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Abstract 

This paper models and estimates total factor productivity (TFP) growth parametrically. The model 
is a generalization of the traditional production model where technology is represented by a time 
trend. TFP growth is decomposed into unobservable technical change, scale economies and 
observable technology shifter index components. The empirical results are based on an unbalanced 
panel data at the global level for 190 countries observed over the period 1996-2013. A number of 
exogenous growth factors are used in modeling four technology shifter indices to explore 
development infrastructure, finances, technology and human development determinants of TFP 
growth. Our results show that unobservable technical changes remain the most important 
component of TFP growth. The observable technology indices-based component is lower than the 
simple unobserved time trend model based one. By comparing the performance of the time trend 
and technology index models in terms of TFP growth rates, we arrive at the conclusion that the 
technology index model predicts a more realistic picture of the TFP growth pattern as compared 
to the traditional time trend model. Our results also indicate that technical change and TFP growth 
are negative across country groups and years in the technology index model influenced by the 
global economic crisis. 

Keywords: Technical change, total factor productivity growth, technology indicators, technology 
shifters. 
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1. Introduction 

Growth of total factor productivity (TFP) provides society with an opportunity to increase the 
economic welfare of the people. It is, therefore, worthwhile to ask: What determinants should 
policymaking focus on to enhance the performance of TFP growth. Literature on technical change 
(TC) and TFP growth can be classified into four groups (Diewert, 1981): parametric estimation, 
non-parametric indices, exact index numbers and linear programming approaches for measuring 
technical change and TFP growth.  

Following Solow (1957) the studies in the first group use parametric estimations of production and 
cost functions which are based on an estimation of the Cobb-Douglas production functions. Solow 
proposed the existence of an exogenous residual capturing TFP and argued that cross-country 
differences in this exogenous residual (that is, in TFP) might generate important cross-country 
differences in income per capita (Isaksson, 2007). The main issue with this approach, known as 
the residual approach, is that it assumes that all the production units are efficient and no distinction 
is made between technical progress and changes in technical efficiency. In other words, no separate 
adjustments for technical improvements (changes in efficiency) embodied in labor or capital stock 
are considered (Danquah et al., 2014). The other issue is that although lots of studies have focused 
on specific variables which affect productivity (for example, Benhabib and Spiegel, 1994, 2005; 
Barro, 1991; Kneller and Stevens, 2006; Miller and Upadhyay, 2000; Vandenbussche et al., 2006), 
no attempt has been made to search for the main determinants of TFP growth and its components 
in these studies. Collins and Bosworth (1996) and Nehru and Dhareshwar (1993) are two other 
examples of growth accounting exercises involving broad cross-country samples (Kruger, 2003).    

In the second group, non-parametric indices are used to measure TFP growth. Irrespective of the 
method used to calculate the distance, growth in TFP is subsequently quantified by the Malmquist 
index (Malmquist, 1953) in a consumption context and by Caves et al. (1982) as a productivity 
index. This TFP index has two essential advantages as compared to growth accounting. First, no 
factor price information and no equilibrium assumption necessary for equating price and marginal 
product are required. However, the Malmquist index cannot be calculated for a country in isolation 
but instead needs a balanced panel of quantity data for the inputs and output. The second advantage 
of the Malmquist index is that a change in TFP can be decomposed as a change of productive 
efficiency and technological change. This is a substantial gain in informational content as 
compared to growth accounting. Färe et al. (1994), Koop et al. (1999), Maudos et al. (2000) and 
Henderson and Russell (2001) are some examples of studies which use non-parametric indices.   

The third group of studies use exact index numbers for measuring TFP. Ahn and Abt (2003) 
calculate price index numbers with the chain-type Fisher formula and use these as the values of 
the deflators without employing published price index numbers. The price index is most likely 
constructed with the fixed year-based Laspeyres formula. The Fisher index is consistent with a 
flexible aggregator function and has the property of self-duality. Self-duality warrants that the 
direct Fisher quantity index based on actual observed quantities is the same as the indirect quantity 
index number derived by deflating the values with the Fisher price index. The property of self-
duality is particularly desirable in application given that most available data is likely to be in 
values. 

Finally non-parametric methods using linear programming comprise the fourth group of studies. 
This was first introduced by Aigner and Chu’s (1968) study, in which the authors used linear 
programming methods and applied them to social sector panel data from Yugoslavia to construct 
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parametric production frontiers and subsequently measure TFP growth as the sum of an efficiency 
change component and a technical change component.    

Our study uses an econometric approach and uses the translog production function to estimate 
rates of technical change and TFP growth. It also identifies several determinants that have an 
impact on TFP growth and its decomposition. Understanding and modeling the sources of TFP 
growth are important at least in a policy context. Of these determinants, development 
infrastructure, finances, technology and human development appear to be the most important. 

Development infrastructure: Infrastructure such as technology transfers, internet and the role of 
communication is expanding the capacity of production resources. Investments in physical 
infrastructure account for a large proportion of country budgets. It is hardly surprising that 
improvements in physical infrastructure (for example, roads, water and sewage systems and 
electricity supply) are correlated with productivity. Causality running from infrastructure to 
productivity can easily be envisaged. Yet, comparatively little attention has been paid to 
quantifying the effects of infrastructure on productivity. Trade in the service of technology 
transfers was seen to have an indirect effect on TFP; hence here both an indirect and a direct view 
may be more appropriately taken. For example, insofar as there are learning effects of export 
activities they should readily affect TFP, while imports of foreign capital add to investments and 
have indirect effects by increasing capital formation. However, technology embodied in relatively 
advanced capital imports directly affects TFP (Isaksson, 2007). 

Finances: Traditionally, foreign direct investment (FDI) is viewed as being a key channel for the 
transfer of advanced technology and superior organizational forms from industrialized to 
developing countries. Further, FDI is believed to generate positive externalities in the form of 
knowledge spillovers to the receiving economy through, for instance, linkages with local suppliers 
and clients (so called backward and forward linkages), learning from nearby foreign firms and 
employee training programs. Other determinants include saving rate and stock market 
capitalization.  

