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Asymptotic income distribution in the
German Socio-Economic Panel (SOEP)

Income inequality and Darwinian fitness

Diego Montano∗

Abstract

In this paper, the relation between income inequality and population growth is
analized from a Darwinian perspective. A Markov chain population growth model
is presented and estimated using data from the German Socio-Economic Panel
(SOEP). We estimate both population growth rates and steady-state income dis-
tribution for males and females. The results are compatible with the traditional
age-based population growth models of demography, in so far as these are actually
irreducible, positive-recurrent Markov chains. It is concluded that, from the per-
spective of individuals and family lines, income inequality may improve reproductive
fitness of high-income individuals, and foster adaptive reproductive strategies for a
given income level.
Keywords: Steady-state income distribution – Intrinsic growth rates – Markov
chains – Population projection – Reproductive fitness

1 Introduction

The motivation of this paper is to analyze the relation between income inequality and
population growth in a modern industrialized country from a Darwinian perspective. No-
tice that, since the times of Malthus, theoretical models of the relation between economic
ressources and population dynamics have presupposed (maybe implicitly) a dependence
structure given by a certain functional form, for instance, a linear or nonlinear depen-
dence (e.g. Day et al 1989). The task of such theoretical explanation models is to esti-
mate fertility rates given a certain amount of economic ressources. However, at least since
Easterlin’s work on the role of cohort size for fertility decisions, it has been clear that
the relation between economic ressources and fertility is not absolute, but depends also
on the population and income distribution (see Macunovich 1998 for a review). In other
words, there is also a reference dependence that modulates the relation between economic
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ressource and fertility, so that it is not unusual to find empirical evidence of positive as well
as negative correlations between economic ressources and fertility (e.g. Myrskylä et al
2009). The most remarkable examples are probably the demographic transitions that
have ocurred since the late 19th century in different regions of the world. In this paper,
it is argued that distributional inequality is a fundamental element for the interpretation
of the relation between economic ressources and population dynamics. Moreover, it is ar-
gued that Darwinian fitness maximization, i.e. the reproductive success of individuals in
a given reference population (Stearns and Hoekstra 2005), can be thought of as an appro-
priate theoretical model for a partial explanation of the mechanism behind the persistent
income inequality throughout human societies. In order to show this, it would be neces-
sary to assess the reproductive behavior and success of family lines of a given economic
ressource level across several generations. For historical populations there is evidence of
Darwinian fitness maximization (e.g. Clark and Hamilton 2006, Josephson 1993, Voland
1990). However, fitness estimation of current populations must be based on asymptotic
properties of population growth (Stearns 1992). The usual fitness measure is the so called
intrinsic population growth rate r, which is calculated usually with classical demographic
methods based on the age distribution of the population (see Keyfitz 1977). In order to
investigate the relation between economic ressources and population growth, it is nec-
essary to classify the population in terms of the distribution of certain socio-economic
characteristics of individuals (see particularly Chu (1998) for a complete systematic ap-
proach, and Cheng and Chu (1999) for an empirical study with Taiwan data). In this
paper, the income distribution of the population proxies its ressource distribution, and,
at the same time, serves as basis for the calculation of the intrinsic growth rates r. From
a stochastic perspective, this is possible because population growth is modeled on the
assumptions of the Markov chain theory. Even though the Perron-Frobenius theory of
nonnegative matrices gives the necessary and sufficient conditions to estimate population
projection matrices and the intrinsic growth rates r from available demographic data, it
can be shown that the validity of the Perron-Frobenius theory in classical demography
is actually derived from the assumptions of the Markov-chain theory (for mathematical
proofs see Meyer 2000). Thus, a Markov-chain estimation of population growth should
be equivalent to the known demographic estimation methods of population projection.
As a consequence, it is possible also to estimate fitness payoffs by evaluating the intrisic
growth rates and the asymptotic income distribution of the population.

