

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Uribe, Martín

Working Paper A fiscal theory of sovereign risk

ECB Working Paper, No. 187

Provided in Cooperation with: European Central Bank (ECB)

Suggested Citation: Uribe, Martín (2002) : A fiscal theory of sovereign risk, ECB Working Paper, No. 187, European Central Bank (ECB), Frankfurt a. M.

This Version is available at: https://hdl.handle.net/10419/152621

Standard-Nutzungsbedingungen:

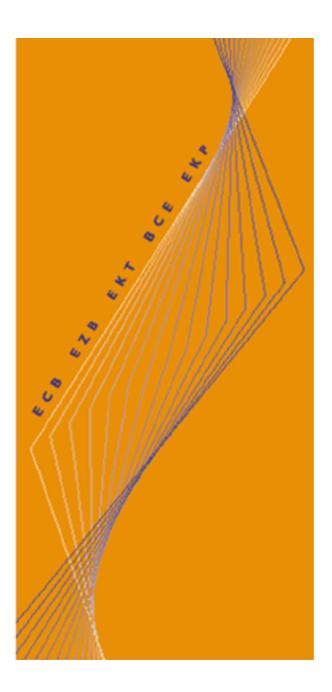
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

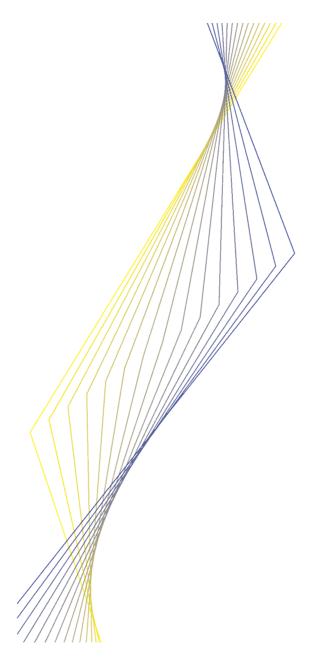

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

EUROPEAN CENTRAL BANK WORKING PAPER SERIES

WORKING PAPER NO. 187


A FISCAL THEORY OF SOVEREIGN RISK

BY MARTÍN URIBE

October 2002

EUROPEAN CENTRAL BANK

WORKING PAPER SERIES

WORKING PAPER NO. 187

A FISCAL THEORY OF SOVEREIGN RISK'

BY MARTÍN URIBE²

October 2002

2 University of Pennsylvania and NBER, Phone: 215 898 6260. E-mail: uribe@upenn.edu

I I would like to thank Stephanie Schmitt-Grohé, an anonymous referee, and seminar participants at Indiana University, the European Central Bank, and the 2002 meeting of the Society for Economic Dynamics held in New York, NY. for helpful comments. Newer versions of this paper are maintained at http://www.econ.upenn.edu/~uribe. This research was done while the author was visiting the Directorate General Research as part of the ECB Research Visitor Programme. The opinions expressed herein are those of the authors and do not necessarily represent those of the European Central Bank.

© European Central Bank, 2002

Address	Kaiserstrasse 29
	D-60311 Frankfurt am Main
	Germany
Postal address	Postfach 160319
	D-60066 Frankfurt am Main
	Germany
Telephone	+49 69 344 0
Internet	http://www.ecb.int
Fax	+49 69 344 6000
Telex	411 144 ecb d

All rights reserved.

Reproduction for educational and non-commercial purposes is permitted provided that the source is acknowledged. The views expressed in this paper do not necessarily reflect those of the European Central Bank.

ISSN 1561-0810

Contents

Abst	tract	4
Non	n-technical summary	5
I	Introduction	7
2	The model 2.1 The fiscal authority 2.2 Equilibrium	9
3	The equilibrium default rate	13
4	Taylor rules and default 4.1 Impossibility of achieving the inflation target without defaulting 4.2 Unforecastability of the default rate	4 5 6
5	The perils of delaying default: unpleasant default arithmetics	18
6	 Price level targeting 6.1 The equilibrium stock of public debt 6.2 Impossibility of pegging the price level without defaulting 6.3 Default rule 1 6.4 Default rule 2 6.5 Default rule 3: an interest rate peg 	21 22 23 24 26 28
7	Conclusion	28
Арр	endix	31
Refe	erences	34
Euro	opean Central Bank working paper series	35

Abstract

This paper presents a fiscal theory of sovereign risk and default. Under certain monetary-fiscal regimes, the risk of default, and thus the emergence of sovereign risk premia, are inevitable. The paper characterizes the equilibrium processes of the sovereign risk premium and the default rate under a number of alternative monetary policy arrangements. It is argued that, given the fiscal stance, monetary policy plays a crucial role in shaping the equilibrium behaviour of the country risk premium and the default rate. For instance, under some of the monetary policy rules considered, the expected default rate and the sovereign risk premium are zero (and therefore unfore-castable) although the government defaults regularly. Under other monetary regimes the default rate and the sovereign risk premium are serially correlated (and therefore forecastable). In addition, environments are characterized under which delaying default is counterproductive. *JEL Classification:* E6, F4.

Keywords: Default, Country Risk, Public Debt.

Nontechnical Summary

Certain monetary-fiscal arrangements are incompatible with price stability and government solvency. Consider, for example, the case of an independent central bank whose policy is to peg the price level. Under this monetary regime, the government cannot use the price level as a shock absorber of negative fiscal shocks. By sticking to a price level target, the government gives up its ability to inflate away part of the real value of public debt via surprise inflation in response to sudden deteriorations of the fiscal budget. Under these circumstances, default of the public debt is inevitable.

Policy regimes of this type, under which debt repudiation is, under certain states of the world the only possible outcome, are not unheard of. A point in case is the recent debt crisis in Argentina. Between 1991 and early 2002, Argentina pegged the domestic price of tradables to the US counterpart by fixing the peso/dollar exchange rate. Abandoning the exchange-rate peg was never an easy option for the Argentine government. This is because the peg was instituted by a law of Congress—the 1991 Convertibility Law—which required the enactment of another law to be deactivated. In the midst of a prolonged recession, in 2001 doubts began to be cast about the government's ability to curb fiscal imbalances. These fears placed the country risk premium, measured by the difference between the interest rate on Argentine and US dollar-denominated government bonds of similar maturities, over 1,800 basis points, among the world's highest at the time. Eventually, the Argentine government defaulted; first on interest obligations, in December of 2001, and shortly thereafter on the entire principal.

Price level targeting is not the only monetary arrangement under which pressures for default can arise under certain fiscal scenarios. Consider the case of a central bank that aggressively pursues an inflation target by setting the nominal interest rate as an increasing function of inflation with a reaction coefficient larger than unity. This type of policy rule is often referred to as a Taylor rule after John Taylor's (1993) seminal paper. Suppose that, at the same time, the fiscal authority follows an active stance whereby it does not adjust the primary deficit to ensure intertemporal solvency. Under this policy mix, if the government refrains from defaulting, then price stability is in general unattainable. In particular, the equilibrium rate of inflation converges to either plus or minus infinity. Loyo (1999) refers to the latter equilibrium as a 'fiscalist hyperinflation.' Given this monetary-fiscal regime, default is a necessary consequence if price stability is to be preserved. An example of the policy regime described here is given by Brazil. Since mid 1999, the Brazilian central bank has been actively using the interest rate as an instrument to target inflation. Although in recent years fiscal discipline has been enhanced, the Brazilian Treasury is facing serious

difficulties implementing additional fiscal reforms necessary to slowdown the rapid growth in public debt. Interestingly, a growing number of observers are beginning to consider a 'unilateral restructuring' of Brazil's public debt as a likely way out of hyperinflation.

The focus of this paper is to characterize the equilibrium behavior of default and the country risk premium in policy environments under which the government cannot guarantee the full service of public obligations without relinquishing price stability. A central question this paper seeks to answer is how different monetary policy specifications affect the equilibrium behavior of default and sovereign risk premia. The analysis is organized around two canonical policy arrangements. Under both environments fiscal policy is assumed to be 'active' in the sense of Leeper (1991). Specifically, real primary surpluses are assumed to be exogenous and random. In one of the policy regimes considered, the central bank pegs the price level. In the other, the monetary authority follows a Taylor rule.

Our characterization of equilibrium under default reveals that the properties of the equilibrium stochastic process followed by the default rate and the sovereign risk premium depend heavily upon the underlying monetary policy regime. For example, in the Taylor-rule economy, although the government defaults regularly, the expected default rate and the country risk premium are zero. This means that the default rate is unforecastable. By contrast, in the price-targeting economy current and past fiscal deficits predict future default rates. Moreover, in the price-targeting economy the fiscal authority has more degrees of freedom in setting the default rate than in the Taylor-rule economy.

Understandably, having to default is a situation no policymaker wishes to be involved in. So procrastination is commonplace. Sometimes governments choose to let go of their price stability goal temporarily in the hopes of inflating their way out of default. A natural question, therefore, is what standard general equilibrium models tell us about the consequences of delaying default. We find that substituting a temporary increase in inflation for default is not always possible. Specifically, we identify situations in which postponing the decision to default leads to a hyperinflationary situation that in order to be stopped requires an eventual default of larger dimension than the one that would have taken place had the government not chosen to procrastinate.

