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Abstract

The rank of the spectral density matrix conveys relevant information in a vari-
ety of statistical modelling scenarios. This note shows how to estimate the rank of
the spectral density matrix at any given frequency. The method presented is valid
for any hermitian positive definite matrix estimate that has a normal asymptotic
distribution with a covariance matrix whose rank is known.

Keywords: Tests of Rank, Spectral Density Matrix.
JEL classification: C12, C32 and C52.
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NON-TECHNICAL SUMMARY

The rank of the spectral density matrix conveys relevant information in a variety of

statistical modelling scenarios. First, Phillips (1986) showed that a necessary condition

for cointegration of a multivariate time series is that the spectral density matrix of the

innovation sequence at frequency zero is of reduced rank. Second, knowing the rank of

the spectral density matrix allows to identify a simplifying structure of a vector times

series under the approach suggested by Pena and Box (1987), i.e. the common driving

forces behind the system. Third, knowledge of the rank of the spectral density matrix

is also relevant in the context of the reduction of large multiple input multiple output

(MIMO) systems. Fourth, it enables restricting the dimensionality of cyclical components

at individual frequencies. If a vector series share common cycles over certain frequencies,

then it must hold that the spectral density matrix is of reduced rank for those frequencies.

This paper discusses the estimation of the rank of the spectral density matrix using

a similar approach to that in Cragg and Donald (1996). The Cragg and Donald (1996)

approach is a very general method to test for the rank of a matrix as it only requires

that an estimate of that matrix exists having a normal asymptotic distribution with a

covariance matrix whose rank is known.

The presentation of the paper focuses in the particular case of the spectral density

matrix. However, the test presented extends to any hermitian positive definite matrices.

It is worth pointing that our method is also valid for testing the rank of a positive

semidefinite Toeplitz matrix. The rank of this matrix conveys very relevant information

in a number of signal processing applications, see, e.g., Pisarenko (1973) and Tryphou

(2000).
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1 Introduction

The rank of the spectral density matrix conveys relevant information in a variety of

statistical modelling scenarios. Phillips (1986) showed that a necessary condition for

cointegration of a multivariate time series is that the spectral density matrix of the in-

novation sequence at frequency zero is of reduced rank. Tests of the rank of the spectral

density matrix are also relevant to identify a simplifying structure of a vector times series

under the approach suggested by Pena and Box (1987), i.e. the common driving forces

behind the system. Also, the knowledge of the rank of the spectral density matrix is

relevant in the context of the reduction of large MIMO systems.

This paper discusses the estimation of the rank of the spectral density matrix using

a similar approach to that in Cragg and Donald (1996). The Cragg and Donald (1996)

approach is a very general method to test for the rank of a matrix as it only requires

that an estimate of that matrix exists having a normal asymptotic distribution with

a covariance matrix whose rank is known. The structure of the paper is as follows:

∗Comments by an anonymous referee are gratefully acknowledged. All possible remaining errors are
our own. Gonzalo Camba-Mendez is at the European Central Bank, Kaiserstrasse 29, D-60311, Frankfurt
am Main, email: gonzalo.camba-mendez@ecb.int. George Kapetanios is at the Department of Economics,
Queen Mary, University of London, Mile End Rd, London E1 4NS, email: G.Kapetanios@qmul.ac.uk.

Section 2 presents some areas of work where a procedure that estimates the rank of the

spectral density matrix may be of use. Section 3 presents the analytical framework and

background material on the estimation of the spectral density matrix together with the

asymptotic properties of the estimates. A method to estimate the rank of the spectral

density matrix is described in section 4. Section 5 presents some Monte Carlo experiments

that provide some intuition on the potential merits of this new method as a valid tool

for the estimation of the cointegrating rank. Section 6 concludes.
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2 Motivation

The analysis of a number of statistical and econometric issues may be helped by a proce-

dure that determines the rank of a spectral density matrix. Here we give some examples.

