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1 Introduction

Empirical research using rating data has burgeoned in recent years. A rating variable

represents the extent to which a quality (e.g., health, risk aversion, approval with a policy

or party) is present, or absent, in a study unit. The rating is often, but not necessarily,

coded on an integer-valued scale. The smallest value (commonly a zero) represents the

complete absence of the quality, whereas the largest value represents its complete presence.

So far, regression analyses for such rating dependent variables have followed one of

two approaches: Either, the rating is treated as an ordinal variable, indicating the use of

ordered probit or ordered logit models. Or else, the rating is treated as cardinal and simple

linear regression models are employed. The decision of the approach to follow rests in part

on the number of categories. In fact, as pointed out by van Praag and Ferrer-i-Carbonell

(2004), the distinction between the two blurs, and the distribution of the latent response

index that underlies the ordered approach is fully identified, as the number of categories

goes to infinity.

In this paper, we advocate an alternative approach for estimating the effects of explana-

tory variables on a rating, based on a class of non-linear single index regression models.

As in linear regression, we focus on the conditional expectation as key object of interest.

However, in order to maintain model consistency, we require that the conditional expecta-

tion respects the upper and lower bounds implied by the rating scale. As a consequence,

predictions outside the range of the dependent variable are impossible and marginal effects

are not constant. The model is easy to implement. It works for any number of categories,

and extensions to panel data and instrumental variable estimation are feasible.

While the arguments developed in this paper apply to any regression with a rating

dependent variable, we concentrate on a specific application, namely that of the economic

determinants of self-rated well-being. Many household (panel) surveys include a single-

item 7-point or 11-point question on general life satisfaction, as well as on satisfaction with

various life domains (health, family, work etc.). In the previous literature either the linear
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regression model or ordered latent models have been used (or sometimes also both, see e.g.,

Clark and Oswald, 1996; Ferrer-i-Carbonell and Frijters, 2002; Frey and Stutzer, 2005).

The next section presents some further informal discussion of the pros and cons of

various approaches to the regression analysis of rating scale variables. Section 3 provides a

formal exposition of rating scale models. The methodology is illustrated in an application

to the effect of time spent commuting to work on life satisfaction in Section 4. Section 5

concludes.

2 Motivation

Textbook treatments of rating variables routinely recommend the ordered probit and the

ordered logit models (e.g., Cameron and Trivedi, 2005). These can be derived from a latent

linear model with standard normally or logistically distributed errors, respectively, where

a partition of the real line is used to generate the observed discrete distribution of ordered

outcomes. In such models, the focus is on the probability distribution and its changes

rather than on conditional expectations. The main advantage of ordered latent models

is the implied conformity to the scaling of the rating dependent variable. In terms of

the underlying latent linear variable, these models do not impose an equidistance between

answer categories of the discrete scale.

However, although the name “ordered response model” suggests otherwise, the estima-

tion method has a cardinal foundation as well (van Praag and Ferrer-i-Carbonell, 2004).

For example, it is perfectly reasonable to make statements such as “the shift required to

move a response from rating j to j+ 1 is twice as large as that required to move a response

from j+ 1 to j+ 2”. This raises the question, why a model with an implicit cardinalization

should be preferred over a model which makes the cardinalization explicit.

In practice, these textbook models are therefore often abandoned in favor of the simpler

linear regression model. Indeed, researchers on life satisfaction seem to have little discom-
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fort in giving up the ordinal interpretation of the rating dependent variable and reporting

mean satisfaction levels (for instance by country, or group; see e.g., Stone et al., 2010 and

Sacks et al., 2010). If one follows these practitioners and accords plausibility to reported

(conditional) mean rating values, the only factors speaking against the use of the linear

regression model are that it imposes constant marginal effects and can predict rating scores

outside the range of the rating scale.

