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Abstract

Standard measures of prices are often contaminated by transitory
shocks. This has prompted economists to suggest the use of mea-
sures of underlying inflation to formulate monetary policy and assist
in forecasting observed inflation. Recent work has concentrated on

In this paper we esti-
mate factors from datasets of disaggregated price indices for European
countries. We then assess the forecasting ability of these factor esti-
mates against other measures of underlying inflation built from more
traditional methods. The power to forecast headline inflation over
horizons of 12 to 18 months is adopted as a valid criterion to assess
forecasting. Empirical results for the five largest euro area countries
as well as for the euro area are presented.

JEL-classification: E31, C13, C32.
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Non-technical summary
The aim of monetary policy in most modern economies is maintaining price
stability over the medium term. A common problem faced by those respon-
sible for monetary policy decisions is that standard measures of prices are
often contaminated by three main types of transitory shocks: i) measurement
errors, ii) regular seasonal fluctuations, and iii) other non-monetary factors,
such as for example a good or bad harvest. This has prompted economists to
suggest the use of ‘filtered’ versions of published price indexes as measures
of underlying inflation.

Two major approaches for filtering a price index have been tradition-
ally adopted. The first approach exploits the cross section dimension, and
relies on modifying the weights attached to the different subcomponents of
consumer price indexes. The weights are modified so that the more volatile
subcomponents of consumer price indexes are either set to zero or assigned
smaller values. The second approach exploits the time series dimension of
the aggregate price index series, and builds a measure of underlying inflation
at a point in time as the weighted sum of observations from the past and
the future. The aim of this approach is to isolate the persistent component
of aggregate inflation, i.e. that component that does not vanish in future
periods but leaves a permanent mark.

In recent work, Kapetanios (2002) proposed a new method of estimating
dynamic factor models that exploits both the cross section dimension and
the time series dimension. This method is easy to implement and can also
accommodate cases where the number of variables exceeds the number of
observations. This method forms part of a large set of algorithms used in
the engineering literature for estimating state space models called subspace
algorithms.

This paper presents an assessment of the reliability of measures of under-
lying inflation built from subspace algorithms against other measures built
from more traditional methods. The power to forecast headline inflation over
horizons of 12 to 18 months is adopted as a valid criterion to assess reliabil-
ity. Empirical results for the five largest euro area countries as well as for the
euro area are presented. Results show that measures of core inflation built by
means of dynamic factor methods perform well in comparison to traditional
measures. This paper also warns that measures of underlying inflation based
on methods that ignore the time series dimension of price indexes may fail
to cointegrate with headline inflation.
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1 Introduction

Monetary policy in most modern economies aims at maintaining price sta-

bility over the medium term. A common problem faced by those responsible

for monetary policy decisions is that standard measures of prices are often

contaminated by three main types of transitory shocks: i) measurement er-

rors, ii) regular seasonal fluctuations, and iii) other non-monetary factors,

such as for example a good or bad harvest. This has prompted economists to

suggest the use of ‘filtered’ versions of published price indexes as measures of

underlying inflation, see for example Bryan and Cecchetti (1994) and Vega

and Wynne (2001).

Two major approaches for filtering a price index have been adopted. The

first approach exploits the cross section dimension, and in effect acts upon

the original series by modifying the weights attached to its different subcom-

ponents. An example in this vein is a study conducted for the euro area HICP

by Vega and Wynne (2001) which suggested that a trimmed mean measure

of underlying inflation outperforms a measure computed by excluding un-

processed food and energy prices. The second approach exploits the time

series dimension of the price index series, and builds a measure of underlying

inflation at a point in time as the weighted sum of observations from the past

and the future. The justification for this approach follows the suggestion by

Blinder (1997) to identify the persistent component of aggregate inflation

as an underlying measure of inflation, i.e. that component that does not

vanish in future periods but leaves a permanent mark. Bryan and Cecchetti

(1993) were the first to propose a method that exploit both the cross section

as well as the time series dimension. They proposed to model a vector of

subcomponents of the US Consumer Price Index (CPI) by means of a dy-

namic factor index model. This model has a state space representation, and

maximum likelihood methods in combination with the Kalman filter can be

implemented to estimate the unknown parameters, along the lines explained

in Harvey (1993).1

1Wynne (1999) provide a review on conceptual and practical problems that arise in the
measurement of core inflation.
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However, maximum likelihood estimation of a state space model is not

practical when the dimension of the model becomes too large due to the com-

putational cost. The modelling strategy proposed by Bryan and Cecchetti

(1993) is therefore difficult to implement for levels of disaggregation of the

subcomponents of the price index finer than the two-digit level. Additionally,

their method can not be implemented when the number of observations is

smaller than the number of price subcomponents employed. In recent work,

Kapetanios (2004) has proposed a new method of estimating factor models

based on subspace algorithms that also exploits both the cross section dimen-

sion and the time series dimension and, importantly, the method does not

require iterative estimation techniques. This makes possible a high degree of

disaggregation of the price index series. This method can also accommodate

cases where the number of variables exceeds the number of observations as

shown also in Kapetanios (2004). The method forms part of a large set of al-

gorithms used in the engineering literature for estimating state space models

called subspace algorithms.

This paper presents an assessment on the reliability of measures of under-

lying inflation built from subspace algorithms against other measures built

from more traditional methods. The power to forecast headline inflation over

horizons of 12 to 18 months is adopted as a valid criterion to assess reliabil-

ity.2 Empirical results for the five largest euro area countries as well as for

the euro area are presented.