Technology: Change in the stock of knowledge is a result of various domestic investments, for 
example, in R&D (public and private) and education, although the size of the population (or rather, 
the number of persons involved in knowledge production) also matters. Here we focus on R&D 
expenditure, high technology export and patent applications. Knowledge could also be imported 
through several channels. For example, a better-educated and healthier population is in a better 
position to learn and absorb knowledge. Human capital and R&D are important means of 
increasing a country’s absorptive capacity. Other tools may include information and 
communication technology (ICT) and the overall institutional setting (Isaksson, 2007). 

Human development: Health influences TFP growth directly through household income and 
wealth and indirectly through labor productivity, savings, investments and demography by 
reducing various forms of capital and technology adoption. Healthy workers are more productive, 
ceteris paribus. With lower mortality rates, the incentive to save increases thus leading to higher 
TFP growth. A country in which workers are exposed to a relatively high disease burden does not 
attract foreign investors. In addition, school attendance rates are higher if children are healthier 
and have better cognitive abilities. Further, a longer life span is likely to increase the attractiveness 
of human capital investments (Isaksson, 2007). In sum all these will result in positive TFP growth. 
Here we focus on health and education expenditures and tertiary education. Human capital, for 
example, in the form of level of education has an important effect on TFP because of its role as a 
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determinant of an economy’s capacity to carry out technological innovations (Romer, 1990) and, 
for developing countries in particular, to adopt foreign technology. Basic and higher education 
effect TFP in different ways. The former is important for learning-capacity and using information, 
while the latter is necessary for technological innovations (Isaksson, 2007). 

Our study models and estimates TFP growth parametrically. The model is a generalization of the 
traditional production model where technology is represented by a simple time trend. TFP growth 
is decomposed into components attributed to the unobservable time trend rate of technical change, 
scale economies and the observable technology shifter index. The empirical results are based on 
an unbalanced panel data at the global level for 190 countries observed over the period 1996-2013. 
A number of identified exogenous growth factors are used in modeling four technology shifter 
indices to explore the effects of development infrastructure, finances, technology and human 
development determinants of TFP growth. Our results show that the unobservable time trend-based 
rate of technical change remains the most important component of TFP growth. The observable 
technology indices based component predict a more realistic picture of the pattern of TFP growth. 
Our results also indicate that technical change and TFP growth rates through the technology index 
channels were negatively influenced by the global economic crisis. 

The rest of the paper is organized as follows. Section 2 reviews literature for establishing the 
research methodology. The models are outlined in Section 3 while Section 4 describes the data. 
Section 5 reports and interprets the empirical results and the final section gives a conclusion by 
summarizing its main findings. 

 

2. Literature review 

Literature on measuring and analyzing productivity growth and technological change is 
comprehensive and diverse. It covers a range of dimensions such as the concept, modeling, 
estimation, identification of determinants, channels, effects and policy implications at different 
levels of aggregation. This review provides a general picture of the literature and its strengths and 
limitations where our study attempts to make a contribution.  

Griffith et al., (2000), covering 13 manufacturing industries in 12 OECD countries between 1970 
and 1992, asked whether R&D had a direct effect on a country’s rate of TFP growth through 
innovation, and whether R&D’s effect on TFP growth depended on a country’s level of TFP 
relative to the technology frontier. According to their results, R&D had a positive and statistically 
significant effect on both innovation and technology transfer rates. They also found that 
educational attainment was an important and conditional element for TFP growth through both 
innovation and technology transfer. However, trade with a country on the world technology 
frontier showed a slight positive effect on TFP growth.  

Using data from 83 countries between 1960 and 1989, Miller and Upadhyay (2002) found that 
trade, measured as exports in GDP, was positively associated with TFP growth. They also showed 
that human capital was a threshold variable. A positive and statistically significant effect of trade 
on TFP growth was detected, although its effects were negative for low per capita income 
countries. They also found that at low levels of income the interaction term between human capital 
and trade was positive. This means that for low-income countries a certain level of human capital 
was necessary to enjoy the benefits of trade.  
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Isaksson (2002) studied the links between human capital and economic growth. According to his 
study, the relationship between growth and human capital weakened and the parameter sign 
switched over time. He also concludes that to the extent that human capital is significant, marginal 
returns to human capital are high for countries where it is scarce, although the issue of causality 
remains unresolved. Another plausible explanation as to why education fails to show its 
importance is provided by Jones (1996) who contends that it is not the percentage change in 
educational attainment that counts, that is, the way education normally enters the regression, but 
rather the change in levels. This is in line with the original work of Mincer (1974). 

Heshmati and Kumbhakar (2011) modeled TC via a time trend (external non-economic) and other 
exogenous factors (technology shifters). They used balanced panel data on output and inputs and 
production and technology characteristics for Chinese provinces for the period 1993 to 2003. In 
their study technology indices were defined based on external economic factors and time trend. 
The time driven part of TC varied significantly across the provinces and regions and its impacts 
on TFP steadily declined over time. The technology index-based rate was composed of two 
technology indices. They represented infrastructure and carriers of technological change. The 
margin contribution from ICT and FDI was negative, but that of human capital and reforms was 
positive to the rate of technological change. Their negative interactive coefficient suggests a 
substitution relationship. 

Mastromarco and Zago (2012) investigated the determinants of TFP growth of Italian 
manufacturing firms in 1998-2003. Using stochastic frontier techniques, they considered three 
approaches for taking into account the influence of external factors, that is, the determinants or 
drivers of growth. First, external factors may influence the technological progress that is a shift of 
the frontier. To model this possible unexplored effect, they extended the standard time trend model 
to make it a function of external factors. Then, following more standard approaches, they modeled 
external factors as either influencing the distance from the frontier, that is, inefficiency, or the 
shape of the technology. Their study found that technological investments and spillovers, human 
capital and regional banking inefficiencies all had a significant effect on TFP growth. 