The obvious remedy is to use a non-linear regression model that respects the boundaries

of the rating dependent variable. If the attention is restricted to the class of single index

models, the problem then becomes one of modeling the conditional expectation function

(CEF) E(y|x) = G(x′β), where G is a twice differentiable monotonic function such that

ymin ≤ G(x′β) ≤ ymax for all values of x and β. If y ∈ {0, 1} (the rating takes only

two values), this model has the form of standard binary response models. This similarity

is deceiving, though, because it is only in the binary response model that probability

function and conditional expectation function coincide. For more than two-valued rating

scales, the non-linear CEF model and the ordered response model constitute two truly

different approaches.

We introduce such a rating scale model (RSM) and discuss the different assumptions

regarding the G function in order to estimate the RSM. If a given parametric form is

selected, estimation can proceed by non-linear least squares or quasi-maximum likelihood

(see Papke and Wooldridge, 1996, for a closely related approach to fractional data). On

the other hand, semiparametric least squares, introduced by Ichimura (1993), can be used

in order to estimate the RSM without making functional form assumptions.
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3 Econometric Rating Scale Model

3.1 Specification

A rating variable y has domain y ∈ [0, ymax]; where we have normalized the lower bound

ymin = 0 for convenience. Thus the value “0” represents the complete absence of the quality,

whereas ymax represents its complete presence. Suppose that there are N observations, and

that yi, i = 1, . . . , N , is the rating for observation unit i.

The RSM is defined by a non-linear CEF

E(yi|xi) = G(x′iβ) (1)

such that 0 ≤ G(.) ≤ ymax. The vector xi is of dimension (k × 1) and β is a conformable

parameter vector. The twice differentiable monotonic function G(.) specifies the non-linear

relationship between the additive linear index x′iβ and the rating variable yi. In a parametric

RSM, a specific functional form is assumed for G. Two such possible specifications are a

logit type model

G(x′iβ) = ymax
exp(x′iβ)

1 + exp(x′iβ)
(2)

and a probit type model

G(x′iβ) = ymaxΦ(x′iβ) (3)

where Φ(.) is the cumulative density function of the standard normal distribution. These

models imply that the transformed rating scale zi = yi/y
max has a standard logit- or probit

CEF, respectively.

Specifications (2) and (3) guarantee that the CEF, as well as its prediction, always falls

within the boundaries of the dependent variable. They also imply non-constant marginal

effects. In the logit RSM

∂E(yi|xi)
∂xil

= ymax
exp(x′iβ)

(1 + exp(x′iβ))2
βl (4)
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In the probit RSM

∂E(yi|xi)
∂xil

= ymaxφ(x′iβ)βl (5)

where φ(.) denotes the density function of the standard normal distribution.

In such parametric frameworks, the model parameters can be estimated by non-linear

least squares or by quasi-maximum likelihood, as explained in the next section. Alterna-

tively, one can refrain from specifying the functional form of G(.) and rather estimate it

from data, together with the parameters β. This is a standard semiparametric estimation

problem, and one possible estimator is due to Ichimura (1993).

3.2 Estimation

Re-writing model (1) as

yi = G(x′iβ) + εi

where εi is the CEF error and E(εi|x) = 0 by construction, it is easy to see that the model

cannot be linearized. Alternativley, one could start from the model

yi = G(x′iβ + ηi) , E(ηi|x) = 0

in which case G−1(yi) = x′iβ + ηi. This approach has been proposed, in the context of a

dependent variable bounded between 0 and 1, by Aitchison (1986). For a logit RSM, we

can write

log

(
yi/y

max

1− yi/ymax

)
= x′iβ + ηi (6)

There are two problems with this approach, however. First, yi cannot take the extreme

values of 0 or ymax. Second, it is impossible to recover the grandeurs of interest, especially

the conditional expectation of the dependent variable yi, since

E(yi|xi) = E

(
ymax

exp(x′iβ) · exp(ηi)

1 + exp(x′iβ) · exp(ηi)

∣∣∣∣xi) 6= ymax
exp(x′iβ)

1 + exp(x′iβ)
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Thus, model (6) is substantially different from (2) and as a consequence, it is hard to

interpret β, the estimand in the linearized regression model (6), other than saying that β

measures the effect of x on the logratios. To estimate the CEF parameters of the orginial

non-linear RSM, a truly non-linear estimator is required, and we discuss non-linear least

squares and quasi-maximum likelihood estimation in turn.