The method proposed by Kapetanios (2004) is described in section 2.

Section 3 describes a variety of methods used in the literature to compute

measures of underlying inflation. The methods reviewed in this section will be

referred to as ‘traditional’ methods in this paper. Section 4 provides details

2Vega and Wynne (2001) suggested also the ability to track trend inflation as a criterion
to assess reliability of core inflation measures.
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on the nature of the forecasting exercise conducted to assess the reliability of

different measures of underlying inflation and presents the empirical results.

Finally, section 5 concludes.

2 Dynamic Factor Method

We consider the following state space model.

xt = Cft + Dut, t = 1, . . . , T

ft = Aft−1 + But−1 (1)

xt is an n-dimensional vector of strictly stationary zero-mean variables ob-

served at time t. ft is an m-dimensional vector of unobserved states (factors)

at time t and ut is a multivariate standard white noise sequence of dimen-

sion n. The aim of the analysis is to obtain estimates of the states ft, for

t = 1, . . . , T . This state space model may not appear familiar as the presence

of the same error term in both the transition and measurement equations is

non-standard. However, as Hannan and Deistler (1988, Ch. 1) show, (1),

referred to as the prediction error representation of the state space model, is

equivalent to the following more common representation

xt = Cft + D∗ut, t = 1, . . . , T (2)

ft = Aft−1 + B∗vt−1

where ut and vt are multivariate standard orthogonal white noise sequences.

We concentrate on (1) as it forms the basis for deriving the dynamic factor

estimation algorithm.

Subspace algorithms avoid expensive iterative techniques and rely instead

on matrix algebraic methods to provide estimates for the factors as well as the

parameters of the state space representation. A review of existing subspace

algorithms is given by Bauer (1998) in an econometric context. Another

review with an engineering perspective may be found in Overschee and Moor

(1996).
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The starting point of most subspace algorithms is the following represen-

tation of the system which follows from the state space representation (2)

and the assumed nonsingularity of D.

Xf
t = OKXp

t + EEf
t (3)

where Xf
t = (x′

t, x
′
t+1, x

′
t+2, . . .)

′, Xp
t = (x′

t−1, x
′
t−2, . . .)

′, Ef
t = (u′

t, u
′
t+1, . . .)

′,

O = [C ′, A′C ′, (A2)′C ′, . . .]′

K = [B̄, (A − B̄C)B̄, (A − B̄C)2B̄, . . .]

where B̄ = BD−1 and

E =




D 0 . . . 0

CB D
. . .

...

CAB
. . . . . . 0

... CB D




The derivation of this representation is easy to see once we note that (i)

Xf
t = Oft + EEf

t and (ii) ft = KXp
t . The best linear predictor of the future

of the series at time t is given by OKXp
t . The state is given in this context

by KXp
t at time t. The task is therefore to provide an estimate for K. Ob-

viously, the above representation involves infinite dimensional vectors.

In practice, truncation is used to end up with finite sample approxima-

tions given by Xf
s,t = (x′

t, x
′
t+1, x

′
t+2, . . . , x

′
t+s−1)

′ and Xp
q,t = (x′

t−1, x
′
t−2, . . . , x

′
t−q)

′.

Then an estimate of F = OK may be obtained by regressing Xf
s,t on Xp

q,t.

Following that, the most popular subspace algorithms use a singular value

decomposition of an appropriately weighted version of the least squares es-

timate of F , denoted by F̂ . In particular the algorithm we will use, due

to Larimore (1983), applies a singular value decomposition to Γ̂f−1/2F̂ Γ̂p1/2
,

where Γ̂f , and Γ̂p are the sample covariances of Xf
s,t and Xp

q,t respectively.

These weights are used to determine the importance of certain directions in

F̂ . Then, the estimate of K is given by

K̂ = Ŝ1/2
m V̂ ′

mΓ̂p−1/2
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where Û ŜV̂ ′ represents the singular value decomposition of Γ̂f−1/2F̂ Γ̂p1/2
, V̂m

denotes the matrix containing the first m columns of V̂ and Ŝm denotes the

heading m×m submatrix of Ŝ. Ŝ contains the singular values of Γ̂f−1/2F̂ Γ̂p1/2

in decreasing order. Then, the factor estimates are given by K̂Xp
t . More de-

tails on the method, including its asymptotic properties, may be found in

Kapetanios and Marcellino (2003). Once an estimate of the factor is ob-

tained then the parameters of the state space model may be estimated using

standard regression techniques and the factor estimates in the measurement

and transition equations. Thus, it is possible to produce forecasts for the

factors.

2.1 Dealing with large datasets

Up to now we have outlined an existing method for estimating factors which

requires that the number of observations be larger than the number of el-

ements in Xp
t . Given the work of Stock and Watson (2002), on modelling

very large datasets with factor models, this is rather restrictive. We therefore

follow Kapetanios and Marcellino (2003) who suggested a modification of the

existing methodology to allow the number of series in Xp
t be larger than the

number of observations. The problem arises in this method because the least

squares estimate of F does not exists due to rank deficiency of Xp′Xp where

Xp = (Xp
1 , . . . , Xp

T )′. As we mentioned in the previous section we do not

necessarily want an estimate of F but an estimate of the states XpK′. That

could be obtained if we had an estimate of XpF ′ and used a singular value

decomposition of that. But it is well known (see e.g. Magnus and Neudecker

(1988)) that although F̂ may not be estimable XpF ′ always is using least

squares methods. In particular, the least squares estimate of XpF ′ is given

by

X̂pF ′ = Xp(Xp′Xp)+Xp′Xf

where Xf = (Xf
1 , . . . , Xf

T )′ and A+ denotes the unique Moore-Penrose in-

verse of matrix A. Once this step is modified then the estimate of the factors

10
ECB
Working Paper Series No. 402
November 2004



may be straightforwardly obtained by applying a singular value decompo-

sition to X̂pF ′. Kapetanios (2004) chooses to set both weighting matrices

to the identity matrix in this case. In our results below we will pursue two

alternative subspace methods. Method 1, denoted in the tables below as SS1,

relies on the singular value decomposition of Xp(Xp′Xp)+Xp′Xf = Û ŜV̂ ′.