Tugcu and Tiwari (2016) examined the causal relationship between different types of energy 
consumption and TFP growth in BRICS (Brazil, Russia, India, China and South Africa) countries 
from 1992 to 2012. They employed Kónya’s (2006) panel bootstrap Granger causality test to 
investigate the direction of a possible connection between energy consumption and TFP growth. 
Their results indicate no remarkable causal link between renewable energy consumption and TFP 
growth in BRICS. However, in the case of non-renewables, energy consumption created a positive 
externality that contributed to economic development in Brazil and South Africa by a growth in 
TFP and energy use itself.  

In another study, Ulku (2004) suggests that innovation is important for GDP per capita as well as 
for TFP. According to his study, there are some qualifications in that only large OECD countries 
are able to increase their levels of innovation through R&D investments; smaller OECD countries 
learn from that group to promote their own innovations. Another important result is that 
innovations only lead to short-term increases in the output growth rate.  

 

3. The models  



6 
 

The model used in our paper is drawn from Heshmati and Kumbhakar (2014). In this section we 
discuss the definition and measurement issues associated with different approaches to empirically 
measure productivity growth. First, we focus on TFP as an appropriate measure of productivity. A 
very simple method to measure TFP growth is the Divisia index, which has been used in literature 
very often. It can be computed from the observed data without any estimation. Production process 

can be a single or multi-output operation. In a single output case TFP growth (
•

TFP ) is defined as 

( ∑
•••

-=
j jj XSYTFP ), where Y is aggregate output, jX is a vector of inputs (j=1,2,…..,J), jS is the 

share of input jX in the total cost, ∑=
j jjjjj XwXwS , jw is  the price of input jX (dots over the 

variables indicate annual rate of change). If there are multiple outputs, the TFP growth is expressed 

( ∑∑
j

•••

-= jjm mm XSYRTFP ), where is mR  the output value share, ∑=
m mmmmm YPYPR , and is mP  the 

price of output mY (m=1,.....,M). Using these definitions, the 


TFP  measure can be computed from 

the observed data without any estimation.  

The Divisia index is non-parametric and as such it does not provide information on the factors 
affecting productivity growth. The main advantage of the parametric or econometric approach is 
that we can estimate and decompose TFP growth and control for production and environmental, 
management and technology factors. The econometric approach can be based on primal 
(production), dual (cost) or profit functions. In our study we employ a production function 
approach. The main advantages of a production function are that it does not require information 
on prices and it allows for non-constant returns to scale. It has several desirable properties such as 
positive marginal product of inputs, non-emptiness of output, symmetry, monotonicity and 
convexity. In addition, the production function is assumed to be continuous at any point and twice-
continuously differentiable. The translog production function with a time trend representing 
exogenous TC can be written as: 
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where itYln  is the logarithm of output measure of total GDP of country i (i=1,2,...,N) in period 

t(t=1,2,….,T) and 
jitXln  is a vector of logarithm of J (j=1,….,J) inputs. T is a time trend and βs are 

unknown parameters to be estimated. The error term is decomposed into time-invariant country-
specific effects ( i ) and a random error term ( it ), that is, itiit   . i  is assumed to be a 

fixed parameter and is captured by N-1 country dummies. The random error term is assumed 
distributed with mean zero and constant variance, 2

v . 

The specification of TC in equation 1 is represented by a simple time trend. Now we consider our 
extension that includes several ‘technology shifters’ that are functions of exogenous factors: 
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where )( m
itm ZT are technology indices and mZ  are external economic factors (labeled as technology 

shifters). That is, given the traditional inputs, output can change depending on the level of the 
variables that can shift the production function. These shifter variables can be grouped into various 
components (technology indices), )( m

itm ZT , where each component depends on a sub-set of 

mutually exclusive shift variables. Thus, we can specify )( m
itm ZT as: 

(3)  



mm P

p

m
p

P

p

m
pit

m
p

m
itm mZZT

11

1),ln()(  .   

In Eq. 3 the sum of the weights is restricted to be unity for identification reasons and to interpret 
the weights as the importance of each shifter on the technology component. In equation 3 mP is the 

number of technology shifters in technology index (.).mT  In our paper we use four technology 

indices, each based on three technology shifters. The first technology index, (.)1T , is the 
infrastructure index which is constructed from trade openness, internet users and mobile phone 
subscribers. The second index, called the finance index, (.)2T , comprises of the savings percentage 

of GDP, FDI percentage of GDP and stock market capitalization percentage. The third index, (.)3T

, is constructed around the technology index and is based on R&D expenditure, hi-tech exports 
and patent applications by non-residents. Finally, the forth index, (.)4T , comprises of health 
spending as a percentage of GDP, education spending as a percentage of GDP and tertiary school 
enrollments. 

The translog production models in Models 1 and 2 are estimated using the fixed effect panel data 
approach. The first model is labeled as single time trend (TT) and the second is called the 
technology index (TI) model. The two models are nested. The TT model is a restricted version of 
the TI model. Based on equations 2 and 3, input elasticities (E) and the rate of technical change 
(TC) can be calculated for each of the two models as: 
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In a similar way the elasticity for each technology index, )( m
itm ZT , is calculated as: 

(6)   
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Note that the pure exogenous technical change ( TITC ) in equation 5b can further be decomposed 

into the pure ( Tttt   ), non-neutral (
j

jitjt Xln ) and technology index (
m

m
itmtm ZT )( ) 

components. Pure TC refers to a neutral shift of the production function due to time alone, non-
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neutral TC means input biased TC and technology index components are a result of the effect of 
known exogenous technology shifters on production. TC is biased if the marginal rate of 
substitution between any two inputs measured along a ray through the origin is affected by TC. 
This implies that TC will tend to influence the relative contribution of each input to the production 
process. Summing up all the input elasticities in each model allows returns to scale (RTS) to be 
obtained as: 