3.2.1 Non-linear least squares

Non-linear least squares minimizes the sum of squared residuals of model (1). This is

equivalent to choosing β̂, which solves the following first order condition:

s(β; y, x) =
N∑
i=1

(yi −G(x′iβ))g(x′iβ)xi = 0 where g(x′iβ) =
∂G(x′iβ)

∂x′iβ
(7)

As a member of the family of extremum estimators, the NLS estimator is consistent,

if the sample is independent and identically distributed and if G(.) fulfills some regularity

conditions (e.g., Hayashi, 2000).

Asymptotic theory enables the computation of standard errors. Default options in

statistical software packages assume a spherical error variance. However, due to the

boundedness of a rating variable the variance is heteroscedastic. Intuitively, the closer

the rating score moves to the boundaries the less dispersion is possible. The error term

εi = yi − E(yi|x′iβ) inherits the heteroscedasticity of the rating variable. Therefore, a het-

eroscedastic consistent variance-covariance estimator for β̂, as proposed by Huber (1967)

and White (1980) is employed:

AVar(β̂) = n−1I−1(β)J(β)I−1(β)

where

I(β) = E[H(β; y, x)] = E
[
−g(x′iβ)2xix

′
i

]
and

J(β) = Var(s(β; y, x)) = E
[
(yi −G(x′iβ))2g(x′iβ)2xix

′
i

]
6



Replacing the population moments reported above by their sample analogs leads to a

consistent estimator of the heteroscedastic consistent variance-covariance matrix of β̂.

3.2.2 Quasi-Maximum Likelihood Estimation

The parameters of the RSM (1) can be estimated consistently by embedding it in any mem-

ber distribution of the linear exponential family and using maximum likelihood. Available

distributions include, among others, the normal distribution, the Poisson distribution and

the Bernoulli distribution (Gourieroux et al., 1984). The only requirement for consistency

is that the CEF of the RSM is correctly specified. This approach is referred to as quasi-

maximum likelihood estimation (QML).

For example, if the normal distribution is used, QML is equivalent to non-linear least

squares. If the Bernoulli distribution B(1, p) is used as a basis for estimation, one needs

to observe that 0 ≤ p ≤ 1, whereas the CEF of the RSM is bounded from above at ymax.

This problem can be solved by dividing both sides of equation (1) by ymax. The Bernoulli

QML estimator is obtained by setting pi = G(x′iβ)/ymax, and the first order conditions are:

N∑
i=1

yi −G(x′iβ)

ymax
g(x′iβ)

(1−G(x′iβ)/ymax)G(x′iβ)
xi = 0 where g(x′iβ) =

∂G(x′iβ)

∂x′iβ
(8)

The QML framework does not impose any restrictions on the second or any higher

moment of the dependent variable. In fact, the second moment is misspecified in the

Bernoulli QML framework. Hence, the maximum likelihood variance estimation, which

equals the inverse of the Hessian’s expectation, has to be replaced by the robust sandwich

variance estimator (Gourieroux et al. 1984).

3.2.3 Comparison and Implementation

For a correctly specified CEF, both NLS and Bernoulli QML are consistent estimators. In

small samples they may differ, since they use different weights wi for the sample analog of
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the set of orthogonality conditions:

N∑
i=1

(yi −G(x′iβ))xiwi = 0 (9)

On one hand, NLS weighs the orthogonality conditions with the standard normal or

the logistic probability density functions, respectively. On the other hand, the Bernoulli

QML estimator weighs observations with the probability density divided by the variance of

a Bernoulli distributed variable. For the logistic model, these terms cancel and all elements

of the score vector are weighted equally. The optimal weighting scheme depends on the

true data generating process and its higher order moments. Since no such assumptions

were made in our rating scale model, estimation with equal weights appears like a good

starting point.

