Dées, Stéphane; di Mauro, Filippo; Pesaran, Hashem; Smith, Vanessa

Working Paper
Exploring the international linkages of the euro area: a global VAR analysis

ECB Working Paper, No. 568

Provided in Cooperation with:
European Central Bank (ECB)

Suggested Citation: Dées, Stéphane; di Mauro, Filippo; Pesaran, Hashem; Smith, Vanessa (2005) : Exploring the international linkages of the euro area: a global VAR analysis, ECB Working Paper, No. 568, European Central Bank (ECB), Frankfurt a. M.

This Version is available at:
http://hdl.handle.net/10419/153002

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
EXPLORING THE INTERNATIONAL LINKAGES OF THE EURO AREA

A GLOBAL VAR ANALYSIS

by Stéphane Dées, Filippo di Mauro, M. Hashem Pesaran and L. Vanessa Smith
In 2005 all ECB publications will feature a motif taken from the €50 banknote.

WORKING PAPER SERIES

NO. 568 / DECEMBER 2005

EXPLORING THE INTERNATIONAL LINKAGES OF THE EURO AREA

A GLOBAL VAR ANALYSIS

by Stéphane Dées, Filippo di Mauro, M. Hashem Pesaran and L. Vanessa Smith

A preliminary version of this paper was presented at the Joint ECB/IMF workshop on "Global Financial Integration, Stability and Business Cycles: Exploring the Links", November 16-17, 2004, Frankfurt, the CESifo Area Conference on Macro, Money and International Finance, February 2005, Munich, the University of Bilkent, Ankara, the 13th Annual Symposium of the Society for Nonlinear Dynamics and Econometrics at City University, April 2005 and the Econometric Society World Congress at UCL, August 2005. The authors have benefited greatly from discussions with Sean Holly and Til Schuermann. Sean Holly was particularly helpful in the early stages of this project. Comments by Ron Smith, Mardi Dung, Til Schuermann, and Raf Wouters (the discussant at the IMF-ECB workshop) are also gratefully acknowledged. Til Schuermann and Ana Isabel Lima also provided invaluable help towards setting up the large data bank used in this paper. For Stéphane Dées and Filippo di Mauro; any views expressed represent those of the authors and not necessarily those of the European Central Bank.

This paper can be downloaded without charge from http://www.ecb.int or from the Social Science Research Network electronic library at http://ssrn.com/abstract_id=646983.

A high level of international connectivity has been a defining feature of the euro area since its inception. The objective of this paper is to examine the role of the euro area in the world economy and to understand the factors that influence the international linkages of the euro area. The analysis is based on a vector autoregression model that includes variables for the euro area, the United States and the United Kingdom. The results show that the euro area has a significant impact on the world economy, both directly and indirectly through its links with other countries. The analysis also highlights the importance of trade and financial linkages in determining the international linkages of the euro area.
CONTENTS

Abstract 4
Non-technical summary 5
1 Introduction 7
2 Modelling international transmissions: a GVAR approach 9
3 The GVAR Model (1979-2003) 16
 3.1 Trade and aggregation weights 18
 3.2 Unit root tests 18
 3.3 Specification and estimation of the country-specific models 19
 3.4 Testing weak exogeneity 21
 3.5 Testing for structural breaks 22
 3.6 Contemporaneous effects of foreign variables on their domestic counterparts 25
4 Pair-wise cross section correlations: Variables and residuals 26
5 Robustness of the GVAR results to time-varying weights 28
6 Generalized impulse response functions 29
 6.1 Shock to U.S. equity prices 31
 6.2 Shock to oil prices 31
 6.3 Shock to U.S. short-term interest rate 32
 6.4 Global shocks 33
7 Identification of shocks using the GVAR model 34
 7.1 Methodology 34
 7.2 U.S. monetary policy shocks 37
8 Concluding remarks 38
References 40
Appendix: Data sources and the interpolation procedure 46
Tables 51
European Central Bank working paper series 57
Abstract

This paper presents a quarterly global model linking individual country vector error-correcting models in which the domestic variables are related to the country-specific foreign variables. The global VAR (GVAR) model is estimated for 26 countries, the euro area being treated as a single economy, over the period 1979-2003. It advances research in this area in a number of directions. In particular, it provides a theoretical framework where the GVAR is derived as an approximation to a global unobserved common factor model. It develops a sieve bootstrap procedure for simulation of the GVAR as a whole to test the structural stability of the regression coefficients and error variances, and to establish confidence bounds for the impulse responses. Finally, in addition to generalized impulse responses, the paper also considers the use of the GVAR for "structural" impulse response analysis.

Keywords: Global VAR (GVAR), Global interdependencies, global macroeconomic modeling, impulse responses.

JEL Classification: C32, E17, F47
Several developments over the past decade have drawn considerable attention to international business cycle linkages among major economies and regions. In particular the question of whether, and to what extent, the recent U.S. slowdown has influenced economic activity elsewhere in the world, especially in the euro area, has been controversial. At the root of such discussions is the observation that the recent experience with business cycle synchronization seems to have been very different from those before. In particular, there have been remarkable differences in economic activity and business cycles across the major economies in the 1990s and several influential papers in the literature have presented evidence for a lower degree of synchronization since the 1990s. By contrast, other strands in the literature argue that a rapidly rising degree of financial market integration has induced a closer financial and real international interdependence.

The present paper studies the transmission mechanisms of shocks at the world level using a global VAR (GVAR). Such a framework is able to account for various transmission channels, including not only trade relationships but also financial linkages, most notably through interest rates, stock prices and exchange rates, which have proved to be particularly relevant over the recent past. Building on the work of Pesaran, Schuermann and Weiner (2004), hereafter PSW, this paper presents a global model covering 33 countries grouped into 25 countries and a single euro area economy comprising 8 of the 11 countries that joined euro in 1999. The 26 economies in the present version of the GVAR model are linked through economy-specific vector error-correcting models in which the domestic and foreign variables are simultaneously interrelated, thus providing a general, yet practical, global modelling framework for a quantitative analysis of the relative importance of different shocks and channels of transmission mechanisms for the analysis of the comovements of outputs, inflation, interest rates, exchange rates and equity prices. To deal with the modelling issues that arise from the creation of the euro area (a single exchange rate and short-term interest rate post 1999), the GVAR model presented in this paper is estimated with the euro area being treated as a single economy. This turns out to be econometrically justified and allows us to consider the impact of external shocks on the euro area as a whole without the danger of being subject to possible inconsistencies that could arise if the different economies in the euro area were modeled separately. The effects of external shocks on the euro area are examined based on different simulations using generalized as well as structural impulse response functions.
Compared to the earlier contribution of PSW, the current paper advances the work on GVAR modelling in the following directions:

(i) In addition to increasing the geographical coverage, the current version also extends the estimation period, and includes long-term as well as short-term interest rates, thus allowing more fully for the possible effects of bond markets on output, inflation and equity prices.

(ii) It provides a theoretical framework where the GVAR is derived as an approximation to a global unobserved common factor model. Also using average pair-wise cross-section error correlations, the GVAR approach is shown to be quite effective in dealing with the common factor interdependencies and international comovements of business cycles.

(iii) It develops a sieve bootstrap procedure for simulation of the GVAR as a whole, which is then used in testing the structural stability of the regression coefficients and the error variances, and in establishing bootstrap confidence bounds for the impulse responses.

(iv) In addition to generalized impulse responses reported in PSW, in the current version we also show how the GVAR model can be used for “structural” impulse response analysis. Although, the GVAR model can be used for many different purposes, this paper focuses on the short term and long term implications of external shocks for the euro area economy, particularly in response to shocks to the U.S. We consider the effects of U.S. monetary policy shocks, as well as shocks to oil prices and U.S. equity prices on the euro area. The results show that financial shocks are transmitted rapidly, and often get amplified as they travel from the U.S. to the euro area. Equity and bond markets seem to be far more synchronous as compared to real output and inflation. While the impact of an oil price shock on inflation is statistically significant, its impact on output remains limited. In contrast, the effects of a shock to the U.S. monetary policy for the euro area output and inflation are limited and not highly significant.

The model also highlights the importance of second-round effects of the shocks. A shock in the U.S. can be amplified because the U.S. will also be affected over time through the return impacts of output and inflation shocks in the rest of the world. The euro area in turn reacts to the U.S. shocks directly as well as indirectly through the impact of the U.S. shocks on euro area trade partners, and so on. The transmission of shocks does not take place only through trade, but also as importantly through the impacts on financial variables with subsequent spillover effects on real variables. The GVAR presents a complicated, yet simple to follow, spatio-temporal structure for the analysis of the world economy.
1 Introduction

Several developments over the past decade have drawn considerable attention to international business cycle linkages among major economies and regions. In particular the question of whether, and to what extent, the recent U.S. slowdown has influenced economic activity elsewhere in the world, especially in the euro area, has been controversial.

At the root of such discussions is the observation that the recent experience with business cycle synchronization seems to have been very different from those before. In particular, there have been remarkable differences in economic activity and business cycles across the major economies in the 1990s and several influential papers in the literature have presented evidence for a lower degree of synchronization since the 1990s.

By contrast, other strands in the literature argue that a rapidly rising degree of financial market integration has induced a closer financial and real international interdependence. Kose, Otrok and Whiteman (2003), using a Bayesian latent factor model in output, consumption and investment for 63 countries find evidence of a world business cycle. Monfort, Renne, Rüffer and Vitale (2003) show that G-7 countries share common dynamics in real economic activity, with clearly identifiable common swings across countries. Data also reveal an important effect of oil price developments in increasing business comovements. Finally, strong and increasing unilateral spill-over effects from North-America area to the European area are being found, often interpreted as being caused by the process of globalization.

In order to bridge the gap between the purely statistical analyses and the traditional modelling approaches, the present paper studies the transmission mechanisms of shocks at the world level using a global VAR (GVAR). Such a framework is able to account for various transmission channels, including not only trade relationships but also financial linkages, most notably through interest rates, stock prices and exchange rates, which have proved to be particularly relevant over the recent past.

Building on the work of Pesaran, Schuermann and Weiner (2004), hereafter PSW, this paper presents a global model covering 33 countries grouped into 25 countries and a single euro area economy comprising 8 of the 11 countries that joined euro in 1999. The 26 economies in the present version of the GVAR model are linked through economy-specific vector error-correcting models in which the domestic and foreign variables are simultaneously interrelated, thus providing a general, yet practical, global modelling framework for a quantitative analysis of the relative importance of different shocks and channels of transmission mechanisms for the analysis of the comovements.

\footnote{See, for example, Anderton et al. (2004) for an overview.}
of outputs, inflation, interest rates, exchange rates and equity prices. To deal with the modelling issues that arise from the creation of the euro area (a single exchange rate and short-term interest rate post 1999), the GVAR model presented in this paper is estimated with the euro area being treated as a single economy. This turns out to be econometrically justified and allows us to consider the impact of external shocks on the euro area as a whole without the danger of being subject to possible inconsistencies that could arise if the different economies in the euro area were modeled separately. The effects of external shocks on the euro area will be examined based on different simulations using generalized as well as structural impulse response functions.

Compared to the earlier contribution of PSW, the current paper advances the work on GVAR modelling in the following directions:

(i) In addition to increasing the geographical coverage, the current version also extends the estimation period, and includes long-term as well as short-term interest rates, thus allowing more fully for the possible effects of bond markets on output, inflation and equity prices.

(ii) It provides a theoretical framework where the GVAR is derived as an approximation to a global unobserved common factor model. Also using average pair-wise cross-section error correlations, the GVAR approach is shown to be quite effective in dealing with the common factor interdependencies and international comovements of business cycles.

(iii) It develops a sieve bootstrap procedure for simulation of the GVAR as a whole, which is then used in testing the structural stability of the regression coefficients and the error variances, and in establishing bootstrap confidence bounds for the impulse responses.

(iv) In addition to generalized impulse responses reported in PSW, in the current version we also show how the GVAR model can be used for ‘structural’ impulse response analysis. We focus on identification of shocks to the U.S. economy, particularly the monetary policy shocks, and consider the time profiles of their effects on the euro area. Further to the U.S. monetary policy shock, we also consider the effects of shocks to oil prices and U.S. equity prices on the euro area.

The plan of the paper is as follows: Section 2 presents the GVAR approach to model international linkages and Section 3 gives details on the version of the GVAR used in this paper, presents tests for the weak exogeneity of the country-specific foreign variables and discusses the issue of structural breaks in the context of the GVAR model. Section 4 examines the ability of the model to account for interdependencies and international co-movements by computing pair-wise cross section correlations of the endogenous variables and the associated residuals. Section 5 checks the robustness
of the GVAR results to the choice of trade weights by estimating a model using time varying weights. Section 6 derives generalized impulse response functions for the analysis of country-specific and global shocks. Section 7 considers the problem of structural identification of shocks to the U.S. economy and their consequences for the euro area in particular. Section 9 offers some concluding remarks.

2 Modelling International Transmissions: A GVAR Approach

One of the most striking features of the business cycles across countries are the patterns of comovement of output, inflation, interest rates and real equity prices. These comovements have become more pronounced over the past two decades due to increased economic and financial integration, with important implications for macroeconomic policy spillovers across countries. The extent of comovement of real GDP across countries has been empirically investigated by a number of authors, both by considering bivariate correlation of real GDP across countries and by decomposing the variations of real GDP into common and country-specific shocks. Multivariate and multicountry analysis have also been undertaken in the context of G-7 economies. For example, Gregory, Head and Raynauld (1997) using Kalman filtering and dynamic factor analysis provide a decomposition of aggregate output, consumption and investment for G-7 countries into factors that are (i) common across all countries, (ii) common to the aggregates within a given country, and (iii) specific to the individual aggregates. Other similar decompositions have also been attempted by Canova and Marrinan (1998), Lumsdaine and Prasad (2003) and Kose et al. (2003).²

There are clearly many channels through which the international transmissions of business cycles can take place. In particular, they could be due to common observed global shocks (such as changes in oil prices), they could arise as a result of global unobserved factors (such as the diffusion of technological progress or regional political developments), or could be due to specific national or sectoral shocks.

Unobserved factor models with a large number of macroeconomic variables have recently gained popularity with the work of Stock and Watson (2002a). A related literature on dynamic factor models has also been developed by Forni and Reichlin (1998) and Forni, Hallin, Lippi, and Reichlin (2002).

The factor models, estimated using principal components, are generally used to summarize by a small set of factors the empirical content of a large number of variables. Although unobserved factor models have important applications in forecasting, the identification of factors is often problematic, especially when we wish to give them an economic interpretation. It is also likely that even when all such “common” factors are taken into account, there will be important residual interdependencies due to policy and trade spillover effects that remain to be explained.