(7)  ∑∑
1=1=

=and=
J

j

TI
jit

TI
it

J

j

TT
jit

TT
it ERTSERTS                                                                                               

where jitE  is the elasticity of output for country i with respect to input j at period t. It measures the 

percentage change in output resulting from a proportional 1 per cent increase in all inputs 
simultaneously. If technology exhibits increasing (decreasing) returns to scale, the economy will 
become more (less) productive by an expansion of the scale. All input elasticities, returns to scale 
and rate of TC are computed at every point of the data. By using equations 4 through 8, the 
parametric TFP growth based on the translog production function for both TT and TI models can 
be obtained as: 
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where TZ and TTTC together measure the overall rate of TC. The TTTC part is due to time 
representing unknown effects alone, whereas the TZ part is due to other observable external 
economic technology factors. In our application, TZ is a weighted average of the four technology 
index components, where the weights are the marginal effects of the index components. The 
overall TZ index is the sum of the product of technology elasticity and the growth rate of the 
technology index:  

(9)  ))(())(lnln(
1

m
itm

M

m

m
itmitit ZTZTYTZ




  .  

Under strong assumptions of constant returns to scale (CRS) and competitive output markets, TFP 
growth and TC are identical (Solow, 1957). In such a case it is not necessary to estimate anything 
econometrically. The Divisia index which can be directly computed from the data will measure 
both TFP change and TC. However, if the objective of the producers is to minimize costs (given 
output and input prices) or to maximize output (for given inputs), and the constant returns to scale 
and perfectly competitive output (input) market assumptions are relaxed, then it is possible to 
establish a relationship between the Divisia index and TFP growth components (Denny et al., 
1981). TFP growth in equations 8a and 8b can be obtained from a parametric cost function or 
production function. The first component of TFP growth is TC and the second component is the 
scale component, which is zero if RTS is unity. The last component is zero if either the marginal 
effect of every technology shifter is zero, or these shift variables are time-invariant. Note that in 
defining TFP change we are not taking into account the cost of these technology shifter variables.  
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It should be noted that even with a CRS technology, other factors that can explain productivity 
growth may exist. If these factors are observed, we can separate the contribution of factors that are 
under a producer’s control and those that are exogenous to a firm by estimating the underlying 
production technology econometrically. The external factors which define the environment where 
the producers operate could affect profitability, survival and productivity growth of firms. These 
factors are usually taken into account in endogenous growth literature. Morrison (1986) and 
Morrison and Siegel (1999) include these factors in their productivity growth analyses. They point 
out that such external factors affect the cost-output relationship of a firm and can be explicitly 
included in the model as non-neutral shift variables. Additional explanations are found in Winston 
(1993) and Vickers (1995). We use the mentioned technology related factors as technology shifters 
and in the context of technological change. 

 

4. Data  

Our study uses cross-country unbalanced panel data on the global level for 190 countries during 
the period 1996-2013. The total number of observations is 3,362. The data is obtained from Global 
Economy.com. The data provides information on contributing factors to the level and development 
of TC and TFP growth. Output is measured as aggregate gross domestic product (GDP). The input 
variables include labor (LABOR) measured by the number of persons employed at year-end, 
capital investment (CAPINV) in dollars and aggregate energy use (ENEUSE). Different countries 
are divided into five groups according to their income levels as very low, low, medium, high and 
very high income groups, each accounting for about 20 per cent of the sample. In order to avoid 
loss of information due to missing unit observations the missing values of some of the explanatory 
variables are imputed using country’s own averages. 

To specify technology shifters we used four indices. The first index, infrastructure index, includes 
trade openness (OPEN), internet users (INTUSE) and mobile phone (MOBSUB) subscribers per 
100 people. The second index, finance index, comprises of the savings percentage of GDP 
(SAVP), foreign direct investment percentage of GDP (FDIP) and stock market capitalization 
percentage of GDP (STOCK). The third index, technology index, includes research and 
development expenditure (RDEXP), hi-tech exports (HTEXP) and patent applications (PATNR) 
by non-residents. Finally the forth index, human capital index, comprises of healthcare 
(HEALEXP) spending as percentage of GDP, education spending (EDUEXP) as percentage of 
GDP and tertiary school enrollments (TERSCH) as percentage of eligible children. In addition to 
these observable determinants/shifters of technology, we used time trend to capture the unobserved 
rate of technological change.  

We begin with a summary statistics of the data for the input and output variables and identified 
technology shifters (Table 1). As seen in Table 1, GDP per capita averaged US$ 244,607 with 
dispersion 4.28 times the mean. The average employment at the country level was 21 million 
persons. Capital investments, energy use per capita and time trend were the other three variables 
which affected total TFP with means of 65, 66, 388 and 10 respectively. Energy use per capita also 
showed large variations among the sample countries. 

Therefore, in addition to the basic factors of production considered to estimate TFP growth and its 
components, we considered data on 12 candidate determinants of TFP growth borrowed from 
literature on empirical TFP growth. We considered them in four indices which are introduced in 
previous parts. The values of hi-tech exports indicate considerable variations in the dataset. Mean 
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patent applications by non-residents was 4,280 with a large standard deviation of 15,972. On 
average 6.2 and 4.5 per cent of GDP was spent on health and education respectively. Around 29 
per cent of all eligible children were enrolled in tertiary schools.  