Then, the factor estimates are given by ÛmŜ
1/2
m . Method 2, denoted SS2,

relies on the singular value decomposition of (Xp′Xp)+Xp′Xf = Û ŜV̂ ′. Here

the factor estimates are given by XpÛmŜ
1/2
m . Note that Xp(Xp′Xp)+Xp′ = I

when the number of columns of Xp exceeds its number of rows. We there-

fore see that SS1 essentially decomposes Xf , and resembles the approximate

dynamic factor methodology of Stock and Watson (2002) based on principal

components. The SS2 method, on the other hand is genuinely dynamic in

that it exploits the dynamic relationship between Xf and Xp to estimate the

factor.

3 Measures of Underlying Inflation

Headline inflation will be defined as πt = 100 ln(Pt/Pt−12), where Pt is a price

index measure. For our purposes, we defined n as the number of subcompo-

nents of the price measure, and wi for i = 1 to n as the weights associated

with the i-th subcomponent, it follows that Pt =
∑n

i=1 wiPi,t where Pi,t is

the price index for subcomponent i at time t.

Dynamic factor measures. Dynamic factor measures of underlying in-

flation are built from a state space system such as that in (1), where xt is

defined as a n× 1 vector with elements xi,t = 100 ln(Pi,t/Pi,t−12) for i = 1 to

n. The measure of underlying inflation is the first factor estimate of F̂Xp
t .

As stated above, when the estimate of this first factor relies on a singular

value decomposition of Xp(Xp′Xp)+Xp′Xf , this will be denoted by SS1 in

our empirical results below, and when the first factor relies on a singular

value decomposition of (Xp′Xp)+Xp′Xf , this will be denoted by SS2.

11
ECB

Working Paper Series No. 402
November 2004



Excluding measures. These measures simply exclude certain subcompo-

nents of the price index to compute a core inflation measure. This translates

into zeroing out some of the weights wi, and scaling the non-zero weights

so that they add to one, these newly defined weights, say w̃i are then used

to compute a new aggregate price index, P̃t =
∑p

i=1 w̃iPi,t for p < n. Four

measures, corresponding to four alternative weightings will be tested in this

paper. These are defined as follows: i) EX1, excludes the energy compo-

nents; ii) EX2, excludes energy and food components; iii) EX3, excludes

energy and unprocessed food components; and iv) EX4, excludes energy and

seasonal food components. Additionally, and following ECB (2004, pp. 27-

28) we build a measure that aims at excluding components whose prices are

subject to a certatin degree of government control; i.e. this measure excludes

administered prices. We will denote this measure as ADM.3

Trimmed Mean measures. Define the headline ‘ordered’ rate of inflation

as: πo
t =

∑n
j=1 wo

jπ
o
j,t for j = 1 to n, where the inflation rate for the sub-

components, πo
j,t, are ‘ordered’ from smallest to largest, and wo

j define their

corresponding weights. A trimmed measure of inflation is then defined as

follows:

π2α
t =

1

1 − 2α

n−p∑
j=m+1

wo
jπ

o
j,t

where m and p are chosen such that
∑m

j=1 wo
j =

∑n
j=n−p+1 wo

j = α. We have

defined a total of 6 trimmed measures of underlying inflation, with the size

of the trimming (2α) ranging between values of 1% to 50%. These measures

are denoted as: TR1, TR5, TR10, TR20, TR30 and TR50. Note that the

median in effect can be seen as a trimmed measure, that trims 50% on the

left and 50% on the right. We denote the underlying measure of inflation

built from the median as MED.

3The ADM measure excludes: tobacco, energy, sewerage collection, refuse collection,
medical and paramedical services, dental services, hospital services, passenger transport
by railway, postal services, education and social protection.
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Edgeworth Index. This measure is defined as EDGE =
∑n

j=1 we
jπj,t for

j = 1 to n, where the weights we
j are inversely related to the volatility of πj,t,

and defined as follows:

we
j =

σ−2
i,t∑n

j=1 σ−2
j,t

where E(πj,t − Eπj,t)
2 = σ2

j,t.

Unobserved Component model measure. We adopt the unobserved

component (UC) model proposed by Harvey and Jaeger (1993) to extract a

measure of underlying inflation. This measure exploits only the time series

dimension.

πt = µt + γt + εt

where µt is a trend component, γt is a cyclical component and εt an irregular

noise component with standard deviation σε. The trend component µt is

for our purposes a measure of underlying inflation, and will be referred to

as the UC measure of underlying inflation in this paper. Details on the

structure of the trend component µt and the stochastic cycle γt can be found

in Harvey and Jaeger (1993). The model can be written in State Space form

and the Kalman filter implemented to extract the state component. Given

that there are parameters to be estimated, maximum likelihood estimation

in combination with the Kalman filter must be used.