This paper is divided as follows. In section 2, the Markov chain population growth
model is presented, and its assumptions and plausibility are discussed. In sections 3 and
4, the methods of estimation, the data and results are presented, respectively. In section
5 some conclusions are discussed.
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2 Assumptions of a Markov chain population growth

model

It is a well-established result that the steady-state age distribution of a population closed
to migration is given by the Perron vector π satisfying the equation (Meyer 2000: 684;
Keyfitz and Caswell 2005

Lπ = rπ, lim
t→∞

p(t) = π > 0, ||π||1 = 1 (1)

L represents the Leslie matrix, r the intrinsic population growth rate, and p(t) the age-
group distribution at time t. The relation between the intrinsic growth rate r and the
greatest eigenvalue λ1 of L is given by:

λ1 = erτ (2)

It should be remarked here that the projection matrix L is composed of the survival
probabilities and fertility rates of a given population between times t and t − 1. It is
assumed also that mortality and fertility rates remain constant, so that (asymptotically)
the proportion of individuals of a given population in each age group is the result of
a certain mortality and fertility regime acting for a sufficient long period of time. The
existance of an asymptotic age distribution π is secured by the theorems of the Perron-
Frobenius theory of nonnegative matrices. Although the assumptions underlying equation
(1) are unrealistic, they can help us evaluate the long-run impact of certain mortality
and fertility rates on the age distribution of the population. Thus, in the analysis of the
steady-state age distribution in classical demography, we are not interested in predicting
population size in the future, but rather in assessing the long-term effects of period-
specific intrinsic population growth rates on the age distribution.

However, the steady-state age distribution calculated in classical demography relies
actually on the asumptions of the Markov theory, even though the asymptotic properties
of Markov chains are also more easily analyzed within the theoretical framework of the
Perron-Frobenius theory of nonnegative matrices. In order to make this clear, we define
a Markov chain as follows (Bhattacharya and Waymire 1990, Bhat 1984). Let Nt be a
random variable observed at time t > 0. Let S be a discrete set of n real numbers and
let Nt take values only in the set S. The sequence {Nt : t ≥ 0} = {Nt} is called a
stochastic process with index set t ∈ [0,∞), and denotes a collection of random variables
on a probability space (Ω,F , P ). The set S is the so called state space, and denotes
here a classification scheme of individuals in population N (i.e. every Nt has the same
range {S1, . . . , Sn}). We will think of Nt as a classification variable, which assigns each
individual of population N to a certain class Si. In classical demography, the state space
consists usually of age intervals, and Nt is a random variable that counts the number
of individuals in each age group Si. If we look at the age distribution F of population
N at time tn, it is clear that the number of individuals in each state depends on the
frequencies of individuals in each state, and on period-specific fertility and mortalitiy
rates at previous times tk, for k < n. Consider the time set (t1, . . . , tn). The joint
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distribution P (N1, . . . , Nn) of the process {Nt} at these time points cannot be simplified
by assuming independent observations. Instead of calculating the joint probability of
the stochastic process, it is assumed that we can describe the process by defining the
(discrete) conditional transition distribution function P between times n ≥ m as

P
(m,n)
ij = P (Nn = Sj |Nm = Si) (3)

However, it is often impractical (or even impossible) to calculate the conditional distri-
bution for large time sets. Instead, as in the case of the Leslie matrix, it is assumed that
the transitional probabilities P

(m,n)
ij of the stochastic process {Nt} depend only on the

last time point t − 1 for every t (stationarity assumption). A stationary Markov chain
is a stochastic process that satisfies the following Markov assumption of the transition
probabilities P (Nn = Sj |Nm = Si) for all t

pij ≡ P (Nt+1 = Sj|Nt = Sit, . . . , N0 = Si0) = P (Nt+1 = Sj|Nt = Sit) (4)

The corresponding matrix Pn×n of transition probabilities pij is nonnegative. The rows
of P sum up obviously to 1. The matrix P is called a stochastic matrix. We will call the
vector pT = (p1, . . . , pn),