Therefore, a fairly detailed global framework would be needed if we are to investigate the relative importance of such diverse sources of comovements in the world economy, and their impacts on the euro area. For this purpose we make use of the global vector autoregressive model (GVAR) recently developed by PSW.

To motivate the GVAR model for the analysis of the international transmission mechanisms and to relate it to the unobserved factor models, suppose there are $N + 1$ countries (or regions) in the global economy, indexed by $i = 0, 1, \ldots, N$, where country 0 serves as the numeraire country (which we take as the U.S., but could be any other country). The aim is to model a number of country-specific macroeconomic variables such as real GDP, inflation, interest rates and exchange rates collected in the vector x_{it}, over time, $t = 1, 2, \ldots, T$, and across the $N + 1$ countries. Given the general nature of interdependencies that might exist in the world economy, it is clearly desirable that all the country-specific variables x_{it}, $i = 0, 1, \ldots, N$, and observed global factors (such as oil prices) are treated endogenously. The following general factor model provides a good starting point and allows us also to relate the GVAR approach to the more familiar factor models used in the literature primarily for the analysis of G-7 economies.

For an attempt at structural identification of factor models see Forni, Lippi and Reichlin (2003). Recently Bernanke, Boivin and Eliasz (2005) have considered factor augmented vector autoregressions (FAVAR) in measuring the effects of monetary policy in the U.S., where the factors are typically estimated by means of principal components analysis. While FAVAR could be viewed as an alternative approach to VARX* modelling of the individual countries, the number of estimated factors used in the former approach would be different for the different countries and it is not clear how these can be linked together in a global setting. Moreover, Monte Carlo experiments reported in Kapetanios and Pesaran (2005) show that the common correlated effects estimators that make use of cross section averages (starred variables in the context of VARX*) perform much better than the corresponding estimators based on principal components. Also, a recent application of the FAVAR approach to the U.K. economy by Laganà and Mountford (2005) shows that while the additional variables embodied in the factors help in overcoming the price puzzle, the factor augmentation leads to new puzzles relating to the counter intuitive effects of interest rate changes on house prices, equity prices and the exchange rate.
Denote the observed global factors by the $m_d \times 1$ vector d_t, and the unobserved global factors by the $m_f \times 1$ vector f_t, and assume that

$$x_{it} = \delta_i 0 + \delta_i 1 t + \Gamma_{id} d_t + \Gamma_{if} f_t + \xi_{it}, \text{ for } i = 0, 1, \ldots, N; \quad t = 1, 2, \ldots, T,$$

(1)

where $\Gamma_i = (\Gamma_{id}, \Gamma_{if})$ is the $k_i \times m$ matrix of factor loadings, $m = m_d + m_f$, ξ_{it} is a $k_i \times 1$ vector representing the country-specific effects involving lagged values of x_{it} or country-specific dummy variables capturing major institutional and political upheavals, and $\delta_{i 0}$ and $\delta_{i 1}$ are the coefficients of the deterministics, here intercepts and linear trends. Other deterministics, such as seasonal dummies, can also be included in the model. The vector of observed global variables could include international variables such as oil or other commodity prices, world expenditure on R&D, or other indicators of global technology such as the number of international patents registered in the U.S..

Unit root and cointegration properties of $x_{it}, i = 0, 1, \ldots, N$, can be accommodated by allowing the global factors, $h_t = (d_t', f_t')'$, and/or the country-specific factors, ξ_{it}, to have unit roots. More specifically, we assume that

$$\Delta h_t = \Lambda (L) \eta_t, \quad \eta_t \sim IID (0, I_m),$$

(2)

$$\Delta \xi_{it} = \Psi_i (L) \nu_{it}, \quad \nu_{it} \sim IID (0, I_{k_i}),$$

(3)

where L is the lag operator and

$$\Lambda (L) = \sum_{\ell=0}^{\infty} \Lambda_{\ell} L^\ell, \quad \Psi_i (L) = \sum_{\ell=0}^{\infty} \Psi_{i,\ell} L^\ell.$$

(4)

The coefficient matrices, Λ_{ℓ} and $\Psi_{i,\ell}, i = 0, 1, \ldots, N$, are absolute summable, so that $Var(\Delta f_t)$ and $Var(\Delta \xi_{it})$ are bounded and positive definite, and $[\Psi_i (L)]^{-1}$ exists. In particular we require that

$$Var(\Delta \xi_{it}) = \sum_{\ell=0}^{\infty} \Psi_{i,\ell} \Psi_{i,\ell} ^{'} \leq K < \infty,$$

(5)

where K is a fixed bounded matrix.

First differencing (1) and using (3) we have

$$[\Psi_i (L)]^{-1} (1 - L) (x_{it} - \delta_{i 0} - \delta_{i 1} t - \Gamma_{id} d_t - \Gamma_{if} f_t) = \nu_{it}.$$

Footnote: Dynamic factor models of Forni and Lippi (1997) can also be accommodated by including lagged values of d_t and f_t as additional factors via suitable extensions of d_t and f_t. For example, f_t in (1) can be replaced by $f_t' = (f_t', f_{t-1}', \ldots, f_{t-p_f}')'$.

Working Paper Series No. 568
December 2005
Using the approximation

\[(1 - L) [\Psi_i(L)]^{-1} \approx \sum_{\ell=0}^{p_i} \Phi_i \ell L^\ell = \Phi_i(L, p_i),\]

we obtain the following approximate VAR\((p_i)\) model:

\[\Phi_i(L, p_i) (x_{it} - \delta_{i0} - \delta_{i1}t - \Gamma_{id}d_t - \Gamma_{if}f_t) \approx v_{it}. \quad (6)\]

Without the unobserved common factors, \(f_t\), the model for the \(i\)th country decouples from the rest of the country models and each country model can be estimated separately using the econometric techniques developed in Harbo et al. (1998) and Pesaran, Shin and Smith (2000) with \(d_t\) treated as weakly exogenous. With the unobserved common factors included, the model is quite complex and its econometric analysis using Kalman filtering techniques would be quite involved unless \(N\) is very small. When \(N\) is relatively large as simple, yet effective, alternative would be to follow Pesaran (2005) and proxy \(f_t\) in terms of the cross section averages of country-specific variables, \(x_{it}\), and the observed common effects, \(d_t\). To see how this procedure could be justified in the present more complicated context, initially assume \(k_i = k\) and use the same set of weights, \(w_j, j = 0, 1, ..., N\), to aggregate the country-specific relations defined by (1) to obtain

\[
\sum_{j=0}^{N} w_j x_{jt} = \sum_{j=0}^{N} w_j \delta_{j0} + \left(\sum_{j=0}^{N} w_j \delta_{j1} \right) t + \left(\sum_{j=0}^{N} w_j \Gamma_{jd} \right) d_t \\
+ \left(\sum_{j=0}^{N} w_j \Gamma_{jdf} \right) f_t + \sum_{j=0}^{N} w_j \xi_{jt},
\]

or

\[x^*_t = \delta^*_0 + \delta^*_1t + \Gamma^*_d d_t + \Gamma^*_f f_t + \xi^*_t. \quad (7)\]

Also, note from (3) that

\[\xi^*_t - \xi^*_t = \sum_{j=0}^{N} w_j \Psi_j(L) v_{jt}. \quad (8)\]

But using Lemma A.1 in Pesaran (2005), it is easily seen that for each \(t\) the left hand side of (8) will converge to zero in quadratic mean as \(N \to \infty\), if (5) holds, the country specific shocks, \(v_{jt}\), are independently distributed across \(j\), and if the weights, \(w_j\), satisfy the atomistic conditions

(i): \(w_j = O \left(\frac{1}{N} \right)\), (ii): \(\sum_{j=0}^{N} |w_j| < K\), (iii): \(\sum_{j=0}^{N} w_j = 1, \quad (9)\)
where K is a fixed constant. Under these conditions (for each t)
\[\xi_t - \xi_{t-1} \xrightarrow{q.m.} 0, \]
and hence
\[\xi_t \xrightarrow{q.m.} \xi^*, \]
where ξ^* is a time-invariant random variable. Using this result in (7) and assuming that the $k \times m_f$ average factor loading coefficient matrix, Γ_f^*, has full column rank (with $k \geq m_f$) we obtain
\[f_t \xrightarrow{q.m.} \left(\Gamma_f^*, \Gamma_f^* \right)^{-1} \Gamma_f^* (x_t^* - \delta_0^* - \delta_1^* t - \Gamma_d^* d_t - \xi^*), \]
which justifies using the observable vector $\{1, t, d_t, x_t^*\}$ as proxies for the unobserved common factors.\(^5\) Substituting this result in (6), for N sufficiently large we have
\[\Phi_i (L, p_i) \left(x_{it} - \bar{\delta}_{i0} - \bar{\delta}_{i1} t - \bar{\Gamma}_{id} d_t - \bar{\Gamma}_{ij} x_t^* \right) \approx v_{it}, \quad (10) \]
where $\bar{\delta}_{i0}, \bar{\delta}_{i1}, \bar{\Gamma}_{id},$ and $\bar{\Gamma}_{ij}$ are given in terms of $\delta_{i0}, \delta_{i1}, \Gamma_{id}, \Gamma_{ij}, \delta_0^* + \xi_0^*, \delta_1^*, \Gamma_d^*$, and Γ_f^*.

In practice, the number of countries, $N + 1$, may not be sufficiently large, and the individual countries not equally important in the global economy. The country-specific shocks might also be cross sectionally correlated due to spatial or contagion effects that are not totally eliminated by the common factors, d_t and f_t. Finally, k_i, the number of country-specific variables, need not be the same across i. For example, some markets may not exist or might not be sufficiently developed in some of the countries. Even if we focus on the same set of variables to model across countries, there will be one less exchange rate than there are countries in the global model. The GVAR framework developed in PSW addresses these considerations by using country-specific weights, w_{ij}, rather than the common weights w_j used above, in construction of cross section averages. Specifically, instead of using the same x_t^* in all country models PSW use
\[x_{it}^* = \sum_{j=0}^N w_{ij} x_{jt}, \quad \text{with } w_{ii} = 0, \quad (11) \]
\(^5\)In a much simpler context Pesaran (2005) shows that it would still be valid to use $\{1, t, d_t, x_t^*\}$ as a proxy for f_t even if the rank condition is not satisfied. It seems reasonable to believe that the same would apply here.
in the i^{th} country model. The weights, w_{ij}, $j = 0, 1, ..., N$ could be used to capture the importance of country j for country i^{th} economy. Geographical patterns of trade provide an obvious source of information for this purpose and could also be effective in mopping up some of the remaining spatial dependencies. The weights could also be allowed to be time-varying so long as they are pre-determined. This could be particularly important in the case of rapidly expanding emerging economies with their fast changing trade relations with the rest of the world. The use of the country-specific weights also allows a simple solution to the problem of k_i, the number of country-specific variables, being different across i. It would be sufficient to attach zero weights to the missing variable in country i, with the remaining weights being re-balanced to add up to unity.

With the above considerations in mind, the GVAR counterpart of (10) may now be written more generally as the individual country $\text{VARX}^*(p_i, q_i)$ models:

$$\Phi_i (L, p_i) x_{it} = a_{i0} + a_{i1} t + \Upsilon_i (L, q_i) d_i + \Lambda_i (L, q_i) x_{it}^* + u_{it},$$

(12)

for $i = 0, 1, ..., N$, where for estimation purposes $\Phi_i (L, p_i)$, $\Upsilon_i (L, q_i)$ and $\Lambda_i (L, q_i)$ can be treated as unrestricted. For the empirical implementation that will follow, for each country model we consider at most a $\text{VARX}^*(2,2)$ specification which in its error correction form may be written as

$$\Delta x_{it} = c_{i0} - \alpha_i \beta_i (\zeta_{it-1} - \gamma_i (t-1)) + \Upsilon_{i0} \Delta d_i + \Lambda_{i0} \Delta x_{it}^* + \Upsilon_{i1} \Delta d_{i-1} + \Gamma_i \Delta z_{it-1} + u_{it},$$

(13)

where $z_{it} = (x'_{it}, x'^*_{it})'$, $\zeta_{i,t-1} = (z'_{i,t-1}, d'_{i-1})'$, α_i is a $k_i \times r_i$ matrix of rank r_i and β_i is a $(k_i + k_j + m_k)_i \times r_i$ matrix of rank r_i. By partitioning β_i as $\beta_i = (\beta_{ij}^0, \beta_{ij}^* , \beta_{ij}^d)'$ conformable to $\zeta_{it} = (x'_{it}, x'^*_{it}, d'_{it})'$, the r_i error correction terms defined by (13) can now be written as

$$\beta'(\zeta_{it} - \gamma_i t) = \beta_{ij}^0 x_{it} + \beta_{ij}^* x_{it}^* + \beta_{ij}^d d_{it} + (\beta_{ij}^d \gamma_i) t,$$

(14)

that clearly allows for the possibility of cointegration both within x_{it} and between x_{it} and x_{jt}^* and consequently across x_{it} and x_{jt} for $i \neq j$.

The above country-specific models can now be consistently estimated separately, treating d_{it} and x_{it}^* as weakly exogenous $I(1)$ with respect to the long-run parameters of the conditional model, (13). Note that this assumption is compatible with a certain degree of weak dependence across u_{it}, as discussed.