 

Table 1.  Summary statistics of the data, 1996-2013 (NT=3,362)  

Variable Variable definition Mean Std Dev 
Output and input variables:  
GDP Aggregate GDP (constant 2005 dollars) 244,606.800 1,048,744.000 

LABOR Employment (in million) adjusted for unemployment 20.689 83.408 
CAPINV Capital investment in dollars 65.290 268.179 
ENEUSE Aggregate energy use  66,388.000 218,490.200 
Trend Time trend 9.516 5.160 

Group Countries grouped by income level   
Group1 Very low income 0.198 0.398 
Group2 Low income 0.198 0.399 
Group3 Medium income 0.207 0.405 
Group4 High income 0.193 0.395 
Group5 Very high income 0.203 0.403 

Technology shifters:  
OPEN Trade openness (export+import)/GDP 90.011 52.037 
INTUSE Internet users per 100 persons 20.413 24.742 
MOBSUB Mobile phone subscribers per 100 persons  48.975 48.335 

SAVP Savings percent of GDP  20.002 17.197 
FDIP Foreign Direct Investment per cent of GDP 5.046 10.929 
STOCK Stock market capitalization per cent of GDP 55.100 68.648 

RDEXP R&D expenditure share of GDP 0.739 0.711 
HTEXP Hi-tech exports (in millions) 8,037.474 29,987.210 
PATNR Patent applications by non-residents  4,280.481 15,971.220 

HELEXP Health spending as per cent of GDP  6.248 2.416 
EDUEXP Education spending  as per cent of GDP  4.468 1.874 
TERSCH Tertiary school enrollment (per cent of eligible children) 28.740 23.513 

 

In order to check for collinearity among the variables, a correlation matrix of all 17 output, inputs, 
trend and technology shifter variables is presented in Table 2. We investigated the issues of multi-
collinearity and possible confounded effects. The explanatory variables labor, capital and energy 
use are all positively and significantly correlated with the dependent variable GDP. Between these 
three variables capital and energy use were highly correlated with GDP. There was also a positive 
association between GDP and time trend (0.03). Only trade openness (-0.16) and foreign direct 
investment (-0.05) showed a negative correlation with GDP. Labor (0.01) and energy use (0.02) 
were not correlated with time trend, but capital was (0.08). Capital and labor were weakly (0.50) 
correlated and energy use was correlated with labor (0.86) and capital stock (0.90) with possible 
confounded input elasticity effects. However, the effect on estimated rates of TC and TFP very 
likely will be small. Most pairs of variables are low correlated with each other and do not show 
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any sign of serious multi-collinearity. Hi-tech exports, patent applications by non-residents and 
R&D expenditure positively contributed to GDP.  

 

Table 1. Correlation matrix of the variables (N=3,362) 
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GDP 1.00                 

Labor 0.32 
(0.00) 

1.00 
 

               

Capinv 0.91 
(0.00) 

0.50 
(0.00) 

1.00               

Eneuse 0.86 
(0.00) 

0.67 
(0.00) 

0.90 
(0.00) 

1.00              

Trend 0.03 
(0.06) 

0.01 
(0.46) 

0.08 
(0.00) 

0.02 
(0.26) 

1.00             

Open -0.16 
(0.00) 

-0.17 
(0.00) 

-0.16 
(0.00) 

-0.19 
(0.00) 

0.08 
(0.00) 

1.00            

Intuse 0.25 
(0.00) 

-0.03 
(0.06) 

0.25 
(0.00) 

0.14 
(0.00) 

0.49 
(0.00) 

0.21 
(0.00) 

1.00           

Mobsub 0.11 
(0.00) 

-0.04 
(0.02) 

0.12 
(0.00) 

0.04 
(0.02) 

0.70 
(0.00) 

0.25 
(0.00) 

0.78 
(0.00) 

1.00          

Savp 0.05 
(0.00) 

0.13 
(0.00) 

0.09 
(0.00) 

0.10 
(0.00) 

0.03 
(0.07) 

-0.05 
(0.00) 

0.16 
(0.00) 

0.14 
(0.00) 

1.00         

FDIp -0.05 
(0.00) 

-0.05 
(0.00) 

-0.05 
(0.00) 

-0.06 
(0.00) 

0.05 
(0.00) 

0.38 
(0.00) 

0.08 
(0.00) 

0.12 
(0.00) 

-0.13 
(0.00) 

1.00        

Stock 0.11 
(0.00) 

0.00 
(0.80) 

0.09 
(0.00) 

0.07 
(0.00) 

0.04 
(0.01) 

0.40 
(0.00) 

0.21 
(0.00) 

0.20 
(0.00) 

0.08 
(0.00) 

0.15 
(0.00) 

1.00       

R&Dexp 0.40 
(0.00) 

0.08 
(0.00) 

0.37 
(0.00) 

0.29 
(0.00) 

0.04 
(0.01) 

0.04 
(0.02) 

0.53 
(0.00) 

0.28 
(0.00) 

0.06 
(0.00) 

0.02 
(0.38) 

0.18 
(0.00) 

1.00      

HTexp 0.69 
(0.00) 

0.50 
(0.00) 

0.84 
(0.00) 

0.74 
(0.00) 

0.07 
(0.00) 

0.01 
(0.50) 

0.29 
(0.00) 

0.14 
(0.00) 

0.13 
(0.00) 

-0.01 
(0.41) 

0.12 
(0.00) 

0.44 
(0.00) 

1.00     

Patnr 0.91 
(0.00) 

0.41 
(0.00) 

0.89 
(0.00) 

0.87 
(0.00) 

0.04 
(0.02) 

-0.12 
(0.00) 

0.18 
(0.00) 

0.05 
(0.00) 

0.04 
(0.03) 

-0.04 
(0.03) 

0.12 
(0.00) 

0.32 
(0.00) 

0.67 
(0.00) 

1.00    

Helexp 0.35 
(0.00) 

-0.06 
(0.00) 

0.29 
(0.00) 

0.22 
(0.00) 

0.16 
(0.00) 

-0.05 
(0.00) 

0.38 
(0.00) 

0.22 
(0.00) 

-0.04 
(0.01) 

0.01 
(0.45) 

0.07 
(0.00) 

