
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Therefore, cov
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³√

nbδ∗n´ =
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1 −E (zt)0Σ−1zz
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where Λ =
£
π−1 ln (1 + π)

¤
, Σ

L∗,zL∗ ≡
P∞

j=−∞E
³eL∗t+τez0t−j eL∗t+τ−j´ , ΣzL∗,zL∗ ≡P∞

j=−∞E
³ezteL∗t+τ eL∗t+τ−jezt−j´. Consistency of bΩm,n for Ωm,n and the asymptotic distribution

under H0 then follow from reasonings analogous to those in the proof of Corollary 4.

Proof of Corollary 8. When the losses are conditionally homoskedastic, then A1n →
p
0, and
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A3n →
p
0 in the proof of Proposition 7, which implies ΣzL∗,L∗ = 0. Thus,
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Figure 1(b). Power functions

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

βA

P
ro

ba
bi

lit
y

Design 2: One-time Break in variance, Quadratic

 

 

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

βA

P
ro

ba
bi

lit
y

Design 2: Switching variance, Quadratic

 

 

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

βA

P
ro

ba
bi

lit
y

Design 2: One-time Break in variance, Linex

 

 

Elliott-Muller
tm,n,τ
roll

tm,n,τ
rec

tm,n,τ
fix

UNB

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

βA

P
ro

ba
bi

lit
y

Design 2: Switching variance, Linex

 

 

Figure 1c. Power functions
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Figure 2. Fitted surprise losses
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Table 1(a). Size of FB test and structural break tests. Nominal size .05

MC1

tm,n,τ tstatm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec. EM

50 50 .113 .144 .097 .064 .096 .058 .057

50 100 .152 .297 .121 .077 .244 .071 .057

50 150 .168 .492 .128 .080 .440 .075 .055

100 50 .072 .071 .065 .049 .052 .047 .053

100 100 .096 .109 .081 .057 .075 .055 .055

100 150 .101 .143 .086 .060 .117 .059 .059

150 50 .044 .046 .040 .036 .038 .035 .054

150 100 .064 .072 .058 .046 .052 .043 .052

150 150 .069 .087 .065 .047 .066 .046 .049

MC2

tm,n,τ tstatm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec. EM

50 50 .272 .165 .120 .187 .090 .054 1

50 100 .178 .293 .130 .050 .179 .042 1

50 150 .183 .415 .122 .036 .268 .042 1

100 50 .047 .056 .046 .031 .036 .030 1

100 100 .087 .098 .079 .036 .054 .034 1

100 150 .115 .105 .092 .040 .066 .034 1

150 50 .030 .032 .028 .024 .024 .022 1

150 100 .062 .069 .058 .033 .036 .031 1

150 150 .077 .079 .069 .033 .041 .032 1

Notes to Table 1(a). The table reports rejection frequencies over 5000 Monte Carlo replications of the

forecast breakdown (FB) test of Section 3.3, using either the asymptotic variance estimator of Corollary

3 (tm,n,τ ) or the estimator of Corollary 4
¡
tstatm,n,τ

¢
, both tests implemented with either a fixed, rolling or

recursive scheme and of Elliott and Muller’s (2003) test (EM). The experiment designs MC1 and MC2 are

described in Section 8.1 and m and n denote in-sample and out-of-sample sizes, respectively.
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Table 1(b). Size of overfitting-corrected FB test. Nominal size .05

MC1

tcm,n,τ tstat,cm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .064 .053 .053 .031 .031 .028

50 100 .085 .056 .066 .031 .042 .032

50 150 .095 .068 .065 .034 .053 .029

100 50 .043 .040 .038 .029 .030 .027

100 100 .057 .057 .052 .030 .036 .031

100 150 .068 .055 .056 .032 .041 .033

150 50 .031 .030 .027 .024 .024 .022

150 100 .050 .047 .046 .032 .031 .030

150 150 .058 .053 .053 .038 .035 .034

MC2

tcm,n,τ tstat,cm,n,τ

m n Fixed Rol. Rec. Fixed Rol. Rec.