Common driving forces. Denote an m-vector zero mean stationary process by {xt}∞t=1,

and assume that there exists a representation:

xt = Pzt (1)

where P is a m × r matrix of parameters, and zt is a r-vector stationary process, with

r < m, i.e. there is a reduction in dimensionality, which follows an ARMA(p,q) process,

i.e.

Φ(L)zt = Θ(L)ut

where Φ(L) and Θ(L) are matrix lag polynomials with all their roots outside the unit

circle, and ut is an iid random process with zero mean and positive definite covariance

matrix Γu. A further identification restriction imposed in this model is that the r factors

are independent, and that all Φi and Θi matrices are diagonal. P is usually referred to

as the matrix of factor loadings. For identification purposes it is assumed that P ′P =

I. Denote Γx(k) = E{xtx
′
t−k}, and Γz(k) = E{ztz

′
t−k}. Under the representation in

equation (1), it follows that Γx(k) = PΓz(k)P ′ for k ≥ 1. The rank of Γx(k) for k ≥ 1 is

equal to r, the number of the common driving forces. Also, the spectral density matrix

of xt at frequency ω is denoted by and equal to Σxx(ω) = PΣzz(ω)P . The rank of

this matrix is of reduced rank for all frequencies. The model in Pena and Box (1987) is

equivalent to model (1) with added noise, i.e.

xt = Pzt + εt (2)

where, εt is an m-vector of iid zero mean processes with covariance matrix Γε. Identifi-

cation of the number of common driving forces cannot be linked directly to the rank of
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the spectral density matrix, but to a transformation of this. It is easy to see that the

number of driving forces is equivalent to the rank of (Σx̃x̃(ω) − I), for all frequencies ω,

where x̃t = Γx(0)−1/2xt.

Reduction of MIMO Systems. Given the multiple input multiple output (MIMO)

system:

zt =
∞∑

k=0

Akut−k

xt = zt + εt

where xt is the p× 1 observed output, zt is the p× 1 true output vector, ut is the m× 1

input vector, and εt is a p × 1 noise component. The transfer function of that system is

given by A(eiω) =
∑∞

k=0 Ake
ikω. For ut and εt jointly stationary uncorrelated processes,

it holds that Σxu(ω) = A(eiω)Σuu(ω), where Σxu(ω) and Σuu(ω) are the cross spectral

density matrix between xt and ut and the spectral density matrix of ut respectively.

This suggests that an estimator of the transfer function could be given by:

Â(eiω) = Σ̂xu(ω)Σ̂
−1

uu (ω)

See Priestley (1981) for further details. For systems with large numbers of input and

output variables, this estimation strategy might contain redundant information, and un-

der those circumstances it appears sensible to try to reduce the dimension of this system.

Brillinger (1969) and Priestley, Rao, and Tong (1973) showed that a possible reduction

strategy would be to apply principal component analysis to the Fourier components of

the input and output. These so called Dynamic Principal Components are built from

a spectral decomposition of the spectral density matrix. Knowledge of the rank of the

spectral density matrix of the input vector and the output vector is useful to select the

relevant number of dynamic principal components that provide an optimal representa-

tion of the input vector and the relevant number of dynamic principal components that

provide an optimal representation of the output vector; and where optimal representation

is defined as that which provides maximum linear predictive efficiency.

Cointegration. Let {yt}∞t=0 be a n × 1 vector stochastic process generated by:

yt = yt−1 + ut

and where y0 is any random vector, and {ut} is a zero mean, weakly stationary innova-

tion process such that E|ui|β for i = 1, . . . , n and β > 2; and {ut}∞t=0 is strong mixing
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with mixing numbers αm that satisfy
∑∞

m=1 α1−2/β
m < ∞. Under those conditions, Phillips

(1986) showed that if the system is cointegrated, i.e. there exists a vector γ for which γ′yt

is stationary, then the spectral density matrix of the innovation sequence ut at frequency

zero, denoted by Σuu, is of reduced rank equal to n minus the number of cointegrating

vectors γi.