Quah and Vahey (1995) measure. Quah and Vahey (1995) provided a

method to construct a measure of underlying inflation by placing dynamic

restrictions on a vector autorregression (VAR) system with ∆y and ∆π as

endogenous variables, where y denotes the logarithm of industrial production.

They adopt an identification strategy similar to that in Blanchard and Quah

(1989), by which they assume that the first kind of disturbance has no impact

on output in the long run. Underlying inflation is defined as the movements in

inflation associated with this first disturbance. This measure will be denoted

as QV in the paper.
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4 Data and Empirical Results

4.1 Data

Our empirical results will be conducted for the euro area (EA), and the

largest five countries of the euro area in terms of GDP; namely Germany

(DE), France (FR), Italy (IT), The Netherlands (NL) and Spain (SP). The

Harmonised Index of Consumer Prices (HICP) is therefore the obvious choice

of price measure to use. One of the principle objectives of the European

Union is to promote economic and social progress, and in order to conduct

its policies, there is a need for monitoring the economic performance across

countries. This can only be achieved if the available statistical information

is comparable.

Work on the harmonisation of consumer price indices across EU coun-

tries started in 1993, and by March 1997 the first figures of a harmonised

index of consumer prices (HICP) for each member state were being published.

The HICP has been designed to ensure the comparability of consumer price

indices across EU countries. Eugenio Domingo Solans (member of the Exec-

utive Board of the ECB) has pointed out that the HICP was the only serious

contender for the measurement of inflation in 1998, see Solans (2001). He

further stated that from the perspective of the ECB, the HICP possesses

some very attractive qualities. First, it covers a large proportion of house-

hold expenditure. Second, it is available monthly and in a timely manner.

Third, it is aggregable in the sense that the country pieces fit together with-

out gaps or overlaps. Four, it is subject to only minor revisions. Finally, it

is based on actual monetary transactions. These features and the fact that

it is comparable across countries, and can therefore be aggregated, makes

the HICP the optimal choice for monitoring price developments in euro area

countries.
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4.2 Empirical Results

Figures 1 and 2 display the year on year changes in % the HICP for the euro

area and largest five countries of the euro area, which we define in this paper

as the measure of headline inflation. Table 1 shows the Augmented Dickey-

Fuller statistic to test for the presence of a unit root in the series of headline

inflation and in the measures of underlying inflation. The unit root hypoth-

esis cannot be rejected in most cases for the sample under study (January

1996 to May 2004); only for certain underlying measures of inflation for Italy

the unit root hypothesis is rejected4. Table 2 shows the results of testing

for cointegration between headline inflation and the alternative measures of

underlying inflation. This table suggests that measures of underlying infla-

tion built from methods that exploit the cross section dimension but ignore

the time series dimension fail to provide a series of underlying inflation that

cointegrates with headline inflation. The only exception to these results is

the Netherlands. This might potentially point to the fact that price devel-

opments in the markets for the different subcomponents of the price index

in the Netherlands may be more highly correlated than in some other coun-

tries. Whenever price developments in alternative product markets follow

different patterns, excluding measures of underlying inflation will not share

a trend with headline inflation. We understand that the number of obser-

vations available to test for cointegration is not very large, and hence these

results should be treated with caution. Table 2 also provides the probability

values of an exogeneity test of the underlying measure with respect to head-

line inflation. Once more, these results reported in the table warn against

methods that ignore the time series dimension.

There is no doubt that a measure of underlying inflation represents an ap-

pealing concept for monitoring price developments because it removes those

4Note that the theoretical analysis of Kapetanios and Marcellino (2003) on dynamic
factor models is carried out for stationary models. Nevertheless as they discuss in the
conclusion, their results on consistency of factor estimates readily extend to unit root
nonstationary processes.
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fluctuations associated with short run developments and this provides rele-

vant information for the implementation of monetary policy. It is also clear

that, in principle and depending on the definition, it should help forecasting

observed inflation by concentrating on the signal provided by the underlying

measure of inflation. The problem in practice is how to discriminate between

measures of underlying inflation such as those built on the basis of the sta-

tistical methods described in this paper. Different measures often provide

a very different picture on price developments. We follow the convention

in the literature that adopts the power of the alternative measures of core

inflation to forecast headline inflation over the medium to long horizon as a

valid selection criterion.

This section reports predictive accuracy results for all measures of under-

lying inflation. A total of 15 bivariate Vector Autorregressive (VAR) models

have been estimated, all VAR models contain headline inflation as one of

its variables, and a measure of underlying inflation as the second variable.

We need to fit a VAR model as we do not have forecasts for most under-

lying measures of inflation. For the SS1 and SS2 methods we do not need

to fit a bivariate regression to observed inflation and the SS measure of un-

derlying inflation. The reason is that we have a forecast of the underlying

inflation measure through the estimation of the state space model following

estimation of the factor. So, in this case we use a univariate AR model of

inflation augmented by the current value of the relevant SS measure of under-

lying inflation. The use of current information in the SS forecasting models

demonstrates the potential of the methodology as it provides an independent

means of forecasting underlying inflation and thereby essentially exogenises

underlying inflation with respect to observed inflation for forecasting. The

assumption of exogeneity of underlying inflation with respect to observed

inflation follows straightforwardly from the setup of the state space model

assumed to underlie the evolution of the measure of underlying inflation.