1 Introduction

Certain monetary-fiscal arrangements are incompatible with price stability and government solvency. Consider, for example, the case of an independent central bank whose policy is to peg the price level. Under this monetary regime, the government cannot use the price level as a shock absorber of negative fiscal shocks. By sticking to a price level target, the government gives up its ability to inflate away part of the real value of public debt via surprise inflation in response to sudden deteriorations of the fiscal budget. Under these circumstances, default of the public debt is inevitable.¹

Policy regimes of this type, under which debt repudiation is, under certain states of the world the only possible outcome, are not unheard of. A point in case is the recent debt crisis in Argentina. Between 1991 and early 2002, Argentina pegged the domestic price of tradables to the US counterpart by fixing the peso/dollar exchange rate. Abandoning the exchange-rate peg was never an easy option for the Argentine government. This is because the peg was instituted by a law of Congress—the 1991 Convertibility Law—which required the enactment of another law to be deactivated. In the midst of a prolonged recession, in 2001 doubts began to be cast about the government's ability to curb fiscal imbalances. These fears placed the country risk premium, measured by the difference between the interest rate on Argentine and US dollar-denominated government bonds of similar maturities, over 1,800 basis points, among the world's highest at the time. Eventually, the Argentine government defaulted; first on interest obligations, in December of 2001, and shortly thereafter on the entire principal.

Price level targeting is not the only monetary arrangement under which pressures for default can arise under certain fiscal scenarios. Consider the case of a central bank that aggressively pursues an inflation target by setting the nominal interest rate as an increasing function of inflation with a reaction coefficient larger than unity. This type of policy rule is often referred to as a Taylor rule after John Taylor's (1993) seminal paper. Suppose that, at the same time, the fiscal authority follows an active stance whereby it does not adjust the primary deficit to ensure intertemporal solvency. Under this policy mix, if the government refrains from defaulting, then price stability is in general unattainable. In particular, the equilibrium rate of inflation converges to either plus or minus infinity. Loyo (1999) refers to the latter equilibrium as a 'fiscalist hyperinflation.' Given this monetary-fiscal regime, default is a necessary consequence if price stability is to be preserved. An example of the policy regime described here is given by Brazil. Since mid 1999, the Brazilian central bank

 $^{^{1}}$ Krugman's (1979) celebrated model of balance of payments crises is an example in which the aforementioned incompatibility is resolved by abandoning the price stability goal.

has been actively using the interest rate as an instrument to target inflation. Although in recent years fiscal discipline has been enhanced, the Brazilian Treasury is facing serious difficulties implementing additional fiscal reforms necessary to slowdown the rapid growth in public debt. Interestingly, a growing number of observers are beginning to consider a 'unilateral restructuring' of Brazil's public debt as a likely way out of hyperinflation.²

The focus of this paper is to characterize the equilibrium behavior of default and the country risk premium in policy environments under which the government cannot guarantee the full service of public obligations without relinquishing price stability. A central question this paper seeks to answer is how different monetary policy specifications affect the equilibrium behavior of default and sovereign risk premia. The analysis is organized around two canonical policy arrangements. Under both environments fiscal policy is assumed to be 'active' in the sense of Leeper (1991). Specifically, real primary surpluses are assumed to be exogenous and random. In one of the policy regimes considered, the central bank pegs the price level. In the other, the monetary authority follows a Taylor rule.

Our characterization of equilibrium under default reveals that the properties of the equilibrium stochastic process followed by the default rate and the sovereign risk premium depend heavily upon the underlying monetary policy regime. For example, in the Taylor-rule economy, although the government defaults regularly, the expected default rate and the country risk premium are zero. This means that the default rate is unforecastable. By contrast, in the price-targeting economy current and past fiscal deficits predict future default rates. Moreover, in the price-targeting economy the fiscal authority has more degrees of freedom in setting the default rate than in the Taylor-rule economy.

Understandably, having to default is a situation no policymaker wishes to be involved in. So procrastination is commonplace. Sometimes governments choose to let go of their price stability goal temporarily in the hopes of inflating their way out of default. A natural question, therefore, is what standard general equilibrium models tell us about the consequences of delaying default. We find that substituting a temporary increase in inflation for default is not always possible. Specifically, we identify situations in which postponing the decision to default leads to a hyperinflationary situation that in order to be stopped requires an eventual default of larger dimension than the one that would have taken place had the government not chosen to procrastinate.

We close this introduction by pointing out two assumptions that will be maintained

²See, for example, the articles by Ted Truman (senior fellow at the Institute for International Economics, former assistant secretary of the Treasury for international affairs, and former director of the Division of International Finance at the Federal Reserve Board) published in the *Financial Times* on June 25, 2002, and by Joaquín Cottani (chief economist of Lehman Brothers) published in the Argentine newspaper *La Nación* on June 23, 2002. See also the June 29, 2002 issue of *The Economist*.

throughout the paper. First, the analysis departs from a large existing literature on sovereign debt in that here, given the monetary and fiscal regimes, the government is assumed to always choose to honor its financial obligations if it can.³ Second, we assume that public debt is nonindexed. In practice this is not typically the case. A large fraction of emerging market debt is denominated in foreign currency or stipulates returns tied to some domestic price index. Introducing indexation does not affect the qualitative results of the paper. But it does introduce quantitative differences. This is because the more pervasive indexation is, the larger are the price level changes necessary to obtain a given decline in government's total liabilities.⁴

The remainder of the paper is organized in six sections. Section 2 presents the model. Section 3 derives a basic equilibrium relation linking the default rate, future expected fiscal surpluses, and initial government liabilities. Section 4 characterizes the equilibrium behavior of default and sovereign risk when monetary policy takes the form of a Taylor rule. Section 5 analyzes the consequences of delaying default. Section 6 studies default and country risk under a price-level peg. Section 7 closes the paper.

2 The Model

Consider an economy populated by a large number of identical households, each of which has preferences described by the utility function

$$E_0 \sum_{t=0}^{\infty} \beta^t U(c_t), \tag{1}$$

where c_t denotes consumption of a perishable good, U denotes the single-period utility function, $\beta \in (0, 1)$ denotes the subjective discount factor, and E_0 denotes the mathematical expectation operator conditional on information available in period 0. The function U is assumed to be increasing, strictly concave, and continuously differentiable.

In each period $t \ge 0$, households can purchase nominal state-contingent claims that pay one unit of currency in a specified state of period t + 1. We let D_{t+1} denote the random variable indicating the number of state-contingent claims purchased in period t paying off in each particular state of period t + 1. In addition, each period households are endowed with an exogenous and constant amount of perishable goods y and pay real lump-sum taxes in

 $^{^{3}}$ For a survey of the literature on sovereign debt in settings where governments that are not forced to default by fiscal constraints nevertheless always choose to do so if they find it optimal, see Eaton and Fernández (1995).

⁴Even if the totality of public debt was indexed, changes in the price level would still introduce fiscal effects in the presence of fiat money. In this paper we do away with money for analytical simplicity.

the amount τ_t . The flow budget constraint of the household in period t is then given by:

$$P_{t}c_{t} + E_{t}r_{t+1}D_{t+1} + P_{t}\tau_{t} \leq D_{t} + P_{t}y, \qquad (2)$$

where P_t denotes the price level, and r_{t+1} denotes the period-t price of a claim to one unit of currency in a particular state of period t + 1 divided by the probability of occurrence of that state conditional on information available in period t. The left-hand side of the budget constraint represents the uses of wealth: consumption spending, purchases of contingent claims, and tax payments. The right-hand side displays the sources of wealth: the payoff of contingent claims acquired in the previous period and the endowment. In addition, the household is subject to the following borrowing constraint that prevents it from engaging in Ponzi schemes:

$$\lim_{i \to \infty} E_t q_{t+j} D_{t+j} \ge 0, \tag{3}$$

where q_t represents the period-zero price of one unit of currency to be delivered in a particular state of period t divided by the probability of occurrence of that state given information available at time 0 and is given by

$$q_t = r_1 r_2 \dots r_t,$$

with $q_0 \equiv 1$.

The household chooses the set of processes $\{c_t, D_{t+1}\}_{t=0}^{\infty}$, so as to maximize (1) subject to (2) and (3), taking as given the set of processes $\{P_t, r_{t+1}, \tau_t\}_{t=0}^{\infty}$ and the initial condition D_0 . Let the multiplier on the flow budget constraint be λ_t/P_t . Then the first-order conditions associated with the household's maximization problem are (2) and (3) holding with equality and

$$U_c(c_t) = \lambda_t \tag{4}$$

$$\frac{\lambda_t}{P_t} r_{t+1} = \beta \frac{\lambda_{t+1}}{P_{t+1}}.$$
(5)

The interpretation of these optimality conditions is straightforward. Condition (4) states that the marginal utility of consumption must equal the marginal utility of wealth, λ_t , at all times. Equation (5) represents a standard pricing equation for one-step-ahead nominal contingent claims. Note that $E_t r_{t+1}$ is the period-t price of an asset that pays one unit of currency in every state of period t + 1. Thus $E_t r_{t+1}$ represents the inverse of the gross risk-free nominal interest rate. Formally, letting R_t^f denote the gross risk-free nominal interest rate, we have

$$R_t^f = \frac{1}{E_t r_{t+1}}.$$
 (6)

2.1 The Fiscal Authority

The government levies lump-sum taxes, τ_t , which are assumed to follow an exogenous, stationary, stochastic process. For simplicity, we assume that τ_t follows an AR(1) process:

$$\tau_t - \bar{\tau} = \rho(\tau_{t-1} - \bar{\tau}) + \epsilon_t, \tag{7}$$

where $\bar{\tau}$ is the unconditional mathematical expectation of taxes, the parameter $\rho \in [0, 1)$ denotes the serial correlation of taxes, and $\epsilon_t \sim N(0, \sigma_\epsilon^2)$ is an iid random tax innovation. In period t, the government issues nominal bonds, denoted by B_t , that pay a gross nominal interest rate R_t in period t+1. The interest rate R_t is known in period t. Government bonds are risky assets. For each period the fiscal authority may default on a fraction δ_t of its total liabilities. A focal point of our analysis is the characterization of the equilibrium distribution of the default rate δ_t . The government's sequential budget constraint is then given by

$$B_t = R_{t-1}B_{t-1}(1-\delta_t) - \tau_t P_t; \quad t \ge 0.$$

2.2 Equilibrium

In equilibrium the goods market must clear. That is,

$$c_t = y.$$

The fact that in equilibrium consumption is constant over time implies, by equation (4), that the marginal utility of wealth λ_t is also constant. In turn, the constancy of λ_t implies, by equation (5), that r_{t+1} collapses to

$$r_{t+1} = \beta \frac{P_t}{P_{t+1}}.$$

This expression and equation (6) then imply that in equilibrium the nominally risk free interest rate R_t^f is given by

$$R_{t}^{f} = \beta^{-1} \left[E_{t} \frac{P_{t}}{P_{t+1}} \right]^{-1}.$$
 (8)

Because all households are assumed to be identical, in equilibrium there is no borrowing or lending among them. Thus, all interest-bearing asset holdings by private agents are in the form of government securities. That is,

$$D_t = R_{t-1}B_{t-1}(1 - \delta_t),$$

at all dates.