Clearly, for some of the cases considered above one requires a joint test that the rank of

the spectral density matrix is of a given rank for all frequencies. Our method will consider

given frequencies only. However, our methodology is viewed more as a diagnostic tool

for further model development rather than a formal joint test of reduced rank. In that

sense it can still provide vital information about the structure of the data considered by

being used for a set of different frequencies. Further, identifying common components

of multivariate data at particular frequencies is of interest in its own, e.g. macroeco-

nomic analysis often focuses on business cycle frequencies of between 5 and 10 years.

Our proposed procedure can be a useful tool in such circumstances.

3 Background Theory

Multivariate one sided tests. Let θ̂ be a consistent estimator of the q × 1 vector θ

such that
√

Tvec(θ̂−θ)
d→ N(0,Ω), where Ω is nonsingular and T denotes the size of the

sample used to estimate θ. We would like to test the hypothesis H0 : θi = 0 (i = 1, . . . , q)

against the alternative H1 : θi ≥ 0 (i = 1, . . . , q) where the inequality is strict for at least

one value of i. Kudo (1963) showed that a likelihood ratio statistic for the one sided

hypothesis we consider and normally distributed random variables can be defined as:

χ̄2 = T θ̂
′
Ω−1θ̂ − T min

θi≥0

i=1,...,q

(θ̂ − θ)′Ω−1(θ̂ − θ) (3)

The minimum of the second summand can be computed by means of quadratic program-

ming. Kudo (1963) further showed that the probability that the value of χ̄2 exceeds χ̄2
0

is given by:

Pr
(
χ̄2 ≥ χ̄2

0

)
=

q∑
i=0

wiPr
(
χ2

i ≥ χ̄2
0

)
(4)

where χ2
i is the chi-squared random variable with i degrees of freedom, χ2

0 = 0, and wi

are nonnegative weights given by:

wi =
∑
Qi

P{(ΩQ′
i
)−1}P{ΩQi:Q′

i
} (5)

9
ECB

Working Paper Series No. 349
April 2004



where the summation runs over all subsets Qi of K = {1, . . . , q} of size i, and Q′
i is

the complement of Qi where ΩQi
is the variance matrix of θj, j ∈ Qi, and ΩQi:Q′

i
is the

same under the condition θj = 0, j /∈ Qi, and P{Ω} is the probability that the variables

distributed in a multivariate normal distribution with mean zero and covariance matrix

Ω are all positive; finally, P{Ωφ:K} = 1 and P{(ΩK′)−1} = P{(Ωφ)−1} = 1. The

probabilities in 5 can be easily computed by means of the algorithm proposed in Sun

(1988). Note that a simple expression for ΩQi:Q′
i

is given by ΩQi
− ΩQi,Q′

i
Ω−1

Q′
i
Ω′

Qi,Q′
i

where ΩQi,Q′
i

is the covariance matrix of θj, j ∈ Qi and θj, j ∈ Q′
i (see e.g. Anderson

(2003, pp. 33-35)). Note that a similar analysis using the ideas of Kudo (1963), among

others, has been carried out, by Gourieroux, Holly, and Monfort (1982), in the context

of inequality constraints on coefficients in regression models.

Complex Multivariate Normal Distribution. A q-dimensional random variable xt

with complex valued components is complex multivariate normally distributed with mean

µ and covariance matrix Ω, and denoted as NC(µ,Ω), if the 2q-random variable with

real components (Re x′
t, Im x′

t)
′ is distributed as

N

([
Re µ
Im µ

]
,

1

2

[
Re Ω −Im Ω
Im Ω Re Ω

])
(6)

where Re and Im denote the real and imaginary part of a complex variate. Let us denote

the covariance matrix in (6) by Ωr. For a detailed exposition of the complex multivariate

normal see Brillinger (1981, Sec. 4.2). If a set of vector random variables, x1, . . . ,xn are

i.i.d zero mean complex multivariate normal with covariance Ω, then
∑n

i=1 xix̄i
′ (where

x̄i is the complex conjugate of xi) is said to have a complex Wishart distribution with n

degrees of freedom, and is denoted by WC(n,Ω).