6. Here we consider the trend restricted version, case VI, discussed in Pesaran, Shin and Smith (2000) which ensures that the deterministic trend property of the country-specific models remains invariant to the cointegrating rank assumptions.
in PSW. Following Johansen (1992) and Granger and Lin (1995) the weak exogeneity assumption in the context of cointegrating models implies no long run feedbacks from \mathbf{x}_{it} to \mathbf{x}_{it}^*, without necessarily ruling out lagged short run feedbacks between the two sets of variables. In this case \mathbf{x}_{it}^* is said to be ‘long run forcing’ for \mathbf{x}_{it}, and implies that the error correction terms of the individual country VECMs do not enter in the marginal model of \mathbf{x}_{it}^*. The weak exogeneity of these variables can then be tested in the context of each of the country-specific models.\(^7\)

Once the individual country models are estimated, all the $k = \sum_{i=0}^{N} k_i$ endogenous variables of the global economy, collected in the $k \times 1$ vector $\mathbf{x}_t = (\mathbf{x}_{0t}, \mathbf{x}_{1t}, ..., \mathbf{x}_{Nt})'$, need to be solved simultaneously. PSW show how this can be done in the case where $p_i = q_i = 1$. In the present more general context we first re-write (12) as\(^8\)

$$\mathbf{A}_i(L, p_i, q_i)\mathbf{z}_{it} = \varphi_{it}, \text{ for } i = 0, 1, 2, ..., N$$

where

$$\mathbf{A}_i(L, p_i, q_i) = [\Phi_i(L, p_i), - \Lambda_i(L, q_i)], \mathbf{z}_{it} = \left(\begin{array}{c} \mathbf{x}_{it} \\ \mathbf{x}_{it}^* \end{array} \right),$$

$$\varphi_{it} = \mathbf{a}_i^{0t} + \mathbf{a}_i^{1t} + \mathbf{Y}_i(L, q_i) \mathbf{d}_t + \mathbf{u}_{it}.$$

Let $p = \max(p_0, p_1, ..., p_N, q_0, q_1, ..., q_N)$ and construct $\mathbf{A}_i(L, p)$ from $\mathbf{A}_i(L, p_i, q_i)$ by augmenting the $p - p_i$ or $p - q_i$ additional terms in powers of L by zeros. Also note that

$$\mathbf{z}_{it} = \mathbf{W}_i \mathbf{x}_t, \text{ for } i = 0, 1, 2, ..., N, \quad (16)$$

where \mathbf{W}_i is a $(k_i + k_i^*) \times k$ matrix, defined by the country specific weights, w_{ji}. With the above notations (15) can be written equivalently as

$$\mathbf{A}_i(L, p)\mathbf{W}_i \mathbf{x}_t = \varphi_{it}, \text{ for } i = 0, 1, ..., N,$$

and then stack to yield the VAR(p) model in \mathbf{x}_t:

$$\mathbf{G}(L,p) \mathbf{x}_t = \varphi_t, \quad (17)$$

where

$$\mathbf{G}(L,p) = \left(\begin{array}{c} \mathbf{A}_0(L,p) \mathbf{W}_0 \\ \mathbf{A}_1(L,p) \mathbf{W}_1 \\ \vdots \\ \mathbf{A}_N(L,p) \mathbf{W}_N \end{array} \right), \quad \varphi_t = \left(\begin{array}{c} \varphi_0t \\ \varphi_1t \\ \vdots \\ \varphi_Nt \end{array} \right). \quad (18)$$

\(^7\)For further details see Section 3.4.

\(^8\)Here we are assuming that \mathbf{d}_t is globally exogenous. But it is easy to adapt the solution approach to allow for the case where \mathbf{d}_t is included in one of the models as endogenous.
The GVAR(p) model, (17), can now be solved recursively, and used for forecasting or generalized impulse response analysis in the usual manner. The issue of structural impulse response analysis poses special problems in the context of the GVAR model and will be dealt with in Section 7.

3 The GVAR Model (1979-2003)

The version of the GVAR model developed in this paper covers 33 countries, where 8 of the 11 countries that originally joined euro on January 1, 1999 are grouped together, and the remaining 25 countries are modeled individually (see Table 1). The present GVAR model, therefore, contains 26 countries/regions. The original PSW model contained 11 countries/regions based on 25 countries. With increased country coverage, the countries in the present GVAR model account for 90% of world output as compared to 80% covered by the 11 countries/regions in PSW.

The models are estimated over the period 1979(2)-2003(4). This considerably extends the 11 country/region models estimated in PSW over the shorter period 1979(2)-1999(4), most notably including the first years of EMU. The variables included in the current version of the GVAR differ also from those considered by PSW. In order to capture more fully the possible effects of bond markets on output and inflation we now include, wherever possible, both a short rate (ρ_{St}^{s}), as well as a long rate of interest (ρ_{Lt}^{l}). However, given the data limitations and problems associated with compiling comparable money supply measures we have decided against the inclusion of real money balances in the current version. Other variables included are real output (y_{it}), the rate of inflation, ($\pi_{it} = p_{it} - p_{i,t-1}$), the real exchange rate ($e_{it} - p_{it}$), and real equity prices (q_{it}), when available. More specifically

$$\begin{align*}
y_{it} &= \ln\left(\frac{GDP_{it}}{CPI_{it}}\right), \quad p_{it} = \ln(CPI_{it}), \\
q_{it} &= \ln\left(\frac{EQ_{it}}{CPI_{it}}\right), \quad e_{it} = \ln(E_{it}), \\
\rho_{St}^{s} &= 0.25 * \ln(1 + R_{St}^{S}/100), \quad \rho_{Lt}^{l} = 0.25 * \ln(1 + R_{Lt}^{L}/100),
\end{align*}$$

(19)
where

\[
\begin{align*}
GDP_{it} & = \text{Nominal Gross Domestic Product of country } i \text{ during period } t, \text{ in domestic currency}, \\
CPI_{it} & = \text{Consumer Price Index in country } i \text{ at time } t, \text{ equal to 1.0 in a base year (1995)}, \\
EQ_{it} & = \text{Nominal Equity Price Index} \\
E_{it} & = \text{Exchange rate of country } i \text{ at time } t \text{ in terms of U.S. dollars}, \\
R_{it}^S & = \text{Short rate of interest per annum, in per cent (typically a three month rate)} \\
R_{it}^L & = \text{Long rate of interest per annum, in per cent (typically a ten year rate)}
\end{align*}
\]

The country-specific foreign variables, \(y^*_{it}, \pi^*_{it}, q^*_{it}, \rho^*_S, \rho^*_L \), were constructed using trade weights. Baxter and Kouparitsas (2004) in studying the determinants of business cycle comovements conclude that bilateral trade is the most important source of inter country business cycle linkages.\(^9\) Initially, we use fixed trade weights based on the average trade flows computed over the three years 1999-2001. Allowing for time-varying trade weights is straightforward and is considered in Section 5.

The time series data for the euro area was constructed by cross section weighted averages of \(y_{it}, \pi_{it}, q_{it}, \rho^*_S, \rho^*_L \), over Germany, France, Italy, Spain, Netherlands, Belgium, Austria and Finland, using the average Purchasing Power Parity GDP weights, also computed over the 1999-2001 period.\(^10\)

With the exception of the U.S. model, all models include the country-specific foreign variables, \(y^*_{it}, \pi^*_{it}, q^*_{it}, \rho^*_S, \rho^*_L \) and the log of oil prices \(p^*_t \), as weakly exogenous in the sense discussed above. In the case of the U.S. model, oil prices are included as an endogenous variable, with \(e^*_{US,t} - p^*_US,t \), \(y^*_{US,t} \) and \(\pi^*_{US,t} \) as weakly exogenous. Given the importance of the U.S. financial variables in the global economy, the U.S.-specific foreign financial variables, \(q^*_US,t, R^*_US,t \) and \(R^*_US,t \), were not included in the U.S. model as they are unlikely to be long run forcing with respect to the U.S. domestic financial variables. The U.S.-specific foreign output and inflation variables, \(y^*_{US,t} \) and \(\pi^*_{US,t} \), were, however, included in the U.S. model (which were not

\(^9\)Imbs (2004) also provides further evidence on the effect of trade on business cycle synchronization. He concludes that whilst specialization patterns have a sizable effect on business cycles, trade continues to play an important role in this process. He also notes that economic regions with strong financial links are significantly more synchronized. Focusing on global linkages in financial markets, Forbes and Chinn (2004) also show that direct trade appears to be one of the most important determinants of cross-country linkages.

\(^10\)For the construction of the euro area exchange rate, each of the country members’ exchange rate was converted to an index using 2000 as the base year and premultiplied by the euro/dollar rate of that year.
included by PSW) in order to capture the possible second round effects of external shocks on the U.S.. Given the importance of the U.S. for the global economy, initially it was thought that the inclusion of $y_{US,t}^*$ and $\pi_{US,t}^*$ as weakly exogenous in the U.S. model might result in the violation of the weak exogeneity assumption. However, as reported below this turns out not to be the case.

In this paper, as the focus is mainly on the impact of external shocks on the euro area economy, from now we shall concentrate the presentation of the results on countries/regions with special relevance to the euro area: United States, China, Japan, euro area, United Kingdom and rest of Western Europe. A more detailed set of results are available in a Supplement that can be obtained from the authors on request.

3.1 Trade and Aggregation Weights

The trade shares used to construct the country-specific foreign variables (the “starred” variables) are given in the 26 by 26 trade share matrix provided in the Supplement. Table 2 below presents the trade shares for our eight focus economies (seven countries plus euro area itself composed of eight countries), with a ‘Rest’ category showing the trade shares with the remaining 10 countries in our sample. First considering the euro area, we can see that the U.S., the U.K. and the rest of Western Europe have a similar share in euro area trade (around 1/5) accounting together for almost two third of total euro area trade. Other important information that emerges from the trade matrix includes the very high share of the euro area in the trade of the U.K. and the rest of Western Europe (more than half of the trade relationships of these countries are with euro area countries). Hence, these countries are key in the transmission of shocks to the euro area via third market, or through second-round effects.

Although we estimate models at a country level (the euro area being considered here as a single economy), we also wish to derive regional responses to shocks. Hence, for the rest of Western Europe (and also for rest of Asia, Latin America, Other Developed Countries and rest of the world), we will aggregate impulse response functions by using weights based on the PPP valuation of country GDPs, which are thought to be more reliable than weights based on U.S. dollar GDPs.

3.2 Unit Root Tests

Although the GVAR methodology can be applied to stationary and/or integrated variables, here we follow PSW and assume that the variables included
in the country-specific models are integrated of order one (or \(I(1) \)). This allows us to distinguish between short run and long run relations and interpret the long run relations as cointegrating. Therefore, we begin by examining the integration properties of the individual series under consideration. In view of the widely accepted poor power performance of traditional Dickey-Fuller (DF) tests, we report unit root t-statistics based on weighted symmetric estimation of ADF type regressions introduced by Park and Fuller (1995). These tests, henceforth \(WS \), exploit the time reversibility of stationary autoregressive processes in order to increase their power performance. Leybourne \textit{et al.} (2004) and Pantula \textit{et al.} (1995) provide evidence of superior performance of the \(WS \) test statistic compared to the standard ADF test or the GLS-ADF test proposed by Elliot \textit{et al.} (1996). The lag length employed in the \(WS \) unit root tests is selected by the Akaike Information Criterion (AIC) based on standard ADF regressions. The results of the \(WS \) statistics for the level, first differences and the second differences of all the country-specific domestic and foreign variables in the GVAR model can be found in the Supplement.

Real output, interest rates (short and long), exchange rates and real equity prices (domestic and foreign) are \(I(1) \) across the focus countries, with two notable exceptions. First, real output in the U.K. appears borderline \(I(0)/I(1) \) according to the \(WS \) statistics, although ADF tests indicate that U.K. real output is \(I(1) \). Second, \(e^* \) in the U.S. model is an \(I(2) \) variable. As in PSW, we deal with this problem by including the real exchange rate \((e - p)\) instead of the nominal exchange rate variable, \(e \), in the different country-specific models. Unit root tests applied to \((e - p)\) and \((e^* - p^*)\) indicate that these variables are \(I(1) \) in all cases. Finally, consumer price indices turn out to be \(I(2) \), so that inflation \((\Delta p\) and \(\Delta p^*)\) appears to be \(I(1) \) across all countries. The test results also generally support the unit root hypothesis in the case of the variables for the remaining countries except for \((e - p)\) and \((e^* - p^*)\) for Canada and \((e^* - p^*)\) for Mexico.

3.3 Specification and Estimation of the Country-Specific Models

We begin the modelling exercise under the assumption that the country-specific foreign variables are weakly exogenous \(I(1) \) variables (also known as long run forcing), and that the parameters of the individual models are stable over time. The long run forcing assumption allows us to estimate and test the long run properties of the different country specific models separately and consistently. Both assumptions are needed for an initial implementation of the GVAR model, and their validity will be examined in what follows.
Based on the unit root test results and the available variables we specify different country-specific models as follows. First, for the euro area, Japan, the UK, and countries belonging to the rest of Western Europe, we include real output (y), inflation rate (Δp), short-term interest rate (ρ^S), long-term interest rate (ρ^L), real equity prices (q) and real exchange rate ($e - p$) as endogenous variables and foreign real output (y^*), foreign inflation (Δp^*), foreign real equity prices (q^*), foreign interest rates (short - ρ^{S*} - and long - ρ^{L*}) and oil prices (p_o) as weakly exogenous variables. In the case of China, owing to data constraints, real equity prices and long-term interest rates are excluded from the set of endogenous variables. The U.S. model contains y, Δp, ρ^S, ρ^L, q and oil prices (p_o), as the endogenous variables. The U.S. dollar exchange rate is determined outside the U.S. model. As in PSW the only exchange rate included in the U.S. model is the foreign real exchange rate variable, ($e_{US}^* - p_{US}^*$) which is treated as weakly exogenous. The inclusion of oil prices in the U.S. model as endogenous, allows the evolution of the global macroeconomic variables to influence oil prices, a feature that was absent from the PSW version which treated oil prices as weakly exogenous in all country-specific models. Furthermore, unlike the PSW version, the present specification includes U.S.-specific foreign real output (y_{US}^*) and foreign inflation (Δp_{US}^*) as weakly exogenous variables. This allows for the U.S. model to be more fully integrated in the world economy and hence to take a more satisfactory account of second round effects in the global economic system as a whole. It is, of course, important that the weak exogeneity of these variables in the U.S. model are tested, and this is done below.

Once the variables to be included in the different country models are specified, the corresponding cointegrating VAR models are estimated and the rank of their cointegrating space determined. Initially we select the order of the individual country VARX*(p_i, q_i) models. It should be noted that p_i, the lag order of the domestic variables, and q_i the lag order of the foreign (‘star’) variables in VARX* models need not be the same. In the empirical analysis that follows we entertain the case where the lag order of the domestic variables, p_i, is selected according to the Akaike information criterion. Due to data limitations, the lag order of the foreign variables, q_i, is set equal to one in all countries with the exception of the U.S. and the euro area. For the same reason, we do not allow p_{max} or q_{max} to be greater than two. We then proceed with the cointegration analysis, where the country specific models are estimated subject to reduced rank restrictions. To this end, the error-correction forms of the individual country equations given by (12) are derived.

The rank of the cointegrating space for each country/region was com-
puted using Johansen’s trace and maximal eigenvalue statistics as set out in Pesaran, Shin and Smith (2000) for models with weakly exogenous I(1) regressors, in the case where unrestricted constants and restricted trend coefficients are included in the individual country error correction models.

The order of the VARX* models as well as the number of cointegration relationships are presented in Table 3. Among the countries of interest, the VARX* models have an order of 2 for domestic variables (except for Switzerland and Japan whose lag order is 1) and 1 for foreign variables. For the U.S. and the euro area, the main countries of focus, we decided to allow for richer dynamics in the associated VARX* models by setting $q_i = 2$. A VARX*(2,2) specification for these two countries was also favoured by the AIC. Residual serial correlation test results with respect to the selected lag order are provided in Table 4.

As regards the number of cointegrating relationships, we find 4 for Japan, 3 for U.K., Sweden and Switzerland, 2 for the euro area, Norway and the U.S. and 1 for China. The cointegration results are based on the trace statistic (at the 95% critical value level), which is known to yield better small sample power results compared to the maximal eigenvalue statistic.

