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Abstract 
 
We provide a methodology to disentangle the long-run relation between variables from 
their own dynamics. Macroeconomic and aggregate financial series have a high degree 
of inertia. If this persistence is not properly accounted for, spurious correlations will 
give rise to paradoxes. Our procedure shows that the Uncovered Interest Parity (UIP) 
puzzle evaporates when the dynamics are properly modelled: the forward premium 
loses all the predictive power that it seemed to have. We also show how the stock 
market grows in long cycles around a trend given by GDP, in a stable relation that does 
not break. 
 
 
Key Words: ACF-based GLS procedure, Autocorrelation Function, Long memory, 

Nonlinearities, Uncovered Interest Parity anomaly 
 

JEL classification: E37 
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Non Technical Abstract

Explaining the dynamics of national output has puzzled economists for a

long time. It is crucial for the design of economic policies, that governments

and central banks understand the lags with which responses to shocks and

policies take effect. The timing and magnitude of their intervention depends

on it.

In a previous paper, Abadir and Talmain (2002), we designed an economic

model which had novel implications for the way in which these dynamics are

represented. We found that national output should have the following time

path: it continues on the same trajectory (either growth or stagnation) for

a long time, then changes direction abruptly. This result, predicted from

theory, was also validated by UK and US data. For example, the theory

explains why the start (or end) of recessions and booms is so sudden, and

why they are so persistent.

The premise of this paper is our recent findings, Abadir et al. (2005),

that most macroeconomic variables, including all the variables studied in the

celebrated Nelson Plosser (1982) paper, display this same type of non-linear

persistence. This non-standard nature of this dynamics becomes more evi-

dent when looking at the AutoCorrelation function (ACF) of these variables.

ACFs depict the decay of memory with time, as they evaluate the correlation

of a series with its past. Figures 1 and 2 show the ACFs of the logarithms

of the exchange rate and the S&P 500 stock market index (together with a

fitting that is explained in the paper). One immediately notice the similarity

in the shape of these function, and how well-structured their graphs are when

compared to the time-plot of the series themselves, Figure 9 and 10. Most

research in macroeconomics and in finance assumes a much simpler type of

dynamic behavior based on autoregressive processes.

When conducting regression analysis on the data, there are at least two

problems associated with a misidentification of the dynamic behavior. First,

the regressions will purposedly uncover some relationships between variables

when, in fact, no such relationship holds, i.e. one will find “puzzles”. Sec-

ond, even when a relationship between variables really holds, the standard
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econometric analysis will produce poor results, i.e. bias, inconsistent and

unstable parameter estimates.

Clearly, an appropriate tool for data analysis is needed that can handle

the type of dynamic process observed in the data. In this paper, we provide

such a tool and we illustrate how it will succeed where standard econometric

analysis has struggled.

We provide two applications which illustrate the two problems of misiden-

tification of dynamics. We analyze with our method the so-called ‘Uncovered

Interest Parity paradox’ to illustrate the “puzzle” aspect. Standard regres-

sion analysis of the spot and forward exchange rates seems to imply that

investors are systematically choosing the wrong currency to bet on in the

foreign exchange markets. After taking this type of persistence into account,

the apparent systematic error disappears!

For the second aspect, we apply our new technique to the stock market

market. We find that the movements of the stock market are accounted for by

the level of national output (the ‘fundamentals’) and by the stock market’s

own cyclical adjustment process (possibly coming from risk aversion). As

anticipated from theory, the fundamentals prevail in determining the long-

run direction of the markets, though one wouldn’t have inferred that from

applying standard exiting tools to the data.
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The literature contains a number of paradoxes or puzzles, instances in

which some very natural relationship between economic or financial variables

seem to be violated. For instance, the very intuitive Uncovered Interest

Parity (UIP) theorem, that should survive in a wide range of environments,

has been strongly rejected. Yet, many of us feel that the theory is sound,

and that what is needed is a fresh look at the statistical analysis.

It is well known that even the simplest dynamics, if not adequately ac-

counted for, can cause biases and inconsistencies in the estimates of the re-

lationship between the variables; e.g. see Griliches (1961) and Maddala and

Rao (1973). One can see patterns in the dynamics of a series by inspecting

its Auto-Correlation Function (ACF), in addition to its usual time-domain

and frequency-domain depictions. Figures 1 and 2 show the ACFs of the

logarithms of the exchange rate and the S&P 500 stock market index, the

fitted curve in each of these graphs to be discussed momentarily. One can

immediately observe how similar the shape of these two functions are, and

how strong the autocorrelation is even at long lags. These well-structured

ACFs are striking to anyone used to the seeing the jagged time-paths of these

variables.

The strong autocorrelation means that inaccurate approximations of the

dynamics are likely to lead to paradoxical results such as the UIP puzzle.

Accounting for this persistence is therefore paramount. We will see that

this common form of long memory is related to the one uncovered in Abadir

and Talmain (2002), and cannot be approximated parsimoniously by simple

linear dynamics. Integration and co-integration theory has developed into

a huge new branch of econometrics to try to deal with series having a high

degree of persistence, but a defining feature of integration is that it assumes

that the dynamics of individual series can be approximated parsimoniously

by a class of linear processes. This is why a new econometric methodology

is needed to deal with this type of nonlinear long-memory.1

1A time series is said to have long memory if its autocorrelations decay very slowly,

more so than the exponential rate of stationary autoregressive models but faster than

the infinite memory of unit roots. Unlike the latter, long-memory series revert to their

(possibly trending) means.
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We exploit the common structure of these ACFs to devise a simple new

method to disentangle the comovements of variables from the effects of per-

sistence. As an illustration, we provide two applications of different natures

to illustrate the versatility and potential of our method. These applications

should not be misconstrued as complete modelling exercises, as such addi-

tional endeavours would be far too substantial to fit in a single study. The

first application shows how our method dramatically reverses the counterin-

tuitive finding about the forward premium in the UIP puzzle, revealing the

insignificance of the premium’s role. The second application is about signif-

icance, rather than the lack of it. It shows how the stock market grows in

long cycles around a trend given by GDP, in a stable relation that does not

break and that fits better than existing methods. Inter alia, it also predicts

the rebound that followed the overreaction to the oil crisis in 1973, and the

bursting of the dot-com bubble of the late 1990’s.