Further, we consider the forecasting results obtained by means of a simple
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autorregressive (AR) model of headline inflation. The AR model is usually

taken as a benchmark model in similar forecasting analyses. The Akaike

information criterion is used to select the number of lags in the VAR and AR

models. The sample under study is January 1996 to May 2004. The sample

used for the computation of the underlying measures of inflation is January

1996 to November 2000. The sample period for the forecasting exercise is

November 2000 to May 2004. Both the alternative measures of underlying

inflation and the VAR models are recursively estimated over the forecasting

sample.

Tables 3 reports the forecasting performance of the dynamic factor meth-

ods against the traditional methods. Table 3 shows the Relative Root Mean

Square Forecasting Error (RMSE) of the traditional method against the SS1

and SS2 methods. Diebold and Mariano (1995) tests of forecasting accuracy

are provided in table 4. Finally, table 5 ranks all methods from best to worst

according to their accuracy at forecasting inflation over a 12 and 18 month

horizon.

With the exception of Germany, the dynamic factor methods provide

always either the best or close to best performance. Those methods that

perform best for Germany display a rather bad performance in France, Italy,

the Netherlands, Spain and the euro area. This is not the case for the sub-

space method SS1, which does not have a very low ranking for Germany

either. The performance of the SS1 method is always very good with the

exception of Germany.

5 Conclusion

This paper has explored the forecasting ability of core inflation measures

built using dynamic factor methods against those built using more traditional

techniques. Dynamic factor methods allow both the cross section dimension

and the times series dimension of the data to be exploited in building a

core inflation measure. These methods are applicable to large datasets. The
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measures of core inflation built by means of dynamic factor methods are

found to perform well in comparison to traditional measures in terms of

their forecasting performance. This paper has also warned that measures of

underlying inflation based on methods that ignore the time series dimension

may fail to cointegrate with headline inflation.
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Table 1: Unit root test.a

DE FR IT NL SP EA

HICP τ -0.33 0.52 -2.68 -0.86 -0.64 -0.51
τµ -2.64 -0.75 -4.71 -2.18 -2.60 -1.46

EX1 τ -0.66 0.25 -1.04 -0.97 -0.65 -0.69
τµ -2.43 -0.80 -3.08 -1.85 -2.06 -1.55

EX2 τ -0.67 -0.13 -1.30 -0.52 -0.80 -0.51
τµ -2.53 -1.37 -3.11 -1.75 -2.72 -2.41

EX3 τ -0.49 1.07 -1.15 -0.73 -0.74 -0.29
τµ -2.25 0.09 -3.12 -1.64 -2.71 -2.14

EX4 τ -0.45 0.76 -1.10 -0.84 -0.81 -0.27
τµ -2.55 -0.38 -3.16 -1.78 -2.12 -2.06

ADM τ -0.37 0.14 -0.95 -0.36 -0.83 -0.37
τµ -1.79 -1.28 -2.74 -2.12 -2.85 -2.36

TR1 τ -0.66 0.35 -0.86 -0.74 -0.68 -0.59
τµ -2.47 -0.93 -2.56 -1.91 -2.52 -1.46

TR5 τ -0.65 0.27 -0.87 -0.75 -0.64 -0.29
τµ -1.98 -0.97 -2.65 -1.85 -2.55 -1.32

TR10 τ -0.75 0.10 -0.83 -0.76 -0.54 -0.40
τµ -1.97 -1.38 -2.64 -1.44 -2.38 -1.63

TR20 τ -0.92 0.01 -0.76 -0.84 -0.56 -0.51
τµ -2.05 -1.14 -2.63 -1.56 -1.83 -1.93

TR30 τ -0.97 0.09 -0.72 -0.82 -0.59 -0.48
τµ -2.10 -1.09 -2.64 -1.56 -1.81 -1.94

TR50 τ -0.86 0.15 -0.70 -0.59 -0.50 -0.72
τµ -2.11 -0.98 -2.83 -1.62 -1.63 -1.76

MED τ -1.17 0.68 -1.23 -0.47 -0.47 -0.99
τµ -1.97 -1.56 -3.75 -1.79 -1.26 -1.94

EDGE τ -1.60 -0.05 -1.04 -0.76 -0.94 -1.46
τµ -2.09 -0.75 -2.83 -1.00 -2.32 -1.83

UC τ -0.31 0.20 -2.26 -0.86 -0.77 -0.47
τµ -2.44 -1.44 -4.39 -2.33 -2.26 -1.65

QV τ -1.23 0.41 -3.68 -1.47 -0.26 -0.73
τµ -1.93 -0.70 -4.24 -2.74 -2.22 -1.60

SS1 τ -2.90 -1.63 -2.56 -1.62 -1.23 -2.34
τµ -2.87 -1.63 -2.88 -1.60 -1.19 -2.32

SS2 τ -1.14 -0.45 -0.92 -1.57 -0.31 0.00
τµ -1.25 -2.09 -5.34 -3.60 -2.39 -1.58

aThis tables presents the Augmented Dickey-Fuller statistics computed without and intercept τ and with
and intercept τµ. The 5% critical values are -1.95 and -2.86 respectively. The criterium followed to determine
the number of lags is that suggested by Perron (1989); namely choose a lag length such that the t-statistics
associated with that lag k is significant, but the t-statistic of lag k + 1 is not significant. Following Perron,
we treat that parameter as significant when the t-statistic is larger than 1.6.
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Table 2: Cointegration and Exogenity Tests.a