0.42 
(0.00) 

0.20 
(0.00) 

0.25 
(0.00) 

1.00   

Eduexp 0.02 
(0.36) 

-0.13 
(0.00) 

-0.01 
(0.43) 

-0.06 
(0.00) 

0.04 
(0.01) 

0.09 
(0.00) 

0.10 
(0.00) 

0.04 
(0.01) 

0.05 
(0.00) 

-0.02 
(0.17) 

0.03 
(0.08) 

0.20 
(0.00) 

-0.04 
(0.01) 

-0.02 
(0.37) 

0.31 
(0.00) 

1.00  

Tersch 0.29 
(0.00) 

-0.03 
(0.07) 

0.25 
(0.00) 

0.19 
(0.00) 

0.16 
(0.00) 

0.04 
(0.04) 

0.64 
(0.00) 

0.50 
(0.00) 

0.16 
(0.00) 

-0.01 
(0.05) 

0.10 
(0.00) 

0.51 
(0.00) 

0.23 
(0.00) 

0.20 
(0.00) 

0.43 
(0.00) 

0.18 
(0.00) 

1.00 

Note: Probabilities in parenthesis.  

 

5. The results 

5.1 Estimation results  

The estimation results for Cobb–Douglas time trend (Model 1), translog time trend (Model 2) and 
non-linear translog technology index (Model 3) are presented in Table 3. In the case of the Cobb–
Douglas model (Model 1), three parameters of labor, capital investment and energy use are highly 
significant and positively contributed to GDP.   

Although the translog form (Model 2) coefficients cannot be directly interpreted economically, it 
is interesting to note that they are all statistically significant at less than the 1 per cent level, except 
for energy use interacted with time trend. Therefore, this indicates that the fit of the model is very 
good. In the case of the technology index model (Model 3), six out of eight technology-related 
parameters were highly statistically significant. Between these variables only internet use 
negatively affected GDP. Other parameters of technology shifters such as health spending and 
education spending were insignificant. In the technology index model, all the time trend 
coefficients and their interactions with the exception of interaction of trend and technology index1 
and index2 were statistically significant. The coefficients of technology index shifters and their 
squares were also statistically significant. In addition, all their interactions with one exception were 
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significantly different from zero. On the whole, only six of the 53 parameters that were associated 
with inputs, time trend and technology indices were statistically insignificant at less than the 10 
per cent level in this model which is a sign of a good specification of the function.  

 

Table 2. Cobb-Douglas, translog time trend and non-linear translog technology index production 
function parameter estimates (N=3,362)  

Variable 
Model 1: 

Cobb-Douglas  
Model 2:  

Translog time trend 
Model 3:  

Translog technology index 
Coefficient Std error Coefficient Std error Coefficient Std error 

Open - - - - 0.229a 0.025 
Intuse - - - - -0.156a 0.064 
Savep - - - - 0.214a 0.014 
FDIp - - - - 0.106a 0.033 
RDexp - - - - 0.056a 0.025 
HTexp - - - - 0.944a 0.025 
HELexp - - - - -0.011 0.036 
Eduexp - - - - -0.008 0.027 

Constant 5.900a 0.117 -1.696a 0.278 -0.848a 0.800 
Labor 0.447a 0.022 -1.396a 0.136 1.155a 0.194 
Capinv 0.579a 0.015 0.554a 0.048 -1.040a 0.129 
Eneuse 0.222a 0.014 2.483a 0.070 0.987a 0.094 

T -0.004 0.005 0.047a 0.019 -0.019 0.029 

Ind1 - - - - 1.198a 0.285 
Ind2 - - - - 0.636a 0.174 
Ind3 - - - - 0.508a 0.045 
Ind4 - - - - 0.490a 0.127 
(Labor)(Labor) - - -0.369a 0.010 -0.404a 0.011 
(Capinv)(Capinv) - - -0.112a 0.007 -0.189a 0.007 
(Eneuse)(Eneuse) - - -0.155a 0.005 -0.108a 0.004 
(T)(T) - - -0.002a 0.001 -0.002a 0.001 
(Ind1)(Ind1) - - - - -0.222a 0.033 
(Ind2)(Ind2) - - - - -0.054a 0.014 
(Ind3)(Ind3) - - - - -0.004a 0.001 
(Ind4)(Ind4) - - - - -0.034a 0.013 
(Labor)(Capinv) - - 0.310a 0.012 0.470a 0.013 
(Labor)(Eneuse) - - 0.274a 0.015 0.307a 0.012 
(labor)(T) - - -0.027a 0.003 0.029a 0.004 
(Labor)(Ind1) - - - - -0.584a 0.036 
(Labor)(Ind2) - - - - -0.131a 0.023 
(Labor)(Ind3) - - - - -0.042a 0.004 
(Labor)(Ind4) - - - - -0.255a 0.020 
(Capinv)(eneuse) - - 0.011a 0.005 -0.099a 0.005 
(Capinv)(t) - - 0.006a 0.002 -0.021a 0.003 
(Capinv)(Ind1) - - - - 0.406a 0.027 
(Capinv)(Ind2) - - - - 0.135a 0.020 
(Capinv)(Ind3) - - - - 0.054a 0.003 
(Capinv)(Ind4) - - - - 0.194a 0.015 
(Eneuse)(T) - - 0.0001 0.002 -0.018a 0.002 
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(Eneuse)(Ind1) - - - - 0.166a 0.015 
(Eneuse)(Ind2) - - - - 0.017 0.017 
(Eneuse)(Ind3) - - - - -0.011a 0.003 
(Eneuse)(Ind4) - - - - 0.099a 0.009 
(T)(Ind1) - - - - 0.032a 0.007 
(T)(Ind2) - - - - 0.007 0.005 
(T)(Ind3) - - - - 0.005a 0.001 
(T)(Ind4) - - - - 0.009 0.003 
(Ind1)(Ind2) - - - - -0.036 0.038 
(Ind1)(Ind3) - - - - -0.070a 0.008 
(Ind1)(Ind4) - - - - -0.228a 0.025 
(Ind2)(Ind3) - - - - -0.031a 0.007 
(Ind2)(Ind4) - - - - -0.043a 0.018 
(Ind3)(Ind4) - - - - -0.009a 0.004 

R2 adjusted 0.693 - 0.865 - 0.946 - 
RMSE 1.319 - 0.875 - 0.553 - 
Iterations - -  - 40 - 

Notes: Significant at less than 1% level of significance. 