Optimizing households must be indifferent between holding government bonds and state contingent bonds. This means that the following Euler equation must hold:

$$\lambda_t = \beta R_t E_t (1 - \delta_{t+1}) \frac{P_t}{P_{t+1}} \lambda_{t+1}.$$

We are now ready to define an equilibrium.

Definition 1 A rational expectations competitive equilibrium is a set of processes $\{P_t, B_t, R_t, R_t^f, \delta_t\}_{t=0}^{\infty}$ satisfying

$$1 = \beta R_t^f E_t \frac{P_t}{P_{t+1}}; \qquad R_t^f \ge 1$$
(9)

$$1 = \beta R_t E_t (1 - \delta_{t+1}) \frac{P_t}{P_{t+1}}$$
(10)

$$B_t = R_{t-1}B_{t-1}(1 - \delta_t) - P_t \tau_t$$
(11)

$$\lim_{j \to \infty} \beta^{t+j+1} E_t R_{t+j} (1 - \delta_{t+j+1}) \frac{B_{t+j}}{P_{t+j+1}} = 0,$$
(12)

along with a definition of monetary policy and further restrictions on fiscal policy, given $R_{-1}B_{-1}$ and the exogenous process for lump-sum taxes $\{\tau_t\}_{t=0}^{\infty}$.

3 The Equilibrium Default Rate

We now derive a key implication of the model for the relation between the equilibrium default rate, expected future fiscal deficits, and initial public debt. Multiplying the left- and righthand sides of equilibrium condition (11) by $R_t(1 - \delta_{t+1})$ and iterating forward j times one can write

$$R_{t+j}B_{t+j}(1-\delta_{t+j+1}) = \left(\prod_{h=0}^{j} R_{t+h}(1-\delta_{t+h+1})\right)R_{t-1}B_{t-1}(1-\delta_{t})$$
$$-\sum_{h=0}^{j} \left(\prod_{k=h}^{j} R_{t+k}(1-\delta_{t+k+1})\right)P_{t+h}\tau_{t+h}$$

Divide both sides by P_{t+j} to get

$$R_{t+j}\frac{B_{t+j}}{P_{t+j+1}}(1-\delta_{t+j+1}) = \left(\prod_{h=0}^{j} R_{t+h}(1-\delta_{t+h+1})\frac{P_{t+j}}{P_{t+j+1}}\right)R_{t-1}\frac{B_{t-1}}{P_{t}}(1-\delta_{t}) - \sum_{h=0}^{j} \left(\prod_{k=h}^{j} R_{t+k}(1-\delta_{t+k+1})\frac{P_{t+k}}{P_{t+k+1}}\right)\tau_{t+h}$$

Apply the conditional expectations operator E_t on both sides of this expression, use the equilibrium condition (10), and apply the law of iterated expectations to get

$$E_t R_{t+j} \frac{B_{t+j}}{P_{t+j+1}} (1 - \delta_{t+j+1}) = \beta^{-j-1} R_{t-1} \frac{B_{t-1}}{P_t} (1 - \delta_t) - \sum_{h=0}^j \beta^{h-j-1} E_t \tau_{t+h}$$

Now multiply both sides of this equation by β^j , take the limit for $j \to \infty$, and use equilibrium condition (12) to obtain

$$0 = R_{t-1} \frac{B_{t-1}}{P_t} (1 - \delta_t) - \sum_{h=0}^{\infty} \beta^h E_t \tau_{t+h}.$$

If one sets the default rate to zero, this expression collapses to the central equation of the fiscal theory of price level determination (Cochrane, 1998; Sims, 1994; Woodford, 1994). In that literature, the above expression determines the equilibrium price level. In general, the above equation contains two non-predetermined endogenous variables, δ_t and P_t . Solving for

the equilibrium default rate δ_t we finally obtain

$$\delta_t = 1 - \frac{\sum_{h=0}^{\infty} \beta^h E_t \tau_{t+h}}{R_{t-1} B_{t-1} / P_t}; \quad t \ge 0.$$
(13)

This expression, describing the law of motion of the equilibrium default rate, is quite intuitive. It states that the default rate is zero—that is, the government honors its outstanding obligations in the full extent—when the present discounted value of primary surpluses is expected to be equal to the real value of total initial government liabilities. In this case, the government does not need to repudiate its commitments because it is able to raise enough surpluses in the future to pay the interest on its existing real obligations. The government defaults on its debt whenever the present discounted value of primary fiscal surpluses falls short of total real initial liabilities. The extent of the default—i.e., how close δ_t is to one—depends on the gap between real government liabilities and the present value of future expected tax receipts. Note that in computing the present discounted value of fiscal surpluses the real risk-free interest rate is applied, which in equilibrium coincides with the inverse of the subjective rate of discount, $1/\beta$. Using the AR(1) process assumed for τ_t (equation (7)), the above expression becomes

$$\delta_t = 1 - \frac{(1-\beta)(\tau_t - \bar{\tau}) + (1-\beta\rho)\bar{\tau}}{R_{t-1}B_{t-1}/P_t(1-\beta)(1-\beta\rho)}; \quad t \ge 0.$$
(14)

Intuitively, this expression shows that given the level of initial real government liabilities, $R_{t-1}B_{t-1}/P_t$, the more persistent is the tax process—i.e., the larger is ρ —the larger is the default on public debt triggered by a given decline in current tax revenues.

But neither equation (13) nor equation (14) represent a full characterization of the equilibrium default rate. For those equations also include the endogenous variable P_t , whose equilibrium behavior has not yet been worked out. Further analysis is therefore in order. We carry out this task in the following sections.

4 Taylor Rules and Default

In the past two decades, monetary policy in industrialized countries has taken the form of an interest-rate feedback rule whereby the short term nominal interest rate is set as a function of inflation and the output gap (Taylor, 1993; and Clarida et al., 1998). Moreover, estimates of this feedback rule feature a slope with respect to inflation that is significantly above unity, typically around 1.5. More recently, a number of developing countries, notably Brazil, have adopted similar active interest-rate rules with the objective of targeting inflation. To capture

this empirical observation, we consider a monetary regime characterized by a linear rule of the form:⁵

$$R_t = R^* + \alpha \left(\frac{P_t}{P_{t-1}} - \pi^*\right). \tag{15}$$

We assume that monetary policy is active, that is, that $\alpha\beta > 1$.

4.1 Impossibility of Achieving the Inflation Target Without Defaulting

Can the government ensure an inflation path equal or close to the target π^* without ever resorting to default? The answer to this question is no. To see why, suppose that the government sets

$$\delta_t = 0; \quad t \ge 0. \tag{16}$$

The complete set of equilibrium conditions is then given by (15), (16), and the equations contained in definition 1. Equations (13) and (16) imply that P_0 is given by

$$P_0 = \frac{R_{-1}B_{-1}}{\sum_{h=0}^{\infty} \beta^h E_0 \tau_h}.$$

The numerator on the right-hand side of this expression is predetermined in period 0. The denominator, on the other hand, is determined in period 0, but is exogenously given. This means that in general P_0 will be different from $P_{-1}\pi^*$, or, equivalently, that the equilibrium inflation rate in period zero will in general be off target. Furthermore, as time goes by, the deviation of inflation from target will in general increase without bounds. Specifically, the equilibrium features either hyperinflation or hyperdeflation. To see why, assume for simplicity that taxes are non-stochastic and consider perfect-foresight equilibria. Let $\pi_t \equiv P_t/P_{t-1}$ denote the gross inflation rate in period t. Then combining equations (10) and (15) we obtain the following difference equation in π_t :

$$\pi_{t+1} = \alpha \beta \pi_t + (1 - \alpha \beta) \pi^*.$$

In deriving this expression we set $R^* = \pi^*/\beta$, to ensure that the inflation target π^* is a steady-state solution to the above difference equation. It follows by the fact that $\alpha\beta > 1$,

⁵Note that we do not include a term depending on the output gap because in the endowment economy considered here the output gap is nil at all times.

that if $\pi_0 > \pi^*$ then $\pi_t \to \infty$. In this case, the economy embarks on a hyperinflation. Loyo (1999) refers to this equilibrium as a 'fiscalist hyperinflation,' and argues that the monetary/fiscal regime that gives rise to these dynamics was in place in Brazil during the high inflation episode of the early 1980s.