3.4 Testing Weak Exogeneity

As noted earlier the main assumption underlying our estimation strategy is the weak exogeneity of x^*_t with respect to the long-run parameters of the conditional model defined by (13). Here we provide a formal test of this assumption for the country-specific foreign variables (the “starred” variables) and the oil prices.

Weak exogeneity is tested along the lines described in Johansen (1992) and Harbo et al. (1998). This involves a test of the joint significance of the estimated error correction terms in auxiliary equations for the country-specific foreign variables, x^*_t. In particular, for each l^{th} element of x^*_t the following regression is carried out

$$
\Delta x^*_{it,l} = \mu_{il} + \sum_{j=1}^{n_j} \gamma_{ij,l} ECM_{i,t-1}^j + \sum_{k=1}^{n_k} \varphi_{ik,l} \Delta x_{i,t-k} + \sum_{m=1}^{n_m} \theta_{im,l} \Delta x^*_{i,t-m} + \epsilon_{it,l}
$$

\[11\] In a similar modelling approach, Garratt, Lee, Pesaran, and Shin (2003) find 5 cointegration relationships for the U.K. model. See also Garratt, Lee, Pesaran and Shin (2006, Chs. 4&9). However, this different outcome may be due to the fact that they use a much larger dataset. We also allowed for 5 cointegration relationships for the U.K. model. The results were very similar.
where $ECM_{i,t-1}^j$, $j = 1, 2, ..., r_i$ are the estimated error correction terms corresponding to the r_i cointegrating relations found for the i^{th} country model and $\Delta \bar{x}_{it}^* = (\Delta x_{it}^*, \Delta (e_{it}^* - p_{it}^*), \Delta p_{it}^*)'$. Note that in the case of the U.S. the term $\Delta(e_{it}^* - p_{it}^*)$ is implicitly included in $\Delta \bar{x}_{it}^*$. The test for weak exogeneity is an F test of the joint hypothesis that $\gamma_{ij,l} = 0$, $j = 1, 2, ..., r_i$ in the above regression. The lag orders s_i and n_i, need not be the same as the orders p_i and q_i of the underlying country-specific VARX* models. We carried out two sets of experiments, one set using the lag orders of the underlying VARX* models given in Table 3, and in another set of experiments we set $s_i = p_i$ and $n_i = 2$ for all countries. In both cases the exogeneity hypothesis could not be rejected for most of the variables being considered. Under the former specification of the lag orders 8 out of 153 cases were found to be significant at the 5% level, whilst under the latter only 5 out of 153 exogeneity tests turned out to be statistically significant.\footnote{Increasing the lag order further resulted in no statistically significant outcomes.} The test results for this case are summarized in Table 5 below.

For the set of focus countries, as can be seen from this table, the weak exogeneity assumptions are rejected only for output in the UK model. We would have been concerned if the weak exogeneity assumptions were rejected in the case of the U.S. or the euro area models, for example. But as can be seen from Table 5, the weak exogeneity of foreign variables and oil prices are not rejected in the euro area model. Aggregation of the euro area countries in a single model could have violated the weak exogeneity assumptions that underlie GVAR modelling. However, the tests suggest that the foreign euro area-specific variables can be considered as weakly exogenous. The same applies to the foreign variables $(y_{US}^*, \Delta p_{US}^*, e_{US}^* - p_{US}^*)$ included in the U.S. model. As expected foreign real equity prices and foreign interest rates (both short and long-term) cannot be considered as weakly exogenous and have thus not been included in the U.S. model.

3.5 Testing for Structural Breaks

The possibility of structural breaks is one of the fundamental problems facing econometric modelling. The problem is likely to be particularly acute in the case of emerging economies that are subject to significant political and social changes. The GVAR model is clearly not immune to this problem. Unfortunately, despite the great deal of recent research in this area, there is little known about how best to model breaks. Even if in-sample breaks are identified using Bayesian or classical procedures, there are insurmountable difficulties in allowing for the possibility of future breaks in forecasting and policy analysis. See, for example, Stock and Watson (1996), Clements and Hendry (1998, 1999) and Pesaran, Pettenuzzo and Timmermann (2005).
However, the fact that country-specific models within the GVAR framework are specified conditional on foreign variables should help in alleviating the structural problem somewhat. For example, suppose that univariate equity return equations are subject to breaks roughly around the same time in different economies. This could arise, for example, due to a stock market crash in the U.S. with strong spill over effects to the rest of the world. However, since equity return equations in the country-specific models are specified conditional on the U.S. equity returns, they need not be subject to similar breaks, and in this example the structural break problem could be confined to the U.S. model. This phenomenon is related to the concept of “co-breaking” introduced in macroeconometric modelling by Hendry (1996), and examined further by Hendry and Mizon (1998). The structure of the GVAR can readily accommodate co-breaking and suggests that the VARX* models that underlie the GVAR might be more robust to the possibility of structural breaks as compared to reduced form single equation models considered, for example, by Stock and Watson (1996).

In the context of cointegrated models, structural stability is relevant for both the long-run coefficients and the short-run coefficients, as well as the error variances.13 As our interest is in exploring the transmission mechanisms of the US and the euro area, we will not consider the stability of the long-run coefficients and rather focus on the structural stability of the short-run coefficients and the error variances. In fact given the limited number of time series data available a meaningful test of the stability of the long-run coefficients might not be feasible. Also to render the structural stability tests of the short-run coefficients invariant to exact identification of the long run relations we consider structural stability tests that are based on the residuals of the individual equations of the country-specific error correction models. It is well known that these residuals only depend on the rank of the cointegrating vectors and do not depend on the way the cointegrating relations are exactly identified. Fluctuation tests based on successive parameter estimates which reject the null of parameter constancy when the estimates fluctuate too much such as those proposed by Ploberger, Krämer and Kontrus (1989), will not be invariant to the identification of the long-run parameters and will not be considered here.

Among the tests included in our analysis are Ploberger and Krämer’s (1992) maximal OLS cumulative sum (CUSUM) statistic, denoted by \(PK_{\text{sup}}\) and its mean square variant \(PK_{\text{msq}}\). The \(PK_{\text{sup}}\) statistic is similar to the

13 Tests of structural stability of the cointegrating vectors in VECM models have been considered by Quintos and Phillips (1993), Seo (1998), Hansen and Johansen (1999) and Lutkepohl, Saikhonen and Trenkler (2000), among others.
CUSUM test suggested by Brown, Durbin and Evans (1975), although the latter is based on recursive rather than OLS residuals. Also considered are tests for parameter constancy against non-stationary alternatives proposed by Nyblom (1989), denoted by \mathfrak{N}, as well as sequential Wald type tests of a one-time structural change at an unknown change point. The latter include the Wald form of Quandt’s (1960) likelihood ratio statistic (QLR), the mean Wald statistic (MW) of Hansen (1992) and Andrews and Ploberger (1994) and the Andrews and Ploberger (1994) Wald statistic based on the exponential average (APW). The heteroskedasticity-robust version of the above tests is also presented.14

Table 6 summarizes the results of the tests by variable at the 5% significance level. The critical values of the tests, computed under the null of parameter stability, are computed using the sieve bootstrap samples obtained from the solution of the GVAR(p) model given by (17).15 Note that the critical values employed in Stock and Watson (1996) are for the case of predetermined regressors and are therefore not applicable in the GVAR context.

The results vary across the tests and to a lesser extent across the variables. For example, using the PK tests (both versions) the null hypothesis of parameter stability is rejected at most 9 out of the possible maximum number of 134 cases, with the rejections spread quite evenly across the variables. Turning to the other three tests (\mathfrak{N}, QLR, and APW) the outcomes very much depend on whether heteroskedasticity-robust version of these tests are used. The results for the robust version are in line with those of the PK tests, although the rate of rejections are now in the range 9-10% rather than the 5-6% obtained in the case of the PK tests. Once possible changes in error variances are allowed for, the parameter coefficients seem to have been reasonably stable. At least based on the available tests there is little statistical evidence with which to reject the hypothesis of coefficient stability in the case of 90% of the equations comprising the GVAR model. The non-robust versions of the \mathfrak{N}, QLR, and APW tests, however, show a relatively large number of rejections, particularly the latter two tests (QLR, and APW) that lead to rejection of the joint null hypothesis (coefficient and error variance stability) in the case of 64 out of the 134 cases. In view of the test outcomes for the robust versions of these tests, the main reason

14 Tests based on recursive residuals such as the CUSUM and CUSUM of squares tests suggested by Brown, Durbin and Evans (1975) could also be considered. However, implementation of these tests require recursive simulation of the GVAR which is beyond the scope of the present exercise. For an overview of the various stability tests see, for example, Stock and Watson (1996).

15 Details of the bootstrap procedure and the mathematical expressions for the various test statistics are included in a Supplement which is available upon request.
for the rejection seem to be breaks in error variances and not the parameter coefficients. This conclusion is in line with many recent studies that find statistically significant evidence of changing volatility as documented, among others, by Stock and Watson (2002b), Artis, Osborn and Perez (2004) and Cecchetti, Flores-Lagunes and Krause (2005).

Turning attention to the eight focus countries, we find statistically significant evidence of a break in the error variance of the real output equation in the case of euro area, U.K., Sweden around 1985q3 and for China in 1987q1. The inflation equations show a break in error variances for the U.S. (in 1989q4) and for euro area and China (both in 1988q3). The break dates for other variables are similarly clustered over the 1985-1992 period.

Overall, not surprisingly there is evidence of structural instability but this is mainly confined to error variances and do not seem to adversely affect the coefficient estimates. We deal with the problem of changing error variances by using robust standard errors when investigating the impact effects of the foreign variables, and base our analysis of impulse responses on the bootstrap means and confidence bounds rather than the point estimates.

3.6 Contemporaneous Effects of Foreign Variables on Their Domestic Counterparts

Table 7 presents the contemporaneous effects of foreign variables on their domestic counterparts for both the standard and robust t-ratios, with the latter computed using White’s heteroskedasticity-consistent variance estimator. These values can be interpreted as impact elasticities between domestic and foreign variables. Most of these elasticities are significant and have a positive sign, as expected. They are particularly informative as regards the international linkages between the domestic and foreign variables. Focusing on the euro area, we can see that a 1% change in foreign real output in a given quarter leads to an increase of 0.5% in euro area real output within the same quarter. Similar foreign output elasticities are obtained across the different regions, though the effect is slightly weaker for the U.S. The relatively large and statistically significant elasticity estimate obtained in the case of the euro area largely reflects the high degree of trade openness of the euro area economy.

We can also observe a high elasticity between long-term interest rates, ρ^L and ρ^*L, implying relatively strong comovements between euro area and foreign bond markets. More importantly, the contemporaneous elasticity of real equity prices is significant and slightly above one. Hence, the euro area stock markets would seem to overreact to foreign stock price changes, although the extent of over-reaction is not very large and is statistically
significant only marginally. Similar results are also obtained for Sweden and Norway. Contemporaneous financial linkages are likely to be very strong amongst the European economies through the equity and the bond market channels.

In contrast, we find rather low elasticities for inflation. For the euro area the foreign inflation elasticity is 0.12 and is not statistically significant, suggesting that in the short run the euro area prices are not much affected by changes in foreign prices. The same is also true for the U.S., and to a lesser extent, for the U.K. inflation rates. For the remaining focus countries foreign inflation effects are much larger and are statistically significant.

Another interesting feature of the results are the very weak linkages that seem to exist across short-term interest rates (Sweden being an exception) and the high, significant relationships across long-term rates. This clearly shows a much stronger relation between bond markets than between monetary policy reactions.

4 Pair-wise Cross Section Correlations: Variables and Residuals

One of the key assumptions of the GVAR modelling approach is that the “idiosyncratic” shocks of the individual country models should be cross-sectionally “weakly correlated”, so that $\text{Cov}(x_{it}, u_{it}) \to 0$, with $N \to \infty$, and as a result the weak exogeneity of the foreign variables is ensured. Direct tests of weak exogeneity assumptions discussed above indirectly support the view that the idiosyncratic shocks could only be weakly correlated. In this section we provide direct evidence on the extent to which this is likely to be true. The basic idea is similar to the cross section dependence test proposed in Pesaran (2004). By conditioning the country-specific models on weakly exogenous foreign variables, viewed as proxies for the “common” global factors, it is reasonable to expect that the degree of correlation of the remaining shocks across countries/regions will be modest. These residual interdependencies, as mentioned in the introduction, could reflect policy and trade spillover effects.

As a simple diagnostic of the extent to which the country specific foreign variables have been effective in reducing the cross-section correlation of the variables in the GVAR model, we have computed average pair-wise cross-section correlations for the levels and first differences of the endogenous variables of the model, as well as those of the associated residuals over the estimation period, 1979-2003. We also computed average pair-wise cross section correlations of the residuals obtained after re-estimating all of the individual country specific models over the same period excluding the foreign
(star) variables, including oil as endogenous in all the country models. The results for all variables are summarized in Table 8.

The average cross section correlations are generally high for the level of the endogenous variables and fall as first differences of these variables are considered. The results vary widely across variables and less so across countries, with inflation and real exchange rate for China being the exceptions. Output levels, sharing common trends, show the highest degree of cross section correlations of around 92%-96%. This is followed by long-term interest rates (59%-80%), real equity prices (37%-61%), and short-term interest rates (32%-51%). The effect of first differencing on cross section correlations differ widely over variables as well as countries, and is most pronounced in the case of the output series. Average cross section correlations of output changes, \(\Delta y_{it} \), range between 2% for China to 15% for the U.S., as compared to cross section correlations of output levels of 96% for both of these economies. Similar outcomes are also observed in the case of inflation and short-term interest rates. By comparison, first differencing of equity prices and long-term interest rates has only limited effect on cross section correlations. For example, the average cross section correlations of equity prices fall from 37%-61% to 26%-42% as one moves from levels of equity prices to their first differences. Overall, there is significant evidence of cross country correlations for the variables in the GVAR model, although the extent of this correlation depends on the variable, whether it is transformed to stationarity by first differencing, and the country.

Turning to the cross section correlation of the residuals from the VARX* models (including domestic and foreign star variables), it is quite striking that except for real exchange rates these correlations are very small and do not depend on the choice of the variable or country. This is particularly apparent in the case of the equity and bond markets where the cross section correlation of the residuals ranges between -8% and +1%, as compared to the values in the range 37% and 61% (or 26% and 42%) if cross section correlations of the levels (or first differences) are considered. The model has clearly been successful in capturing the common effects driving bond and equity markets. The real exchange rate variable presents an important exception which requires further consideration.