The plan of the paper is as follows. Section I presents a baseline version

of the UIP puzzle. Section II gives some details about long memory and

outlines a simple two-step version of our procedure. We establish the type

of persistence found in the foreign exchange rate, showing how the UIP puz-

zles evaporates after the dynamics of the exchange rate is fully accounted

for. Section III gives an application of our fully-iterated procedure to the

stock market, while the final section concludes. The full procedure and some

related technical details are given in the Appendix.

I. The UIP theorem and the puzzle

One test for the efficiency of the foreign exchange market, going back

to Fisher (1930), is that “speculators” will equalize the expected return on

the similar short term assets across countries once converted to the same

currency. However, a large number of authors analyzing the data have found

systematic deviations from this norm. The data seemed to lend support to

a very substantial negative relationship between the returns on holding a

currency and the forward premium on it. This UIP puzzle is also known

as the forward premium anomaly. Many authors have studied this very
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counterintuitive finding, and excellent summaries of these are found in Lewis

(1995) and Engel (1996).

This section contains two parts: the three equivalent formulations of the

baseline UIP theorem, followed by the empirical puzzle. The first formulation

to be given in (2), is in terms of excess returns and sets the stage for a simple

graphical presentation. The second, in (3), is in terms of depreciation of

a currency, and is widely used in the literature. The third, in (4), is in

terms of the levels of the variables, and shows how the UIP regression can

be expressed in terms of our estimation method. One will note that the

three forms are derived form one another by adding or subtracting variables

from both sides of the equation. Hence, the equivalence between these three

forms is preserved by linear transformation of the equations. We also present

the results of the first UIP regression (2), by traditional methods, to verify

the presence of the puzzle in monthly data from the Bank of International

Settlements (BIS).

A. Three forms of the baseline UIP regression

Consider a US investor who, at time t, can invest either in a domestic

dollar-denominated bond or in a foreign sterling-denominated bond. The

nominal interest rate, paid at maturity t+1, is It for the domestic bond and

I∗t for the foreign bond. The interest rates It and I∗t are agreed upon and

known at time t. Let the exchange rate be St, such that one pound sterling

is worth St US dollars. Consider the following two strategies, each involving

an investment of $1 at time t:

1. Invest in the domestic bond. The yield at time t + 1 is It, which can

be approximated by it ≡ log (1 + It) since log (1 + It) ≈ It.

2. Invest in the foreign bond. The $1 is first converted at the current

exchange rate into £1/St. This amount is then invested in the foreign

bond at time t, to produce 1 + I∗t at time t + 1. Finally, converting

back into dollars at the new exchange rate St+1 gives (1 + I∗t )St+1/St,

and the approximate yield is i∗t + st+1 − st, where st ≡ logSt and
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i∗t ≡ log (1 + I∗t ). The difference ∆st+1 ≡ st+1 − st is the approximate

rate of depreciation of the US currency.

Ignoring transaction costs, the excess return on investing in foreign asset is

then defined as

(1) rt+1 ≡ i∗t − it +∆st+1.

The efficiency hypothesis implies that rt+1 should not be predictable. In par-

ticular, the forward premium (ft − st), where ft is the log of the forward rate

Ft, should have no explanatory power. We briefly consider three equivalent

formulations of a test for this hypothesis.

The first form of the UIP regression is as follows. A direct implementation

of the notion that excess returns should not be predictable is to estimate

(2) rt+1 = α+ β (ft − st) + εt+1.

Assuming for simplicity that Et (εt+1) = 0, the intercept α can be interpreted

as the average risk premium of the domestic agent investing in the foreign

bond and the slope β as the certainty-equivalent informational content of

today’s forward premium (ft − st) about the future excess return rt+1. The

puzzle is that the literature has found significantly negative estimates for β.

A higher premium (ft − st) means that the forward rate indicates that the

US$ is likely to depreciate, and yet the regression says that it is systematically

associated instead with positive excess returns being made on the US$. The

idea that agents are ready to pay more for an asset when they know it is

likely to become less attractive seem to fly in the face of market efficiency or

even of rationality. A positive β might have been excusable, but a very large

negative one is puzzling.

The second form of the UIP regression can be derived by using the Cov-

ered Interest Parity (CIP) relation. Consider an alternative strategy for

investing $1, which is to convert it into £1/St, invest this amount in the

foreign bond and sell forward the forthcoming (1 + I∗t ) /St sterling at the

forward rate Ft. Since all of these transactions can be completed today at

no risk, the yield on this strategy, i∗t + ft − st, must be equal to the yield it
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of investing in a domestic bond, by arbitrage. Hence, i∗t − it = − (ft − st).

By substituting this into (2), straightforward manipulations give the second

equivalent form of the UIP regression:

(3) ∆st+1 = α+ (1 + β) (ft − st) + εt+1.

Formulations (2) and (3) are equivalent, up to the CIP relation. Note that,

unlike the UIP relationship, one normally observes that the CIP holds almost

exactly in the major markets.

The third form of the UIP regression is obtained by recalling that∆st+1 ≡
st+1 − st and adding st to both sides of (3):

(4) st+1 = α+ (1 + β) ft − βst + εt+1.

This formulation is in terms of the levels of the variables, with st+1 as the

dependent variable and only εt+1 is contemporaneous to it in the equation.