Both estimation methods are easy to implement in standard statistical software pack-

ages. In Stata (StataCorp., 2003), for example, the relevant model environment is given

by the generalized linear model (glm) command. It allows to define distribution as well as

link function. Choosing the normal distribution in conjunction with the logit link gives,

for example, the non-linear least squares estimators of the logit-type RSM. Choosing the

Bernoulli distribution instead results in the corresponding QML estimator. In either case,

all ratings have first to be divided by the upper bound ymax, and robust standard errors

need to be computed.

3.2.4 Semiparametric Least Squares

NLS and Bernoulli QML provide consistent parameter estimates for model (1) if the con-

ditional expectation is correctly specified. Alternatively, one estimate the G(.)-function

jointly with the regression parameters β. This approach remains consistent for β as long

as the single index structure holds, regardless of the true G(.). Different semiparametric

estimators can be used. This paper employs one that does not rely on higher order moment

conditions and that is the most simple to implement, namely semiparametric least squares
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(SLS) proposed by Ichimura (1993). SLS minimizes the sum of squared residuals of model

(1).

minβ

N∑
i=1

(yi − Ê(G(x′iβ)|x′iβ))2 (10)

Iterative methods with an initial guess on β̂ have to be applied in order to estimate both

β and E(G(x′iβ)|x′iβ). For the latter, the local constant estimator proposed by Nadaraya

(1965) and Watson (1964) is used. The local constant estimator depends on a kernel

function and a bandwidth. If the choice of the kernel does not matter much, the bandwidth

selection is important. The most appropriate way to choose the optimal bandwidth in kernel

regression is to apply cross validation (see e.g., Cameron and Trivedi, 2005).

Assuming an independent and identically distributed sample, a bandwidth sequence

which converges towards 0 as N increases, as well the validity of some technical conditions

on parameter space and kernel, it is possible to show that the SLS estimator the is con-

sistent and asymptotically normal (Ichimura, 1993). Parameters are identified only up to

location and scale. In other words, any additive and multiplicative shifts in the regressors

are incorporated by G(.). Therefore, xi does not include a constant term, and all remain-

ing parameters are normalized with respect to the parameter of a continuous regressor.

Marginal effects can be recovered for all explanatory variables, and standard errors can be

bootstrapped.

The semiparametric RSM can be implemented conveniently using the non-parametric

package in R (Hayfield and Racine, 2008). The program routine chooses the optimal

bandwidth using cross validation and proposes as outputs estimates of the parameter vector,

marginal effects and bootstrapped standard errors for those estimates.

4 Empirical Application to Life Satisfaction Data

Stutzer and Frey (2008), in their paper ”Stress that doesn’t pay: The commuting paradox”,

analyzed the effect of commuting time on satisfaction using linear regression models. We
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replicate one of their analyses and re-estimate it using the rating scale model proposed in

the previous sections.

Here, the rating dependent variable “overall live satisfaction”, measured on a discrete

scale ranging from 0 to 10, was modeled. The explanatory variable of interest, “one way

commuting time to work”, was measured in minutes. Data from eight waves of the German

Socio Economic Panel (Wagner et al., 2007) (1985, 1990, 1991, 1992, 1993, 1995, 1998, 2003)

were used. The sample excluded people with irregular commuting patterns. Commuting

times for people working from home were set to zero. The authors pooled all eight waves

and estimated the model by OLS. These estimates can be found in column 3 of table 1 in

Stutzer and Frey (2008). Even though the number of observations used in this replication

differs from that used by Stutzer and Frey by 707 observations, summary statistics, which

are reported in Table 3 in the appendix, and linear regression estimates are virtually the

same.