50 50 .256 .080 .079 .189 .039 .037

50 100 .122 .083 .069 .042 .050 .027

50 150 .096 .073 .067 .023 .053 .023

100 50 .044 .045 .043 .031 .031 .030

100 100 .071 .059 .057 .035 .033 .029

100 150 .088 .045 .066 .033 .030 .028

150 50 .031 .029 .028 .028 .029 .028

150 100 .057 .049 .047 .035 .027 .028

150 150 .062 .043 .050 .029 .026 .026

Notes to Table 1(b). The table reports rejection frequencies over 5000 Monte Carlo replications of

the overfitting-corrected forecast breakdown (FB) test of Section 5, using either the asymptotic variance

estimator of Corollary 3 (tcm,n,τ ) or the estimator of Corollary 4
³
tstat,cm,n,τ

´
, both tests implemented with

either a fixed, rolling or recursive scheme. The experiment designs MC1 and MC2 are described in Section

8.1 and m and n denote in-sample and out-of-sample sizes, respectively.
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Table 2. Size of forecast rationality tests. Nominal size .05

Uncorrected Corrected

m n Fixed Rol. Rec. Fixed Rol. Rec.

tδ0

50 50 0.172 0.021 0.052 0.054 0.053 0.052

50 100 0.266 0.002 0.050 0.056 0.053 0.050

50 150 0.321 0.000 0.048 0.052 0.058 0.048

100 50 0.111 0.044 0.056 0.056 0.052 0.055

100 100 0.172 0.018 0.053 0.053 0.051 0.053

100 150 0.215 0.004 0.050 0.051 0.048 0.050

150 50 0.101 0.053 0.059 0.061 0.059 0.061

150 100 0.136 0.037 0.054 0.055 0.055 0.054

150 150 0.177 0.016 0.050 0.052 0.047 0.049

tδ1

50 50 0.060 0.062 0.061 0.064 0.062 0.062

50 100 0.055 0.053 0.054 0.051 0.053 0.051

50 150 0.048 0.050 0.049 0.049 0.050 0.049

100 50 0.055 0.054 0.054 0.052 0.052 0.052

100 100 0.056 0.056 0.056 0.056 0.057 0.057

100 150 0.045 0.048 0.045 0.049 0.049 0.049

150 50 0.062 0.062 0.062 0.061 0.060 0.061

150 100 0.057 0.056 0.057 0.057 0.056 0.057

150 150 0.051 0.051 0.050 0.050 0.050 0.051

Wald

50 50 0.148 0.040 0.059 0.065 0.071 0.069

50 100 0.220 0.024 0.058 0.055 0.054 0.057

50 150 0.276 0.017 0.051 0.050 0.053 0.048

100 50 0.102 0.050 0.058 0.066 0.061 0.063

100 100 0.146 0.035 0.057 0.057 0.057 0.056

100 150 0.179 0.018 0.048 0.048 0.049 0.048

150 50 0.097 0.062 0.066 0.068 0.072 0.069

150 100 0.115 0.047 0.058 0.060 0.061 0.059

150 150 0.148 0.031 0.053 0.048 0.053 0.052

Notes to Table 2. The table reports rejection frequencies over 5000 Monte Carlo replications of forecast

rationality tests. We consider t-tests of significance of the intercept (tδ0) and the slope coefficient (tδ1),

as well as a test of joint significance of both coefficients (Wald) in the forecast rationality regression (15).
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Forecast errors are obtained using either a fixed, rolling or recursive scheme and in each case the tests

are implemented using either the usual OLS variance estimator (“uncorrected”) or the asymptotic variance

estimator of Corollary 8 (“corrected”). The experiment design is described in Section 8.1 and m and n

denote in-sample and out-of-sample sizes, respectively.