On the other hand, if $\pi_0 < \pi^*$, then $\pi_t \to -\infty$, and the economy falls into a hyperdeflation. Of course, the inflation rate cannot converge to minus infinity because in that case, according to the linear monetary policy rule (15), the nominal interest rate would reach a negative value in finite time, which is impossible. It follows from the work of Schmitt-Grohé and Uribe (2000) and Benhabib, Schmitt-Grohé, and Uribe (2001,2002) that the zero bound on the nominal interest rate implies that when $\pi_0 < \pi^*$, the economy converges to a 'liquidity trap,' characterized by low and possibly negative inflation and low and possibly zero nominal interest rates.

4.2 Unforecastability of the Default Rate

It follows from the preceeding analysis that if the government is to preserve price stability (i.e., if it is to succeed in attaining the inflation target π^*), then it must default sometimes. It turns out that if δ_t is allowed to be different from zero, then the government can indeed ensure a constant rate of inflation equal to π^* . That is, the monetary authority can set

$$\frac{P_t}{P_{t-1}} = \pi^*; \quad t \ge 0.$$
(17)

This expression along with the Taylor rule (15) and the equations listed in definition 1 represent the complete set of equilibrium conditions. Equations (15) and (17) imply that $R_t = R^* = \pi^*/\beta$ for all $t \ge 0$. (We are again assuming that $R^* = \pi^*/\beta$.) The Euler equation (9) then implies that

$$E_t \delta_{t+1} = 0; \quad t \ge 0.$$

This means that the equilibrium default rate in effect in period t + 1 is unforecastable in period t. The exact equilibrium process followed by δ_t can be obtained with the help of equation (13). Evaluating that expression at t = 0, yields

$$\delta_0 = 1 - \frac{\pi^* \sum_{h=0}^{\infty} \beta^h E_0 \tau_h}{R_{-1} B_{-1} / P_{-1}}.$$
(18)

The numerator on the right-hand side of this expression is exogenously given. At the same time, the denominator is predetermined in period 0. So the above equation fully characterizes

the equilibrium default rate in period 0. The default rate is increasing in the initial level of real government liabilities and decreasing in the expected present discounted value of future primary surpluses.

In periods t > 0, equation (13) and the fact that $R_{t-1} = \pi^* / \beta$ imply that the default rate is given by

$$\delta_t = 1 - \frac{\beta \sum_{h=0}^{\infty} \beta^h E_t \tau_{t+h}}{B_{t-1}/P_{t-1}}; \quad t \ge 1.$$
(19)

In this expression, B_{t-1}/P_{t-1} is an endogenous variable, which we want to express in terms of exogenous variables. To this end, note that equation (11) implies that

$$\frac{B_{t-1}}{P_{t-1}} = \frac{R_{t-2}B_{t-2}}{P_{t-1}}(1-\delta_{t-1}) - \tau_{t-1}; \quad t \ge 1.$$

Using equations (18) and (19) to eliminate $\frac{R_{t-2}B_{t-2}}{P_{t-1}}(1-\delta_{t-1})$ from this expression yields

$$\frac{B_{t-1}}{P_{t-1}} = \beta \sum_{h=0}^{\infty} \beta^h E_{t-1} \tau_{t+h}; \quad t \ge 1.$$

In turn, using this expression to eliminate B_{t-1}/P_{t-1} from (19) we obtain the following expression for the equilibrium default rate:

$$\delta_t = 1 - \frac{\sum_{h=0}^{\infty} \beta^h E_t \tau_{t+h}}{\sum_{h=0}^{\infty} \beta^h E_{t-1} \tau_{t+h}}; \quad t \ge 1.$$

This equation states that in any period t > 0, the government defaults when the present discounted value of primary fiscal surpluses is below the value expected for this variable in period t - 1. That is, the government defaults in response to unanticipated deteriorations in expected future tax receipts. Note that the fact that δ_t has mean zero implies that sometimes—when $\delta_t < 0$ —the government subsidizes bond holders.⁶ One might think that a more realistic model would feature a nonnegativity constraint on the default rate. The

⁶ The result that the default rate has mean zero depends in part on our maintained assumption that $R^* = \pi^*/\beta$. If one assumes that $R^* > \pi^*/\beta$, then an equilibrium in which the inflation rate is always equal to the target ($\pi_t = \pi^*$) still exists. In this case, the Taylor rule (15) implies that the equilibrium interest rate is constant and equal to R^* . In turn, the Euler equation (10) implies that the conditional expectation of the default rate in period t + 1 > 0 given information available in t is given by $E_t \delta_{t+1} = 1 - \pi^*/(\beta R^*) > 0$. It is easy to show that the equilibrium default rate in period 0 is still given by equation (18), while the default rate in periods t > 0 is given by $\delta_t = 1 - \frac{\pi^*}{\beta R^*} \sum_{\substack{k=0 \\ k=0}}^{\infty} \beta^k E_t - \tau_{t+k}}$. Note that, ceteris paribus, the default rate is decreasing in the inflation target π^* and increasing in the interest rate target R^* . The intuition behind this result is straightforward. The ratio R^*/π^* denotes the real interest rate promised by the government. The higher is this interest rate, the higher is the cost of serving the debt without defaulting.

appendix to this paper analyzes ways to implement this restriction.

Because in this economy the inflation rate is constant over time, the Euler equation (9) implies that the risk-free nominal interest rate is constant and given by $R_t^f = \pi^*/\beta$. But this is precisely the equilibrium value taken by the rate of return on (risky) government bonds. Therefore, the gross sovereign risk premium, given by the ratio of the rate of return on public debt to the risk-free rate, R_t/R_t^f , is constant and equal to unity.

5 The Perils of Delaying Default: Unpleasant Default Arithmetics

Thus far, we have considered only two alternative default policies. One is characterized by no default at any point in time and leads to (fiscalist) hyperinflation or hyperdeflation depending on initial conditions. The second default policy ensures a path for prices consistent with the government's inflation target and features a stochastic, unforecastable default rate.

But there are indeed infinitely many other possible default arrangements. Here we focus on one that captures certain aspects of observed pre-default dynamics in emerging markets. Namely, in practice, governments that follow unsustainable policies tend to procrastinate. Only when the economy is clearly embarked on an explosive path, such as a hyperinflation, do governments dare to make hard decisions, such as defaulting or introducing drastic spending cuts. An example is the pre-default dynamics in Argentina in the second half of 2001. A number of observers believed at the time that under the policy arrangement prevailing at the end of the De la Rua-Cavallo administration, which can be described as a rigid peg to the dollar coupled with a precarious fiscal stance, default was simply a matter of time.⁷ At the end, this sentiment materialized and the Argentine government repudiated its outstanding financial obligations. The default was implemented in two steps. First, in December of 2001 the government defaulted partially via a debt swap featuring a unlateral reduction in interest payments. Shortly thereafter the government completely suspended debt service. After the default, Argentina fell into an unprecedented depression and prices began to accelerate rapidly. The ensuing economic collapse led many observers to wonder whether the Argentine government had waited too long to default. The focus of this section is to show that when a policy mix is incompatible with long-run price stability, unpleasant default arithmetics might arise. Specifically, delaying default may prove counterproductive for two reasons. First, the longer a government waits to default, the higher is the inflation rate the economy is exposed to. Second, the longer is the delay, the higher is the default rate

⁷See, for example, the commentaries on Argentina published in *The Economist* on October 20-26, 2001, and The Washington Post, on October 22, 2001.

required to stabilize prices. To illustrate this point, consider a perfect-foresight environment and suppose that the government decides to delay default for T > 0 periods. That is, the fiscal authority sets

$$\delta_t = 0; \quad 0 \le t < T. \tag{20}$$

In period T, the government finally decides to default in a magnitude sufficient to ensure price stability. Formally, in periods $t \ge T$ the default rate is set in such a way that

$$\pi_t = \pi^*; \quad t \ge T. \tag{21}$$

In this case, a rational expectations equilibrium is given by definition 1 and equations (15), (20), and (21). Because the default rate is zero before period T, the Euler equation (10) implies that

$$R_t = \beta^{-1} \pi_{t+1}; \quad t \le T - 2.$$
(22)

Combining this expression with the Taylor rule (15) we get $\pi_{t+1} = \pi^* + \alpha\beta(\pi_t - \pi^*)$ for $0 \le t \le T-2$, where we are assuming that $R^* \equiv \pi^*/\beta$. This expression implies the following pre-default time path for inflation

$$\pi_t = \pi^* + (\alpha\beta)^t (\pi_0 - \pi^*); \quad 0 \le t \le T - 1.$$
(23)

In turn, assuming that $\tau_t = \bar{\tau}$ for all t, equations (13) and (20) imply that the initial inflation rate is exogenously given by $\pi_0 = R_{-1}B_{-1}(1-\beta)/(P_{-1}\bar{\tau})$. We are interested in the case

$$\pi_0 > \pi^*.$$

This assumption and equation (23) show that the longer the government waits to default i.e., the larger is T—the higher is the inflation rate the public must endure.