With regard to the cross section correlations of the residuals from the individual country models that include only the domestic variables, their value appears to lie between that of the first-differenced variables and the residuals from the VARX* models. Exceptions are noted in the case of inflation.

\[\text{ECB Working Paper Series No. 568 December 2005}\]
where the correlations of the residuals from the individual country models excluding the star variables are slightly higher than those based on the first-differenced variables, and for the real exchange rates where the correlations of the residuals from the VARX* models and VAR models (excluding the star variables), are virtually identical.

Overall, the cross section correlation results show the importance of country-specific variables in dealing with often significant dependencies that exist across macroeconomic variables. Although, these results do not constitute a formal statistical test of the importance of the foreign variables in the GVAR model, they do provide an important indication of their usefulness in modelling global interdependencies. The results also show that once country-specific models are formulated conditional on foreign variables, there remains only a modest degree of correlations across the shocks from different regions.

5 Robustness of the GVAR Results to Time-Varying Weights

The preceding analysis was carried out using fixed trade weights on the grounds that changes in trade weights tend to be rather gradual and secular changes in trade weights are often counteracted by the comovements of the macroeconomic variables so that the foreign-specific variables computed using fixed and variable trade weights are often very close. To check the robustness of our results to the choice of trade weights we also estimated the GVAR model using rolling three-year moving averages of the annual trade weights. But before discussing some of these results it would be instructive first to provide some evidence on the relationship of the two measures, x_{it}^* (based on fixed weights) and x_{it}^{**} (based on the time-varying weights). Since both measures are likely to be I(1), in Table 9 we summarize the correlation coefficients of the levels as well as their first differences. In terms of the levels the two measures are very high, in many cases close to unity. In terms of their first difference, the correlations are not as high, particularly in the case of nominal magnitudes such as inflation and interest rates. Given these results, it seems unlikely that the main conclusions of the paper would be much affected by choice of the trade weights.

To check this conjecture we re-estimated the GVAR model, allowing for p_i in the individual country VARX* models to be unrestricted and q_i to be the same as in the fixed weights case, and obtained very similar num-

17 The process of computing time-varying trade weights was initialized by using the same set of weights for the first three years of the sample period.
ber of cointegrating relations.\(^\text{18}\) The differences between the two sets of results were Japan (3 cointegrating relations as compared to 4 previously) and Sweden (2 instead of 3). We obtained the same number of cointegrating relations for the remaining countries.

Turning to the impact effects of the foreign variables, once again we obtain very similar results, particularly in the case of real equity prices and long-term interest rates. The results for output effects are also very close with the exception of the estimates obtained for Norway. Not surprisingly, the results are affected most in the case of China, where none of the estimates based on the time-varying weights are now statistically significant, as compared to the statistically significant estimates obtained when using the fixed weights. Similar conclusions are also reached if one considers average pair-wise cross-section correlations of the residuals or the impulse responses (to be reported below) under the two weighting schemes.\(^\text{19}\)

6 Generalized Impulse Response Functions

To study the dynamic properties of the global model and to assess the time profile of the effects of shocks to foreign variables on the euro area economy, we investigate the implications of three different external shocks:

- A one standard error negative shock to U.S. real equity prices,
- A one standard error positive shock to U.S. interest rates,
- A one standard error positive shock to oil prices.

In this section we make use of the Generalized Impulse Response Function (GIRF), proposed in Koop, Pesaran and Potter (1996) for non-linear models and developed further in Pesaran and Shin (1998) for vector error correcting models.\(^\text{20}\) The GIRF is an alternative to the Orthogonalized Impulse Responses (OIR) of Sims (1980). The OIR approach requires the impulse responses to be computed with respect to a set of orthogonalized shocks, whilst the GIR approach considers shocks to individual errors and integrates out the effects of the other shocks using the observed distribution of all the shocks without any orthogonalization. Unlike the OIR, the

\(^{18}\)We also considered the case where \(p_i\) is unrestricted and \(q_i = 1\) for all countries. The results were very similar to those presented here.

\(^{19}\)Estimation details for the GVAR model using the time-varying weights are available on request.

\(^{20}\)For an account of the GIRF applied to VARX and cointegrating VAR models see Garratt, Lee, Pesaran and Shin (2006, Chs. 6 & 10).
GIRF is invariant to the ordering of the variables and the countries in the GVAR model, which is clearly an important consideration. Even if a suitable ordering of the variables in a given country model can be arrived at from economic theory or general a priori reasoning, it is not clear how to order countries in the application of the OIR to the GVAR model.

In the absence of strong a priori beliefs on ordering of the variables and/or countries in the GVAR model, the GIRFs provide useful information with respect to changes in oil prices, equity prices and even interest rates. Although, the approach is silent as to the reasons behind the changes, the GIRFs can be quite informative about the dynamics of the transmission of shocks from the rest of the world to the euro area.

In the discussion of the results, we focus only on the first two years following the shock. This seems a reasonable time horizon over which the model presents credible results. However, in Figures 1-5 we provide results over a longer period, partly as visual aids for the analysis of model’s convergence properties. The figures display the bootstrap estimates of the GIRFs and their associated 90% confidence bounds. The computations are carried out using the same sieve bootstrap procedure discussed above in the case of the structural stability tests.

The figures show that the GIRFs settle down reasonably quickly, suggesting that the model is stable. This is supported by the eigenvalues of the GVAR model which are 268 in total.21 From the individual country models and the theorem in PSW we do not expect the rank of the cointegrating matrix in the global model to exceed 64 (namely the number of cointegrating relations in all the individual country models). Hence, the global system should have at least 70 eigenvalues (i.e. 134 – 64), that fall on the unit circle. The GVAR satisfies these properties and indeed has 70 eigenvalues equal to unity, with the remaining 198 eigenvalues having moduli all less than unity.22

21The GVAR contains 134 endogenous variables with a maximum lag order of 2, which give rise to a companion VAR(1) model in 268 variables.

22Of these 197 eigenvalues, 128 (64 pairs) are complex, introducing cyclical features in the impulse responses. The eigenvalues with the largest complex part are $0.028327 \pm 0.724695i$, $1.40550 \pm 0.617375i$ and $-0.403860 \pm 0.597096i$, where $i = \sqrt{-1}$. After the unit roots, the three largest eigenvalues (in moduli) are 0.902139, 0.881272 and 0.876965, implying a reasonable rate of convergence of the model after a shock to its long-run equilibrium. Given the unit eigenvalues of the system, some shocks will have permanent effects on the levels of the endogenous variables.
6.1 Shock to U.S. Equity Prices

Consider first the GIRFs for a one standard error negative shock to U.S. equity prices. This shock is equivalent to a fall of around 4-5% in U.S. real equity prices per quarter. The equity price shock is accompanied by a decline in U.S. real GDP of around 0.1% on impact, by 0.4% on average over the first year and by 0.5% on average over the second year. See Figure 1.

The transmission of the shock to the euro area equity markets takes place rather quickly and the effects of the shock are generally statistically significant. On impact, equity prices fall by similar amounts (around 4.1%) in both the U.S. and the euro area, but the effects of the U.S. shock on the euro area equity markets become more pronounced over the first two years; suggesting a mild overreaction of equity prices in the European markets to the U.S. shock. This partly reflects the higher volatility of the European equity markets as compared to the volatility of the S&P 500 used as the market index for the U.S..

Like in the U.S., real output in the euro area is negatively affected by the adverse equity shock, although to a lesser extent. Inflation tends to decrease although the magnitude of the reaction remains limited and not statistically significant at the 90% level beyond two quarters. As to be expected, short-term and long-term interest rates are also negatively affected by the shock. The impact of the shock on the short-term rate is stronger in the U.S. than in the euro area, which may be related to the different reaction functions of monetary authorities to asset price movements in these economies. Finally, real exchange rates in the euro area appreciate, although the effects cease to be statistically significant after the first 2-3 quarters.

As reported in Dees, di Mauro, Pesaran and Smith (2005) the transmission of the shock to the other countries is very similar to the euro area case, except for the real exchange rate, which varies more widely across countries.

6.2 Shock to Oil Prices

Figure 2 presents the GIRFs of a positive one standard error shock to oil prices on the U.S. and the euro area. A one standard error positive shock results in a 10-11% increase per quarter in the price of oil.

On impact the oil price shock has a negative effect on real output in the U.S., and for the first couple of quarters on real output in the euro area. However, these effects are not statistically significant. In contrast, the effects of the oil price shock on inflation is unambiguously positive and statistically significant in both the U.S. and the euro area. The effects are stronger on the U.S. inflation as compared to the euro area inflation which
is consistent with what we observe on the real side, and are in line with a rise in short-term interest rates, triggered in turn by increased inflationary pressures.

As regards the financial variables, not surprisingly the increase in oil prices adversely affects equity prices and places an upward pressure on the long-term interest rates. The increase in long-term interest rates shows that the bond markets tend to react more to inflation expectations rather than to the growth prospects. Bond and equity market reactions are consistent with each other and are common to both regions. The euro area real exchange rate, however, does not react to the oil price shock, and the associated GIRFs are not statistically significant.23

6.3 Shock to U.S. Short-Term Interest Rate

The GIRFs results of a positive one standard error shock to U.S. short-term interest rates are displayed in Figure 3. In the U.S., the one standard error positive shock to the interest rate equation amounts to a 0.2% increase in the short-term rate (i.e. around 80 basis points), measured on a quarterly basis.

The effects of the shock on real output and inflation are generally uncertain, particularly in the case of the euro area. Initially, the shock raises output and inflation in the U.S. which are counter intuitive, but these responses become statistically insignificant after 1-2 quarters. The positive impact effects of the interest rate shock on the U.S. inflation is reminiscent of the price puzzle observed by a number of researchers working with VAR models of U.S. (Sims, 1992; Eichenbaum, 1992). But the reappearance of the puzzle in the GVAR context is somewhat more surprising considering the many other transmission channels that are included. We shall return to this issue when we consider the impulse responses of structural U.S. monetary policy shocks below. However, note that the effects of the U.S. interest shock on the euro area output and inflation are very small and statistically insignificant at all horizons.

The effects of the shock on long-term interest rates are, however, positive and statistically significant for most horizons in the case of the U.S. rate, and for the initial few periods in the case of the long-term rate in the euro area. By contrast, the shock has sustained significant effects on the U.S.

23 Overall, as shown in DdPS (2005), the real exchange rate reaction is mixed across countries/regions. The yen depreciates rather substantially, as compared to the other currencies. This result may explain the differences already observed regarding the effect of the oil price shock on real output; the depreciation of the yen implying positive effects on competitiveness and hence on exports. This positive effect could then more than compensate the negative impact of oil price increases on economic activity.
short-term rate, but not on the short-term rate in the euro area, reflecting the weak interdependence of the short-term rates across the two regions and the stronger interdependence of the long-term rates globally.

The interest rate shock has the expected negative effects on the real equity prices, but these effects are not statistically significant. The same also applies to the effects of the interest rate shock on oil prices and the euro area real exchange rates.

6.4 Global Shocks

So far we have considered the effects of variable/country specific shocks, with particular emphasis on the shocks originating from the U.S. viewed possibly as global shocks, considering the dominant role of the U.S. in the world economy. Whilst such a strategy might be appropriate in the case of shocks to the U.S. equity market, it might be less defensible for other types of shocks. Therefore, it might be desirable to consider the effects of “global” shocks which might not necessary originate from a particular country, but could be common to the world economy as a whole. Examples of such shocks include major developments in technology or global shocks to commodity or equity markets. Apart from explicitly including global effects, such as oil prices, in the GVAR model, it is also possible to consider the effects of global shocks defined as a weighted average of variable-specific shocks across all the countries in the model. To see how this can be done consider the GVAR model (17), and abstracting from deterministic terms and higher order lags write it as

\[G_{X_t} = Hx_{t-1} + \ldots + u_t, \quad u_t \sim IID(0, \Sigma_u) \]

(20)

with a total of \(k = \sum_{i=0}^N k_i \) domestic variables for the \(N+1 \) countries.

A global shock at time \(t \) to a specific variable, can now be defined as a shock to say the \(\ell \)th variable in all \(N+1 \) countries simultaneously aggregated to a single shock using a set of weights reflecting the relative importance of the individual countries in the world economy. For example, using PPP GDP weights a global shock to the \(\ell \)th variable can be defined as \(u_{gt} = a_{\ell}'u_t \), where \(a_{\ell} \) is a \((k \times 1) \) selection vector, \(a_{\ell} = (a_{0\ell}', a_{1\ell}', \ldots, a_{N\ell}')' \) and \(a_{i\ell} \) is the \(k_i \times 1 \) vector with zero elements except for its element that corresponds to the \(\ell \)th variable which is set equal to \(w_i \), the weight of the \(i \)th country in the world economy. By construction \(\sum_{i=0}^N w_i = 1 \).

The generalized impulse response function in the case of a one standard error global shock is given by

\[\psi(h, x : u_{gt}) = E(x_{t+h}|\Omega_{t-1}, u_{gt} = -E(x_{t+h}|\Omega_{t-1}), \]

and in the case of the above GVAR model is easily seen to be
\[\psi(0, x : u^0_t) = \frac{G^{-1} \Sigma_u a_t}{\sqrt{a_t^T \Sigma_u a_t}}. \] (21)

The effect of a one standard error global shock, on expected values of \(x \) at time \(t + h \), for \(h = 1, 2, \ldots \) can then be obtained recursively by using (21) and solving forward in the light of the difference equation (20).

Generalized impulse response functions of the impacts of real equity price and output shocks on the main variables are provided in a Supplement available from the authors on request. In the case of the global equity shock, the results are very similar to those of a shock to the U.S. equity prices discussed above. This result confirms the predominant role of the U.S. stock market in the equity price developments across countries.

In the case of the global output shock, beyond the fact that the U.S. is relatively less affected (since the shock hits all countries at the same time), the results are broadly similar when compared with those of the shock to U.S. real output. The main difference concerns the impacts of the global output shock on real exchange rates, which tend to depreciate vis-a-vis the U.S. dollar, while they appreciate in most cases when the shock originates in the U.S..

7 Identification of Shocks Using the GVAR Model

Identification of all the 134 different shocks (the total number of endogenous variables) in the GVAR model will be a formidable undertaking, and might not be necessary since in practice monetary policy, demand and supply shocks are likely to be highly correlated across countries. In what follows we focus on identification of shocks to the U.S. economy, particularly the monetary policy shocks, and consider the time profiles of their effects on the euro area.