Spectral Density Matrix. Denote a zero mean, wide sense stationary m-vector pro-

cess by {xt}∞t=1. The spectral density matrix of xt is defined as

Σ(ω) = (2π)−1
∞∑

k=−∞
Γke

−ikω

for θ ∈ [−π, π] where Γk = E{xtx
′
t−k}. Given a sample of T observations an estimate of

the spectral density matrix is given by:

Σ(ω) = (2π)−1
T−1∑

k=−(T−1)

Γ̂ke
−ikω

where Γ̂k = 1
T

∑T−|k|
t=1 xtx

′
t−k. 2πΣ(ω) is the periodogram. The periodogram provides

an inconsistent but asymptotically unbiased estimate of the spectral density matrix, and
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is asymptotically distributed as a complex Wishart variable with 1 degree of freedom.

A standard approach for consistent estimation of the spectral density matrix1 relies on

‘smoothing’ the periodogram itself over the frequencies, i.e. averaging adjacent frequency

ordinates. These estimates take the form,

Σ̂(ω) =
1

2M + 1

M∑
k=−M

Σ(ω + k/T ) (7)

For M fixed as T → ∞ this estimate is still inconsistent, asymptotically unbiased for the

spectral density matrix and asymptotically distributed as (2M +1)−1WC(2M +1,Σ(ωj)),

(see Brillinger (1981, pp. 245)). This is the simplest form of a smoothed periodogram

estimate for the spectral density matrix. Different weights can be assigned to the

periodogram coordinates Σ̄ (ω + k/T ), see Brillinger (1981, Chapter 7). If we allow

M → ∞ as T → ∞ but impose M4/T → 0 we get a consistent and asymptoti-

cally normal estimate (see e.g. Newey and West (1987)). In particular we get that√
2M + 1(vec(Σ̂(ω)) − vec(Σ(ω))) is asymptotically complex normal2 with a covariance

matrix whose element giving the asymptotic covariance between Σ̂i,j(ω) and Σ̂u,v(ω), is

given by:
Σi,u(ω)Σj,v(ω) + Σi,v(ω)Σj,u(ω) if ω = 0,±π
Σi,u(ω)Σj,v(ω) if ω �= 0,±π

(8)

where Σi,j(ω) is the (i, j)-th element of Σ(ω). We will denote this covariance matrix by

V and its estimate, obtained by using the estimated spectral density matrix, by V̂ . More

details may be found in e.g. Brillinger (1981, pp. 262) or Brockwell and Davis (1991,

pp. 447). In what follows we will assume that the periodogram coordinate weights are

such that the spectral density matrix estimate is nonnegative definite.

4 Testing the rank of Σ

This paper deals with the issue of testing the rank of an n × n hermitian positive semi-

definite matrix Σ. In what follows we assume that in the following partition of Σ the

r × r submatrix Σ11 is of full rank. (
Σ11 Σ12

Σ21 Σ22

)

If Σ11 is not initially of full rank r, a valid reordering of the columns and rows of Σ

would guarantee this without affecting the overall rank of the matrix. Cragg and Donald

1As we are mainly interested in the rank of the spectral density matrix, in the rest of the discussion
we drop the normalizing constant 2π.

2For more details on the choice of M and its effect on the asymptotic bias and variance of the
estimator see also Brillinger (1981, Chapter 2).
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(1996) propose the application of r steps of Gaussian elimination with complete pivoting

on Σ to achieve the required result. This manipulation guarantees that Σ11 in the finally

reordered matrix is of full rank r. In the case under study in this paper we need to

preserve the symmetry of Σ and hence symmetric pivoting should be implemented. An

algorithm to compute the factorization PΣP ′ = GḠ
′
, where P is an n × n pivoting

matrix and G is an n× r lower triangular matrix is available in the LINPACK, see Don-

garra, Bunch, Moler, and Stewart (1979), and subroutine CCHDC for details. Without

lack of generality we avoid the issue of pivoting in this section for ease of notation.