B. The UIP puzzle

We obtained data from the BIS for the period January 1979 to Febru-

ary 2004. Running the regression (2) on the original data, Ordinary Least

Squares (OLS) gives

(5) r̂t+1 = 0.00454

(2.48)

[2.42]

−3.48 (ft − st)

(−5.25)
[−3.27]

where t-ratios and their Heteroskedastic and Autocorrelation-Consistent (HAC)

versions are given in parentheses and brackets, respectively. The RESET, a

test for omitted nonlinearities, gives 5.17, with a corresponding p-value of

2% from the F(1, 298) distribution. The following features stand out:

1. There is a substantial amount of autocorrelation and heteroskedasticity

left over in the residuals, as is evidenced by the difference between the

adjusted and unadjusted t-ratios.
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2. RESET indicates substantial omitted nonlinearities in the residuals,

coming from the absence of accounting for the nonlinear dynamics of

the variables, as we shall see in the following sections.

3. Comments 1 and 2 point to a misspecified regression. Nevertheless, in-

ference that is robust to standard autocorrelation and to heteroskedas-

ticity can be carried out using HAC t-ratios. They show that both

coefficients of the regression are significantly different from zero, the

second being substantially negative, though not as much as before.

It seems that UIP is violated if one were to believe these estimated para-

meters. A scatter plot of the excess return rt+1 (on the vertical axis) versus

the forward premium (ft − st) (on the horizontal axis) in Figure 3 tells the

story. The data form a funnel shape (indicating heteroskedasticity), with a

clear negative inclination (β < 0). As we shall show, these distortions are

due to the graph (or regression) missing a third dimension: the nonlinear

long-memory dynamics.

II. Uncovering the UIP puzzle: the two-step procedure

As mentioned in the introduction, it has been known for a long time

that incomplete modelling of the dynamics gives biased and inconsistent es-

timates, with biases persisting even as the sample becomes infinitely large.

There are two traditional solutions, and our method can be viewed as im-

plementing a generalization of one of these, in a nonstandard way. In the

following three subsections, we give a brief overview of the concepts involved,

present the simple two-step version of our procedure, then apply it to the

UIP puzzle.

A. Background

We have touched on long memory in a footnote in the introduction,

and we now give a short description of it. More details are given in Beran

(1992), Robinson (1994), Baillie (1996), Abadir and Taylor (1999). The ACF
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ρ1, ρ2, . . . of a process {zt}Tt=1 is the sequence of correlation of the variable
with its τ -th lag:

ρτ ≡
cov (zt, zt−τ )p
var (zt) var (zt−τ)

,

where ρ0 ≡ 1. Long memory is a case where this function of τ decays very
slowly as τ increases, typically hyperbolically and hence much slower than

the exponential rate of decay obtained for stationary Auto-Regressive (AR)

models. Unlike unit root models, shocks to a long-memory process do not

have an everlasting impact.

There are two traditional treatments to deal with autocorrelated errors

in the time domain. The first possibility is to use Generalized Least Squares

(GLS) instead of OLS, thereby correcting the original variables for autocor-

relation. For example, consider the simple illustrative model

zt = βxt + ut,(6)

with ut = ρut−1 + εt and εt ∼ IID
¡
0, σ2

¢
,

where |ρ| < 1 and εt are independently and identically distributed (i.i.d.) for
t = 1, 2, . . . T . To estimate this model, taking into account the autocorre-

lation of ut, the variables of the first equation (zt and xt) are transformed,

then they are regressed by OLS to estimate the parameter β of the relation.

To illustrate, the vector z ≡ (z1, . . . , zT )0 is transformed into

(7) Az ≡



ϕ 0 0 · · · 0

−ρ 1 0 · · · 0

0 −ρ 1
. . .

...
...

. . . . . . . . . 0

0 · · · 0 −ρ 1





z1

z2

z3
...

zT


=



ϕz1

z2 − ρz1

z3 − ρz2
...

zT − ρzT−1


,

where an estimate of ρ is plugged in, and where ϕ is usually chosen as
p
1− ρ2

to stabilize the variance of the transformed residuals. The lower triangular

matrix A that premultiplies the vector of zt-values arises from the Cholesky
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decomposition of the autocorrelation matrix

(8) R ≡


1 ρ ρ2

ρ 1 ρ
. . .

ρ2 ρ 1
. . .

. . . . . . . . .

 =
¡
1− ρ2

¢
LL0,

where L ≡ A−1. Our procedure will use Cholesky decompositions for a more
general pattern of autocorrelations, as we will see.

If ut were following an AR(p), then the lower triangular matrix A in (7)

would contain p + 1 nonzero diagonals, and the first p rows would have a

normalization as was done for ϕ; e.g. see Chapter 5 of Amemiya (1985).

When the variables have long memory, as is in our case, one needs a very

large p to make this transformation. We shall see how to overcome this

problem by a new method based on the ACF.

The second standard procedure is to estimate a more general model, nest-

ing both components of (6), by using an Error-Correction Mechanism (ECM)

or Autoregressive Distributed Lag (ADL) model; e.g. see Section IIIA below

or Hendry et al. (1984) for an introduction. Parsimony of such a represen-

tation could be problematic if the variables have long memory, as we will

show.

B. The generalization into our two-step procedure

We now outline the basics of our procedure. Consider the general model

(9) zt = z̃t + ut, t = 1, 2, . . . T,

where z̃t represents the ‘fundamental’ value of zt, while ut are the residual

dynamics of adjustment towards such a value. We will assume that the

variables of this equation have been de-meaned. Denoting the T × 1 vector
of stacked zt values by z ≡ (z1, . . . , zT )0, and similarly for z̃t and ut, we write
z = ez+u. We may wish to think of ez as the typical linear relation ez =Xβ

and whereX may or may not contain lagged dependent variables. Note that

(6) is a special case of this model.
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Now z and ez (hence possibly u) have long memory which needs to be
accounted for. A GLS-type procedure is to:

1. Cholesky-decompose the autocorrelation matrix of z, namely

R ≡



1 ρ1 ρ2
. . . ρT−2 ρT−1

ρ1 1 ρ1
. . . . . . ρT−2

ρ2 ρ1
. . . . . . . . . . . .

. . . . . . . . . . . . ρ1 ρ2

ρT−2
. . . . . . ρ1 1 ρ1

ρT−1 ρT−2
. . . ρ2 ρ1 1


,

intoR = θLL0, where L is lower-triangular. The scalar (1×1) factor of
proportionality θ is defined by making the last element of L−1 equal to

1, just as withA ≡ L−1 of (7). In the example of (8), we get θ = 1−ρ2.
See the Appendix for further details.