7.1 Methodology

We include the U.S. model as the first country model and following Sims (1980), consider alternative orderings of the variables within the U.S. model. The outcome of this exercise will be invariant to the ordering of the rest of the variables in the GVAR model, so long as the contemporaneous correlations of these shocks are left unrestricted (both in relation to themselves and with respect to the U.S. shocks). Ordering of the rest of the variables in the GVAR model will be important for the analysis of the U.S. monetary policy shocks, only if short-run over-identifying restrictions are imposed on the parameters of the models.
In the light of the arguments advanced in Sims and Zha (1998), one possible identification scheme for the U.S. pursued below, is to adopt the ordering of the variables in the U.S. model as follows:

\[x_{0t} = (\text{oil, short-term interest rate, long-term interest rate, equity prices, inflation, output}). \]

We denote this ordering by \(x_{0t}^A \). It is also assumed that variance matrix of the structural errors (\(\varepsilon_{0t} \)) associated to these variables are orthogonal.\(^{24}\)

Consider the VARX*(1) model for the U.S. denoted by the country index \(i = 0 \),

\[x_{0t} = \Phi_0 x_{0t-1} + \Psi_{01} x_{0t}^* + \Psi_{02} x_{0,t-1}^* + u_{0t}. \] \((22) \)

Premultiply (22) by \(P_0 \),

\[P_0 x_{0t} = P_0 \Phi_0 x_{0,t-1} + P_0 \Psi_{01} x_{0t}^* + P_0 \Psi_{02} x_{0,t-1}^* + P_0 u_{0t} \]

where \(\varepsilon_{0t} = P_0 u_{0t} \) are the structural shocks. The identification conditions à la Sims (1980) are given by

\[Cov(\varepsilon_{0t}) : \text{diagonal, and } P_0 : \text{lower triangular}, \]

\[Cov(u_{0t}) = \Sigma_{u0} = Q_0' Q_0, \text{ and } Cov(\varepsilon_{0t}) = \Sigma_{\varepsilon0} = P_0 \Sigma_{u0} P_0', \]

where \(Q_0 \) is the upper Cholesky factor of \(\Sigma_{u0} \). Hence

\[P_0 \Sigma_{u0} P_0' = P_0 Q_0' Q_0 P_0' = \Sigma_{\varepsilon0}, \]

and

\[P_0 Q_0' = \Sigma_{\varepsilon0}^{1/2}, \text{ a diagonal matrix.} \] \((23) \)

Consider now the GVAR model (20) and premultiply it by

\[P_0 \]

\[G \]

\[= \begin{pmatrix}
P_0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cdot & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \] \((24) \)

to obtain

\(^{24}\)An alternative approach that could be explored is that of Christiano, Eichenbaum and Evans (1999). We could also consider non-recursive identification schemes. The mathematical treatment will be the same. Only the form of \(P_0 \) and the variance matrix of \(\varepsilon_{0t} \) will be different.
where \(\varepsilon_t = (\varepsilon'_0, u'_1, \ldots, u'_N)' \) and

\[
\Sigma_{\varepsilon} = \text{Cov}(\varepsilon_t) = \begin{pmatrix}
V(\varepsilon_0) & \text{Cov}(\varepsilon_0, u_1) & \cdots & \text{Cov}(\varepsilon_0, u_N) \\
\text{Cov}(u_1, \varepsilon_0) & V(u_1) & \cdots & \text{Cov}(u_1, u_N) \\
\vdots & \vdots & \ddots & \vdots \\
\text{Cov}(u_N, \varepsilon_0) & \text{Cov}(u_N, u_1) & \cdots & V(u_N)
\end{pmatrix}
\]

(25)

with

\[
V(\varepsilon_0) = \Sigma_{\varepsilon, 00} = P_0 \Sigma_{u, 00} P_0',
\]

\[
\text{Cov}(\varepsilon_0, u_j) = \text{Cov}(P_0 u_{0j}, u_j) = P_0 \Sigma_{u, 0j}.
\]

Generalized impulse responses with respect to the structural shocks are now defined as

\[
\psi(h, x : \varepsilon) = E(x_{t+h} | \Omega_{t-1}, e'_i \varepsilon_t = \sqrt{e_i' \Sigma_{\varepsilon} e_i}) - E(x_{t+h} | \Omega_{t-1}).
\]

But, the contemporaneous effects are

\[
P^0_G G E(x_t | \Omega_{t-1}, e'_i \varepsilon_t = \sqrt{e_i' \Sigma_{\varepsilon} e_i}) = P^0_G H x_{t-1} + \frac{\Sigma_{\varepsilon} e_i}{\sqrt{e_i' \Sigma_{\varepsilon} e_i}}
\]

where \(e_i \) is a selection vector applied to all the elements of \(x_t \).

Thus, the contemporaneous effects are given by

\[
\psi(0, x : \varepsilon) = \frac{(P^0_G G)^{-1} \Sigma_{\varepsilon} e_i}{\sqrt{e_i' \Sigma_{\varepsilon} e_i}} = \frac{G^{-1} (P^0_G)^{-1} \Sigma_{\varepsilon} e_i}{\sqrt{e_i' \Sigma_{\varepsilon} e_i}}.
\]

The impulse responses for other horizons can be derived using the same recursive relations used for the computation of the generalized impulse responses.

Under the orthogonalization scheme, \(\Sigma_{\varepsilon} \), defined by (25), is specified as \(V(\varepsilon_0) = I_{k_0} \), and

\[
\text{Cov}(\varepsilon_0, u_j) = P^0_G \Sigma_{u, 0j}, \text{ for } j = 1, 2, \ldots, N.
\]

(26)

Under this specification, using (23) we have \(P_0 = (Q'_0)^{-1} \) and hence \((P^0_G)^{-1} \) is a block diagonal matrix with \(Q'_0 \) on its first block and identity matrices on
the remaining blocks. This covariance specification given ensures that the impulse responses of structural shocks to the U.S. economy will be invariant to any re-ordering of the variables in the rest of the GVAR model.25 Also the structural impulse responses of the shocks to the oil prices (the first variable in the \textit{VARX} model of the U.S.) will be the same as the corresponding generalized impulse responses (see Pesaran and Shin, 1998).

7.2 U.S. Monetary Policy Shocks

We consider identification of a U.S. monetary policy shock under two different orderings of the variables in the U.S. model, namely Sims & Zha type ordering $x^A_{0t} = (\text{oil, short-term interest rate, long-term interest rate, equity prices, inflation, output})$ discussed above, and the alternative ordering B, $x^B_{0t} = (\text{oil, long-term interest rate, equity prices, inflation, output, short-term interest rate})$, where the monetary policy variable is placed last, after inflation and output.26 The impulse responses associated with these two identification schemes are displayed in Figures 4 and 5, respectively.

The results are similar across the two orderings, and are not that different from the GIRFs outcomes in Figure 3. The main differences are in the effects on U.S. long-term rate, output and inflation, particularly over the first 3-4 quarters after the shock. Out of the two orderings, A and B, the effects of the latter are more pronounced and differ more markedly from the “non-structural” GIRFs presented in Figure 3. This is particularly so in the case of the effects of the shock on U.S. output which are now negative and statistically significant after 1-2 quarters under x^B_{0t}. Also, under this ordering the effects of the monetary policy shock on the U.S. long-term rate is no longer statistically significant, which contrasts the results obtained under x^A_{0t}.

The price puzzle continues to be present under both orderings, although it is now confined to the first 1-2 quarters immediately after the shock where the effects remain statistically significant. These short-term positive response are more difficult to justify in the case of identified monetary policy shocks as compared to the GIRFs of an interest rate shock. However, Christiano, Eichenbaum and Evans (1999) show that such a response can be expected when output comes after the monetary policy variables in the ordering of variables, which is actually the case under ordering A. This feature is less pronounced and more short-lived when considering ordering B. Overall, as far as the effects of the monetary policy shocks on output and

25Setting $Cov(\varepsilon_{0t}, u_{ij}) = 0$ as an alternative option can also be entertained. This covariance specification, imposes further restrictions, and should be used with care.

26This alternative ordering was suggested to us by one of the referees.
inflation are concerned, the ordering B yields results that are more in line with a priori expectations.

Finally, as regards the transmission of the U.S. monetary policy shock to the euro area, there are very few differences across the different orderings, and the effects of the shock on the euro area variables are not that large, and tend to be statistically insignificant.

8 Concluding Remarks

This paper updates and extends the GVAR model of Pesaran, Schuermann and Weiner (2004) in a number of directions, provides an unobserved common factor interpretation of the country-specific foreign variables included in the GVAR, addresses the issue of structural stability and shows how the model can be used for structural impulse response analysis.

Compared to the original version of the GVAR, the current version extends the geographical coverage from 11 country/regions to 26 countries with the euro area being treated as a single economy, updates the estimation period to the end of 2003 (from end of 1999 previously), includes the long-term interest rate as an endogenous variable in country-specific models, and includes oil prices as an endogenous variable in the U.S. model rather than treat it as a global exogenous variable. Also, the U.S. model now allows for feedback effects from changes in output and inflation outside the U.S. variables.

The current version, therefore, captures more fully the interactions in the world economy and includes new channels of transmissions via bond markets, the feedback effects on oil prices from the global economy, and the changes in output and inflation from the rest of the world to the U.S. economy.

Although, the new GVAR model can be used for many different purposes, in this paper we have focussed on the short-term and long-term implications of external shocks for the euro area economy. We provide impact effects of external changes in interest rates (short-term and long-term rates), inflation, output, real equity prices, real exchange rates and oil prices on the euro area and present the time profiles of these shocks using both generalized and structural impulse response functions.

The key to the GVAR modelling is the systematic inclusion of the country-specific foreign variables in the individual country models in order to deal with the common factor dependencies that exist in the world economy. The average pair-wise cross-section correlations computed for the endogenous variables, their first differences, and the residuals from the GVAR model show that very little cross section correlations remain once the effects of
foreign variables have been taken into account. This is in line with the results of the tests of weak exogeneity of the foreign variables also reported in the paper. Considering the problem of structural breaks, we have found that structural instability is mainly confined to error variances and does not seem to adversely affect the coefficient estimates. To this end, we use robust standard errors when investigating the impact of the foreign variables and we base the analysis of the impulse responses on the bootstrap means and confidence bounds rather than point estimates.

In addition to generalized impulse response functions, we also consider structural identification of shocks in the global economy, and emphasize that unlike the GIRFs, the results of structural impulse responses in general depend on the order in which different countries are included in the GVAR model. It is partly for this reason that in our structural impulse response analyses we focus on identification of shocks to the U.S. economy, which we order as the first economy in the GVAR model. In particular, we consider the short-term and long-term effects of a U.S. monetary policy shock on the euro area.

From a policy analysis perspective, a number of interesting results emerge. The simulations clearly show that financial shocks are transmitted relatively rapidly, and often get amplified as they travel from the U.S. to the euro area. Equity and bond markets seem to be far more synchronous as compared to real output, inflation, and short-term interest rates.

While the impact of an oil price shock on inflation is statistically significant, the impact on output remains limited despite some deterioration in the financing conditions through a tightening of monetary policy, an increase in long-term interest rates, and a decrease in real equity prices.

Our analysis of monetary policy shocks has shown that the transmission of a change in U.S. monetary policy to the euro area is limited and statistically insignificant. This result has been confirmed both from the GIRFs of a shock to U.S. short-term interest rates and from the IRFs of a monetary policy shock irrespective of the chosen ordering.

The model also highlights the importance of second-round effects of the shocks. A shock in the U.S. can be amplified because the U.S. will also be affected over time through the return impacts of output and inflation shocks in the rest of the world. The euro area in turn reacts to the U.S. shocks directly as well as indirectly through the impact of the U.S. shocks on euro area trade partners, and so on. The transmission of shocks does not take place only through trade, but also as importantly through the impacts on financial variables with subsequent spillover effects on real variables. The GVAR presents a complicated, yet simple to follow, spatio-temporal structure for the analysis of the world economy. To be sure it can be modified and
extended further. But it is hoped that the present version makes a further step towards the development of a transparent and coherent framework for the analysis of global interdependencies.

References

[34] Kapetanios, G. and Pesaran, M.H. (2005), Alternative Approaches to Estimation and Inference in Large Multifactor Panels: Small Sample Results with an Application to Modelling of Asset Returns, Faculty of

APPENDIX:

Data Sources and the Interpolation Procedure

The variables used in this paper are Y: Real GDP; CPI: Consumer price index; EQ: Equity price index; E: Exchange rate; R^S: Short-term interest rate; R^L: Long-term interest rate; and P_o: Oil price index.

A.1. Real GDP

The source of all 33 countries is the IMF’s International Financial Statistics (IFS) GDP series in 1995 constant prices, except Australia (2001/02), Norway (2001), Singapore (2000), United Kingdom (2000) and United States (2000). France, Germany, Italy, Japan, South Africa, Spain, Netherlands, Switzerland, Australia, New Zealand, Mexico, United Kingdom and United States are all from series br, and the remaining countries are from series bp. Where recent data were not available, the IFS series were completed with growth rates derived from series provided by Global Insight.

Where quarterly data were not available (i.e. for Argentina, Belgium, Brazil, Chile, China India, Indonesia, Malaysia, Mexico, Philippines, Saudi Arabia, Thailand and Turkey), quarterly series were interpolated linearly from the annual series (see A.7). Interpolated series were used only during the periods 1981-1992 for Argentina, 1979 for Belgium, 1979-1989 for Brazil, 1979 for Chile, 1979-1996 for India, 1979-1982 for Indonesia, 1979-1987 for Malaysia, 1979 for Mexico, 1979-1980 for the Philippines, 1979-1992 for Thailand and 1979-1986 for Turkey. Quarterly output series were available for the subsequent periods.

The data for Singapore are from Datastream.

For the period before the German unification, in 1990Q4, West German growth rates were used.

The data for Argentina, Austria, Belgium, Brazil, Chile, Finland, India, Indonesia, Korea, Malaysia, Norway, Peru, Philippines, Sweden, Thailand and Turkey were seasonally adjusted. Seasonal adjustment was performed with E-views, using the U.S. Census Bureau’s X12 program (for further details, see U.S. Census Bureau, 2000).

A.2. Consumer Price Indices

The data source for all countries was the IFS Consumer Price Index series 64 zf, except China (64 xzf). The Price Index for China was seasonally adjusted post-1986 similarly to GDP.

A.3. Equity Price Indices

The data source was the IFS series 62 zf (Industrial share prices) for
25 countries (Australia, Austria, Brazil, Canada, Chile, Finland, France, Germany, Italy, Japan, Korea, Mexico, Netherlands, New Zealand, Norway, Peru, Philippines, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Thailand, United Kingdom, United States). For Norway, Sweden, France, United Kingdom, the IFS data were completed with OECD Main Economic Indicators database (MEI) the IFS data for Austria were completed with Datastream series.

The data source for Belgium, Brazil and Switzerland was Datastream.
The data source for Malaysia, Turkey and China was Bloomberg.

A.4. Exchange Rates
IFS series rf was used for all countries.