In period T-1, the Taylor rule (15) states that $\beta R_{T-1} = \pi^* + \alpha \beta (\pi_{T-1} - \pi^*)$. Combining this expression with equation (23) yields

$$\beta R_{T-1} = \pi^* + (\alpha \beta)^T (\pi_0 - \pi^*).$$
(24)

Finally, in period T the stabilization policy kicks in, so $\pi_T = \pi^*$. The Euler equation (10) evaluated at t = T - 1 then implies that $\delta_T = 1 - \pi^*/(\beta R_{T-1})$. Combining this expression

ECB • Working Paper No 187 • October 2002

with equation (24) yields the following solution for the default rate in period T:

$$\delta_T = 1 - \frac{\pi^*}{\pi^* + (\alpha\beta)^T (\pi_0 - \pi^*)}.$$

This expression shows that the longer the government procrastinates, the larger is the rate of default necessary to bring about price stability. In the limit, as $T \to \infty$, the government is forced to default on the entire stock of public debt. Note that the government defaults only once, in period T. In periods $t \ge T$, the Taylor rule (15) implies that $R_t = \pi^*/\beta$, so that, by the Euler equation (10), $\delta_t = 0$. Summarizing, we have that if the government default for T periods, then

$$\lim_{T\to\infty}\pi_{T-1}=\infty,$$

and

$$\lim_{T \to \infty} \delta_T = 1.$$

The intuition why a government that procrastinates for too long ends up defaulting on its entire obligations is simple. If the government puts off default for a sufficiently long period of time, the inflation rate in period T-1 climbs to a level far above its intended target π^* . As a result, the Taylor rule prescribes a very high nominal interest rate in that period. In period T, the inflation rate drops sharply to its target π^* . This means that the 'promised' (i.e., before default) real interest rate on government assets held between periods T-1 and T, given by R_{T-1}/π^* , experiences a drastic hike, generating a severe solvency problem, which the government resolves by defaulting.

Surprisingly, in this economy the stock of real public debt provides no indication of worsening fundamentals as the economy approaches the default crisis. In effect, the stock of public real debt, $b_t \equiv B_t/P_t$, remains constant along the entire transition. To see this, note that the government's budget constraint implies that $b_0 = R_{-1}b_{-1}/\pi_0 - \bar{\tau}$. Using the fact that $\pi_0 = R_{-1}B_{-1}(1-\beta)/(P_{-1}\bar{\tau})$, we obtain

$$b_0 = \beta \bar{\tau} / (1 - \beta).$$

At the same time, in periods $0 < t \le T - 1$ we have that $b_t = R_{t-1}b_{t-1}/\pi_t - \bar{\tau} = b_{t-1}/\beta - \bar{\tau}$. (In the second equality we are using the fact that $\delta_t = 0$ for t < T, so that by the Euler equation (10) $R_t = \pi_{t+1}/\beta$.) Then, assuming that $b_{t-1} = \beta \bar{\tau}/(1-\beta)$, we have that $b_t = \frac{\beta \bar{\tau}}{1-\beta}$. It follows, by induction, that

$$b_t = \frac{\beta \bar{\tau}}{1 - \beta}; \quad 0 \le t \le T - 1.$$

Note that the fact that the default rate is zero between periods 0 and T-1 implies that the interest-rate premium on public debt is zero between periods 0 and T-2. In period T-1 the premium jumps up to $(1 - \delta_T)^{-1} - 1$. Finally, in period T the premium returns to zero and remains at that level thereafter. However, in a model were the date T at which the government decides to 'pull the plug' is random, the interest rare premium will in general be positive for all 0 < t < T.

6 Price Level Targeting

We now turn our attention to another example of a monetary regime that, if not coupled with some sort of (intertemporal) balanced budget rule, can make default inevitable. Namely, price level pegs.⁸ By pegging the price level, the government gives up its ability to inflate away part of the real value of its liabilities in response to negative fiscal shocks. It is therefore clear that short of endogenous regular fiscal instruments able to offset such exogenous fiscal innovations, default emerges as a necessary outcome. As in the previous section, we are interested in characterizing the equilibrium process of the default rate under these circumstances. It turns out that given the fiscal regime, the equilibrium default rate behaves quite differently under a price level peg than under a Taylor rule.

Formally, the monetary regime we wish to study in this section is given by:

$$P_t = 1; \quad t \ge 0. \tag{25}$$

The equilibrium conditions then include this rule and the equations contained in definition 1. Note that the constancy of the price level implies, by equation (9), that the risk-free interest rate is constant and equal to the inverse of the subjective rate of discount. That is,

$$R_t^f = \beta^{-1}. (26)$$

Using the facts that P_t and R_t^f are both constant at all times, we can rewrite the definition f equilibrium more compactly as:

⁸In open economies, governments interested in pegging the price level typically resort to pegging the exchange rate between the domestic currency and that of a low-inflation country. Recent examples include Argentina, Austria, and Hong-Kong.

Definition 2 (Rational Expectations Equilibrium Under Price Level Targeting) A rational expectations competitive equilibrium is a set of processes $\{B_t, R_t, \delta_t\}_{t=0}^{\infty}$ satisfying

$$1 = \beta R_t E_t (1 - \delta_{t+1}) \tag{27}$$

$$B_t = R_{t-1}B_{t-1}(1 - \delta_t) - \tau_t \tag{28}$$

$$\lim_{j \to \infty} E_t \beta^{t+j+1} R_{t+j} B_{t+j} (1 - \delta_{t+j+1}) = 0.$$

and a fiscal-policy constraint further restricting the behavior of the default rate, given $R_{-1}B_{-1}$ and the exogenous process for lump-sum taxes $\{\tau_t\}_{t=0}^{\infty}$.

6.1 The Equilibrium Stock of Public Debt

Setting $P_t = 1$ in equation (13), we obtain the following expression for the equilibrium default rate:

$$\delta_t = 1 - \frac{\sum_{h=0}^{\infty} \beta^h E_t \tau_{t+h}}{R_{t-1} B_{t-1}}$$
(29)

Note that because the price level is constant and normalized at one, the denominator on the right-hand side, $R_{t-1}B_{t-1}$, represents both nominal and real total government liabilities. It will prove convenient to write the above expression using the specific AR(1) process assumed for taxes. This yields

$$\delta_t = 1 - \frac{(1-\beta)(\tau_t - \bar{\tau}) + (1-\beta\rho)\bar{\tau}}{R_{t-1}B_{t-1}(1-\beta)(1-\beta\rho)}.$$
(30)

To obtain the equilibrium level of public debt, evaluate equation (29) at time t + 1 and take expectations conditional on information available at time t. Then use equation (27) to eliminate $E_t \delta_{t+1}$ to get

$$B_t = \sum_{h=1}^{\infty} \beta^h E_t \tau_{t+h}.$$
(31)

According to this expression, the government's ability to absorb debt is dictated by the expected value of future tax receipts. Note that the level of debt is independent of the magnitude of liabilities assumed by the government in the past, $R_{t-1}B_{t-1}$. Under the assumed

first-order autorregressive structure of taxes, the above expression becomes

$$B_t = \frac{\beta\rho(1-\beta)(\tau_t - \bar{\tau}) + \beta(1-\beta\rho)\bar{\tau}}{(1-\beta)(1-\beta\rho)}.$$
(32)

By this formula, a given decline in current tax revenues obliges the government to engineer a larger cut in public debt the more persistent is the tax process.

6.2 Impossibility of Pegging the Price Level Without Defaulting

Evaluating equation (29), which describes the law of motion of the equilibrium default rate, at t = 0, we obtain

$$\delta_0 = 1 - \frac{\sum_{h=0}^{\infty} \beta^h E_0 \tau_h}{R_{-1} B_{-1}}.$$

In period 0, the government cannot affect any of the variables entering the right-hand side of this expression. In effect, taxes are assumed to be exogenous, and initial total public liabilities are pre-determined. Consequently, the government has no control over the initial rate of default δ_0 . A negative initial tax shock leads inevitably to default. It follows that it is impossible to fix δ_0 equal to zero.

A natural question is whether the government has the ability to arbitrarily fix the level of the default rate (at zero, say) in all periods following period 0. The answer to this question is no. To see why, assume, contrary to our contention, that the government is capable of setting δ_t at a constant level $\bar{\delta}$ for all t > 0. Then, evaluating (30) at t + 1 we have that R_t is implicitly given by

$$\bar{\delta} = 1 - \frac{(1-\beta)(\tau_{t+1} - \bar{\tau}) + (1-\beta\rho)\bar{\tau}}{R_t B_t (1-\beta)(1-\beta\rho)}$$

On the right-hand side, τ_{t+1} is measurable with respect to the information set available in period t + 1 and B_t is measurable with respect to information available in t. It follows that according to the above expression, R_t is measurable with respect to information available in t + 1, which is a contradiction, because, by assumption, the government announces R_t in period t. It follows that the government cannot fix the rate of default for all t > 0.

Although the government is unable to perfectly control the dynamics of the default rate, it can affect it on a limited basis. This is the focus of what follows.

6.3 Default Rule 1

Consider, for example, a policy rule whereby in each period t > 0 the government does not default unless the tax-to-debt ratio falls below a certain threshold. Specifically, suppose that the government restricts δ_t in the following way:

Default Rule 1:
$$\delta_t \begin{cases} > 0 & \text{if } \tau_t / B_{t-1} < \alpha \\ = 0 & \text{if } \tau_t / B_{t-1} = \alpha \\ < 0 & \text{if } \tau_t / B_{t-1} > \alpha \end{cases} \quad t = 1, 2, \cdots,$$
(33)

where the threshold α is chosen arbitrarily by the fiscal authority. In this case, a rational expectations equilibrium is given by this expression and definition 2. According to the above rule, the government defaults on part of the public debt when the tax-to-debt ratio τ/B_{t-1} is below the announced threshold α . This situation takes place in periods of relatively low tax realizations. On the other hand, when the tax-to-debt ratio exceeds the threshold α , the government chooses to reward bond holders by implementing a subsidy proportional to the size of their portfolios.