Given the linear dependance of the last n− r columns on the first r columns it must

hold that Λ = Σ22 − Σ21Σ
−1
11 Σ12 = 0. This implies that a test of rank H0 : rk(Σ) = r

is equivalent to a test of the null hypothesis H0 : Λ = 0. This is the testing strategy

adopted by Cragg and Donald (1996). We further have the following proposition which

simplifies the problem considerably.

Proposition 1 Λ = 0 if and only if Λi,i = 0, i = 1, . . . , n− r where Λi,i denotes the i-th

diagonal element of Λ.

Proof : The ‘if’ part is obvious. The ‘only if’ part follows if we note the following. By

the Schur Complement Theorem we know that if Σ is positive semidefinite then Λ will

be positive semidefinite. Hence, all the eigenvalues of Λ, denoted λi, i = 1, . . . , n − r,

will be nonnegative. For a positive semidefinite matrix it always holds that its trace is

equal to the sum of its eigenvalues, implying
∑n−r

i=1 Λi,i =
∑n−r

i=1 λi. Then, by the fact that∑n−r
i=1 Λi,i = 0 it must follow that λi = 0, i = 1, . . . , n − r, i.e. the matrix has rank zero

and is therefore a matrix of zeros. �

We can therefore concentrate on testing the null hypothesis H0 : θ = 0 where θ =

(Λ1,1, . . . , Λn−r,n−r)
′. Note further that θ is a real vector. Under the null hypothesis we

show in the appendix that
√

2M + 1 vec(Λ̂)
d→ NC(0,W ) where

d→ denotes convergence

in distribution, and W is a matrix defined in the appendix. Hence

√
2M + 1 θ̂ =

√
2M + 1 L

(
Re vec(Λ̂)′, Im vec(Λ̂)′

)′ d→ N(0,LW rL′) (9)

where L is a n − r × 2(n − r)2 selector matrix that picks the real part of the diagonal

elements of Λ̂. Then, we have the following proposition

Proposition 2 Under the null hypothesis, H0 : r = r∗, (2M + 1) θ̂
′
Ψ−1θ̂ is distributed

as a weighted mixture of χ2
i , i = 1, . . . , n − r∗, where Ψ = LW rL′ and the weights wi

are given by (5).
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Proof : Using the results of Kudo (1963) we can construct the test statistic for the

null hypothesis H0 : θ = 0 against the alternative H0 : θi ≥ 0, i = 1, . . . n − r where

at least one inequality is strict. Our estimate of the spectral density matrix guarantees

that the diagonal elements are always nonnegative (Note that the spectral density ma-

trix at frequency ω is simply the covariance matrix of a white noise process according to

the spectral representation of a multivariate stationary process. See e.g. Brockwell and

Davis (1991, Section 11.8 and (11.1.17))). This means that the second summand in the

statistic χ̄2 presented in (3), namely the quadratic programming problem, will always be

zero. Therefore, the statistic of interest is simplified to χ̄2 = (2M + 1) θ̂
′
Ψ−1θ̂. �

It is worth noting that the multivariate one sided test has been generalized by Kudo

and Choi (1975) to cases where Ψ is singular. Further, we note that the following

possibilities for simplifying the execution of the test, with respect to the calculation of

the critical values, are possible. Firstly, Tang, Gnecco, and Geller (1989) provide an

approximate likelihood ratio test which is distributed as a χ̄2 statistic with weights that

do not depend on V and are easily calculated. Secondly, since the weights in (5) add

up to 1 (see, e.g., Bohrer and Chow (1978)) then a conservative test (i.e. a test whose

true size is lower that the nominal significance level used) can usefully serve as a vehicle

for deriving a consistent estimator for the rank. So we can set the weights, wi such that

the critical values of the assumed distribution are upper bounds of the critical values

of the true distribution. This can be straightforwardly achieved by setting wi = 0 for

i = 1, . . . , n − r∗ − 1 and wi = 1 for i = n − r∗. In other words the critical values of the

χ2
n−r∗ distribution would be used.