∑

i pij = 1, i = 1, . . . , n, the probability distribution vector of
population N (Meyer 2000: 688). In other words, p gives the conditional probabilities of
moving to state j given states i. However, the convergence of p to a limiting distribution
vector π is not given for every Markov chain. In the case of the Leslie matrix, there exists
such a limiting distribution vector because L is the transition matrix of an irreducible
positive-recurrent Markov chain. Because of this property, the Leslie matrix is primitive
(Meyer 2000: 693) and, according to the Perron-Frobenius theory, it has a positive eigen-
value λ1 that is greater than any other eigenvalue (Minc 1988: 47)1. Therefore, we have
that every (primitive) Leslie matrix is a Markov chain, and likewise, irreducible positive-
recurrent Markov chains can serve as population growth models. Nontheless, because we
can easily identify irreducible positive-recurrent Markov chains by looking at its corre-
sponding graph, we will not discuss the (somewhat difficult) exact definition of irreducible
positive-recurrent Markov chains (see details in Bhattacharya and Waymire 1990: chap.
2, Bhat 1984: chap. 3 and 4; Guttorp 1995). Irreducible and positive-recurrent chains
can be thought of as processes, in which individuals can move freely from one state to
the other with a certain nonzero probability. Because individuals are not “trapped” in
a specific state (i.e. there is no absorbing state), we can expect for t → ∞ a stable
distribution of individuals across all states given some stationary transition probabilities.

2.1 The model

The Markov chain model presented in this paper is based on the directed life cycle graph
depicted in figure 1. Our state space consists of five interconnected states (or nodes),
which in this case represent income classes (see Keyfitz and Caswell 2005 for details on the

1Actually, the Leslie matrix is the result of ignoring those age groups with (practically) zero fertility.
Otherwise, the corresponding Markov chain would not be an irreducible positive-recurrent chain.
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theory of graphs in demography). Income mobility is possible only between generations,
i.e. income mobility is given as the difference between the income classes of parents and
children. However, children can move from their initial income class to any other class of
the chain with transition probability pij . At each state, individuals can reproduce with
state-specific reproduction rates Fi, i = 1, . . . 5. From figure 1, it is clear that for each pair
of nodes there is a sequence of directed ledges leading from one node to the other. This
property is called strong connectivity. Moreover, because the greatest common divisor of
the set of all lenghts from one node to the other is one, the Markov chain is irreducible and
positive recurrent, and the distribution vector p converges to the stationary distribution
vector π of equation (1) (Berman 1984; Heller et al 1978: 72-74, 111). If we let P denote
the transition matrix, whose elements are the transition probabilities pij , we can estimate
the limiting income distribution vector π by solving the equation system:

(I −P T )π = 0 and
J
∑

i

πi = 1. (5)

Figure 1: Life cycle graph of the population growth model based on income distribution.

This population growth model is equivalent to the Markov chain models proposed
in the studies of occupational mobility, and has thus some important assumptions (and
therefore weaknesses). According to Fararo, we have the following assumptions (Fararo
1978: chap. 16):

• Assumption 1 : The population forms a set of family lines, so that only one son or
one daughter of a given father or mother is consider in tracing the line.

• Assumption 2 : The intergenerational transition probabilities from one income class
to another satisfies the Markov assumption with time steps of 24 years, or one gener-
ation. Moreover, the corresponding Markov chain is stationary. Note here that this
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assumption actually means that the period-specific transition probabilities would
continue to be valid for the rest of the process time of the Markov chain. Because
real populations are not expected to have such stable income transition rates, this
assumption is, as we said above, the basis for a ceteris paribus population projec-
tion, just as the intrinsic growth rates of the age-based demographic model assume
that some constant fertility and mortality rates act for a very long period of time
(Keyfitz and Caswell 2005: 128 ff.)

• Assumption 3 : Families trace out their income position paths independently.

• Assumption 4 : Families remain on the same income position between generations,
and contribute new individuals only to their own income group, i.e. income mobility
is possible only in discrete time steps of one generation.

With these assumptions and figure 1, we can define the following population projection
matrix P , which is equivalent to the Leslie matrix L in equation (1):

P =











p11F1 p12 · · · p15
p21 p22F2 · · · p25
...

...
p51 · · · p55F5











(6)

Thus, by estimating the projection matrix P , it is possible to estimate the limiting
distribution vector π in equation (5), and the intrinsic growth rates given in equation (2).