The default rule (33) can be implemented by an appropriate choice of the interest rate promised on public debt, R_t . To see this, consider any period t > 0 in which $\tau_t = \alpha B_{t-1}$. In such periods, the equilibrium condition (28) becomes

$$B_t = R_{t-1}B_{t-1} - \alpha B_{t-1}.$$

Using equation (32) to eliminate B_t we obtain

$$\frac{\beta\rho(1-\beta)(\alpha B_{t-1}-\bar{\tau})+\beta(1-\beta\rho)\bar{\tau}}{(1-\beta)(1-\beta\rho)} = R_{t-1}B_{t-1}-\alpha B_{t-1}.$$

Solving this expression for the interest rate, yields

$$R_t = \alpha + \frac{\beta \rho (1 - \beta) (\alpha B_t - \bar{\tau}) + \beta (1 - \beta \rho) \bar{\tau}}{B_t (1 - \beta) (1 - \beta \rho)}; \quad t = 0, 1, \dots$$

This expression and equation (32), which expresses B_t as a function of τ_t only, jointly describe the equilibrium law of motion of the interest rate as a function of current taxes. Combining the above expression with equation (30) to eliminate R_t , we find that the equilibrium default rate in periods t > 0 is given by

$$\delta_t = 1 - \frac{(1-\beta)(\tau_t - \bar{\tau}) + (1-\beta\rho)\bar{\tau}}{\alpha(1-\beta)(1-\beta\rho)B_{t-1} + \beta\rho(1-\beta)(\alpha B_{t-1} - \bar{\tau}) + \beta(1-\beta\rho)\bar{\tau}}$$

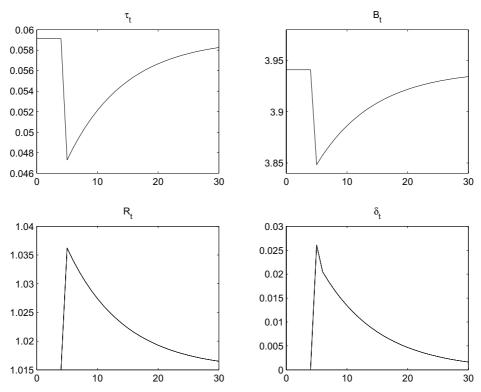
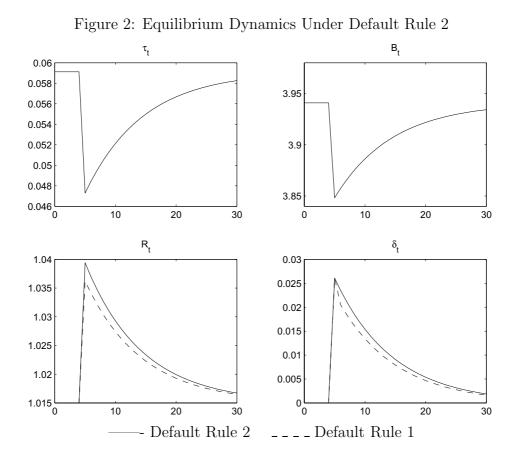


Figure 1: Equilibrium Dynamics Under Default Rule 1

Figure 1 illustrates how the model economy operates under default rule 1. It depicts the equilibrium dynamics of taxes, public debt, the interest rate, and the default rate in response to a negative tax innovation. The model is parameterized as follows. The time period is meant to be one quarter. The subjective discount factor β is set equal to 1/(1 + .06/4), which implies an annual real (and nominal) interest rate of 6 percent. Quarterly output, y, is normalized at unity. The initial level of government liabilities, $R_{-1}B_{-1}$, is set at 4, implying a debt-to-annual-GDP ratio of one. The average tax rate, $\bar{\tau}$ is set at $(1 - \beta)R_{-1}B_{-1}$, so that if the tax rate in period zero equals its unconditional expectation $\bar{\tau}$, then the equilibrium default rate in that period is zero. The serial correlation of taxes, ρ , is assumed to be 0.9. Finally, we set the threshold α equal to $(1 - \beta)/\beta$. This value implies that the government chooses to default whenever the tax-to-debt ratio is below its long-run level $(1 - \beta)/\beta$.

The initial situation depicted in the figure is one in which taxes are equal to their long-run level $\bar{\tau}$. In period 5, the economy experiences a negative tax surprise. Specifically, in that period taxes fall 20 percent below average; that is, $\epsilon_5 = -0.2\bar{\tau}$, or $\tau_5 = 0.8\bar{\tau}$. Tax innovations after period 5 are nil (i.e., $\epsilon_t = 0$ for t > 5). Note that the fact that the realizations of the tax innovation are zero in periods other than period five (($\epsilon_t = 0$ for $t \neq 5$) does not mean that the economy operates under certainty for $t \neq 5$. This is because in any period $t \ge 0$ agents are uncertain about future realizations of ϵ . Between periods 0 and 4, the tax-to-debt ratio is at its long-run level. As a result, the government honors its obligations in full ($\delta_t = 0$ for $t \leq 4$). In period 5, in response to the 20 percent decline in tax revenue, the government defaults on about 2.5 percent of the public debt. Because the tax-to-debt ratio remains below its long-run level along the entire transition, the government continues to default after period 5. The cumulative default, given by $\sum_{t=5}^{\infty} \delta_t$, is about 23 percent. Before period 5, the interest rate on public debt equals the risk-free rate of 1.5 percent reflecting no default expectations ($E_t \delta_{t+1} = 0$). In period 5, the interest rate on government bonds jumps to 3.6 percent and then returns monotonically to its steady-state level of 1.5 percent. The fact that the risk-free interest rate is constant (Eq. (26)) implies that the sovereign risk premium, R_t/R_t^f , is proportional to R_t . Thus, a deterioration in fiscal conditions triggers a persistent increase in sovereign risk.

6.4 Default Rule 2


As a second example, consider a default rule whereby the government defaults only if the tax rate is below a certain fraction of output. Formally,

Default Rule 2:
$$\delta_t \begin{cases} > 0 & \text{if } \tau_t < \alpha y \\ = 0 & \text{if } \tau_t = \alpha y \\ < 0 & \text{if } \tau_t > \alpha y \end{cases} \quad t = 1, 2, \cdots,$$
(34)

where α is a parameter chosen by the government, and y is the constant endowment. The full set of equilibrium conditions is then given by the above rule and the equations listed in definition 2. It is easy to show that under this rule the interest rate on public debt is given by,

$$R_t = \frac{\alpha}{B_t} + \frac{\beta\rho(1-\beta)(\alpha y - \bar{\tau}) + \beta(1-\beta\rho)\bar{\tau}}{B_t(1-\beta)(1-\beta\rho)}; \quad t = 0, 1, \dots$$

Figure 2 displays the model's dynamics under default rule 2. The parameterization of the model is identical to that used under rule 1, except for α , which is now set equal to $\bar{\tau}/y$ so as to induce pre-shock dynamics identical to those depicted in figure 1. The experiment shown in figure 2 is the same as the one implemented under rule 1. Namely, the tax innovation ϵ_t is 0 for all $t \neq 5$ and is equal to $-0.20\bar{\tau}$ in period 5, so that in that period tax revenues fall by 20 percent. For comparison, figure 1 reproduces with broken lines the dynamics under rule 1. The dynamics under both rules are qualitatively identical. The interest rate and the default rate rise in period 5 and then converge monotonically to their respective steady states. However, the convergence is somewhat faster under default rule 1. To see why this

ECB • Working Paper No 187 • October 2002

is the case, note that in periods t > 5 the tax-to-output ratio τ_t/y is relatively further below its steady state level than the tax-to-debt ratio, τ_t/B_{t-1} . This is because the stock of public debt adjusts down in response to the tax cut, whereas output remains constant.

6.5 Default Rule 3: An Interest Rate Peg

As a final example, consider the case of a peg of the rate of return on public debt. Specifically, assume that the government sets the interest rate on public debt equal to the risk-free interest rate. That is,

$$R_t = R_t^f = \beta^{-1}.\tag{35}$$

According to this policy, the government completely eliminates the sovereign risk premium. In this case the equilibrium is given by definition 2 and the above rule.

Contrary to what happens under rules 1 and 2, under the interest rate peg considered here the equilibrium default rate is an iid random variable with mean zero. That is, the default rate is completely unforecastable. To see this, combine the interest-rate rule (35) with the Euler equation (27) to get

$$E_t \delta_{t+1} = 0.$$

Figure 3 depicts the model's dynamics under the assumed interest rate peg. For comparison, the figure also reproduces the dynamics implied by default rule 1. Under the interest rate peg, the default rate jumps up in period 5, when the tax shock takes place, but immediately returns to zero. Note that because the magnitude of the jump in the default rate in period 5 is about the same under both rules and because the default rate is serially uncorrelated under rule 3 but persistent under rule 1, the cumulative default is much higher under rule 1. How can this be possible if the initial level of public debt as well as the path of taxes are the same in both economies? The reason is that under rule 3 the interest rate is lower than under rule 1, which makes the post-shock debt burden including interest also smaller under rule 3.