DE FR IT NL SP EA

EX1 Coint. - - - - - -
Exogen. 0.046∗∗ 0.854 0.445 0.050∗∗ 0.110 0.880

EX2 Coint. - - -
√

- -
Exogen. 0.002∗∗ 0.159 0.014∗∗ 0.077∗ 0.046∗∗ 0.320

EX3 Coint. - - -
√

- -
Exogen. 0.013∗∗ 0.165 0.671 0.077∗ 0.088∗ 0.574

EX4 Coint. - - -
√

- -
Exogen. 0.036∗∗ 0.281 0.368 0.067∗ 0.048∗∗ 0.719

ADM Coint. - - - - - -
Exogen. 0.006∗∗ 0.626 0.241 0.007∗∗ 0.069∗ 0.697

TR1 Coint. - - - -
√

-
Exogen. 0.186 0.552 0.999 0.569 0.465 0.127

TR5 Coint. - - - - - -
Exogen. 0.919 0.459 0.834 0.023∗∗ 0.758 0.195

TR10 Coint. - - - - - -
Exogen. 0.938 0.336 0.853 0.107 0.268 0.161

TR20 Coint. - - - - - -
Exogen. 0.869 0.275 0.931 0.557 0.022∗∗ 0.299

TR30 Coint. - - - - - -
Exogen. 0.694 0.193 0.660 0.637 0.011∗∗ 0.130

TR50 Coint. - -
√

- - -
Exogen. 0.611 0.093∗ 0.153 0.806 0.013∗∗ 0.109

MED Coint. - -
√

- - -
Exogen. 0.526 0.098∗ 0.212 0.859 0.082∗ 0.185

EDGE Coint. - - - - - -
Exogen. 0.901 0.115 0.379 0.557 0.234 0.914

UC Coint.
√ √ √ √ √ √

Exogen. 0.162 0.007∗∗ 0.040∗∗ 0.107 0.990 0.008∗∗

QV Coint. - -
√

- - -
Exogen. 0.344 0.193 0.000∗∗ 0.079∗ 0.006∗∗ 0.018∗∗

SS1 Coint. - - - - - -
Exogen. 0.140 0.396 0.000∗∗ 0.025∗∗ 0.619 0.702

SS2 Coint. - - - -
√

-
Exogen. 0.000∗∗ 0.874 0.111 0.101 0.001∗∗ 0.018∗∗

aThe cointegration test conducted is that of Johansen (1988). The exogeneity
test is conducted along the lines explained in Lütkepohl (1991, ch. 11), values
reported are probability values.
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Table 3: Forecasting performance of Subspace Methods. Relative RMSE values.a

SS1 SS2
Horizon Horizon

Model 1 6 12 18 1 6 12 18

AR 0.985 1.163 1.528 2.778 0.997 1.107 1.346 2.022
EX1 1.086 0.856 0.793 0.790 1.099 0.815 0.699 0.575
EX2 1.104 0.843 1.110 1.095 1.116 0.803 0.978 0.797
EX3 1.045 0.853 0.830 0.816 1.057 0.812 0.731 0.594
EX4 1.057 0.739 0.746 1.135 1.069 0.704 0.657 0.826
ADM 0.991 0.650 0.337 0.156 1.002 0.619 0.297 0.114
TR1 1.082 1.032 1.825 6.848 1.095 0.983 1.608 4.985
TR5 1.096 0.776 0.831 1.143 1.109 0.739 0.732 0.832

DE TR10 0.988 1.192 2.194 10.870 0.999 1.135 1.933 7.911
TR20 0.992 1.151 1.401 1.443 1.003 1.096 1.234 1.050
TR30 0.997 1.209 2.126 2.536 1.009 1.151 1.872 1.845
TR50 0.988 1.231 2.223 10.786 0.999 1.172 1.958 7.851
MED 1.035 0.976 1.433 2.465 1.047 0.930 1.263 1.794
EDGE 1.050 0.814 0.635 0.348 1.062 0.775 0.559 0.253

UC 1.034 0.165 0.004 0.000 1.046 0.157 0.004 0.000
QV 1.033 0.332 0.019 0.001 1.045 0.316 0.016 0.001
AR 1.048 1.188 1.123 0.534 1.054 1.113 1.118 1.107
EX1 1.106 0.740 0.628 0.258 1.113 0.693 0.625 0.534
EX2 1.162 0.613 0.123 0.007 1.169 0.574 0.122 0.014
EX3 1.149 0.633 0.129 0.007 1.155 0.593 0.128 0.015
EX4 1.135 0.603 0.139 0.008 1.142 0.565 0.139 0.017
ADM 1.084 0.702 0.577 0.167 1.091 0.658 0.575 0.345
TR1 1.018 1.204 0.920 0.161 1.024 1.128 0.916 0.334
TR5 1.013 1.064 0.624 0.082 1.018 0.997 0.622 0.169

FR TR10 1.012 0.841 0.256 0.010 1.017 0.788 0.254 0.021
TR20 1.016 0.861 0.664 0.291 1.022 0.806 0.661 0.603
TR30 0.978 0.807 0.532 0.233 0.984 0.756 0.530 0.482
TR50 0.975 0.878 0.597 0.310 0.981 0.823 0.595 0.642
MED 0.959 1.195 0.304 0.024 0.965 1.120 0.303 0.050
EDGE 1.108 0.798 0.378 0.045 1.115 0.747 0.376 0.094