3 Data and methods

We estimated the transition probabilities pij with data from the German Socio-Economic
Panel (SOEP) (see Wagner et al 2007 for a general description of SOEP). The SOEP is an
ongoing representative panel survey of private households in the Federal Republic of Ger-
many. It started in 1984, and includes several socio-economic variables at the household
and individual level. Every person of a household is followed up, once he/she becomes 16
years old, even if children of respondents leave the parental household. Therefore, it is
possible to reconstruct family relationships across generations. Given the model of sec-
tion 2.1, the stochastic matrices of transition probabilities were calculated from the West
German SOEP samples by using the household pre-government income in euro adjusted
with the price index of 2006. The method was the following. The weighted mean for
males and women was estimated for each year, and each person was classified to a cer-
tain relative income position according to the classification scheme given in table 1 (see
Grabka and Krause 2008; Eurostat 2010 for more details). This was done separatedly for
men and women. Thus, a new variable was defined that indicated the income class of a
person in relation to the mean income of the whole male or female population for each
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year, respectively. The corresponding transition matrix, which gives the probability of
transitions between income classes between two generations, is called mean transition ma-
trix (Formby et al 2003: 190). Even though the household equivalized median income is
the official measurement instrument to assess income distribution (and income poverty),
the pre-government income before taxation was utilized here as a measurement of house-
hold economic output. In this way, it was intented to isolate the effects of governmental
intervention on the population growth rates, and on the asymptotic income distribution.
Note that the income classes do not have the same size, in so far as it was intended to
estimate the inequality of groups based only on their economic output.

Table 1: Relative income position - Classification scheme.

X = Income, X̄ = Mean income

Income class Classification intervals

Lower - Position 1 X ≤ 0.6X̄
Low - Position 2 0.6X̄ < X ≤ 0.8X̄
Middle - Position 3 0.8X̄ < X ≤ X̄

High - Position 4 X̄ < X ≤ 1.5X̄
Upper - Position 5 1.5X̄ ≤ X

If we let Y be the random variable for the income position of the father or mother,
and X the random variable for the income position of the son or daughter, we have to
estimate the conditional probabilities P (X = i|Y = j). In order to estimate these tran-
sition probabilities from and to income positions between generations, it was necessary
to identify family lines and cohorts of parents and children, and to build the correspod-
ing two dimensional contingency tables. Although SOEP offers sample weights at the
individual and household level, which are based on selection and staying probabilies, and
on the marginal distribution of some socio-economic traits of the population (Rendtel
1995; Pannenberg et al 2005), it was not clear how such sample weights would apply for
family lines, which are actually the observational units. The task was to build a weighted
contigency table of the income position of children conditioned on the income position
of the parents. Sampling weights were needed in order to reduce the standard errors
of the transition probabilities, since the sample sizes of family lines were quite small (n
= 427, n = 289 for men and women, respectively). Nevertheless, because the sampling
weights of children are not the same as those for parents, i.e. the contingency table
cannot be extrapolated to the marginal distribution of the population by only one set of
sampling weights, say those of children or of parents alone, it was necessary to estimate
the transition probabilites of the stochastic matrix by using the discrete formulation of
Bayes theorem. The conditional probabilites P (Y = j|X = i), i.e. the probability of a
father or mother of income position j given a son or a daughter of income position i, were
estimated with the sample weights of the parents. The prior probabilites P (X = i), i.e.
the distribution of the relative income position of the children generation, were estimated
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using the sample weights of the children. Thus, we could estimate the transition proba-
bilities P (X = i|Y = j), as if we were using indirectly some sort of sample weights for the
family lines (for more estimation procedures, and for a comparison of transition matrices
estimates for Germany see Formby et al 2003; and for a general overview Bartholomew
1973: chap. 2).