2. Then, the transformed data Az and Aez can be regressed by tradi-
tional methods. When ez =Xβ, the transformation Aez boils down to
transforming X into AX.

The Cholesky decomposition command is built-in as standard in all matrix-

handling languages, such as Gauss and Matlab.

In the case of an AR(1), we have ρτ = ρτ , so knowledge of ρ allows us to

fill the whole R matrix. However, in the general case, estimating R requires

estimating T − 1 parameters ρτ , which is tantamount to infeasible GLS. Our
solution is to fit the ACF of z, using a variant of the functional form in

Abadir and Talmain (2002)

(10) ρτ ≈
1− a [1− cos (ωτ)]

1 + bτ c
,

with only 4 parameters to estimate rather than T − 1. The analytical jus-
tification for this form is now given, with the empirical evidence following

immediately afterwards.
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Abadir and Talmain (2002) showed that GDP and other variables driven

by it in their model follow a new type of mean-reverting long-memory process,

though their econometric context was that of a reduced form for a single

variable in the ACF domain, rather than the new idea of incorporating ACFs

into multivariate time-domain estimation. The shape of the ACF of this long-

memory process, derived from an economic model, was very different from

those predicted by traditional Auto-Regressive Integrated Moving-Average

(ARIMA) models, including the linear fractional I(d) case. The empirical

ACF of GDP for the US, UK and other developed nations turned out to

have the shape predicted by our theoretical derivations. The functional form

of the ACF in Abadir and Talmain (2002) is just the denominator of (10),

which controls the decay of memory, and we have added here the numerator.

The justification for this is that we need to consider rates, as well as levels

of variables, and the ACF of Abadir and Talmain (2002) is only valid for

the latter. The numerator accommodates short-term cycles. When a = 0

or ω = 0, we are back to the old form of the ACF, so the modification is

compatible with variables in either type of format: levels or rates.

C. Application of our ACF-based procedure to the UIP puzzle

Using nonlinear LS, we fit (10) to the US$-UK£ exchange rate data that

we have. We get the estimate

(11) ρ̂τ =
1− 0.99 [1− cos (0.0517τ)]

1 + 0.0118τ 0.982
.

The original and fitted data are depicted in Figure 1, and reveal a striking

accuracy of this simple functional form for the ACF. The shape of the em-

pirical ACF reveals the presence of substantial memory. Perceptive traders

may rationally take into account the persistent nature of the former series.

Consequently, one must take into account the persistence in the time series

before attempting to run a regression such as (2).

After transformation of the data in (2), including the constant, we obtain
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the following estimates

(12) r̂acft+1 = 0.0000250

(0.01)

[0.03]

−1.35 ¡facft − sacft

¢
(−0.60)
[−0.48]

,

where the superscript “acf” denotes the transformed variables. The RESET

for omitted nonlinearities is now 0.43, with a p-value of 51% indicating that

there is no leftover nonlinearities. We can see that the HAC adjustment

makes almost no difference to the t-ratios now, so there is very little resid-

ual dynamics or heteroskedasticity leftover. Both estimated coefficients are

insignificant, as theory had predicted. The transformation has changed the

story in a dramatic way. Once the dynamics of the problem are properly

taken care of, the forward premium (ft − st) has no predictive power at all

for the excess returns rt+1, neither linearly (because β̂ is insignificant) nor as

a nonlinear function (because the RESET statistic is insignificant).

The contrast is even more striking if we compare the bivariate scatter

plots of rt+1 and (ft − st), before and after the ACF-based transformation,

in Figures 3 and 4, respectively. With the original data, there seemed to be a

clear negative relation between rt+1 and (ft − st). After the transformation,

it looks like a round ‘cloud’ with no particular tendency or clear deformation,

which is the way that the scatter plot of two independent variables should be,

after standardization of the scale for both axes. The relation found at the be-

ginning between these variables was spurious, and was just an artifact of the

long memory of the variables involved in the regression, and the incomplete

modelling of these dynamics. Of course, we could improve our results further

by including risk premia, transaction costs and/or peso problems. What we

have done here is to show that our simple dynamics already provide a lot of

explanatory power for the series. Implementing the fully iterative ML proce-

dure of the Appendix, we get comparable results to the two-step GLS of this

section. For example, instead of (11), we get

ρ̂τ =
1− 1.07 [1− cos (0.0541τ)]

1 + 0.0218τ 0.949

for the ACF.
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Engel and Hamilton (1990), Diebold et al. (1994), Baillie and Bollerslev

(1994, 2000) have presented evidence of long swings and long memory in

exchange rates, but have not used (11). Once the nonlinear long memory is

accounted for, the forward premium loses all of its predictive power. This

nonlinear long memory is close to a I(1) process, as shown in Abadir and

Talmain (2002, p.765). Indeed, if the set of allowable processes is restricted

to autoregressive models, then the near random walk process of Engel and

West (2004) becomes the most accurate approximation.

III. The stock market application

In a monopolistically competitive economy, firms will make an economic

profit, which can be thought of as dividends in a Modigliani-Miller setting. In

equilibrium, the value of a firm is equal to the (stochastically) discounted flow

of its dividends. However, these dividends are not completely exogenous in a

general equilibrium framework. Talmain (2003) showed that, on a balanced

growth path, the capitalization of stock market should be proportional to

GDP.

In the second application of our estimation procedure, we show that the

S&P 500 index does not have the unit root often debated in the literature

on stock market efficiency. Rather, it grows in long cycles guided by the

trend line given by GDP, as seen in Figure 5 where both variables are in

logarithms of real US$. There are precursors to both econometric components

of our result. De Bondt and Thaler (1985, 1987) first found long cycles

in individual stocks, and more recently Cooper et al. (2004) give a long

subsequent reference list; while Cavaliere (2001) devised a nonparametric

test (but no model) that detected the presence of long memory in S&P 500

and rejected the unit root hypothesis.