 

5.2 Results based on the time trend translog model 

Table 4 presents mean elasticities, TFP growth and its components by country group and year in a 
simple time trend translog model. Elasticities are estimated from the derivatives of the production 
functions with respect to inputs. Labor and capital elasticities across all country groups were 
positive. The middle income country group had the lowest labor elasticity but the largest energy 
elasticity. Energy elasticities were negative only for high income and very high income countries 
(-0.045 and -0.212) respectively. The very low income group had the largest energy elasticity. All 
input elasticities were positive over time. Mean elasticity of inputs was also positive at 0.350, 
0.752 and 0.082. Labor elasticities decreased over time. There were large variations in capital 
elasticity, it increased from 1996 to 2002 and then it switched from an increasing trend to a 
decreasing trend in 2002 and decreased to 0.694 in 2008. Energy elasticity was almost constant in 
the study period except for a slight increase in 2012 and 2013. 

RTS is greater than one for all years and country income groups, suggesting increasing returns to 
scale in production by sample countries; it also decreased slowly during the study period. Mean 
returns to scale was about 1.184. The very low income group 5 had the largest RTS (1.323).   

According to Model 2 in Table 3, all the first- and second-order coefficients of time were 
statistically significant suggesting decreasing growth at a decreasing rate. Technology change was 
negative in all country income groups except for the very low income group. It also decreased 
from being positive from 1996 to 2000 and then negative during 2001-13. The average TC rate 
was -0.018 which ranged in the interval 0 per cent in 2000 and 1.7 per cent in 1996.  

 

Table 3. Mean elasticities and TFP components by country income groups and year (translog 
time trend model) 

 
Labor 

elasticity 
Capital 

elasticity 
Energy 

elasticity 
TC RTS Scale TFP 
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By income group: 
Very low 0.186 0.604 0.533 0.008 1.323 0.000 0.008 
Low 0.215 0.910 0.003 -0.014 1.128 0.000 -0.014 
Medium 0.084 0.906 0.135 -0.020 1.125 0.004 -0.016 
High 0.471 0.738 -0.045 -0.024 1.164 0.006 -0.019 
Very high 0.796 0.596 -0.212 -0.037 1.180 0.002 -0.035 
By year: 
1996 0.506 0.753 0.074 0.017 1.333 0.000 0.017 
1997 0.483 0.757 0.074 0.013 1.314 0.009 0.021 
1998 0.448 0.767 0.076 0.008 1.292 0.007 0.015 
1999 0.406 0.785 0.075 0.004 1.266 -0.002 0.002 
2000 0.392 0.781 0.078 0.000 1.251 0.002 0.001 
2001 0.363 0.788 0.080 -0.004 1.231 0.002 -0.001 
2002 0.338 0.795 0.076 -0.008 1.210 0.004 -0.004 
2003 0.344 0.781 0.073 -0.012 1.198 0.009 -0.003 
2004 0.346 0.767 0.073 -0.016 1.186 0.006 -0.010 
2005 0.352 0.752 0.071 -0.019 1.175 0.009 -0.010 
2006 0.358 0.737 0.068 -0.023 1.163 0.007 -0.017 
2007 0.373 0.714 0.068 -0.026 1.155 0.009 -0.017 
2008 0.381 0.694 0.071 -0.030 1.146 0.003 -0.027 
2009 0.281 0.743 0.083 -0.035 1.108 -0.010 -0.046 
2010 0.268 0.736 0.089 -0.040 1.093 -0.005 -0.045 
2011 0.269 0.722 0.090 -0.043 1.081 0.001 -0.042 
2012 0.213 0.724 0.128 -0.047 1.065 -0.001 -0.048 
2013 0.178 0.732 0.134 -0.052 1.044 -0.002 -0.054 
Overall Mean: 
Mean 0.350 0.752 0.082 -0.018 1.184 0.003 -0.015 
Std Dev 0.884 0.427 0.546 0.039 0.233 0.029 0.055 

 

The TC rate was positive only in the case of the very low income group of countries and in the 
other income groups of countries technical change was negative. Average TC rate was also 
negative indicating technical failure at the rate of -0.018 per cent per annum. It was the main 
contributor to the negative TFP growth. It was positively related with TFP, but negatively with the 
scale effect component. The negative rate of technical change accomplished by a small positive 
(0.003) scale effect produced negative total factor productivity growth (-0.015). 

 

5.3 Results based on the technology index translog model 

Input elasticities in the translog technology index model are reported in Table 5. The input 
elasticities were positive, 0.360, 0.590 and 0.038 and were consistent with those based on the 
simple translog time trend model results. The highest labor elasticity is attributed to the very high 
income group, the highest capital investment elasticity to the middle income group and the highest 
energy use elasticity to the very low income group. The estimated average RTS was 0.998, which 
is lower than the corresponding one from the time trend model and indicates constant RTS. Labor 
and capital elasticities across country income groups and over time were positive. In examining 
the differences across income groups, we observe that the mean energy elasticity was negative for 
low, high and very high income groups. They were positive over the years. RTS was larger than 
one during 1996-2004 and less than one during 2004-13, suggesting decreasing and increasing 
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economies of scale respectively. Labor elasticity and capital elasticity show a negative and positive 
trend respectively and energy elasticity showed more fluctuations during the study period. 