Addtionally, in order to estimate the conditional probabilies P (Y = j|X = i) with the
sampling weights of the parents, it was necessary to assume that children and parents form
only two different generations. This assumption, as discussed by T. Fararo (Fararo 1978:
445), can have serious consequences for the estimation of the transition probabilities, in
so far as the birth years of children and parents scatter over the time interval chosen to
define the generations. This scattering implies that the associated Markov chain steps
do not coordinate to a single step for all family lines, if the system is not in equilibrium.
Moreover, because of sample attrition in panel studies, the reconstruction of family lines
in SOEP was limited regarding sample size. In order to overcome to some extent these
limitations, the choice of “generations” was based on two criteria: first, by finding a
sample year, in which equilibrium conditions could be assumed, and second, by choosing
the greatest sample. We chose the cohorts 1922-1950 for parents, and the cohorts 1960-
1975 for children. All cohorts were observed in the year 2000. Only the relative income
position of fathers were considered here, because for those children born between 1960 and
1975 the economic output of fathers is a better proxy for the household economic output
in West Germany. This was due to the fact that fathers had a more active participation
in the labor market as mothers (see e.g. Mayer and Hillmert 2004). The year 2000 was
chosen as observation time, because we could define for that year a relative big sample,
for which it was plausible to assume that both fathers (aged 50-78) and children (aged
25-40) had attained their “final” relative income position. Thus, we intended to reduce
coherence problems at each time step in the proposed Markov chain. However, it should
be noticed here that, in particular for children aged 25-30, there might be some individuals
for whom the equilibrium assumption may not be yet valid.

4 Results

Tables 2 and 3 reproduce the estimates of the stochastic matrices of intergenerational
income mobility for men and women in the year 2000 using Bayes theorem. The limiting
distribution vector is given in the last row of each transition matrix, and it was calculated
by equation (5). Moreover, if we denote with T the number or generations spent in income
class i, we can calculate the average number of generations Ê(T ), and its estimated
variance σ̂2(T ) using equations (7) derived by S. J. Prais (Prais 1955). The results are
reproduced in table 4.

Ê(T ) = 1/(1− pii), σ̂2(T ) = pii/(1− pii) (7)

If we compare the estimates of the limiting distribution in tables 2 and 3 with the
standard deviations of the average number of generations in each income class in table
4, we can identify gender-specific income characteristics. Men seem to show a greater
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upward social mobility as women, and a longer average mean time in each income class.
From a socio-economic point of view, women’s income distribution seems to have a greater
variance and a stronger income polarization given as a tendency toward the highest or
the lowest relative income positions (columns 2 to 4 in table 3). This results in a greater
average time spent in income classes 2 and 5. Income polarization for women can be
expected already by comparing the transition probabilities of men and women between
income positions 1 and 5. In general, women of the children cohorts seem to have a
greater probability of both staying in the lowest income position, or of reaching the
highest income position. On the other hand, men seem to have been moving upwards
rather homogenously from the lowest tail of the distribution toward the higher relative
income positions. Thus, their average number of generations seems to follow a more or
less monoton increase with each successive income position. Family lines of men can
expect to remain in the highest income position for about 3.2 generations, the longest
time spent in any income class (table 2).

Table 2: Transition matrix of intergenerational income mobility and asymptotic income class
distribution vector. Men. Source: SOEP, own calculations.

Fathers / Sons Position 1 Position 2 Position 3 Position 4 Position 5

P(X = k |Y = 1) 0.3140 0.0812 0.1569 0.2659 0.1820
P(X = k |Y = 2) 0.0379 0.6378 0.1279 0.0790 0.1174
P(X = k |Y = 3) 0.0778 0.1068 0.6462 0.1003 0.0689
P(X = k |Y = 4) 0.1464 0.0684 0.0282 0.6070 0.1501
P(X = k |Y = 5) 0.0940 0.0823 0.0411 0.0884 0.6941
Asymptotic
distribution 0.12 0.19 0.17 0.23 0.29

Table 3: Transition matrix of intergenerational income mobility and asymptotic income class
distribution vector. Women. Source: SOEP, own calculations.

Fathers / Daughters Position 1 Position 2 Position 3 Position 4 Position 5

P(X = k |Y = 1) 0.2405 0.1734 0.0967 0.2149 0.2745
P(X = k |Y = 2) 0.2105 0.4826 0.0549 0.0511 0.2010
P(X = k |Y = 3) 0.2135 0.0802 0.2710 0.3143 0.1211
P(X = k |Y = 4) 0.1198 0.0460 0.1566 0.4165 0.2611
P(X = k |Y = 5) 0.1802 0.0514 0.0449 0.2074 0.5162
Asymptotic
distribution 0.18 0.13 0.11 0.25 0.32

Even though the estimation of the asymptotic distribution of income positions was
based on weighted contingency tables, it was necessary to compare changes in the house-
hold income distribution for male and female cohorts 1960-1975 with the male cohorts
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Table 4: Average number of generations T spent in a specific income class Ê(T ), and its
estimated standard error σ̂(T ). Source: SOEP, own calculations.