A sequential application of this test of rank can provide a consistent estimate of the

rank of Σ if the significance level used in the test converges to zero as the number of

observations tends to infinity (See, e.g., Hosoya (1989)).

5 Monte Carlo Analysis

As stated above, one of the uses of estimating the rank of the spectral density matrix

is identifying the cointegrating rank. The test developed by Johansen (1988) is the key

reference in the econometric literature to search for the cointegrating rank. However,

this method was developed under the assumption of normally distributed innovations.

Non-normally distributed innovations lead to a loss in power of this method. It is thus

of interest to see whether the method presented in this paper could have certain merits
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as a nonparametric test of cointegration. This section present a brief collection of Monte

Carlo exercises that show that this is indeed the case. We note however that a more

thourough study is beyond the scope of this paper and is left for future research.

The class of finite order linear vector error correction mechanism (VECM) models is

not the most appropriate class to assess nonparametric procedures. Therefore, linear and

nonlinear cointegrating systems will be considered. The data generation process for the

vector simulated series yt is defined as follows:

∆yt = F (∆yt−1)Πyt−1 + εt (10)

where we allow for three alternative specifications for F (.):

F (∆yt−1) = I (11)

F (∆yt−1) = 1 − e−(
∑m

i=1
∆yi,t−1)2 (12)

F (∆yt−1) = 1{|
m∑

i=1

∆yi,t−1| > r} , r=2 (13)

These specifications lead to a linear model if (11), a pseudo-STAR model if (12), and

a pseudo-SETAR model if (13). The last two lead to nonlinear VECM models where

the speed of convergence to equilibrium depends on ∆yt−1. As their name indicate the

pseudo-STAR model is inspired by univariate smooth transition autoregressive (STAR)

models, while the pseudo-SETAR by self-exciting threshold autoregressive (SETAR)

models. Note that these nonlinear models still imply the existence of a Wold decom-

position for the differenced data and therefore our suggested procedure is appropriate.

We concentrate on a multivariate model with 3 variables. We control the rank of the

coefficient matrix Π in the error correction representation by specifying the vector of

its eigenvalues. Two different vectors are considered: (−0.6, 0, 0), i.e. one cointegrating

vector, and (−0.6,−0.6, 0), i.e. two cointegrating vectors. Note that all the eigenvalues

are negative given the requirement that the eigenvalues of I +Π are less than or equal to

one. We then construct a standard normal random matrix of eigenvectors E which are

almost surely linearly independent. These are transformed into an orthonormal basis, Ẽ,

using the Gram-Schmidt process. The coefficient matrix is then given by ẼΛẼ
′
where

Λ is a diagonal matrix containing the eigenvalues of the required coefficient matrix.

Two alternative types of random disturbances are used for simulating εt. First, random

normal disturbances with identity covariance matrix. Second, iid MA(1) processes with

correlation coefficient 0.9. Using these random numbers a sample from a process following

the error correction representation in (10) is obtained.
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The sample sizes considered are 200 and 600. For each simulated sample, 200 ini-

tial observations have been discarded to minimise the effect of starting values. For each

Monte Carlo experiment 10,000 replications have been carried out. Bias and Mean Square

Error (MSE) statistics for these simulation exercises are shown in table 1. For illustra-

tion purposes, this table also reports simulation results for Johansen (1988) maximum

eigenvalue test (JM) and also his trace test (JM), the procedure described in this paper

is denoted by (CK).3 Generally speaking the performance of the CK is satisfactory for

most cases under study. The only exceptions are exercises run with samples of size 200,

rank 2 and a pseudo-SETAR model. The test appears always best in terms of Bias and

MSE for exercises of rank equal to 1, sample size equal to 600 and MA(1) errors. But

for minor exceptions, the Johansen’s procedures are always best for exercises conducted

with normally distributed shocks.

