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Abstract

Reliable measures of poverty are an essential statistical tool for public policies aimed at reducing
poverty. In this paper we consider the reliability of income poverty measures based on survey
data which are typically plagued by missing data and measurement error. Neglecting these
problems can bias the estimated poverty rates. We show how to derive upper and lower bounds
for the population poverty rate using the sample evidence, an upper bound on the probability
of misclassifying people into poor and non-poor, and instrumental or monotone instrumental
variable assumptions. By using the European Community Household Panel, we compute bounds
for the poverty rate in ten European countries and study the sensitivity of poverty comparisons
across countries to missing data and measurement error problems. Supplemental materials for
this article may be downloaded from the JBES website.

KEY WORDS: Misclassification error; Survey non-response; Partial identification.



1 INTRODUCTION

Income poverty measures are designed to count the poor and to diagnose the extent and dis-

tribution of poverty. For this reason, they are an essential statistical tool for public policies aimed

at reducing poverty (Deaton 1997). Estimation of income poverty is usually based on survey data

and is typically plagued by missing data and measurement error.

Missing data arises from the failure to obtain a complete response from all individuals included

in a survey. It may occur because individuals refuse to return their questionnaire (unit nonresponse)

or do not provide an answer for some of the questions (item nonresponse), and may depend on both

individual attitudes and survey procedures. Measurement error represents instead the deviation

between the recorded answer to a survey question and the underlying attribute being measured. It

may reflect systematic misreporting or unreliable response by the interviewee, and may depend on

data collection procedures (questionnaire design and interview methods), the way the interviewer

interacts with the interviewee, and data processing (data entry, editing, coding, etc).

Missing data and measurement error are especially important in the case of income. Questions

about income are sensitive in nature and people may refuse to answer because of privacy invasion

or a perceived risk of disclosure of information to third parties. Moreover, even when people are

willing to report their income, they might misreport it because of memory problems or a tendency

to overestimate or underestimate it.

Imputation and weighting methods are the approaches to missing data usually adopted by survey

methodologists (see Little and Rubin 1987, and Rubin 1989, 1996). They typically assume a missing

at random (MAR) condition, that is, independence between the missing data mechanism and the

outcome of interest after conditioning on a set of observed variables. Conversely, econometricians

usually adopt methods which also take into account selection due to unobserved variables (see Vella

1998 for a survey). While these methods relax the MAR condition, they typically impose various

types of restrictions on the distribution of the unobservables.

The most common statistical approaches to measurement error rely on either the classical

measurement error model or on mixture models (see van Praag et al. 1983, Ravallion 1994, and

Chesher and Schulter 2002 for the classical measurement error model; Cowell and Victoria-Feser

1996, and Pudney and Francavilla 2006 for mixture models; and Bound et al. 2001 for a general
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survey of the literature). The former assumes that the observed outcome is equal to the true

outcome (the “signal”) plus an additive error that has mean zero and is independent of the signal.

This strong assumption is often not justified empirically but adopted merely for convenience. A

notable violation of this assumption occurs when the outcome is a categorical variable, such as

a binary indicator of poverty. On the other hand, mixture models assume that the outcome of

interest is mismeasured for a fraction of individuals and that the observed outcome is equal to a

mixture of two variables, the true outcome and an unknown contaminating variable.

Most estimation methods proposed for missing data or measurement error problems focus on

point estimation of the parameters of interest, typically at the cost of imposing strong untestable

assumptions. Manski and co-authors (see for example Manski 1989 and Horowitz and Manski 1998

for missing data problems, Horowitz and Manski 1995 for measurement error problems, and Man-

ski 2003 for a review of the partial identification approach) have shown how to use the empirical

evidence, alone or in conjunction with additional assumptions, to learn something about the param-

eters of interest. Their approach involves a shift from point identification to partial identification,

that is, a shift from the attempt to uncover the “true value” of the parameter of interest to a

description of the set of values that are logically possible given the measurement error or missing

data mechanisms and the maintained assumptions.

In this paper we follow the partial identification approach and provide bounds on poverty

rate in ten European countries using the microdata from the last wave (2001) of the European

Community Household Panel. These bounds take account of the presence of both measurement

error and missing data problems, and are meant to establish a “domain of consensus” that represents

a starting point for subsequent analyses. To our knowledge, this is the first study which formally

considers identification issues caused by the presence of both types of problems. We combine results

in Nicoletti and Peracchi (2002) and Nicoletti (2008) to bound the poverty rate in the presence

of missing data with the approach suggested by Horowitz and Manski (1995) and Molinari (2003,

2008) to take measurement errors into account.