In this section, we study this relation by two different methods: the

standard one (unit roots and co-integration analysis) and our procedure. We

also show that standard methods trying to model S&P 500 would end up

with estimated parameters that are unstable, often oscillating as more data

becomes available, trying to mimic the nonlinearity of the process. S&P is
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therefore not an integrated process, and so it is not valid to use co-integration

as a tool for analyzing this subject.

A. The estimates from standard analysis

Define yt and st to be the logarithms of the annual real GDP and of the

real stock market index, respectively.2 Consider the error-correction model

of st in terms of yt,

∆st = α+
¡
β1∆st−1 + · · ·+ βp∆st−p

¢
+
¡
γ1∆yt−1 + · · ·+ γq∆yt−q

¢
(13)

−δ (st−1 − yt−1) + δ1yt−1 + εt,

where the are no contemporaneous variables on the right-hand side, apart

from εt. If δ 6= 0, the error-correction mechanism is defined by the expression

−δ (st−1 − yt−1) + δ1yt−1 = −δ (st−1 − λyt−1) ,

where λ ≡ 1 + δ1/δ. The ECM represents the long-run relationship between

s and y in ‘equilibrium’: se = λye. The long-run proportionality between

se and ye can be investigated by testing the hypothesis H0: δ1 = 0. Let

dt−1 be the deviation at time t− 1 of st−1 from its long-term value se, that

is, dt−1 ≡ st−1 − se. This deviation will pull st back towards its long-term

equilibrium value by δdt−1 when δ > 0. A small δ indicates a weak tendency

for return to the long-term equilibrium.

Hendry and Von Ungern-Sternberg (1980) generalize this model to include

an Integral Correction Mechanism (ICM), where cumulative imbalances of
2We use the S&P 500 as our stock index. The other variables we need are an aggregate

price index and real output which, unlike a stock index, is only available at low frequency.

To avoid this seasonality problem interfering with the results, we use annual data. Real

annual GDP is available from National Accounts. The consumer price index CPI is also

available from the same source at a monthly frequency. Theoretically, the value of firms is

related at each moment in time with current output. However the figure for annual GDP

is the production throughout the year. Hence, it must be related to an average stock index

over the year. We first construct the average daily close of the S&P 500 at the highest

frequency at which the CPI is available. Next, we divide this average by the CPI to obtain

an index of the real value of the stock market. Finally, we convert this real stock market

index into a yearly index.
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(st−1 − yt−1) play a role in the catching-up of st with its ‘equilibrium’ value.

This is an important mechanism. When equity prices increase faster than

their fundamental value, they build up the wealth of the stockholders faster

than on a balanced growth path. This wealth buildup creates the condition

for a tendency-reversal when stockholders try to convert their capital gains

into additional discretionary spendings. Other factors, such as capital ac-

cumulation, pull in the same direction. We summarize all of these factors

in one variable, the adjustment overhang, which is the cumulative sum of

departures of the log of S&P from its fundamentals. Define

xt−1 ≡
t−1X
j=1

(sj − yj) .

Adding this explanatory variable to the right-hand side of (13), we also need

to add a balancing linear trend, in case the sample did not start with (s0 − y0)

being at its equilibrium value of zero.

For S&P 500 over 1953-2003, we obtained the regression

d∆st = 0.00514 ∆st−1 −0.387 ∆st−2 −0.331 ∆st−3
(0.04) (−2.67) (−2.21)
−0.0456 xt−1 −0.00289 t +1.617 ∆yt−2,

(−4.73) (−2.30) (1.81)

where the t-ratios are in parentheses. Insignificant variables have been dropped

(except ∆st−1 which we will discuss in the next paragraph), and we do not

report the constant.

The regression indicates that the proportionality hypothesis holds, and

that the ICM plays a more important role than the ECM. The fit is R2 =

37.4%. Closer inspection reveals the fragility of the estimates. In Figure

6, the central lines present recursive parameter estimates as the sample is

increased to its full size, with ±2 standard-error bands for approximate 95%
confidence intervals. Panels 1-6 represent the parameters of the variables in

the order that they appear in the regression. For stability of the parameter

estimates, the central lines should be nearly horizontal. Significance of these

estimates occurs when the bands do not include zero. The bands for the
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initial estimates are understandably large, since these are based on the very

few first observations. Otherwise, we make the following two observations.

First, although most parameter estimates are significant, this is not con-

sistently so throughout the period. A sample stopping a few years short

would have found the first parameter significant, with the third and fifth in-

significant. The sixth is marginal throughout, depending on the significance

level that is chosen. Second, the parameter estimates are oscillating, trying

to replicate cycles in the nonlinear dynamics of the series.

Of course, one can include more lags of the variables in question, but

this worsens rather than improves stability, while not improving the fit since

these additional estimates are insignificant. Also, the RESET is 2.69, with a

borderline p-value of 10.8%, indicating potentially some omitted nonlineari-

ties.

B. The estimates from our ACF-based ML procedure

Once we look at the ACF of st, it becomes clear that st is not a unit-

root process, but rather the nonlinear long-memory type discussed earlier.

Fitting to it our theoretical functional form (10), we get the fitted curve in

Figure 2 where the approximation is again very good. However, because the

right-hand side of the relation is not zero in this application, the best fit will

be obtained from the fully iterative (rather than the two-step) procedure.

We now use the fully iterative ML procedure on the same period. We get

the joint estimates for the adjustment dynamics of ut as

ρ̂τ =
1− 1.041 [1− cos (0.612τ)]

1 + 0.169τ 1.109
,

and for the corresponding transformed variablesd∆sacft = −0.708 ∆sacft−1 −0.586 ∆sacft−2 −0.530 ∆sacft−3
(−5.59) (−4.21) (−4.66)
−0.0690 xacft−1 −0.00452 tacf −1.49 ∆yacft−1.