4.1 Parametric estimation results

Table 4 in the appendix reports OLS and parametric RSM estimates of the parameter vector

β from model (1) specifying the set of explanatory variables as proposed by Stutzer and

Frey (2008). These include gender, age, age2, 6 categories of years of education, 2 variables

for the relationship to the household head, 9 variables for marital status, 4 variables for

number of children in the household, the square root of the number of household members,

East German, foreigners with EU nationality, foreigners without EU nationality, and self-

employment, in addition to the key variable of interest, commuting time.

The estimated average marginal effects of a one-minute increase in commuting time on

life satisfaction scores are shown in Table 1 below (with standard errors of in parentheses).

Column 1 replicates the ordinary least squares estimates found by Stutzer and Frey (2008).

Column 2 to 5 report average marginal effects of the parametric RSM. In columns 2 and

3 the Bernoulli QML estimates are shown. NLS estimates are given in columns 4 and 5,
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respectively.

OLS predicts the highest average reduction in satisfaction scores. A person commut-

ing 60 minutes one-way is expected to have a 0.275 point lower satisfaction score than

a comparable person, who does not commute (Stutzer and Frey 2008). But the average

effects from the other models are very similar. For example, the effect obtained by the

logit-type Bernoulli QML estimation amounts to a 0.269 point decrease. It appears that

for this application, the different weighting schemes employed by the NLS and Bernoulli

QML estimators for the parametric RSM do not matter much.

Table 1: Average Marginal Effect of Commuting Time (in minutes) on Satisfaction

(1) (2) (3) (4) (5)
OLS QML-Logit QML-Probit NLS-Logit NLS-Probit

Commuting Time -0.00459 -0.00449 -0.00453 -0.00451 -0.00453
(0.00046) (0.00047) (0.00047) (0.00047) 0.00048

Individual characteristics Yes Yes Yes Yes Yes
Time fixed effects Yes Yes Yes Yes Yes
Robust Standard Errors No Yes Yes Yes Yes

Observations 39747 39747 39747 39747 39747

· Robust standard errors in parentheses.
· Column (1) corresponds to column 3 of table 1 in Stutzer and Frey (2008).

In the light of the wide utilization and acceptance of OLS in the rating variable liter-

ature, it is appealing to find the parametric RSM estimate very similar average marginal

effects. However, the non-linear specification of the conditional expectation of the rating

dependent variables has two main implications distinguishing the RSM from OLS. These

points and the resulting superiority of the RSM will be highlighted in graphical illustrations.

Figure 1 plots the estimated conditional expectation, i.e. predicted satisfaction scores

for all sample members. The three graphs report the predictions obtained by OLS, Bernoulli

QML and NLS (from left to right). The latter two models are based on the logit speci-

fication. For OLS, the mean predictions are simply equal to the linear index. In this

application, OLS predictions are far away from the bounds set by the response scale, here

0 and 10, and extreme out-of-sample predicitions would be required to cause a violation

11



Figure 1: In-sample predictions of satisfaction scores

of the bounds to occur. But, this need not hold in general, and the approach is a-priori

model inconsistent.

The Bernoulli QML and the NLS predictions are very similar. Both predict a locally

concave relationship between linear indexes and life satisfaction scores. Hence, the sample

predictions are centered around the upper flection of the logistic cumulative distribution

function.

Figure 2: Marginal Effect of Commuting Time (in minutes) on Satisfaction

Figure 2 plots the estimated marginal effects for all sample members. For OLS the

marginal effect is constant among all individuals. In the second and third graph of Figure

2 the individual specific marginal effects are shown for the logit type Bernoulli QML and

the NLS models. The graphs suggest that commuting time affects people in the tails of
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the distribution of predicted satisfaction scores by over 20% more or less than estimated

by OLS. Moreover, we find that with an increasing linear index commuting time affects

individuals less. This is plausible. Very satisfied people, who feel themselves fully blessed

with luck, weigh a one-minute increase in commuting time less than people, who perceive

their life as unsatisfactory. The non-constant marginal effects are therefore a useful feature,

although they are model driven, and not identified from the data. This is what the semi-

parametric results presented in the next section do.