According to Table 5 the rates of technical change and TFP growth were negative across all 
country income groups and years in the translog technology index model. Technical change 
declined over time. The mean rate of TC was -0.034 per cent per annum. It varied from -0.047 per 
cent to -0.023 per cent.  

 

Table 5. Mean elasticities and TFP components by country income groups and year (translog 
technology index model) 

 
Labor 

elasticity 
Capital 

elasticity 
Energy 

elasticity 
TC RTS Scale Index 

TFP 
growth 

By income groups: 
Very low 0.412 0.338 0.303 -0.028 1.052 0.000 0.007 -0.022 
Low 0.398 0.612 -0.011 -0.035 0.998 -0.002 -0.001 -0.039 
Medium 0.105 0.760 0.135 -0.023 1.000 -0.004 0.000 -0.026 
High 0.323 0.692 -0.029 -0.034 0.987 -0.004 -0.002 -0.041 
Very high 0.569 0.589 -0.204 -0.051 0.954 -0.005 0.005 -0.051 
By year: 
1996 0.586 0.452 0.052 -0.023 1.090 0.000 0.000 -0.023 
1997 0.565 0.465 0.052 -0.025 1.082 0.002 0.010 -0.014 
1998 0.541 0.483 0.048 -0.027 1.072 0.002 -0.004 -0.030 
1999 0.498 0.521 0.040 -0.027 1.059 -0.001 0.004 -0.025 
2000 0.464 0.537 0.048 -0.028 1.049 -0.001 0.004 -0.028 
2001 0.433 0.553 0.052 -0.030 1.039 0.000 0.001 -0.028 
2002 0.411 0.571 0.045 -0.031 1.028 -0.001 0.007 -0.025 
2003 0.409 0.571 0.035 -0.033 1.015 0.000 -0.008 -0.041 
2004 0.373 0.598 0.035 -0.034 1.006 -0.002 0.007 -0.029 
2005 0.342 0.621 0.032 -0.034 0.995 -0.002 0.010 -0.027 
2006 0.309 0.646 0.029 -0.035 0.984 -0.004 0.000 -0.039 
2007 0.291 0.656 0.026 -0.036 0.972 -0.006 0.004 -0.038 
2008 0.320 0.618 0.018 -0.040 0.956 -0.008 -0.018 -0.067 
2009 0.191 0.712 0.045 -0.037 0.948 0.001 0.007 -0.030 
2010 0.184 0.710 0.042 -0.040 0.936 -0.012 0.003 -0.050 
2011 0.211 0.686 0.025 -0.043 0.923 -0.016 -0.001 -0.054 
2012 0.181 0.691 0.040 -0.044 0.912 -0.006 0.005 -0.045 
2013 0.181 0.690 0.029 -0.047 0.901 -0.003 0.000 -0.050 
Overall:  
Mean 0.360 0.599 0.038 -0.034 0.998 -0.003 0.002 -0.036 
Std Dev 0.839 0.529 0.431 0.042 0.095 0.033 0.072 0.082 
 

The elasticities of production with respect to technology indices and their marginal effects are 
reported in Table 6. The mean elasticities of production with respect to the technology shifter index 
1 through index 4 were 3.826, 3.450, 3.912 and 2.867 respectively. The elasticity of technology 
index 3 (3.912) was higher than the other indices. Technology index 3 showed negative values for 
marginal effects, while the average marginal effect of indices 1, 2 and 4 were all positive. 
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Table 6. Mean elasticities and marginal effects of the technology indices  

  Mean Std Dev Minimum Maximum 

Elasticity of Technology index  

Index 1 3.826 0.850 1.409 5.746 
Index 2 3.450 0.793 -2.244 6.762 
Index 3 3.912 4.332 -6.784 13.178 
Index 4 2.867 1.201 -2.216 4.787 

Marginal Effect (ME) of 
technology indices 

ME Index 1 0.181 0.613 -1.071 2.257 
ME Index 2 0.167 0.185 -0.248 0.807 
ME Index 3 -0.043 0.090 -0.203 0.281 
ME Index 4 0.234 0.315 -0.374 1.256 

 Mean index 0.002 0.072 -0.295 0.283 
 

According to the results in Table 5, TFP growth was negative across all countries. The very low 
income group had the lowest TFP growth among country groups. It was also negative during the 
study period. Average TFP growth was -0.036 and average TC rate (-0.034) was the main 
component of TFP growth. The scale component also had a negative (−0.003) contribution to TFP 
growth. TFP growth (-0.003) obtained from the technology index model was lower than the one 
obtained from the time trend production model (-0.015).  

 

6. Summary and conclusions 

Our paper applied the parametric method to estimate total factor productivity growth and 
decomposed the growth rate into rate of technical change, scale economies and technology shifter 
index components. Our empirical study used cross-country unbalanced panel data on the global 
level for 190 countries over the period 1996–2013. In this regard, 12 exogenous economic 
technology related factors were used to define four technology indices. These technology indices 
were used in a translog production function in a flexible manner to represent observable technology 
determinants. Time trend was also used to capture the unobservable technology determinants. The 
marginal effects of individual technology indicators on productivity growth were also estimated 
along with various input elasticities and the measure of economies of scale. 

Our results show that labor and capital elasticities across all country income groups were positive 
as expected. Returns to scale was found to be more than one for all years and country income 
groups in the time trend model, suggesting increasing returns to scale. However, our results imply 
that technical change and TFP growth were negative across all country income groups and years 
in the translog technology index model. Technical change also declined over time. A 
decomposition of TFP growth rate into technical change and economies of scale shows that the 
contribution of technical change was high for most of the years in both time trend and technology 
index models. TFP growth obtained from the technology index model was lower than the time 
trend model. A comparison of the performance of the time trend and technology shifter models in 
terms of TFP growth rates shows that the technology shifter model predicted a less smooth pattern 
of TFP growth than the time trend model.  
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