Men Women

Density E(T) Std(T) E(T) Std(T)

P(X = k |Y = 1) 1.45 0.81 1.31 0.64
P(X = k |Y = 2) 2.76 2.20 1.93 1.34
P(X = k |Y = 3) 2.82 2.27 1.37 0.71
P(X = k |Y = 4) 2.54 1.98 1.71 1.10
P(X = k |Y = 5) 3.26 2.72 2.06 1.48

1922-1950 for the whole West German SOEP samples. The idea behind this comparison
was to assess, whether the intergenerational transition probabilities and their asymptotic
distribution agreed to a more general distribution shift for those cohorts in the whole
sample, or whether they were only related to those specific family lines. It can be ex-
pected that the transition probabilites of familiy lines give not only information on the
dependence structure of intergenerational income class mobility, but also information on
cohort effects affecting the whole population. These effects might be caused to some
extent by macro-structural changes affecting the socio-economic conditions of West Ger-
man households (e.g. labor-market shifts, educational expansion, womens’ empowerment,
and so on). For this reason, we estimated the weighted relative income distributions as
described in Handcock and Morris (1999) for male cohorts 1922-1950 in the year 1984
in relation to the income distribution of male and female cohorts 1960-1975 in the year
20082.

The results are depicted in figures 2 and 3. The curves describe the relative income
distribution of two cohort groups across income deciles. The reference group in figure
2 are cohorts of men born between 1922 and 1950. The comparison groups are males
(continuous line) and women (dotted line) born between 1960 and 1975. The upper
horizontal axis gives the original values in euro corresponding to the income deciles of
the abscissa. On the other side, the reference group in figure 3 are cohorts of men born
between 1960 and 1975. The comparison group consists of women born in the same
period. The curves in each figure become concave, if there are more observations of the
reference group in a given income decile. Conversely, if there are more observations of
the comparison group in a given decile, the curves become convex. At the intersection of
the curve of the relative income distribution with the horizontal line at y = 1, we get the
same number of observations in each cohort for a given income decile. As expected from
the estimated transition probabilities, males of cohorts 1960-1975 in figure 2 show rather
a continuous upward mobility trend. Males of the “children” generation are almost twice
as likely as men of the “fathers” generation of being in the ninth decile of the household
income distribution, and, at the same time, they seem less likely to be in the lower deciles.

2For each of the samples of male cohorts 1922-1950 and 1960-1975 one outlier was simply removed.
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Income in Euro (index price 2006)

Reference: Proportion of males of cohorts 1922−1950,  n =  2148
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Figure 2: Weighted relative income density of male cohorts 1922-1950 in comparison with
male and female cohorts 1960-1975 for each income decile. Source: SOEP, own calculations.

On the other side, the relative distribution of female cohorts in comparison to the males
of cohorts 1922-1950 in figure 2 suggest that there is a stronger income polarization for
females. They are overrepresented in the first and ninth decile of the income distribution
in comparison with the “fathers” generation, even though they are also less likely to be
in the intervall between the second and seventh income deciles. In figure 3 the relative
income distribution between male and female children of cohorts 1960-1975 is plotted.
The U-shape of the relative distribution confirms the relative stronger income polarization
of women, who are not only almost twice as likely as men of being in the first income decile,
but also they are overrepresented in the ninth decile. Therefore, these results suggest that
men of cohorts 1960-1975 have been moving rather uniformly toward higher household
income positions, while women of the same cohorts have been moving toward the opposite
extremes of the income distribution. This results in a stronger income polarization for
females. In order to analyze the relation between the income distribution of those same
cohorts and population growth, the income model in figure 1 will be estimated using
fertility data of SOEP.