UC 0.985 0.000 0.000 0.000 0.991 0.000 0.000 0.000
QV 1.053 0.826 0.559 0.159 1.059 0.774 0.557 0.329
AR 1.028 0.920 0.935 0.887 0.987 1.481 2.632 4.586
EX1 1.148 0.452 0.103 0.013 1.102 0.729 0.289 0.070
EX2 1.107 0.599 0.120 0.011 1.063 0.965 0.338 0.059
EX3 1.155 0.378 0.047 0.003 1.108 0.609 0.134 0.018
EX4 1.207 0.390 0.087 0.011 1.158 0.629 0.245 0.059
ADM 1.119 0.748 0.581 0.457 1.074 1.204 1.636 2.363
TR1 0.986 0.728 0.195 0.030 0.947 1.172 0.548 0.155
TR5 1.007 0.678 0.145 0.019 0.967 1.091 0.408 0.096

IT TR10 1.199 0.471 0.095 0.009 1.151 0.759 0.269 0.044
TR20 1.109 0.444 0.035 0.002 1.065 0.715 0.097 0.010
TR30 1.041 0.675 0.088 0.007 0.999 1.087 0.247 0.037
TR50 1.032 0.806 0.243 0.034 0.991 1.299 0.684 0.176
MED 0.995 1.026 0.787 0.279 0.955 1.652 2.215 1.446
EDGE 0.982 0.794 0.336 0.064 0.942 1.278 0.946 0.333

UC 1.081 0.426 0.047 0.003 1.038 0.686 0.132 0.014
QV 1.155 0.381 0.027 0.001 1.108 0.613 0.076 0.006

aValues reported in this table are the Relative Root Mean Square Error, i.e. the ratio between the
root mean square error of the subspace method and the traditional methods. A value smaller than 1
indicates the subspace method is best.
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Table 3 (cont): Forecasting performance of Subspace Methods. Relative RMSE values.a

SS1 SS2
Horizon Horizon

Model 1 6 12 18 1 6 12 18

AR 0.980 1.009 0.851 0.629 0.969 1.021 0.967 1.016
EX1 1.011 0.931 0.935 0.978 1.000 0.942 1.063 1.580
EX2 1.013 0.784 0.660 0.409 1.001 0.793 0.750 0.660
EX3 1.038 0.771 0.777 1.015 1.026 0.780 0.883 1.639
EX4 1.053 0.848 0.687 0.543 1.041 0.858 0.781 0.876
ADM 1.091 0.909 0.829 0.489 1.079 0.920 0.943 0.790
TR1 0.847 1.040 0.966 0.932 0.837 1.052 1.098 1.505
TR5 0.888 1.128 1.017 0.951 0.878 1.141 1.156 1.536

NL TR10 0.902 1.114 1.016 0.941 0.892 1.126 1.154 1.520
TR20 0.875 1.007 0.639 0.130 0.866 1.019 0.726 0.210
TR30 0.899 0.928 0.478 0.078 0.889 0.939 0.543 0.125
TR50 0.887 0.940 0.463 0.071 0.877 0.951 0.526 0.115
MED 0.844 1.051 0.964 0.912 0.834 1.063 1.095 1.473
EDGE 0.965 0.782 0.633 0.335 0.954 0.791 0.720 0.540

UC 0.917 0.000 0.000 0.000 0.906 0.000 0.000 0.000
QV 0.955 0.975 0.940 0.764 0.945 0.986 1.069 1.234
AR 0.928 0.871 0.482 0.268 0.914 0.971 0.367 0.056
EX1 1.093 0.671 0.570 0.492 1.077 0.747 0.434 0.103
EX2 1.002 0.596 0.387 0.234 0.987 0.664 0.294 0.049
EX3 1.039 0.616 0.489 0.319 1.023 0.686 0.373 0.067
EX4 1.046 0.590 0.376 0.220 1.029 0.658 0.287 0.046
ADM 0.986 0.713 0.387 0.246 0.970 0.794 0.294 0.052
TR1 0.907 0.809 0.386 0.220 0.893 0.901 0.294 0.046
TR5 1.050 0.760 0.426 0.313 1.034 0.847 0.325 0.066

SP TR10 1.068 0.743 0.487 0.456 1.051 0.827 0.371 0.096
TR20 1.057 0.724 0.523 0.360 1.040 0.806 0.399 0.075
TR30 1.008 0.719 0.409 0.234 0.993 0.801 0.311 0.049
TR50 0.981 0.797 0.423 0.265 0.966 0.888 0.322 0.055
MED 0.949 0.829 0.482 0.298 0.934 0.923 0.367 0.062
EDGE 0.966 0.779 0.523 0.282 0.951 0.868 0.398 0.059

UC 0.928 0.004 0.000 0.000 0.914 0.004 0.000 0.000
QV 1.034 0.948 0.270 0.039 1.018 1.056 0.206 0.008
AR 0.996 0.984 1.129 1.395 1.001 1.027 1.088 1.298
EX1 1.029 0.701 0.760 0.835 1.033 0.731 0.732 0.777
EX2 0.988 0.714 0.803 1.064 0.993 0.744 0.774 0.990
EX3 1.003 0.644 0.696 0.734 1.007 0.672 0.670 0.683
EX4 1.060 0.561 0.719 1.109 1.064 0.585 0.693 1.032
ADM 0.999 0.613 0.545 0.262 1.003 0.639 0.525 0.244
TR1 0.871 0.569 0.249 0.077 0.875 0.594 0.239 0.072
TR5 0.894 0.621 0.318 0.120 0.898 0.647 0.306 0.112

EA TR10 0.863 0.675 0.442 0.218 0.867 0.705 0.426 0.203
TR20 0.885 0.709 0.689 0.688 0.889 0.739 0.664 0.641
TR30 0.923 0.658 0.610 0.364 0.927 0.686 0.588 0.339
TR50 1.030 0.589 0.345 0.121 1.035 0.614 0.332 0.113
MED 0.949 0.571 0.318 0.117 0.954 0.595 0.306 0.109
EDGE 1.073 0.659 0.360 0.116 1.077 0.688 0.347 0.108