4.2 Semiparametric estimation results

We choose to implement the SLS estimator using a plug-in bandwidth for two reasons. First,

the huge sample and the big number of parameters make cross validation computationally

intensive. Second, several tries in random subsamples showed that cross validation chose

the bandwidth too small, that resulted in an under-smoothed estimate of the conditional

expectation of G(.). This might be due to the lack of independence among observations,

as the sample is pooled over time periods. Different essays identified a plug-in bandwidth

of 10 to provide appropriate smoothing.

Table 2: Average Marginal Effect of Commuting Time
(in minutes) on Satisfaction

(1) (2)
OLS SLS

Commuting Time -0.00459 -0.00479

Individual characteristics Yes Yes
Time fixed effects Yes Yes

Observations 39747 39747

· Marginal effects in column (2) are evaluated at the mean characteristics.
· Column (1) corresponds to column (3) of table 1 in Stutzer and Frey

(2008).

Column 1 of Table 2 shows the same OLS marginal effect as presented in column 1

of Table 1. Column 2 of Table 2 reports the marginal effect of commuting time on life
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satisfaction estimated by SLS and evaluated at the mean characteristics. SLS and OLS

estimates are very similar. A 30 minutes increase in one-way commuting time lowers life

satisfaction approximately by 0.144 respectively 0.138 point ceteris paribus. Table 5 in the

appendix shows that this finding holds for the marginal effects of all explanatory variables.

Figure 3: Predicted Satisfaction for Sample Members

Figure 3 plots the SLS mean predictions. The range of predicted satisfaction scores

is similar to the OLS predictions. The main difference of Figure 3 to Figure 1 is the

widespread linear index, which is due to the small normalization parameter (the coefficient

of commuting time). A last peculiarity deserves to be mentioned. For being in line with

Figure 1, we changed the sign of the linear index in Figure 3. In fact, relative coefficients

take the opposite sign of the OLS coefficients, as the normalization parameter is negative.

Hence, the untransformed estimated CEF would actually be decreasing in the linear index.

Several concluding remarks apply. First, the SLS estimates of marginal effects are very

close to OLS (and therefore to the average marginal effects of the parametric RSM). Second,

SLS respects the boundaries of the rating dependent variable as the observed data is used

to estimate the conditional expectation of G(.). Finally, researchers should be aware that

SLS does not allow for out-of-sample predictions.
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5 Conclusion

This paper focuses on econometric models for rating data. Existing models, such as ordered

latent models or the linear regression model, have a number of shortcomings. A new general

framework for a cardinal rating scale model addresses these issues. Depending on the

specific assumptions, model parameters can be estimated by non-linear least squares, by

quasi-maximum likelihood or by semiparametric least squares.

Predicted means of these rating scale models automatically satisfy the logical constraints

provided by the upper and lower bounds of the scale. They work equally well for discrete

ratings, as for continuous ones. An example for a near continuous rating scales are the

Standard & Poors ratings of investment grades, that distinguishes 25 values. Truly con-

tinuous ratings are also possible, by representing them as points on a line. For instance,

degrees of approval or disapproval can be elicited by asking subjects to position a visual

mark on a ruler. This method has been employed occasionally in psychometrics, and is

likely to become more widespread in the future. In these cases, ordered latent models are

clearly impractical, and the proposed RSM is a superior alternative to the linear regression

model that ignores the intrinsic features of the underlying scale.

In an empirical application to discrete life satisfaction scores illustrated the implemen-

tation of these methods in a concrete empirical setting. It turned out that the average

marginal effects of the nonlinear RSM were similar to ordinary least squares estimates.