This model was calculated using the transition probabilities given in tables 2 and 3.
The fertility rates of each income position were calculated for men and women in the years
1984 and 2008. The samples were based on West Germans aged 20 to 45. Following the
estimates of Kroll and Lampert (2008), income specific mortality risks were taken into
account for both men and women. Because the projection matrix in equation (6) satisfies
equation (1) as well, we could estimate the intrinsic growth rates for the period 1984-
2008 by applying equation (2), and setting τ = 24. For that purpose, we multiplied the
main diagonal of the each transition matrix with the income-specific fertility rates and
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Income in Euro (index price 2006)

Reference: Proportion of males of cohorts 1960−1975,  n =  1922
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Figure 3: Weighted relative income density of male cohorts 1960-1975 in comparison with
female cohorts 1960-1975 for each income decile. Source: SOEP, own calculations.

mortality risks reproduced in tables 6 and 7. The number of children under age 18 in
the household was used as a proxy for fertility for both men and women. This variable
seemed to be the adequate proxy for cross-gender comparative fertility analysis, because
information on male fertility in SOEP is available only since 2001. Under the assumption
of stationarity of the corresponding Markov chain, the same transition probabilities were
used for estimating the impact of fertility changes on the intrisic growth rate r for every
income position in the given years. The estimation of the limiting distribution vector π0

given the initial income distributions in 1984 and 2008 can be easily calculated by the
formula (Keyfitz and Caswell 2005: 161)

π0 = lim
t→∞

p(t)

λt
1

= wTp0w (8)

where w is the eigenvector of unit length corresponding to the dominant eigenvalue λ1

of the projection matrix P , and p0 is the initial income class distribution vector. In
order to assess the validity of r calculated by the income model, we calculated also
the intrinsic growth rates by the traditional methods of the age-based population growth
model. We used the abriged life tables of the years 1980 and 2008 supplied by the German
Statistical Bureau (Statistisches Bundesamt 2009). The estimation methods utilized are
fully described in Keyfitz (1977). Table 5 reproduces both estimates of the intrinsic
growth rates of the population aged 20 to 45 in West Germany between 1984 and 2008.

The estimates of the age model can be considered very close estimates of the true
parameters, in so far as they are based on a sample, which is approximately three orders
of magnitude greater than the SOEP samples. Nevertheless, the estimates of the intrinsic
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Table 5: Intrinsic growth rates from the income-based and age-based population growth mod-
els. λ1 is the greatest eigenvalue of the projection matrix P of the income model. Source:
SOEP, own calculations.

Year λ1 Income model r Age model r

Men

1984 0.5957 -0.0216 -0.0120
2008 0.5791 -0.0228 -0.0121

Women

1984 0.7621 -0.0113 -0.0132
2008 0.7474 -0.0121 -0.0135

growth rates based on the SOEP samples are of the same order of magnitude and sign as
those of the age-based model. It should be noticed that, specially for men, there seems
to be a much greater estimation error, which might be caused by the use of the number
of children in the household as a proxy for fertility. This seems plausible, since children
in West Germany remain almost always in the household of the mother after separation
or divorce of the parents. For all single, divorced and separated fathers this would imply
an underestimation of fertility, which in turn causes a greater decline in the estimated
intrinsic growth rates in the male model. In any case, it is clear that both sexes have had
since 1984 a negative growth rate.

However, the estimates of the asymptotic distribution calculated by equation (8) in
tables 6 and 7 suggest that income positions 1 and 4 are decreasing faster, both for
men and women, while the relative proportions of the income classes 2, 3 and 5 increase
with and without the assumption of differential mortality risks. This increase of the
asymptotic proportion of the highest income class is at first sight surprising, if it is taken
into account that both its fertility rates and its observed initial proportions are lowest
(with the exception of the fertility rates of income position 1). Even if it is assumed that
there are no statistically significant differential mortality risks among income classes3,
there is, in general, a tendency of increase in the asymptotic proportion of the highest
income class for both sexes (see tables 6 and 7). The increase of income positions 2, 3
and 5 would imply, therefore, that the negative intrinsic growth rates would reflect rather
(i) the decrease of income positions 1 and 4, (ii) the upward mobility reflected in the
transition probabilities discussed above, and (iii) a higher reproductive payoff of income
positions 2 and 3. As can be inferred from the life cycle graph in figure 1, higher transition
probabilities toward higher income classes would increase the proportion of these classes
under the Markov assumption given any initial distribution, because individuals from
generation to generation would have a greater probability of arriving at higher income
classes, and, eventually, of arriving at income position 5. Accordingly, this would cause