UC 0.975 0.000 0.000 0.000 0.979 0.000 0.000 0.000
QV 1.121 0.991 1.595 1.537 1.126 1.034 1.536 1.430

aValues reported in this table are the Relative Root Mean Square Error, i.e. the ratio between
root mean square error of the subspace method and the traditional methods. A value smaller
indicates the subspace method is best.
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Table 4: Forecasting performance of Subspace Methods. Diebold-Mariano tests.a

SS1 SS2
Horizon Horizon

Model 1 6 12 18 1 6 12 18

AR
EX1 – –
EX2 + +
EX3 +
EX4 +
ADM +
TR1
TR5 + +

DE TR10
TR20 – –
TR30
TR50
MED
EDGE + +

UC + + + + + +
QV + + + +
AR + – – –
EX1 + – + +
EX2 + + + +
EX3 – + + – + +
EX4 – –
ADM + + – + +
TR1 –
TR5 + +

FR TR10 + + + + +
TR20 + +
TR30 + + + + + +
TR50 + +
MED + + – +
EDGE – + + + – + + +

UC
QV + +
AR +
EX1
EX2 +
EX3
EX4 –
ADM + +
TR1
TR5

IT TR10 – –
TR20
TR30
TR50
MED +
EDGE +

UC + + + + +
QV

aThe sign ‘+’ indicates the performance of the Subspace method is significantly better; the sign ‘–’
indicates a performance significantly worse, in both cases at a 5% level of significance.
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Table 4 (cont): Forecasting performance of Subspace Methods. Diebold-Mariano tests.a

SS1 SS2
Horizon Horizon

Model 1 6 12 18 1 6 12 18

AR
EX1
EX2 + +
EX3
EX4 + + +
ADM +
TR1
TR5 –

NL TR10
TR20 + + +
TR30 + + + +
TR50 +
MED
EDGE + +

UC
QV
AR +
EX1 + + + + +
EX2 + + + +
EX3 +
EX4
ADM + + + +
TR1 + + + +
TR5 +

SP TR10 + + + +
TR20 + + + +
TR30 + + +
TR50 + + + +
MED
EDGE + +

UC + +
QV
AR – –
EX1 + +
EX2 +
EX3 + +
EX4 + +
ADM + +
TR1 + + + +
TR5 + +

EA TR10 + + + + + +
TR20 +
TR30 +
TR50 + + + +
MED + +
EDGE + + – + +

UC + +
QV – – – –

aThe sign ‘+’ indicates the performance of the Subspace method is significantly better according to
the Diebold and Mariano (1995) test; the sign ‘–’ indicates a performance significantly worse, in both
cases at a 5% level of significance.
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Table 5: Ranking of Models. a

DE FR IT NL SP EA

Forecasting Horizon = 12

1 TR50 AR SS1 TR5 SS2 AR
2 TR10 SS2 AR TR10 SS1 QV
3 TR30 SS1 MED SS1 EX1 SS2
4 TR1 TR1 ADM TR1 EDGE SS1
5 AR TR20 SS2 MED TR20 EX2
6 TR20 EX1 EDGE QV EX3 EX1
7 MED TR5 TR50 EX1 TR10 EX4
8 SS2 TR50 TR1 SS2 MED EX3
9 EX2 ADM TR5 AR AR TR20
10 SS1 QV EX2 ADM TR5 TR30
11 TR5 TR30 EX1 EX3 TR50 ADM
12 EX3 EDGE TR10 EX4 TR30 TR10
13 EX1 MED TR30 EX2 EX2 EDGE
14 EX4 TR10 EX4 TR20 ADM TR50
15 EDGE EX4 UC EDGE TR1 MED
16 ADM EX3 EX3 TR30 EX4 TR5
17 QV EX2 TR20 TR50 QV TR1
18 UC UC QV UC UC UC

Forecasting Horizon = 18

1 TR10 SS1 SS1 EX3 SS2 QV
2 TR50 AR AR SS1 SS1 AR
3 TR1 SS2 ADM EX1 EX1 EX4
4 AR TR50 MED TR5 TR10 SS2
5 TR30 TR20 SS2 TR10 TR20 EX2
6 MED EX1 EDGE TR1 EX3 SS1
7 TR20 TR30 TR50 MED TR5 EX1
8 SS2 ADM TR1 QV MED EX3
9 TR5 TR1 TR5 AR EDGE TR20
10 EX4 QV EX1 SS2 AR TR30
11 EX2 TR5 EX2 EX4 TR50 ADM
12 SS1 EDGE EX4 ADM ADM TR10
13 EX3 MED TR10 EX2 EX2 TR50
14 EX1 TR10 TR30 EDGE TR30 TR5
15 EDGE EX4 EX3 TR20 EX4 MED
16 ADM EX3 UC TR30 TR1 EDGE
17 QV EX2 TR20 TR50 QV TR1
18 UC UC QV UC UC UC

aThe models are ranked from best to worst according to their perfor-
mance at forecasting headline inflation over a 12 and 18 month horizon.
SS1 denotes the subspace method 1, and SS2 the subspace method 2.
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Figure 1: Harmonised index of Consumer Prices. Year on Year changes (%).
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Figure 2: Harmonised index of Consumer Prices. Year on Year changes (%).
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