However, substantial differences in predicted individual specific marginal effects could be

found for observations in the tails of the distribution of predicted satisfaction scores.
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Appendix

Table 3: Replication of Summary Statistics

Mean Std.Dev. Min Max

Age 38.84 11.60 14 86
Years of Education 11.41 3.08 7 18
Children in hh 0.75 0.98 0 9
Persons in hh 3.12 1.35 1 14
Female 0.44 0.49 0 1
Child of hh-head 0.13 0.33 0 1
No hh-head 0.01 0.1 0 1
Single-wp 0.25 0.43 0 1
Married 0.65 0.48 0 1
Seperated-wp 0.02 0.13 0 1
Seperated-np 0.002 0.04 0 1
Divorced-wp 0.06 0.24 0 1
Divorced-np 0.004 0.07 0 1
Widowed-wp 0.01 0.12 0 1
Widowed-np 0.001 0.04 0 1
Spouse abroad 0.002 0.04 0 1
Selfemployed 0.15 0.36 0 1
East-German 0.2 0.40 0 1
EU-citizen 0.07 0.26 0 1
Foreigner Non-EU 0.1 0.3 0 1

· N=39747
· Abbreviations: hh: household, np: no partner, wp: with partner
· This table replicates the summary statistics provided in the ap-

pendix of Stutzer and Frey (2008).



Table 4: Raw Regression Output - Parametric RSMs
OLS QML-Logit QML-Probit NLS-Logit NLS-Probit

Commuting Time·10−2 -0.459 -0.220 -0.133 -0.221 -0.133
(0.046) (0.023) (0.014) (0.023) (0.014)

Age ·10−2 -4.895 -2.441 -1.454 -2.503 -1.491
(0.576) (0.300) (0.179) (0.302) (0.180)

Age2 ·10−2 0.051 0.025 0.015 0.026 0.016
(0.007) (0.004) (0.002) (0.004) (0.002)

Female -0.018 -0.009 -0.005 -0.008 -0.005
(0.017) (0.008) (0.005) (0.008) (0.005)

Education = 7y. -0.042 -0.021 -0.013 -0.018 -0.011
(0.046) (0.025) (0.015) (0.025) (0.015)

Education = 10y. 0.155 0.077 0.046 0.077 0.046
(0.026) (0.014) (0.008) (0.014) (0.008)

Education = 12y. 0.194 0.096 0.058 0.096 0.057
(0.033) (0.016) (0.010) (0.016) (0.010)

Education = 14y. 0.247 0.122 0.073 0.124 0.0743
(0.037) (0.018) (0.011) (0.018) (0.011)

Education = 18y. 0.394 0.195 0.117 0.195 0.117
(0.039) (0.019) (0.011) (0.019) (0.011)

Child of hh-head 0.086 0.043 0.027 0.037 0.023
(0.043) (0.021) (0.013) (0.021) (0.013)

No hh-head -0.168 -0.081 -0.050 -0.077 -0.047
(0.084) (0.043) (0.026) (0.043) (0.026)

Single-wp 0.926 0.415 0.254 0.415 0.254
(0.207) (0.109) (0.068) (0.110) (0.068)

Married 1.140 0.518 0.316 0.514 0.314
(0.206) (0.109) (0.068) (0.110) (0.068)

Separated-wp 0.504 0.224 0.137 0.224 0.137
(0.216) (0.114) (0.071) (0.115) (0.071)

Separated-np -0.508 -0.221 -0.137 -0.217 -0.134
(0.220) (0.128) (0.079) (0.129) (0.080)

Divorced-wp 0.769 0.345 0.211 0.342 0.210
(0.209) (0.110) (0.068) (0.111) (0.069)

Divorced-np -0.002 -0.007 -0.004 -0.005 -0.002
(0.130) (0.070) (0.042) (0.070) (0.042)

Widow-wp 0.809 0.364 0.222 0.361 0.221
(0.217) (0.114) (0.071) (0.115) (0.071)

Widow-np -0.453 -0.203 -0.124 -0.201 -0.123
(0.238) (0.151) (0.093) (0.150) (0.093)

Child-hh=1 -0.064 -0.031 -0.019 -0.031 -0.019
(0.025) (0.012) (0.007) (0.012) (0.007)