(−5.63) (−2.80) (−2.48)
Insignificant variables have been dropped, and the proportionality hypothesis

is accepted as before. In contrast to the unit roots and co-integration analysis,
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the coefficients are now very stable, throughout the sample, as can be seen

in Figure 7. The fit in terms of the original data ∆st is R2 = 50.8%, and the

p-value for the improvement in fit compared to the standard model is 3.91%,

a substantial improvement. Also, the RESET is now 0.10, with a p-value of

75.6%, indicating clearly no leftover nonlinearities. The previously omitted

nonlinear dynamics of S&P 500, away from the long-run proportionality to

GDP, have been accounted for by the ACF dynamics. In the context of Figure

5, GDP provides the stochastic trend line around which S&P 500 moves in

long-memory cycles. Notice that these cycles have a pattern that is fairly well

behaved, in contrast with the unpredictability that a unit-root model would

have implied. As time passes, the variance bounds of a random walk would

diverge linearly away from its trend line, and there would be no tendency for

mean reversion (zero probability of this happening). However, in Figure 5,

we see no such feature, neither for GDP nor for S&P. The analysis of this

section confirms it for S&P. For GDP, see Abadir and Talmain (2002).

Figure 8 shows the implied predictions of the percentage changes in S&P

500. The actual changes are generally well reflected in our fitted values.

There are a few notable exceptions. The excess volatility of S&P in the early

70’s is detected by our predictions pointing to less pronounced changes. The

result was that the market undertook a correction, immediately the next

period, to come nearer the fundamental values from our equation. A similar

story can be told about the end of the 1990’s and early 2000’s. Our prediction

was pointing the way down at the heydays of the dot-com bubble and, as

it burst so dramatically, our method showed that the fall of the market has

been overdone. A subsequent upward correction took place, as anticipated

by our prediction.

Finally, notice that in both applications of our method, once the long

cycles are taken into account, the residuals were found to contain no struc-

tural breaks. We did not need to add to the models any dummy variables for

breaks and/or extreme events, even in periods where the relation in terms of

the raw data seemed at first sight to break, e.g. due to Britain’s exit of the

exchange-rate mechanism or to extended S&P bubbles or corrections. The

ICM plays the following two roles. First, it makes sure that if S&P strays
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from GDP too fast, it is brought back faster than usual. This can be seen

in the last four years, which correspond to the bubble that burst, and where

the cycle was shorter than the previous ones. Second, and as a result, the

ICM ensures that the S&P cycles are of random length (or frequency), once

the two dynamics arising from ICM and ACF are added up.

IV. Concluding comments

Integration and co-integration have had a huge impact on the analysis

of macroeconomic and aggregate financial data. It was a good first step in

establishing methods to deal with potentially nonstationary variables. Here,

we present an alternative econometric method of analysis that is justified by

the macroeconomic model of Abadir and Talmain (2002), and we show how

it explains the evolution of exchange rates and S&P 500. More generally,

our method has the potential to reveal new insights when two conditions

are satisfied: whenever a model requires us to disentangle the dynamics of a

dependent variable from its relationship with other variables of interest, and

when these dynamics are of the long-memory form. The first condition is

the norm. The second feature is increasingly encountered, given the recent

econometric advances in handling long memory processes and the evidence it

has so far uncovered. For example, see the arguments in Abadir and Taylor

(1999) and the numerical results in Diebold and Rudebusch (1989), Bail-

lie and Bollerslev (1994, 2000), Gil-Alaña and Robinson (1997), Chambers

(1998), Abadir and Talmain (2002).

APPENDIX

Here we give details on the GLS procedure that was outlined earlier in its

basic two-step form. To complement GLS, we also present a quasi Maximum

Likelihood (ML) procedure. The adjective “quasi” is standard, and indi-

cates that the likelihood function is based on the assumption of asymptotic

normality of the distributions.

To simplify the exposition, we adopt the linear model

(14) z =Xβ + u, with u ∼ D1 (0,Σ)
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where Σ is the T × T autocovariance matrix. We assume that ut (t =

1, 2, . . . , T ) is mean-reverting, so that Σ has a symmetric Toeplitz structure.

Then, Σ ∝ A−1A0−1, where A is the lower triangular matrix that removes

autocorrelation from the data, taking the form

A ≡ L−1 =
Ã
∗ 0

−α0 1

!
, with α0 ≡ (αT−1, · · · , α2, α1) ,

and where L is the matrix seen in Section IIB and obtained from the normal-

ized Cholesky decomposition of the autocorrelation matrix R. Therefore,

Az = AXβ + e, with e ∼ D2
¡
0, σ2IT

¢
where σ2 does not depend on the other parameters of the model and, if D1 is

the normal distribution, then D2 is normal too. The vector e of transformed

residuals is now i.i.d., and standard estimation procedures can be applied

to the transformed model. Iteration between the two steps gives GLS. Al-

ternatively, the criterion (z −Xβ)0Σ−1 (z −Xβ) can be minimized for all

parameters jointly.

The ML estimators are obtained by maximizing

− log (det (Σ))− (z −Xβ)0Σ−1 (z −Xβ) ,

where only the first term differs from the GLS criterion, and it has the

beneficial effect of ensuring that the elements of the diagonal of A are not

too far from unity, which makes et like εt of (6). Concentrating the log-

likelihood with respect to

β̂ =
¡
X 0R−1X

¢−1
X 0R−1z and σ̂2 =

1

T

³
z −Xβ̂

´0
Σ−1

³
z −Xβ̂

´
gives

(15) − log
µ
det

µ³
z −Xβ̂

´0
R−1

³
z −Xβ̂

´
R

¶¶
− T (1− log (T ))

to be optimized with respect to the parameters of the ACF: the optimization

now depends only on the four parameters in (10) that determine the auto-

correlation matrix R. The term T (1− log (T )) is just a constant that does
not affect the optimization, and can be dropped from the criterion.
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We note the following requirements and/or features of R and the corre-

sponding A:

1. In estimating the parameters of the ACF, one needs to restrict their

values so thatR is positive definite. There is no explicit formula for this

restriction (because no explicit solution exists for the roots of polyno-

mials of order greater than 4), but it is straightforward to implemented

numerically.