Table 3. P-values of forecast breakdown test

Real-time data Revised data

qu qπ tm,n,τ tm,n,τ

τ = 1

1 1 - - 0.004

1 3 - - 0.021

3 1 - - 0.009

3 3 - - 0.039

BIC - - 0.021

τ = 3

1 1 0.000 0.256

1 3 0.562 0.326

3 1 0.450 0.434

3 3 0.572 0.524

BIC 0.874 0.475

τ = 12

1 1 0.001 0.111

1 3 0.000 0.312

3 1 0.002 0.756

3 3 0.001 0.948

BIC 0.001 0.591

Notes to Table 3. The table reports p-values for the forecast breakdown test (tm,n,τ ) of Theorem 2(a).

We used a rolling scheme with m = 60, n = 95 for real-time data, and m = 241 and T = 546 for

revised data. The forecast horizons are τ = 1, 3 and 12 months (since real-time data are only available at

a quarterly frequency, in this case we only report results for τ = 3 months and τ = 12 months). qu and qπ

are the number of lags used for unemployment and for inflation, respectively; the row labeled “BIC” reports

results for the case in which the lag length is determined by the BIC with a maximum of three lags.
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Table 4. Explaining forecast breakdowns by monetary policy

changes and inflation variance

δ1 Wm,n,τ

τ qu qπ zt = bβt zt = bγt zt = bρt zt = bσ2π,t zt = (bβt, bγt,bρt)0
1 1 1 -2.285 1.828 19.770 -1.019 9.533

(0.156) (0.018) (0.795) (0.024) (0.023)

1 3 -2.348 1.612 6.484 -0.892 7.386
(0.159) (0.037) (0.933) (0.051) (0.061)

3 1 -2.306 1.712 13.957 -0.980 8.397
(0.148) (0.028) (0.856) (0.031) (0.039)

3 3 -2.354 1.513 1.977 -0.866 6.623
(0.153) (0.050) (0.980) (0.059) (0.085)

BIC -2.187 1.654 6.272 -0.855 7.286
(0.185) (0.046) (0.938) (0.071) (0.063)

3 1 1 -1.806 -0.404 -114.2 -1.713 1.985
(0.531) (0.785) (0.249) (0.000) (0.576)

1 3 -1.837 -0.267 -122.4 -1.716 2.077
(0.519) (0.858) (0.238) (0.000) (0.557)

3 1 -1.651 -0.568 -128.8 -1.705 2.337
(0.575) (0.706) (0.201) (0.010) (0.506)

3 3 -1.657 -0.415 -136.1 -1.702 2.386
(0.570) (0.782) (0.195) (0.000) (0.496)

BIC -1.608 -0.642 -141.4 -1.613 2.602
(0.590) (0.669) (0.175) (0.001) (0.457)

12 1 1 -1.304 -0.105 -199.5 -1.876 6.268
(0.578) (0.942) (0.040) (0.000) (0.099)

1 3 -1.639 -0.417 -192.0 -1.641 6.778
(0.480) (0.776) (0.032) (0.000) (0.079)

3 1 -0.679 -0.863 -256.5 -1.878 7.162
(0.797) (0.592) (0.026) (0.000) (0.067)

3 3 -0.960 -1.108 -250.9 -1.661 8.445
(0.708) (0.488) (0.017) (0.000) (0.038)

BIC -0.903 -0.789 -246.5 -1.810 7.308
(0.729) (0.620) (0.024) (0.000) (0.063)

Notes to Table 4. The table reports the coefficient estimates of δ0 and δ1 in equation (24), for different

choices of zt. bβt, bγt and bρt are rolling estimates of the structural parameters in the monetary policy reaction
function of the Fed described in 23, and bσ2π,t is a rolling estimate of volatility of inflation changes. The

numbers within parentheses are the p-value of the test of significance of the individual coefficient. The last

column reports the Wald test statistic Wm,n,τ introduced in Section 6 (with a HAC bandwidth equal to

n1/3) and its associated p-value (in parentheses). qu and qπ are, respectively, the number of lags used for

unemployment and for inflation; rows labeled “BIC” report results for the case in which the lag length is

determined by the BIC with a maximum of three lags. τ is the forecast horizon.
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