6 Conclusion

This paper has formulated a rank determination procedure for the rank of the spectral

density matrix at any frequency. The need for such techniques becomes apparent in

areas such as multivariate factor models and cointegration. Phillips and Ouliaris (1988)

suggested tests of the null of ‘no cointegration’ which amounted to a test of the hypothesis

that the r smallest eigenvalues of the spectral density matrix of the innovation sequence at

frequency zero are greater than zero. Phillips and Ouliaris (1990) expanded on the issue

of choice of the null hypothesis in cointegration testing by pointing out that adopting

the null hypothesis of cointegration may be more sensible from a methodological point

of view given that cointegration is the focus of interest. However, it was also pointed out

that standard test statistics based on the spectral density matrix provided inconsistent

tests under the null hypothesis of no cointegration. This paper has described tests of

the rank of the spectral density matrix which may serve, at frequency zero, as tests

of the null of ‘cointegration’. It is clear that, as long as a consistent estimate of the

spectral density matrix of the innovation process exists and has an asymptotic complex

normal distribution, the application of the test described will provide a consistent testing

procedure for cointegration. The test of the rank of the spectral density matrix described

in this paper is also relevant to identify a simplifying structure of a vector times series

under the approach suggested by Pena and Box (1987), and to restrict the dimensionality

of cyclical components at individual frequencies.

3GAUSS code to implement this test is available from the authors upon request.
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The presentation of this paper has been focused in the particular case of the spectral

density matrix. However, the test presented extends to any hermitian positive definite

matrices. It is worth pointing that our method is also valid for testing the rank of a

positive semidefinite Toeplitz matrix. The rank of this matrix conveys very relevant

information in a number of signal processing applications, see, e.g., Pisarenko (1973) and

Tryphou (2000).
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A Appendix

As vec(Λ) is not analytic, it cannot be expanded as a Taylor series. We define instead

for a hermitian complex matrix A, a 2n × 2n real symmetric matrix AR which is an

arrangement of the real and imaginary parts of the elements of A. Details on AR are

given in Brillinger (1981, pp. 71). By Brillinger (1981, Lemma 3.7.1(i),(ii),(iv)), if Λ =

Σ22−Σ21Σ
−1
11 Σ12 then ΛR = ΣR

22−ΣR
21Σ

R
11

−1
ΣR

12. Note that (Re vec(Σ)′, Im vec(Σ)′)′ d→
N(0,Vr). Let dij be the vector of distinct elements of ΣR

ij. Define J1, J2, Jh
j , Jh

ij and Di,

i, j = 1, 2, as s ≡
(

vec(ΣR
11)

′, vec(ΣR
21)

′, vec(ΣR
12)

′, vec(ΣR
22)

′
)′

= J1 (Re vec(Σ)′, Im vec(Σ)′)′,

J2vec(ΛR) = (Re vec(Λ)′, Im vec(Λ)′)′, Jh
j djj = vech(ΣR

jj), Jh
ijdij = vec(ΣR

ij) and

vec(ΣR
ii) = Divech(ΣR

ii). Then

R ≡ ∂vec(ΛR)

∂s
=

[
∂vec(ΛR)

∂vec(ΣR
11)

′ ,
∂vec(ΛR)

∂vec(ΣR
21)

′ ,
∂vec(ΛR)

∂vec(ΣR
12)

′ ,
∂vec(ΛR)

∂vec(ΣR
22)

′

]

Since vec(ΣR
21Σ

R
11

−1
ΣR

12) =
(
ΣR

12

′ ⊗ ΣR
21

)
vec

(
ΣR

11

−1
)
, ΣR

11 and ΣR
22 are symmetric and

ΣR
21 = ΣR

12

′
, from Brillinger (1981, Lemma 3.7.1(v)), we have

∂vec(ΛR)