2. Fitting the early values of ACF (τ near zero) is more important than

the rest, which is based on fewer observations. For this reason, we

only use the first half of the ACF plot to estimate its 4 parameters. If

necessary, this may be fine-tuned by a weighting function less abrupt

than the one we effectively use, but the optimal estimation of such

weights is beyond our scope here.

3. The lower triangularity of A ensures that each element of the trans-

formed z is constructed only from past and current values of zt; e.g.

see (7). The same comment applies to X.

4. The elements in the last row of A have an interpretation as the coef-

ficients of an AR(T − 1) representation for the last transformed data
point. One may wish to restrict the optimization procedure such that

it produces stationary roots for this AR representation, but we have

not done so. Note that any non-explosive process, whether nonlinear

and/or nonstationary, can be represented as an invertible MA having

time-varying coefficients, which explains the time-varying AR represen-

tations implied by the rows of A. This is Cramér’s decomposition of

time series, a generalization of Wold’s decomposition, and explains how

the nonlinear process of Abadir and Talmain (2002) can be estimated

by our linear representation procedure.

5. As with all GLS procedures, the initial values have to be treated with

care. For example, in (7), one has a separate treatment for the trans-
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formed z1. The problem is exacerbated with long memory. One simple

rule of thumb is to discard the first couple of transformed data points.

6. A well-known feature of GLS is that the constant, once transformed

by any L−1, is not a constant vector anymore; e.g. use ι ≡ (1, . . . , 1)0
instead of z in (7) and compare the first element to the remaining

T − 1. In our GLS procedure, it is therefore assumed that the data
(z and X) have been de-meaned before being transformed. This is

because the procedure is based on transforming vectors, say y, centered

around 0 from y ∼ D1 (0,LL0) into L−1y ∼ D2 (0, IT ). Having a

nonzero mean in y would have introduced a common factor of L−1ι

in all these transformed variables, which may dominate these series

and produce some seemingly common factor. If a constant is required

in the regression, it should be transformed separately then added to

the regression for transformed variables, as we have done in the UIP

example.

In Section II we chose GLS, in preference to OLS for the extended ECM/ADL

model. When the data contain long memory, an ECM or ADL formulation

would require a lot of lags of the variables to be included, a requirement

which our parsimonious ACF correction disposes of. Using the matrix com-

panion form, Abadir et al. (1999) showed that long lags have a similar effect

to adding dimensions to a VAR (Vector AR), which would increases the bias

and variance of the estimators, and is therefore detrimental to the modelling

exercise.

Unlike traditional two-step GLS, we do not estimate the relation between

z and X then correct for serial correlation or long memory. If the variables

were not genuinely related, then their long memory would induce a spurious

correlation problem, and the residuals from the regression of z on X should

be of no value in correcting for the dynamics. Of course, the most efficient

procedure would be to iterate between the two steps of GLS, until conver-

gence obtains, or simply to use the ML procedure. However, if the simpler

two-step procedure is adopted, then one should start by fitting the ACF.

Note that, by conditioning in (14) on the explanatory variables X, we have
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z ∼ D1 (Xβ,Σ), so the conditional ACFs of zt and ut are the same; see the

comment following (4) and (13). Also, we are assuming that X is weakly

exogenous (see Engle et al., 1983) for the parameters of D1, which is justified

in our two applications but need not be so in general. Otherwise, one needs

joint modelling of z and X, or estimation of the parameters of D1 by means

of instruments (effectively an orthogonal decomposition of the equation).
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Figure 1. ACF of the logarithm of the exchange rate and its fit by our

functional form.
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Figure 2. ACF of the logarithm of S&P 500 and its fit by our functional

form.
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Figure 3. Scatter plot of excess returns vs. the forward premium, for the

original data.
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Figure 4. Scatter plot of excess returns vs. the forward premium, after

ACF transformation.

31
ECB

Working Paper Series No. 525
September 2005



4.5

5

5.5

6

6.5

7

1946 1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

R
ea

l S
&

P 
50

0 
in

 lo
gs

7.1

7.6

8.1

8.6

9.1

9.6

R
ea

l G
D

P 
in

 lo
gs

S&P 500 GDP

Figure 5. Logarithms of real S&P 500 and real GDP.

32
ECB
Working Paper Series No. 525
September 2005



1970 1980 1990 2000

-0.5

0.0

Panel 1

1970 1980 1990 2000

-1.0

-0.5

0.0 Panel 2

1970 1980 1990 2000

-1.0

-0.5

0.0
Panel 3

1970 1980 1990 2000

-0.2

0.0

Panel 4

1970 1980 1990 2000

-0.05

0.00

0.05

0.10
Panel 5

1970 1980 1990 2000

0.0

2.5

5.0 Panel 6

Figure 6. Recursive parameter estimates as the sample size is increased,

with ±2 standard-error bands. Panels 1-6 represent the parameter
estimates of ∆st−1, ∆st−2, ∆st−3, xt−1, t, ∆yt−2, respectively.

1970 1980 1990 2000

-1.0

-0.5

Panel 1

1970 1980 1990 2000

-1.0

-0.5

Panel 2

1970 1980 1990 2000

-1.0

-0.5

Panel 3

1970 1980 1990 2000
-0.10

-0.05

0.00

Panel 4

1970 1980 1990 2000
-0.010

-0.005

0.000 Panel 5

1970 1980 1990 2000

-3

-2

-1

0
Panel 6

Figure 7. Recursive parameter estimates as the sample size is increased,

with ±2 standard-error bands. Panels 1-6 represent the parameter
estimates of ∆st−1, ∆st−2, ∆st−3, xt−1, t, ∆yt−1, respectively.

33
ECB

Working Paper Series No. 525
September 2005



-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

19
53

19
55

19
57

19
59

19
61

19
63

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

DSP DSP prediction

Figure 8. Actual and predicted changes in the logarithm of S&P 500.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jan-78 Jan-80 Jan-82 Jan-84 Jan-86 Jan-88 Jan-90 Jan-92 Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04

Lo
g 
of

 t
he

 $
-£

 e
xc
ha

ng
e 

ra
te

Figure 9. Logarithm of the $- £ exchange rate 1978-2004.