7 Conclusion

A number of emerging economies have or are facing the need to default. These countries display heterogeneous policy arrangements. A central aim of this paper is to characterize the precise way in which monetary policy affects the equilibrium behavior of default and sovereign

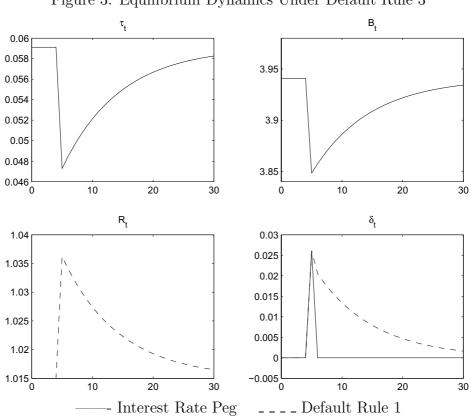


Figure 3: Equilibrium Dynamics Under Default Rule 3

risk premia. We find that monetary policy indeed plays a significant role in shaping the equilibrium distribution of default and risk premia. For example, in the economy analyzed in section 4, where the government follows a Taylor-type interest rate feedback rule, price stability requires that the government defaults only by surprise. As a result, the country risk premium is nil at all times even though the fiscal authority reneges of its obligations from time to time. On the other hand, in an economy where the central bank pegs the price level, like the one studied in section 6, both default and the country risk premium can be highly persistent. But the precise fiscal and monetary regime in place are not the only characteristics of policy behavior that contribute to giving form to the dynamics of default. An equally important role is played by the government's attitude toward making tough decisions. Some governments have a natural tendency to put off as much as possible unavoidable painful measures. This paper shows that in the case of default, procrastination can have unintended consequences. For instance, in the economy where the monetary authority follows a Taylor rule, postponing default leads not only to an explosive inflation path, but also to an eventual default that is larger than the one that would have taken place if the government had not tried to gain time. It is in this sense that we speak of an unpleasant arithmetics in attempting to substitute inflation for default.

The present study can be extended in a number of ways. For the sake of simplicity, the basic analytical framework leaves out a number of important aspects of actual emerging economies that would be worthwhile incorporating. First, it is assumed that the totality of public debt is nonindexed. In reality a significant fraction of government liabilities in developing countries is denominated in foreign currency, which is a form of indexation to a price index of traded goods. Clearly, the more widespread is indexation, the more limited is the ability of unexpected changes in the price level to act as a capital levy. Second, the model abstracts from a demand for money. Relaxing this assumption would introduce fiscal effects stemming from changes in the price level even if public debt was fully indexed. Finally, the simple model economy we consider is closed to international trade in goods and financial assets. Allowing for international transactions would enrich the analysis in a number of relevant dimensions. Of particular interest is the characterization of default and sovereign risk under alternative exchange rate arrangements and of the role played by foreign investors' holdings of public debt.

Appendix

Taylor Rules and Non-Negative Default Rates

Consider an economy whose equilibrium conditions are given by the equations listed in definition 1 and equations (15) and (17). Suppose in addition, that the default rate is constrained to be nonnegative, that is

$$\delta_t \ge 0; \quad \forall t$$

. Clearly, equations (18) and (19) that in periods when the expected present discounted value of (regular) taxes exceeds the real value of government liabilities, the government must transfer resources to the public. Since the government cannot implement this transfers via negative values of δ , it must materialize them through regular transfers. We refer to this type of transfers as extraordinary. Specifically, suppose that the government has the ability to transfer in a lump-sum fashion the difference between the expected present discounted value of primary surpluses and current real liabilities. Let total taxes, τ_t , be given by the sum of ordinary taxes, τ_t^o , and extraordinary (negative) taxes, τ_t^e ,

$$\tau_t = \tau_t^o + \tau_t^e$$

Ordinary taxes follow an exogenous AR(1) process of the form

$$\tau_t^o - \bar{\tau}^o = \rho(\tau_{t-1}^o - \bar{\tau}^o) + \epsilon_t,$$

We conjecture that the government can implement the equilibrium defined above with nonnegative default rates by following the following rule for extraordinary taxes:

$$\tau_0^e = \min\left(0, g_0(\tau_0^o, R_{-1}B_{-1}/P_{-1})\right),\,$$

and

$$\tau_t^e = \min\left(0, g(\tau_{t-1}^o, \epsilon_t)\right), \quad t > 0,$$

where the functions g_0 and g are to be determined. Under our conjecture, the Taylor rule (15) implies that the interest rate is constant and given by

$$R_t = R^*,$$

ECB • Working Paper No 187 • October 2002

where $R^* > 0$ is the exogenously determined interest rate target. It follows from the above expression for τ_t^e that

$$E_t \tau_{t+1}^e = \int_{\{\epsilon : g(\tau_t^o, \epsilon) \le 0\}} g(\tau_t^o, \epsilon) f(\epsilon) \, d\epsilon$$
$$\equiv H_1(\tau_t^o, g),$$

where f is the density function of the standard normal distribution. Also,

$$E_t \tau_{t+2}^e = E_t E_{t+1} \tau_{t+2}^e$$

= $E_t H_1(\tau_{t+1}^o, g)$
= $\int_{-\infty}^{\infty} H_1(\bar{\tau}^o + \rho(\tau_t^o - \bar{\tau}^o) + \epsilon, g) f(\epsilon) d\epsilon$
= $H_2(\tau_t^o, g).$

In general, we can write

$$E_t \tau^e_{t+j} = H_j(\tau^o_t, g); \quad j \ge 1.$$

We include the second argument in the functions H_j , $j \ge 1$, to emphasize their dependence upon the unknown function g. Clearly, equations (18) and

$$\delta_t = 1 - \frac{\pi^*}{\beta R^*} \frac{\sum_{h=0}^{\infty} \beta^h E_t \tau_{t+h}}{\sum_{h=0}^{\infty} \beta^h E_{t-1} \tau_{t+h}}; \quad t \ge 1.$$
(36)

(this last expression introduced in footnote 6) continue to be valid here because their derivation does not depend upon the assumed tax structure. Given the AR(1) process specified for ordinary taxes, we can write $E_t \sum_{h=0}^{\infty} \beta^h \tau_{t+h}^o = \gamma_1 \tau_{t-1}^o + \gamma_2 \epsilon_t + \gamma_3$ and $E_{t-1} \sum_{h=0}^{\infty} \beta^h \tau_{t+h}^o = \gamma_4 \tau_{t-1}^o + \gamma_5$, where γ_i , i = 1, 2, 3, 4, 5 are known parameters. Then, using this expressions and equation (36), we have that for t > 0 the default rate is given by:

$$\delta_t = 1 - \frac{\pi^*}{\beta R^*} \frac{\tau_t^e + \sum_{h=1}^{\infty} \beta^h H_h(\tau_t^o, g) + \gamma_1 \tau_{t-1}^o + \gamma_2 \epsilon_t + \gamma_3}{\sum_{h=0}^{\infty} \beta^h H_{h+1}(\tau_{t-1}^o, g) + \gamma_4 \tau_{t-1}^o + \gamma_5}; \quad t \ge 1.$$

Setting $\delta_t = 0$ and $\tau_t^e = g(\tau_{t-1}^o, \epsilon)$ we obtain the following implicit functional equation in g

$$0 = 1 - \frac{\pi^*}{\beta R^*} \frac{g(\tau_{t-1}^o, \epsilon_t) + \sum_{h=1}^{\infty} \beta^h H_h(\tau_t^o, g) + \gamma_1 \tau_{t-1}^o + \gamma_2 \epsilon_t + \gamma_3}{\sum_{h=0}^{\infty} \beta^h H_{h+1}(\tau_{t-1}^o, g) + \gamma_4 \tau_{t-1}^o + \gamma_5}; \quad t \ge 1.$$

Similarly, using (18) and having found the function g, the function g^0 solves

$$0 = 1 - \pi^* \frac{g^0(\tau_0^o, R_{-1}B_{-1}/p_{-1}) + \sum_{h=1}^{\infty} \beta^h H_h(\tau_0^o, g) + \gamma_6 \tau_0^o + \gamma_7}{R_{-1}B_{-1}/P_{-1}},$$

where $\gamma_6 \tau_0^o + \gamma_7 = E_0 \sum_{h=0}^{\infty} \beta^h \tau_h^9$ and γ_6 and γ_7 are known parameters.

References

- Benhabib, Jess, Stephanie Schmitt-Grohé, and Martín Uribe, "The Perils of Taylor Rules," Journal of Economic Theory, 96, January-February 2001(a), 40-69.
- Benhabib, Jess, Stephanie Schmitt-Grohé, and Martín Uribe, "Avoiding Liquidity Traps," Journal of Political Economy, 110, June 2002, 535-563.
- Clarida, Richard, Jordi Galí, and Mark Gertler, "Monetary Policy Rules in Practice: Some International Evidence," *European Economic Review* 42, 1998, 1033-1067.
- Cochrane, John H., "A Frictionless View of U.S. Inflation," National Bureau of Economic Research Macroeconomics Annual, 13, 1998, 323-384.
- Eaton, Jonathan and Raquel Fernández, "Sovereign Debt," in Gene Grossman and Kenneth Rogoff editors, Handbook of International Economics, Volume 3, North Holland, 1995, chapter 39, p. 2031-2077.
- Krugman, Paul R., "A Model of Balance of Payments Crises," Journal of Money, Credit and Banking, 11, August 1979, 311-325
- Leeper, Eric, "Equilibria Under 'Active' and 'Passive' Monetary and Fiscal Policies," Journal of Monetary Economics, 27, 1991, 129-147.
- Loyo, Eduardo, "Tight Money Paradox on the Loose: A Fiscalist Hyperinflation," manuscript, Harvard University, 1999.
- Schmitt-Grohé, Stephanie and Martín Uribe, "Price Level Determinacy and Monetary Policy Under a Balanced-Budget Requirement," *Journal of Monetary Economics* 45, February 2000, 211-246.
- Sims, Christopher, "A Simple Model for the Study of the Determination of the Price Level and the Interaction of Monetary and Fiscal Policy," *Economic Theory*, 4, 1994, 381-399.
- Taylor, John B., "Discretion Versus Policy Rules in Practice," Carnegie-Rochester Series on Public Policy, 39, 1993, 195-214.
- Woodford, Michael, "Monetary Policy and Price Level Determinacy in a Cash-in-Advance Economy," *Economic Theory*, 4, 1994, 345-380.