∂vec(ΣR
11)

′ =
(
ΣR

12

′ ⊗ ΣR
21

)
D1D

+
1

(
ΣR

11

−1 ⊗ ΣR
11

−1
)
D1J

h
1J

h
1

+
D+

1 (A-1)

∂vec(ΛR)

∂vec(ΣR
21)

′ = −
(
I4(n−r)2 + K2(n−r),2(n−r)

) (
ΣR

21Σ
R
11

−1 ⊗ I2(n−r)

)
Jh

21J
h
21

+
(A-2)

∂vec(ΛR)

∂vec(ΣR
12)

′ =
∂vec(ΛR)

∂vec(ΣR
21)

′K2r,2(n−r),
∂vec(ΛR)

∂vec(ΣR
22)

′ = D2J
h
2J

h
2

+
D+

2 (A-3)

where for a matrix A, A+ = (A′A)−1A′, Km,n is a commutation matrix (see Lütkepohl

(1996, Sec. 9.2)). (A-1), (A-2) and (A-3) follow from Lütkepohl (1996, 10.6(2) and

9.5.3(1)(ii)), Lütkepohl (1996, 10.5.1(7)) and Lütkepohl (1996, 10.4.1(1)(iii) and 9.5.3(1)(ii))

respectively. Then,
√

2M + 1
(
Re vec(Λ̂)′, Im vec(Λ̂)′

)′ d→ N(0,W r) where W r =

JV rJ ′ and J = J2RJ1. Finally,
√

2M + 1vec(Λ̂)
d→ NC(0,W ). An alternative to

the above is the use of numerical derivatives.
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Table 1: Bias and MSE of Estimated rank.a

Bias MSE
Model Noise Test rank 200 600 200 600

CK 1 0.191 0.134 0.206 0.135
2 -0.366 -0.218 0.418 0.230

Normal JM 1 0.058 0.055 0.061 0.059
2 0.059 0.060 0.059 0.060

JT 1 0.060 0.056 0.073 0.070
Linear 2 0.059 0.060 0.059 0.060

CK 1 0.196 0.135 0.206 0.137
2 -0.369 -0.206 0.425 0.218

MA(1) JM 1 0.158 0.162 0.183 0.187
2 0.095 0.078 0.095 0.078

JT 1 0.169 0.172 0.218 0.217
2 0.095 0.078 0.095 0.078

CK 1 0.158 0.130 0.209 0.136
2 -0.543 -0.307 0.670 0.341

Normal JM 1 0.055 0.056 0.059 0.059
2 0.063 0.060 0.063 0.060

JT 1 0.057 0.056 0.068 0.066
STAR 2 0.063 0.060 0.063 0.060

CK 1 0.173 0.125 0.206 0.129
2 -0.492 -0.275 0.596 0.295

MA(1) JM 1 0.156 0.150 0.188 0.170
2 0.093 0.081 0.093 0.081

JT 1 0.145 0.160 0.229 0.196
2 0.093 0.081 0.093 0.081

CK 1 -0.125 0.081 0.342 0.156
2 -1.019 -0.647 1.452 0.825

Normal JM 1 -0.115 0.055 0.208 0.058
2 -0.041 0.060 0.177 0.060

JT 1 -0.161 0.057 0.273 0.069
SETAR 2 -0.028 0.060 0.156 0.060

CK 1 0.036 0.123 0.257 0.143
2 -0.824 -0.466 1.110 0.558

MA(1) JM 1 -0.144 0.152 0.384 0.175
2 -0.151 0.081 0.366 0.081

JT 1 -0.166 0.159 0.489 0.202
2 -0.055 0.081 0.236 0.081

aSample sizes for Monte Carlo experiments are 200 and 600. CK denotes the Camba-Mendez and
Kapetanios test, JM refers to Johansen’s maximum eigenvalue test and JT to Johansen’s trace test.
rk denotes the cointegrating rank which is 1 or 2 for the different exercises conducted as described
in the text.
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