The data used in our application are described in Section 2. We formalize the partial iden-

tification approach to poverty rates in Section 3, first in the presence of either missing data or

measurement errors, and then in the presence of both together. We derive analytical bounds by
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exploiting the availability of partial information on income under different assumptions on the prob-

ability of misclassifying poverty status. Section 4 presents our empirical results. Finally, Section 5

draws some conclusions.

2 DATA

We begin by describing the problems that arise when estimating poverty measures using the Euro-

pean Community Household Panel (ECHP), a dataset that we take as representative of the kind

of survey data typically used for this purpose.

The ECHP is a longitudinal household survey centrally designed and coordinated by the Sta-

tistical Office of the European Communities (Eurostat) and conducted annually from 1994 to 2001.

The ECHP is patterned after the U.S. Panel Study of Income Dynamics, and was explicitly de-

signed to derive indicators of poverty and social exclusion for the European Commission. Its target

population consists of all individuals living in private households in the 15 member countries of

the European Union before its enlargement. All sampled individuals aged 16 or more are asked

to complete a personal questionnaire. Moreover, a reference person in each household, usually the

household head or the spouse/partner of the head, is asked to fill-in a household questionnaire.

In its first wave (1994), the survey covered about 60,000 households and 130,000 individuals

in 12 countries, namely Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg,

the Netherlands, Portugal, Spain and the UK. Austria, Finland and Sweden began to participate

in the ECHP only later, respectively from the second (1995), third (1996) and fourth (1997) wave.

We exclude the countries which did not participate for the whole period 1994–2001. We also

exclude France because of the doubtful quality of the gross/net conversion of income variables.

This gives a sample of 10 countries, namely Belgium, Denmark, Germany, Greece, Ireland, Italy,

the Netherlands, Portugal, Spain and the UK.

We focus on nonresponse and measurement error on household income for individuals belonging

to responding households, namely those for which at least the household questionnaire was returned.

The resulting sample consists of the 103,605 individuals observed in the most recent wave (2001). In

all our empirical applications, we take account of sampling design and the presence of nonresponding

households (those for which no questionnaire was returned) by using the weights provided in the
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public-use files of the ECHP.

Our poverty measure is the headcount ratio, namely the fraction of people (both children

and adults) living in households with income below a certain threshold (the “poverty line”). For

brevity, we refer to this measure as the poverty rate. The key variable in the construction of our

poverty measure is total net household income, computed in the ECHP as the sum of all annual

incomes (wages and salaries, self-employment income, pensions, etc.) reported by all members of

a household. Annual income is the amount received in the year before the survey, net of taxes

and expressed in national currency and current prices. Following conventional practice, we divide

real household income by the modified OECD equivalence scale to take account of household size

and composition. We define an individual as poor if her equivalized household income is below a

poverty line defined as 60% of the national median value, estimated using the imputed values and

the sampling weights provided by the ECHP.

Because of the way household income is constructed, nonresponse may occur either because of

item nonresponse to some income questions or because of unit nonresponse by household members

who fail to return the personal questionnaire. While income nonresponse can be observed (see the

last column of Table 1), the amount of measurement error cannot. The assessment of measurement

error requires validation studies (see for example Bound and Krueger 1991, Rodgers et al. 1993, and

Bound et al. 1994). In this paper we focus on misclassification error, namely measurement error in

the indicator of poverty status. A useful source of information in this case is the validation study of

Epland and Kirkeberg (2002), who compare true and reported income by matching administrative

data with the 1996 Norwegian Survey of Living Conditions. We use their results in our empirical

application to impose credible assumptions on misclassification probabilities.

Table 1 shows, for each of the countries considered, point estimates of the population poverty

rates and their estimated standard errors (in parenthesis). We report estimates computed ignoring

individuals with nonresponse to household income (poverty rates for respondents) and estimates

that use the imputed income values provided by the ECHP (poverty rates with imputation).

Ignoring income nonresponse does not cause any bias when data are missing completely at

random (MCAR), that is, when the response probability is constant across individuals. This as-

sumption contrasts sharply with the evidence from the ECHP, where nonresponse can be predicted

4



using variables such as household size, the number of active members in the household, the level of

education of the household head, and characteristics of the data collection process (Nicoletti and

Peracchi 2002). Using imputed values to replace missing income is the standard approach adopted

to compute poverty rates in official statistics. This produces unbiased estimates of poverty rates

only if the data is missing at random (MAR) and the imputation model is correct. Since MAR

is an untestable assumption, however, it is impossible to evaluate the potential bias caused by

imputation.