European Central Bank working paper series

For a complete list of Working Papers published by the ECB, please visit the ECB's website (http://www.ecb.int).

- 113 "Financial frictions and the monetary transmission mechanism: theory, evidence and policy implications" by C. Bean, J. Larsen and K. Nikolov, January 2002.
- I 14 "Monetary transmission in the euro area: where do we stand?" by I. Angeloni, A. Kashyap,B. Mojon, D. Terlizzese, January 2002.
- 115 "Monetary policy rules, macroeconomic stability and inflation: a view from the trenches" by A. Orphanides, December 2001.
- 116 "Rent indices for housing in West Germany 1985 to 1998" by J. Hoffmann and C. Kurz., January 2002.
- 117 "Hedonic house prices without characteristics: the case of new multiunit housing" by O. Bover and P. Velilla, January 2002.
- 118 "Durable goods, price indexes and quality change: an application to automobile prices in Italy, 1988-1998" by G. M. Tomat, January 2002.
- 119 "Monetary policy and the stock market in the euro area" by N. Cassola and C. Morana, January 2002.
- 120 "Learning stability in economics with heterogenous agents" by S. Honkapohja and K. Mitra, January 2002.
- 121 "Natural rate doubts" by A. Beyer and R. E. A. Farmer, February 2002.
- 122 "New technologies and productivity growth in the euro area" by F. Vijselaar and R. Albers, February 2002.
- 123 "Analysing and combining multiple credit assessments of financial institutions" by E. Tabakis and A. Vinci, February 2002.
- 124 "Monetary policy, expectations and commitment" by G. W. Evans and S. Honkapohja, February 2002.
- 125 "Duration, volume and volatility impact of trades" by S. Manganelli, February 2002.
- 126 "Optimal contracts in a dynamic costly state verification model" by C. Monnet and E. Quintin, February 2002.
- 127 "Performance of monetary policy with internal central bank forecasting" by S. Honkapohja and K. Mitra, February 2002.
- 128 "Openness, imperfect exchange rate pass-through and monetary policy" by F. Smets and R. Wouters, February 2002.

- 129 "Non-standard central bank loss functions, skewed risks, and certainty equivalence" by A. al-Nowaihi and L. Stracca, March 2002.
- 130 "Harmonized indexes of consumer prices: their conceptual foundations" by E. Diewert, March 2002.
- 131 "Measurement bias in the HICP: what do we know, and what do we need to know?" by M. A. Wynne and D. Rodríguez-Palenzuela, March 2002.
- 132 "Inflation dynamics and dual inflation in accession countries: a "new Keynesian" perspective" by O. Arratibel, D. Rodríguez-Palenzuela and C. Thimann, March 2002.
- 133 "Can confidence indicators be useful to predict short term real GDP growth?" by A. Mourougane and M. Roma, March 2002.
- 134 "The cost of private transportation in the Netherlands, 1992-1999" by B. Bode and J. Van Dalen, March 2002.
- 135 "The optimal mix of taxes on money, consumption and income" by F. De Fiore and P. Teles, April 2002.
- 136 "Retail bank interest rate pass-through: the new evidence at the euro area level" by G. de Bondt, April 2002.
- 137 "Equilibrium bidding in the eurosystem's open market operations" by U. Bindseil, April 2002.
- 138 "New" views on the optimum currency area theory: what is EMU telling us?" by F. P. Mongelli, April 2002.
- 139 "On currency crises and contagion" by M. Fratzscher, April 2002.
- 140 "Price setting and the steady-state effects of inflation" by M. Casares, May 2002.
- 141 "Asset prices and fiscal balances" by F. Eschenbach and L. Schuknecht, May 2002.
- 142 "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank", by A. Cabrero, G. Camba-Mendez, A. Hirsch and F. Nieto, May 2002.
- 143 "A non-parametric method for valuing new goods", by I. Crawford, May 2002.
- 144 "A failure in the measurement of inflation: results from a hedonic and matched experiment using scanner data", by M. Silver and S. Heravi, May 2002.
- 145 "Towards a new early warning system of financial crises", by M. Fratzscher and M. Bussiere, May 2002.
- 146 "Competition and stability what's special about banking?", by E. Carletti and P. Hartmann, May 2002.

- 147 "Time-to-build approach in a sticky price, stricky wage optimizing monetary model, by M. Casares, May 2002.
- 148 "The functional form of yield curves" by V. Brousseau, May 2002.
- 149 "The Spanish block of the ESCB-multi-country model" by A. Estrada and A. Willman, May 2002.
- 150 "Equity and bond market signals as leading indicators of bank fragility" by R. Gropp, J. Vesala and G. Vulpes, June 2002.
- 151 "G-7 inflation forecasts" by F. Canova, June 2002.
- 152 "Short-term monitoring of fiscal policy discipline" by G. Camba-Mendez and A. Lamo, June 2002.
- 153 "Euro area production function and potential output: a supply side system approach" by A. Willman, June 2002.
- 154 "The euro bloc, the dollar bloc and the yen bloc: how much monetary policy independence can exchange rate flexibility buy in an interdependent world?" by M. Fratzscher, June 2002.
- 155 "Youth unemployment in the OECD: demographic shifts, labour market institutions, and macroeconomic shocks" by J. F. Jimeno and D. Rodriguez-Palenzuela, June 2002.
- 156 "Identifying endogenous fiscal policy rules for macroeconomic models" by J. J. Perez, and P. Hiebert, July 2002.
- 157 "Bidding and performance in repo auctions: evidence from ECB open market operations" by K. G. Nyborg, U. Bindseil and I. A. Strebulaev, July 2002.
- 158 "Quantifying Embodied Technological Change" by P. Sakellaris and D. J. Wilson, July 2002.
- 159 "Optimal public money" by C. Monnet, July 2002.
- 160 "Model uncertainty and the equilibrium value of the real effective euro exchange rate" by C. Detken, A. Dieppe, J. Henry, C. Marin and F. Smets, July 2002.
- 161 "The optimal allocation of risks under prospect theory" by L. Stracca, July 2002.
- 162 "Public debt asymmetries: the effect on taxes and spending in the European Union" by S. Krogstrup, August 2002.
- 163 "The rationality of consumers' inflation expectations: survey-based evidence for the euro area" by M. Forsells and G. Kenny, August 2002.
- 164 "Euro area corporate debt securities market: first empirical evidence" by G. de Bondt, August 2002.

- 165 "The industry effects of monetary policy in the euro area" by G. Peersman and F. Smets, August 2002.
- 166 "Monetary and fiscal policy interactions in a micro-founded model of a monetary union" by R. M.W.J. Beetsma and H. Jensen, August 2002.
- 167 "Identifying the effects of monetary policy shocks on exchange rates using high frequency data" by J. Faust, J.H. Rogers, E. Swanson and J.H. Wright, August 2002.
- 168 "Estimating the effects of fiscal policy in OECD countries" by R. Perotti, August 2002.
- 169 "Modeling model uncertainty" by A. Onatski and N. Williams, August 2002.
- 170 "What measure of inflation should a central bank target?" by G. Mankiw and R. Reis, August 2002.
- 171 "An estimated stochastic dynamic general equilibrium model of the euro area" by F. Smets and R. Wouters, August 2002.
- 172 "Constructing quality-adjusted price indices: a comparison of hedonic and discrete choice models" by N. Jonker, September 2002.
- 173 "Openness and equilibrium determinacy under interest rate rules" by F. de Fiore and Z. Liu, September 2002.
- 174 "International monetary policy coordination and financial market integration" by A. Sutherland, September 2002.
- 175 "Monetary policy and the financial accelerator in a monetary union" by S. Gilchrist, J.O. Hairault and H. Kempf, September 2002.
- 176 "Macroeconomics of international price discrimination" by G. Corsetti and L. Dedola, September 2002.
- 177 "A theory of the currency denomination of international trade" by P. Bacchetta and E. van Wincoop, September 2002.
- 178 "Inflation persistence and optimal monetary policy in the euro area" by P. Benigno and J.D. López-Salido, September 2002.
- 179 "Optimal monetary policy with durable and non-durable goods" by C.J. Erceg and A.T. Levin, September 2002.
- 180 "Regional inflation in a currency union: fiscal policy vs. fundamentals" by M. Duarte and A.L. Wolman, September 2002.
- 181 "Inflation dynamics and international linkages: a model of the United States, the euro area and Japan" by G. Coenen and V. Wieland, September 2002.
- 182 "The information content of real-time output gap estimates, an application to the euro area" by G. Rünstler, September 2002.

- 183 "Monetary policy in a world with different financial systems" by E. Faia, October 2002.
- 184 "Efficient pricing of large value interbank payment systems" by C. Holthausen and J.-C. Rochet, October 2002.
- 185 "European integration: what lessons for other regions? The case of Latin America" byE. Dorrucci, S. Firpo, M. Fratzscher and F. P. Mongelli, October 2002.
- 186 "Using money market rates to assess the alternatives of fixed vs. variable rate tenders: the lesson from 1989-1998 data for Germany" by M. Manna, October 2002.
- 187 "A fiscal theory of sovereign risk" by M. Uribe, October 2002.