34
ECB
Working Paper Series No. 525
September 2005



0

1

2

3

4

5

6

7

8

1946 1950 1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

Lo
ga

ri
th

m 
of
 t

he
 S

&P
 5

00
 i
nd

ex

Figure 10. Logarithm of the S&P 500 stock index, 1946-2003.

35
ECB

Working Paper Series No. 525
September 2005



36
ECB
Working Paper Series No. 525
September 2005

European Central Bank working paper series

For a complete list of Working Papers published by the ECB, please visit the ECB’s website
(http://www.ecb.int)

490 “Unions, wage setting and monetary policy uncertainty” by H. P. Grüner, B. Hayo and C. Hefeker,
June 2005.

491 “On the fit and forecasting performance of New-Keynesian models” by M. Del Negro,
F. Schorfheide, F. Smets and R. Wouters, June 2005.

492 “Experimental evidence on the persistence of output and inflation” by K. Adam, June 2005.

493 “Optimal research in financial markets with heterogeneous private information: a rational
expectations model” by K. Tinn, June 2005.

494 “Cross-country efficiency of secondary education provision: a semi-parametric analysis with
non-discretionary inputs” by A. Afonso and M. St. Aubyn, June 2005.

495 “Measuring inflation persistence: a structural time series approach” by M. Dossche and
G. Everaert, June 2005.

496 “Estimates of the open economy New Keynesian Phillips curve for euro area countries”
by F. Rumler, June 2005.

497 “Early-warning tools to forecast general government deficit in the euro area:
the role of intra-annual fiscal indicators” by J. J. Pérez, June 2005.

498 “Financial integration and entrepreneurial activity: evidence from foreign bank entry in emerging
markets” by M. Giannetti and S. Ongena, June 2005.

499 “A trend-cycle(-season) filter” by M. Mohr, July 2005.

500 “Fleshing out the monetary transmission mechanism: output composition and the role of financial
frictions” by A. Meier and G. J. Müller, July 2005.

501 “Measuring comovements by regression quantiles” by L. Cappiello, B. Gérard, and S. Manganelli,
July 2005.

502 “Fiscal and monetary rules for a currency union” by A. Ferrero, July 2005

503 “World trade and global integration in production processes: a re-assessment of import demand
equations” by R. Barrell and S. Dées, July 2005.

504 “Monetary policy predictability in the euro area: an international comparison”
by B.-R. Wilhelmsen and A. Zaghini, July 2005.



37
ECB

Working Paper Series No. 525
September 2005

505 “Public good issues in TARGET: natural monopoly, scale economies, network effects and cost
allocation” by W. Bolt and D. Humphrey, July 2005.

506 “Settlement finality as a public good in large-value payment systems”
by H. Pagès and D. Humphrey, July 2005.

507 “Incorporating a “public good factor” into the pricing of large-value payment systems”
by C. Holthausen and J.-C. Rochet, July 2005.

508 “Systemic risk in alternative payment system designs” by P. Galos and K. Soramäki, July 2005.

509 “Productivity shocks, budget deficits and the current account” by M. Bussière, M. Fratzscher
and G. J. Müller, August 2005.

510 “Factor analysis in a New-Keynesian model” by A. Beyer, R. E. A. Farmer, J. Henry
and M. Marcellino, August 2005.

511 “Time or state dependent price setting rules? Evidence from Portuguese micro data”
by D. A. Dias, C. R. Marques and J. M. C. Santos Silva, August 2005.

512 “Counterfeiting and inflation” by C. Monnet, August 2005.

513 “Does government spending crowd in private consumption? Theory and empirical evidence for
the euro area” by G. Coenen and R. Straub, August 2005.

514 “Gains from international monetary policy coordination: does it pay to be different?”
by Z. Liu and E. Pappa, August 2005.

515 “An international analysis of earnings, stock prices and bond yields”
by A. Durré and P. Giot, August 2005.

516 “The European Monetary Union as a commitment device for new EU member states”
by F. Ravenna, August 2005.

517 “Credit ratings and the standardised approach to credit risk in Basel II” by P. Van Roy,
August 2005.

518 “Term structure and the sluggishness of retail bank interest rates in euro area countries”
by G. de Bondt, B. Mojon and N. Valla, September 2005.

519 “Non-Keynesian effects of fiscal contraction in new member states” by A. Rzońca and
P. Ciz· kowicz, September 2005.

520 “Delegated portfolio management: a survey of the theoretical literature” by L. Stracca,
September 2005.

521 “Inflation persistence in structural macroeconomic models (RG10)” by R.-P. Berben,
R. Mestre, T. Mitrakos, J. Morgan and N. G. Zonzilos, September 2005.



38
ECB
Working Paper Series No. 525
September 2005

522 “Price setting behaviour in Spain: evidence from micro PPI data” by L. J. Álvarez, P. Burriel
and I. Hernando, September 2005.

523 “How frequently do consumer prices change in Austria? Evidence from micro CPI data”
by J. Baumgartner, E. Glatzer, F. Rumler and A. Stiglbauer, September 2005.

524 “Price setting in the euro area: some stylized facts from individual consumer price data”
by E. Dhyne, L. J. Álvarez, H. Le Bihan, G. Veronese, D. Dias, J. Hoffmann, N. Jonker,
P. Lünnemann, F. Rumler and J. Vilmunen, September 2005.

525 “Distilling co-movements from persistent macro and financial series” by K. Abadir and
G. Talmain, September 2005.




	Distilling co-movements from persistent macro and financial series
	Contents
	Abstract
	Non-technical abstract
	I. The UIP theorem and the puzzle
	II. Uncovering the UIP puzzle: the two-step procedure
	III. The stock market application
	IV. Concluding comments
	Appendix
	References
	Figures
	European Central Bank working paper series