Child-hh=2 -0.077 -0.038 -0.023 -0.036 -0.022
(0.033) (0.016) (0.010) (0.016) (0.010)

Child-hh>3 -0.222 -0.109 -0.065 -0.110 -0.066
(0.051) (0.025) (0.015) (0.025) (0.015)

Squareroot Persons in hh 0.111 0.055 0.033 0.056 0.033
(0.040) (0.020) (0.012) (0.020) (0.012)

Selfemployed -0.090 -0.044 -0.027 -0.044 -0.026
(0.023) (0.011) (0.007) (0.011) (0.007)

East-German -0.713 -0.336 -0.204 -0.336 -0.203
(0.022) (0.010) (0.006) (0.010) (0.006)

EU-citizen 0.126 0.065 0.039 0.063 0.038
(0.035) (0.019) (0.011) (0.019) (0.011)

Foreigner Non-EU -0.119 -0.059 -0.035 -0.059 -0.035
(0.030) (0.016) (0.010) (0.016) (0.010)

First interview 0.254 0.131 0.078 0.131 0.078
(0.037) (0.019) (0.011) (0.019) (0.011)

Year 90 0.084 0.043 0.026 0.045 0.027
(0.028) (0.015) (0.009) (0.015) (0.009)

Year 92 -0.412 -0.181 -0.111 -0.179 -0.110
(0.067) (0.029) (0.018) (0.029) (0.018)

Year 95 -0.060 -0.030 -0.018 -0.026 -0.016
(0.025) (0.012) (0.007) (0.013) (0.007)

Year 98 -0.011 -0.006 -0.004 -0.004 -0.003
(0.026) (0.013) (0.008) (0.013) (0.008)

Year 03 -0.072 -0.036 -0.022 -0.032 -0.020
(0.023) (0.012) (0.007) (0.012) (0.007)

Constant 7.110 0.947 0.578 0.959 0.585
(0.241) (0.126) (0.078) (0.127) (0.078)

· Standard errors reported in parentheses.
· Estimated coefficients correspond to the parameter vector β in model (1).
· First line of column (1) corresponds to column (3) of table 1 in Stutzer and Frey

(2008).
· N=39747



Table 5: Marginal Effects - Semiparamet-
ric RSM

OLS SLS

Commuting Time ·10−2 -0.459 -0.479
Age ·10−2 -4.895 -5.083
Age2 ·10−2 0.051 0.053
Female -0.018 -0.019
Education = 7y. -0.042 -0.044
Education = 10y. 0.155 0.162
Education = 12y. 0.194 0.204
Education = 14y. 0.247 0.261
Education = 18y. 0.394 0.409
Child of hh-head 0.086 0.089
No hh-head -0.168 -0.177
Single-wp 0.926 0.979
Married 1.140 1.175
Separated-wp 0.504 0.526
Separated-np -0.508 -0.536
Divorced-wp 0.769 0.785
Divorced-np -0.002 -0.002
Widow-wp 0.809 0.857
Widow-np -0.453 -0.474
Child-hh=1 -0.064 -0.066
Child-hh=2 -0.077 -0.081
Child-hh>3 -0.222 -0.235
Squareroot Persons in hh 0.111 0.113
Selfemployed -0.090 -0.095
East-German -0.713 -0.743
EU-citizen 0.126 0.133
Foreigner Non-EU -0.119 -0.125
First interview 0.254 0.266
Year 90 0.084 0.083
Year 92 -0.412 -0.429
Year 95 -0.060 -0.063
Year 98 -0.011 -0.012
Year 03 -0.072 -0.075
Constant 7.110

· Reported coefficients correspond to marginal effects.
Marginal effects in Column 2 are evaluated at the mean
characteristics.

· First line of column (1) corresponds to column (3) of
table 1 in Stutzer and Frey (2008).

· The life satisfaction score is modeled as dependent vari-
able.

· N=39747
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