3However, the assumption that income classes show statistically significant mortality risks (and
in general overall health differences) has been supported by various empirical findings, see e.g.
Scholz and Thoelke 2002; Lampert and Kurth 2007; Breyer and Marcus 2010.
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a shift of the asymptotic distribution or, equivalently, an increase of the asymptotic
proportion of the highest income class and a decrease of the lowest. The increase of
income positions 2 and 3, on the other hand, relies heavily on their higher fertility, as
can be inferred from the estimates of the corresponding tables, in so far as fertility may
increase the “surviving” probabilities of those income positions.

Table 6: Income class fertility rates, observed income class proportion, and limiting distribution
vector π of the income-based population growth model for men. Relative mortality risks taken
from Kroll and Lampert (2008). West Germany. Source: SOEP, own calculations.

Men

Position 1 Position 2 Position 3 Position 4 Position 5

Relative mortality risk 1.61 1.19 1.01 0.84 0.60
1984

Fertility 0.36 0.54 0.50 0.47 0.41
Observed proportion 0.22 0.19 0.18 0.27 0.14
π with risk 0.24 0.17 0.18 0.21 0.20
π without risk 0.23 0.21 0.20 0.20 0.16
Eigenvector 0.54 0.38 0.39 0.47 0.44

2008

Fertility 0.27 0.45 0.47 0.43 0.38
Observed proportion 0.28 0.15 0.15 0.26 0.16
π with risk 0.23 0.21 0.20 0.20 0.16
π without risk 0.23 0.19 0.20 0.20 0.17
Eigenvector 0.51 0.46 0.44 0.44 0.36

5 Concluding remarks

The estimates of the limiting distribution vector π suggest that, on the long-run, there is
a strong income mobility toward higher income positions. However, the average number
of generations spent in each income class increases across income classes for both men and
women. The estimates of the population growth rates, and of the limiting distribution
vector given income-specific fertility rates suggest, on the other hand, that higher fertility
rates of the lower income classes can increase the probability that the next generations
can attain a higher income class. Thus, the longer “waiting times” of upward social
mobility can be compensated with higher fertility rates4. On the contrary, lower fertility
rates for the higher income family lines seem to increase their fitness. These results
point to different reproductive strategies for lower and higher income classes that, on the
long run, may increase their chances of reproductive success given certain socio-economic
conditions of social mobility and income inequality. In this sense, each family line of a

4Notice also that lower-income classes can also reduce fertility if social mobility rates compensate to
some extent the longer waiting times of upward social mobility (see e.g. Caldwell et al 1999).
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Table 7: Income class fertility rates, observed income class proportion, and limiting distribution
vector π of the income-based population growth model for women. Relative mortality risks taken
from Kroll and Lampert (2008). West Germany. Source: SOEP, own calculations.

Women

Position 1 Position 2 Position 3 Position 4 Position 5

Relative mortality risk 1.57 0.94 0.92 0.72 0.65
1984

Fertility 0.44 0.57 0.58 0.49 0.46
Observed proportion 0.23 0.18 0.18 0.26 0.15
π with risk 0.21 0.18 0.22 0.20 0.19
π without risk 0.21 0.19 0.22 0.19 0.18
Eigenvector 0.46 0.40 0.50 0.45 0.42

2008

Fertility 0.37 0.48 0.48 0.48 0.42
Observed proportion 0.31 0.14 0.14 0.23 0.17
π with risk 0.21 0.18 0.22 0.21 0.19
π without risk 0.21 0.19 0.22 0.20 0.18
Eigenvector 0.46 0.39 0.50 0.46 0.42

given income class would try to enhance their Darwinian fitness by adapting to certain
social mobility and income distribution conditions. The reproductive success of lower
or higher fertility would depend on the relative socio-economic and mortality risks of
individuals, which eventually lead to different, but maybe (asymptotically) equivalent
reproductive strategies.
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