A.5. Short-Term Interest Rates
The data source was the IFS series 60 b (Money market - interbank - rate) for 16 countries. For the 8 Euro Area countries (Austria, Belgium, France, Finland, Germany, Italy, Netherlands, and Spain) the ST interest rate was constructed as follows: for 1979Q1-1998Q4, the short-term country-specific inter-bank rate from IFS was used. From 99Q1-01Q4, the overnight EONIA rate was used as the common short-term interest rate for all 8 countries. IFS deposit rate series 60l were used for Argentina, Chile, Saudi Arabia and Turkey. The IFS Treasury Bill rate series 60c were used for Mexico and Philippines. For Sweden, some missing values at the end of the sample were replaced by the series 60 a (the two series are similar over the past). For China, New Zealand and Peru, IFS discount rate 60 were used. For India, Global Insight data were used to complete IFS series.

A.6. Long-Term Interest Rates
A long-term government bond rate was available from the IFS (series 61 zf) for 23 countries. Data from OECD were used to complete gaps in the IFS series for Austria and Sweden. Long-term interest rate series were not available for Argentina, Brazil, Chile, China, India, Indonesia, Peru, Saudi Arabia and Turkey.

A.7. Description of the Interpolation Procedure
Let \(X_t, t = 0, 1, 2, \ldots, T \), be the annual observations compiled as averages of \(m \) time-disaggregated observations, \(x_{it}, i = 1, 2, \ldots, m, t = 1, 2, \ldots, T \), such that

\[
X_t = \sum_{i=1}^{m} x_{it} \tag{A.1}
\]

The objective is to estimate a relatively smooth set of observations, \(x_{it}, i = 1, 2, \ldots, m \) that satisfy the above constraint. We confine ourselves to pure interpolation methods (namely without using any related economic
and assume that the underlying disaggregated observations are generated by the following time-varying first-order autoregressive process:

\[
\begin{align*}
 x_{t1} &= \rho_t x_{t-1,m} + \mu_t \\
 x_{t2} &= \rho_t x_{t1,m} + \mu_t \\
 &\vdots \\
 x_{tm} &= \rho_t x_{t,m-1} + \mu_t.
\end{align*}
\]

Solving for \(x_{t+1,i}\) recursively forward we have

\[
x_{t+1,i} = \rho_{t+1} x_{tm} + \mu_{t+1} \frac{(1 - \rho_{t+1}^i)}{(1 - \rho_{t+1})}, \text{ for } i = 1, 2, \ldots, m. \tag{A.2}
\]

Substituting these in the constraint (A.1) we find

\[
X_t = \rho_{t+1} \frac{(1 - \rho_{t+1}^m)}{(1 - \rho_{t+1})} x_{tm} + \frac{m \mu_{t+1}}{1 - \rho_{t+1}} - \rho_{t+1} \frac{(1 - \rho_{t+1}^m)}{(1 - \rho_{t+1})^2} \mu_{t+1}.
\]

It is easily verified that the interpolations, \(x_{t+1,i}\), do in fact exactly add up to the annual data, \(X_{t+1}\).

The uniformly distributed interpolated series, \(x_{t+1,i} = X_{t+1}/m\), for \(i = 1, 2, \ldots, m\), correspond to the case where \(\rho_{t+1} = 0\). We adopt the geometrically (exponentially) interpolated series which is obtained by setting \(\mu_{t+1} = 0\), while other intermediate cases can also be entertained, but in the case of our applications they tend to generate very similar outcomes.

For the exponential interpolation, \(\rho_{t+1}\) is computed as the solution to

\[
X_{t+1} = \rho_{t+1} \frac{(1 - \rho_{t+1}^m)}{(1 - \rho_{t+1})} x_{tm}, \tag{A.3}
\]

where \(x_{tm}\) is the observation at the end of the previous year. This formulation is suitable when interpolating the level of the variables (indices) rather than the growth rates and is applicable to \(I(1)\) variables.

To solve for \(\rho_{t+1}\), let \(\lambda_{t+1,m} = X_{t+1}/x_{tm}\), and write (A.3) in the expanded form

\[
\rho_{t+1}^m + \rho_{t+1}^{m-1} + \cdots + \rho_{t+1} = \lambda_{t+1,m}, \text{ for } t = 0, 1, \ldots. \tag{A.4}
\]

with

\[
\lambda_{1,m} = X_1/x_{0m} = m(X_1/X_0). \tag{A.5}
\]

It follows that

\[
x_{t+1,i} = x_{tm} \rho_{t+1}^i, \text{ for } i = 1, 2, \ldots, m. \tag{A.6}
\]
To proceed it is required to solve the m^{th} order polynomial equation given by (A.4). For the purpose of our empirical application we are interested in interpolating quarterly observations from annual series, which implies solving the quartic equation (for $m = 4$)

$$\rho_{t+1}^4 + \rho_{t+1}^3 + \ldots + \rho_{t+1} - \lambda_{t+1.4} = 0. \quad (A.7)$$

To solve the quartic equation of the general form

$$A_4z^4 + A_3z^3 + A_2z^2 + A_1z + A_0 = 0$$

or

$$z^4 + a_3z^3 + a_2z^2 + a_1z + a_0 = 0 \quad (A.8)$$

with $a_i = A_i/A_4$, $i = 0, 1, 2, 3$, we substitute $z = x - a_3/4$ in (A.8) which yields

$$x^4 + px^2 + qx + r = 0, \quad (A.9)$$

where

$$p = a_2 - \frac{3}{8}a_3^2, \quad q = a_1 - \frac{1}{2}a_2a_3 + \frac{1}{8}a_3^3$$

$$r = a_0 - \frac{1}{4}a_1a_3 + \frac{1}{16}a_2a_3^2 - \frac{3}{256}a_3^4.$$

In order to solve equation (A.9) it needs to be made factorable, which leads to the solution of the following cubic equation

$$u^3 + b_2u^2 + b_1u + b_0 = 0, \quad (A.10)$$

where

$$b_2 = -p, \quad b_1 = -4r, \quad b_0 = 4pr - q^2.$$

The cubic equation (A.10) has only one real root if the discriminant D is greater than zero, where D is defined by

$$D = Q^3 + R^2$$

and

$$Q = \frac{3b_1 - b_2^2}{9}, \quad R = \frac{9b_1b_2 - 27b_0 - 2b_2^3}{54}.$$

In this case, $D > 0$, the unique real root is given by

$$u_1 = (R + \sqrt{D})^{1/3} - \frac{Q}{(R + \sqrt{D})^{1/3}} - \frac{1}{3}.$$
Then, by using the above solution to the cubic polynomial, u_1, the following quadratic equations arise

\[
x^2 + \sqrt{u_1 - px} + \frac{1}{2}u_1 - \frac{q}{2\sqrt{u_1 - p}} = 0 \quad (A.11a)
\]
\[
x^2 - \sqrt{u_1 - px} + \frac{1}{2}u_1 + \frac{q}{2\sqrt{u_1 - p}} = 0, \quad (A.11b)
\]

If x_r is a real solution of the pair of quadratics (A.11) then $x_r - a_3/4$ is a real solution to the quartic equation (A.8). Thus a real solution to (A.7) is given by

\[
\rho_{t+1} = x_{r,t+1} - 1/4
\]

However, multiple real solutions can arise from the solution of the quartic equation defined by (A.8).

Consider two real solutions of (A.8), a and b. Let \{\(y_{a1}, y_{a2}, y_{a3}, y_{a4}, \ldots\)\} and \(\{y_{b1}, y_{b2}, y_{b3}, y_{b4}, \ldots\}\) be the levels of the interpolated series based on the choice of the roots a and b, respectively. In this case, we define

\[
\Delta_a = \frac{\left|\ln(y_{a1} / y_{a1-1,4})\right| + \left|\ln(y_{a21} / y_{a3})\right| + \left|\ln(y_{a41} / y_{a3})\right| + \ldots}{4}
\]
\[
\Delta_b = \frac{\left|\ln(y_{b1} / y_{b1-1,4})\right| + \left|\ln(y_{b21} / y_{b3})\right| + \left|\ln(y_{b41} / y_{b3})\right| + \ldots}{4}
\]

and choose a if $\Delta_a < \Delta_b$, b otherwise.
Table 1: Countries and Regions in the GVAR Model

<table>
<thead>
<tr>
<th>United States</th>
<th>Euro Area</th>
<th>Latin America</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Germany</td>
<td>Brazil</td>
</tr>
<tr>
<td>Japan</td>
<td>France</td>
<td>Mexico</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Italy</td>
<td>Argentina</td>
</tr>
<tr>
<td></td>
<td>Spain</td>
<td>Chile</td>
</tr>
<tr>
<td>Other Developed Economies</td>
<td>Netherlands</td>
<td>Peru</td>
</tr>
<tr>
<td>Canada</td>
<td>Belgium</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>Austria</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>Finland</td>
<td></td>
</tr>
<tr>
<td>Rest of Asia</td>
<td>Rest of W.Europe</td>
<td>Rest of the World</td>
</tr>
<tr>
<td>Korea</td>
<td>Sweden</td>
<td>India</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Switzerland</td>
<td>South Africa</td>
</tr>
<tr>
<td>Thailand</td>
<td>Norway</td>
<td>Turkey</td>
</tr>
<tr>
<td>Philippines</td>
<td></td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Malaysia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Trade Weights Based on Direction of Trade Statistics

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>U.S.</th>
<th>E.A.</th>
<th>China</th>
<th>Japan</th>
<th>U.K.</th>
<th>Rest of W.Europe</th>
<th>Rest of the World</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>0.000</td>
<td>0.155</td>
<td>0.073</td>
<td>0.124</td>
<td>0.052</td>
<td>0.008</td>
<td>0.012</td>
</tr>
<tr>
<td>E.A.</td>
<td>0.227</td>
<td>0.000</td>
<td>0.056</td>
<td>0.072</td>
<td>0.238</td>
<td>0.057</td>
<td>0.090</td>
</tr>
<tr>
<td>China</td>
<td>0.236</td>
<td>0.164</td>
<td>0.000</td>
<td>0.248</td>
<td>0.029</td>
<td>0.010</td>
<td>0.007</td>
</tr>
<tr>
<td>Japan</td>
<td>0.319</td>
<td>0.132</td>
<td>0.128</td>
<td>0.000</td>
<td>0.032</td>
<td>0.007</td>
<td>0.009</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.180</td>
<td>0.537</td>
<td>0.020</td>
<td>0.042</td>
<td>0.000</td>
<td>0.027</td>
<td>0.028</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.104</td>
<td>0.517</td>
<td>0.025</td>
<td>0.035</td>
<td>0.115</td>
<td>0.000</td>
<td>0.017</td>
</tr>
<tr>
<td>Switz.</td>
<td>0.113</td>
<td>0.670</td>
<td>0.015</td>
<td>0.039</td>
<td>0.066</td>
<td>0.015</td>
<td>0.000</td>
</tr>
<tr>
<td>Norway</td>
<td>0.090</td>
<td>0.449</td>
<td>0.020</td>
<td>0.030</td>
<td>0.181</td>
<td>0.132</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Note: Trade weights are computed as shares of exports and imports displayed in rows by region such that a row, but not a column, sums to one. "Rest" gathers the remaining countries. The complete trade matrix used in the GVAR model is given in a Supplement that can be obtained from the authors on request. Source: Direction of Trade Statistics, 1999-2001, IMF.
Table 3: VARX* Order and Number of Cointegration Relationships in the Country-Specific Models

<table>
<thead>
<tr>
<th>Country</th>
<th>VARX*(p_i, q_i)</th>
<th>p_i</th>
<th>q_i</th>
<th># Cointegrating Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>2, 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Euro Area</td>
<td>2, 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>China</td>
<td>2, 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td>1, 1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2, 1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Sweden</td>
<td>2, 1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1, 1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Norway</td>
<td>2, 1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 4: F Statistics for Tests of Residual Serial Correlation for Country-Specific VARX* Models

<table>
<thead>
<tr>
<th>Country</th>
<th>VARX*(p_i, q_i)</th>
<th>Domestic Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>Δp</td>
</tr>
<tr>
<td>US</td>
<td>F(4,70)</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e - p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e - p</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.82†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.67†</td>
</tr>
<tr>
<td>EA</td>
<td>F(4,61)</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.03†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.05</td>
</tr>
<tr>
<td>China</td>
<td>F(4,71)</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.52†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.25†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>F(4,73)</td>
<td>3.70†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.46†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.70†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.51</td>
</tr>
<tr>
<td>UK</td>
<td>F(4,67)</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.32†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.18</td>
</tr>
<tr>
<td>Sweden</td>
<td>F(4,73)</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.02†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.13</td>
</tr>
<tr>
<td>Switz.</td>
<td>F(4,73)</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.41†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.57†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.26†</td>
</tr>
<tr>
<td>Norway</td>
<td>F(4,67)</td>
<td>3.30†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.62†</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.18</td>
</tr>
</tbody>
</table>

Note: † denotes statistical significance at the 5% level or less.
Table 5: F Statistics for Testing the Weak Exogeneity of the Country-specific Foreign Variables and Oil Prices

<table>
<thead>
<tr>
<th>Country</th>
<th>y^*</th>
<th>Δp^*</th>
<th>q^*</th>
<th>ρ^S</th>
<th>ρ^L</th>
<th>p^o</th>
<th>$e^-p^$</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>0.16</td>
<td>1.47</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.02</td>
</tr>
<tr>
<td>Euro Area</td>
<td>0.04</td>
<td>0.00</td>
<td>2.25</td>
<td>0.22</td>
<td>2.05</td>
<td>1.99</td>
<td>-</td>
</tr>
<tr>
<td>China</td>
<td>1.63</td>
<td>0.50</td>
<td>1.29</td>
<td>1.06</td>
<td>1.35</td>
<td>0.19</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>1.27</td>
<td>1.41</td>
<td>0.34</td>
<td>0.48</td>
<td>0.53</td>
<td>1.81</td>
<td>-</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3.01†</td>
<td>0.63</td>
<td>0.07</td>
<td>1.09</td>
<td>1.37</td>
<td>0.57</td>
<td>-</td>
</tr>
<tr>
<td>Sweden</td>
<td>2.52</td>
<td>0.77</td>
<td>0.17</td>
<td>0.39</td>
<td>0.39</td>
<td>0.89</td>
<td>-</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.50</td>
<td>0.25</td>
<td>0.27</td>
<td>1.02</td>
<td>0.10</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>Norway</td>
<td>0.93</td>
<td>0.57</td>
<td>0.41</td>
<td>0.14</td>
<td>0.87</td>
<td>0.29</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: † denotes statistical significance at the 5% level.

Table 6: Number of Rejections of the Null of Parameter Constancy per Variable Across the Country Specific Models at the 5 Percent Level

<table>
<thead>
<tr>
<th>Alternative Test Statistics</th>
<th>y</th>
<th>Δp</th>
<th>q</th>
<th>$e - p$</th>
<th>ρ^S</th>
<th>ρ^L</th>
<th>Numbers(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PK_{sup}</td>
<td>1(3.9)</td>
<td>2(7.7)</td>
<td>3(15.8)</td>
<td>1(4.0)</td>
<td>1(4.0)</td>
<td>1(8.3)</td>
<td>9(6.7)</td>
</tr>
<tr>
<td>PK_{msq}</td>
<td>1(3.9)</td>
<td>1(3.9)</td>
<td>3(15.8)</td>
<td>0(0.0)</td>
<td>1(4.0)</td>
<td>1(8.3)</td>
<td>7(5.2)</td>
</tr>
<tr>
<td>\mathcal{N}</td>
<td>0(0.0)</td>
<td>5(19.2)</td>
<td>4(21.1)</td>
<td>2(8.0)</td>
<td>7(28.0)</td>
<td>5(41.7)</td>
<td>23(17.2)</td>
</tr>
<tr>
<td>robust-\mathcal{N}</td>
<td>1(3.9)</td>
<td>1(3.9)</td>
<td>3(15.8)</td>
<td>1(4.0)</td>
<td>3(12.0)</td>
<td>3(25.0)</td>
<td>12(9.0)</td>
</tr>
<tr>
<td>QLR</td>
<td>13(50.0)</td>
<td>11(42.3)</td>
<td>8(42.1)</td>
<td>10(40.0)</td>
<td>15(60.0)</td>
<td>7(58.3)</td>
<td>64(47.8)</td>
</tr>
<tr>
<td>robust-QLR</td>
<td>1(3.9)</td>
<td>3(11.5)</td>
<td>4(21.1)</td>
<td>1(4.0)</td>
<td>2(8.0)</td>
<td>1(8.3)</td>
<td>12(9.0)</td>
</tr>
<tr>
<td>MW</td>
<td>4(15.4)</td>
<td>7(26.9)</td>
<td>6(31.6)</td>
<td>6(24.0)</td>
<td>8(32.0)</td>
<td>6(50.0)</td>
<td>37(27.6)</td>
</tr>
<tr>
<td>robust-MW</td>
<td>2(7.7)</td>
<td>4(15.4)</td>
<td>2(10.5)</td>
<td>3(12.0)</td>
<td>2(8.0)</td>
<td>1(8.3)</td>
<td>14(10.5)</td>
</tr>
<tr>
<td>APW</td>
<td>13(50.0)</td>
<td>12(46.2)</td>
<td>8(42.1)</td>
<td>10(40.0)</td>
<td>15(60.0)</td>
<td>6(50.0)</td>
<td>64(47.8)</td>
</tr>
<tr>
<td>robust-APW</td>
<td>2(7.7)</td>
<td>2(7.7)</td>
<td>3(15.8)</td>
<td>3(12.0)</td>
<td>2(8.0)</td>
<td>1(8.3)</td>
<td>13(9.7)</td>
</tr>
</tbody>
</table>

The test statistics PK_{sup} and PK_{msq} are based on the cumulative sums of OLS residuals, \mathcal{N} is the Nyblom test for time-varying parameters and QLR, MW and APW are the sequential Wald statistics for a single break at an unknown change point. Statistics with the prefix robust denote the heteroskedasticity robust version of the tests. All tests are implemented at the 5% significance level.
Table 7: Contemporaneous Effects of Foreign Variables on their Domestic Counterparts

<table>
<thead>
<tr>
<th>Country</th>
<th>y</th>
<th>Δp</th>
<th>q</th>
<th>ρ^S</th>
<th>ρ^L</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>0.35</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(3.49)</td>
<td>(0.61)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[4.21]</td>
<td>[0.50]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euro Area</td>
<td>0.50</td>
<td>0.24</td>
<td>1.15</td>
<td>0.09</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>(4.62)</td>
<td>(3.05)</td>
<td>(13.89)</td>
<td>(3.63)</td>
<td>(8.07)</td>
</tr>
<tr>
<td></td>
<td>[3.93]</td>
<td>[3.32]</td>
<td>[8.92]</td>
<td>[3.96]</td>
<td>[8.05]</td>
</tr>
<tr>
<td>China</td>
<td>-0.10</td>
<td>0.60</td>
<td>-</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(-0.77)</td>
<td>(2.12)</td>
<td></td>
<td>(1.98)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[-0.70]</td>
<td>[2.29]</td>
<td>[3.93]</td>
<td>[2.26]</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.51</td>
<td>-0.04</td>
<td>0.66</td>
<td>-0.04</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>(3.30)</td>
<td>(-0.35)</td>
<td>(5.26)</td>
<td>(-0.74)</td>
<td>(4.60)</td>
</tr>
<tr>
<td></td>
<td>[3.51]</td>
<td>[-0.40]</td>
<td>[5.55]</td>
<td>[-0.81]</td>
<td>[4.95]</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.34</td>
<td>-0.16</td>
<td>0.84</td>
<td>0.27</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>(2.34)</td>
<td>(-0.66)</td>
<td>(12.66)</td>
<td>(1.63)</td>
<td>(5.19)</td>
</tr>
<tr>
<td></td>
<td>[2.38]</td>
<td>[-0.66]</td>
<td>[13.33]</td>
<td>[1.48]</td>
<td>[4.86]</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.17</td>
<td>1.23</td>
<td>1.15</td>
<td>1.25</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>(3.55)</td>
<td>(6.03)</td>
<td>(10.13)</td>
<td>(4.42)</td>
<td>(7.61)</td>
</tr>
<tr>
<td></td>
<td>[3.33]</td>
<td>[6.19]</td>
<td>[11.61]</td>
<td>[3.59]</td>
<td>[5.69]</td>
</tr>
<tr>
<td>Switzerland</td>
<td>0.47</td>
<td>0.59</td>
<td>0.70</td>
<td>0.15</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>(4.05)</td>
<td>(4.44)</td>
<td>(5.39)</td>
<td>(2.25)</td>
<td>(5.67)</td>
</tr>
<tr>
<td></td>
<td>[3.79]</td>
<td>[4.01]</td>
<td>[2.18]</td>
<td>[2.97]</td>
<td>[5.92]</td>
</tr>
<tr>
<td>Norway</td>
<td>0.81</td>
<td>1.12</td>
<td>1.03</td>
<td>0.15</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>(1.89)</td>
<td>(6.90)</td>
<td>(8.24)</td>
<td>(1.35)</td>
<td>(4.18)</td>
</tr>
<tr>
<td></td>
<td>[2.06]</td>
<td>[6.84]</td>
<td>[8.61]</td>
<td>[0.84]</td>
<td>[3.43]</td>
</tr>
</tbody>
</table>

Note: Standard t-ratios are reported in round brackets, (). White’s heteroskedastic robust t-ratios are given in square brackets, [].
Table 8: Average Pair-wise Cross-Section Correlations of All Variables and Associated Model’s Residuals

<table>
<thead>
<tr>
<th>Country</th>
<th>Real Output VAR</th>
<th>Real Output VARX*</th>
<th>Inflation VAR</th>
<th>Inflation VARX*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Levels</td>
<td>1st Diff</td>
<td>Residuals</td>
<td>Residuals</td>
</tr>
<tr>
<td>U.S.</td>
<td>0.96</td>
<td>0.15</td>
<td>0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>E.A.</td>
<td>0.96</td>
<td>0.14</td>
<td>0.11</td>
<td>-0.01</td>
</tr>
<tr>
<td>China</td>
<td>0.96</td>
<td>0.02</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>Japan</td>
<td>0.92</td>
<td>0.03</td>
<td>-0.03</td>
<td>-0.08</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.95</td>
<td>0.08</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.96</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>Switz.</td>
<td>0.93</td>
<td>0.13</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>Norway</td>
<td>0.96</td>
<td>0.08</td>
<td>0.05</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Real Equity Prices VAR</th>
<th>Real Equity Prices VARX*</th>
<th>Real Exchange Rate VAR</th>
<th>Real Exchange Rate VARX*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Levels</td>
<td>1st Diff</td>
<td>Residuals</td>
</tr>
<tr>
<td>U.S.</td>
<td>0.59</td>
<td>0.39</td>
<td>0.34</td>
</tr>
<tr>
<td>E.A.</td>
<td>0.58</td>
<td>0.42</td>
<td>0.39</td>
</tr>
<tr>
<td>China</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Japan</td>
<td>0.37</td>
<td>0.31</td>
<td>0.21</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.61</td>
<td>0.40</td>
<td>0.38</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.57</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>Switz.</td>
<td>0.54</td>
<td>0.26</td>
<td>0.19</td>
</tr>
<tr>
<td>Norway</td>
<td>0.61</td>
<td>0.36</td>
<td>0.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short-Term Interest Rate VAR</th>
<th>Short-Term Interest Rate VARX*</th>
<th>Long-Term Interest Rate VAR</th>
<th>Long-Term Interest Rate VARX*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Levels</td>
<td>1st Diff</td>
<td>Residuals</td>
</tr>
<tr>
<td>U.S.</td>
<td>0.38</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>E.A.</td>
<td>0.49</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>China</td>
<td>0.32</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Japan</td>
<td>0.47</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>U.K.</td>
<td>0.51</td>
<td>0.12</td>
<td>0.09</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.46</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Switz.</td>
<td>0.33</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Norway</td>
<td>0.40</td>
<td>0.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Note: VAR residuals are based on cointegrating VAR models with domestic variables only and oil prices. VARX* residuals refer to the country models with country specific foreign variables.
Table 9: Correlation Coefficients of Country Specific Foreign Variables using Fixed and Time-Varying Trade Weights

<table>
<thead>
<tr>
<th>Country</th>
<th>Output Levels</th>
<th>Output 1st Difference</th>
<th>Inflation Levels</th>
<th>Inflation 1st Difference</th>
<th>Real Equity Prices Levels</th>
<th>Real Equity Prices 1st Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>1.00</td>
<td>0.93</td>
<td>0.89</td>
<td>0.70</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>E.A.</td>
<td>1.00</td>
<td>0.91</td>
<td>0.87</td>
<td>0.53</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>China</td>
<td>1.00</td>
<td>0.91</td>
<td>0.43</td>
<td>0.03</td>
<td>0.99</td>
<td>0.98</td>
</tr>
<tr>
<td>Japan</td>
<td>1.00</td>
<td>0.88</td>
<td>0.79</td>
<td>0.53</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>U.K.</td>
<td>1.00</td>
<td>0.98</td>
<td>0.95</td>
<td>0.75</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.00</td>
<td>0.98</td>
<td>0.89</td>
<td>0.62</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Switz.</td>
<td>1.00</td>
<td>0.99</td>
<td>0.90</td>
<td>0.60</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Norway</td>
<td>1.00</td>
<td>0.98</td>
<td>0.91</td>
<td>0.66</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Short-Term Interest Rates Levels</th>
<th>Short-Term Interest Rates 1st Difference</th>
<th>Long-Term Interest Rates Levels</th>
<th>Long-Term Interest Rates 1st Difference</th>
<th>Real Exchange Rates Levels</th>
<th>Real Exchange Rates 1st Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>0.98</td>
<td>0.96</td>
<td>1.00</td>
<td>0.99</td>
<td>0.97</td>
<td>0.85</td>
</tr>
<tr>
<td>E.A.</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.81</td>
<td>0.85</td>
</tr>
<tr>
<td>China</td>
<td>0.96</td>
<td>0.93</td>
<td>0.99</td>
<td>0.94</td>
<td>0.80</td>
<td>0.64</td>
</tr>
<tr>
<td>Japan</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.88</td>
<td>0.62</td>
</tr>
<tr>
<td>U.K.</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Switz.</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>Norway</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>0.99</td>
<td>0.99</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Figure 1: Generalised Impulse Responses of a Negative Unit (-1σ) Shock to U.S. Real Equity Prices
(Bootstrap Mean Estimates together with 90% Bootstrap Bounds)
Figure 2: Generalised Impulse Responses of a Positive Unit (+1σ) Shock to Oil Prices in the U.S. Model
(Bootstrap Mean Estimates together with 90% Bootstrap Bounds)
Figure 3: Generalised Impulse Response of a Positive Unit (+1σ) Shock to U.S. Short-Term Interest Rate
(Bootstrap Mean Estimates together with 90% Bootstrap Bounds)
Figure 4: Impulse Responses of a Positive Unit (+1σ) Shock to U.S. Monetary Policy
Under Ordering A: {OIL, IR, LIR, EQ, INFL, GDP}
(Bootstrap Mean Estimates together with 90% Bootstrap Bounds)
Figure 5: Impulse Responses of a Positive Unit (+1σ) Shock to U.S. Monetary Policy
Under Ordering B: {OIL, LIR, EQ, INFL, GDP, IR}
(Bootstrap Mean Estimates together with 90% Bootstrap Bounds)
European Central Bank working paper series

For a complete list of Working Papers published by the ECB, please visit the ECB’s website (http://www.ecb.int)

518 “Term structure and the sluggishness of retail bank interest rates in euro area countries” by G. de Bondt, B. Mojon and N. Valla, September 2005.

526 “On some fiscal effects on mortgage debt growth in the EU” by G. Wolswijk, September 2005.

531 “Market power, innovative activity and exchange rate pass-through in the euro area” by S. N. Brissimis and T. S. Kosma, October 2005.

“Discretionary policy, multiple equilibria, and monetary instruments” by A. Schabert, October 2005.

“Global inflation” by M. Ciccarelli and B. Mojon, October 2005.

“Lending booms in the new EU Member States: will euro adoption matter?” by M. Brzoza-Brzezina, November 2005.

“Forecasting the yield curve in a data-rich environment: a no-arbitrage factor-augmented VAR approach” by E. Mönch, November 2005.

“Eigenvalue filtering in VAR models with application to the Czech business cycle” by J. Beneš and D. Vávra, November 2005.

“Underwriter competition and gross spreads in the eurobond market” by M. G. Kollo, November 2005.

“Global bond portfolios and EMU” by P. R. Lane, November 2005.

“The role of real wage rigidity and labor market frictions for unemployment and inflation dynamics” by K. Christoffel and T. Linzert, November 2005.

“Ricardian fiscal regimes in the European Union” by A. Afonso, November 2005.

“When did unsystematic monetary policy have an effect on inflation?” by B. Mojon, December 2005.

“The determinants of ‘domestic’ original sin in emerging market economies” by A. Mehl and Julien Reynaud, December 2005.

“Forecasting the central bank’s inflation objective is a good rule of thumb” by M. Diron and B. Mojon, December 2005.

“Real versus financial frictions to capital investment” by N. Bayraktar, P. Sakellaris and P. Vermeulen, December 2005

“Is time ripe for a currency union in emerging East Asia? The role of monetary stabilisation” by M. Sánchez, December 2005

“Exploring the international linkages of the euro area: a global VAR analysis” by S. Dées, F. di Mauro, M. H. Pesaran and L. V. Smith, December 2005