In the rest of this paper we check whether relaxing these untestable assumptions still allows us

to identify meaningful bounds on the population poverty rates. As we argue in the next section, the

fraction of income nonrespondents and the probability of misclassifying poverty status are a direct

measure of how severe the identification problem is. Since nonresponse rates and misclassification

probabilities are usually not small, the identified bounds can be wide. For this reason, in the next

section we suggest to narrow the bounds by using partial information on income, by introducing

some untestable but “credible” assumptions on the misclassification process and by imposing some

instrumental and monotone instrumental variable assumptions.

3 PARTIAL IDENTIFICATION OF POVERTY RATES

We consider partial identification of population poverty rates from data subject to nonsampling

errors similar to those that plague the ECHP. Section 3.1 considers the case of missing data but

no measurement error, Section 3.2 considers the case of measurement error but no missing data

problems, while Section 3.3 considers the case of both missing data and measurement error.

3.1 Partial Identification in the Presence of Missing Data

Let Y represent the equivalized income of a household, let γ be the poverty line, and let DY be the

indicator of poverty status, equal to one if a person lives in a household with Y ≤ γ and equal to

zero otherwise. The population poverty rate is the fraction of people living in households for which

Y does not exceed γ. Formally, the population poverty rate is just Pr(DY = 1) = Pr(Y ≤ γ).

Suppose that there is no measurement error in Y and γ but, because of nonresponse, household

income is missing for a fraction of the individuals. Following Manski (1989), let DR be a binary
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indicator equal to one if a person belongs to a responding household, namely one whose income is

fully reported, and equal to zero otherwise. By the law of total probability, the population poverty

rate satisfies

Pr(DY = 1) = Pr(DY = 1 |DR = 1) Pr(DR = 1) + Pr(DY = 1 |DR = 0) Pr(DR = 0). (1)

Because only Pr(DY = 1 |DR = 1), Pr(DR = 1) and Pr(DR = 0) can be point-identified from the

sampling process, the population poverty rate is not point-identified unless additional assumptions

are made. However, it is partially identified by the fact that the unknown element Pr(DY =

1 |DR = 0) must necessarily lie between zero and one. Substituting these bounds in (1) gives the

following upper and lower bounds on the population poverty rate

UB = Pr(DY = 1 |DR = 1) Pr(DR = 1) + Pr(DR = 0),

LB = Pr(DY = 1 |DR = 1) Pr(DR = 1).

These bounds are sharp, that is, they exhaust the information about Pr(DY = 1) available from the

sampling process and the maintained assumptions. The width UB−LB of the identification region

for Pr(DY = 1) is equal to the nonresponse probability Pr(DR = 0), which therefore represents a

direct measure of the uncertainty about the population poverty rate caused by nonresponse.

An important question is how to shrink these “worst-case” bounds, that is, how to narrow the

identification region for the population poverty rate. One possibility is to impose instrumental

variable (IV) restrictions. A random variable Z, with values in a subset Z of the real line, is an IV

if it helps predict response but does not help predict poverty, possibly after conditioning on a set

X of observable covariates with values in X . Formally, Z is an IV if, for any (x, z) ∈ X × Z,

Pr(DR = 1 |X = x,Z = z) 6= Pr(DR = 1 |X = x)

but

Pr(DY = 1 |X = x,Z = z) = Pr(DY = 1 |X = x).

Manski (1994, 2003) shows that if Z is an IV, then upper and lower bounds on the conditional

poverty rate Pr(DY = 1 |X = x) are

UBIV (x) = inf
z
{Pr(DY = 1 |X = x,Z = z, DR = 1) Pr(DR = 1 |X = x,Z = z)+

+ Pr(DR = 0 |X = x,Z = z)},

LBIV (x) = sup
z

{Pr(DY = 1 |X = x, Z = z,DR = 1) Pr(DR = 1 |X = z, Z = z)}.
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Further, these bounds are sharp. Although it is generally difficult to find valid instrumental vari-

ables, we believe that a convincing case can be made for data collection characteristics (charac-

teristics of the interviewer, interview mode, length and design of the questionnaire, etc.), because

they help predict nonresponse (see for examples Lepkowski and Couper 2002, Schräpler 2004, and

Nicoletti and Peracchi 2005) but lack predictive power for household income or poverty status.

Since IV restrictions are often controversial, another possibility is to impose the weaker mono-

tone instrumental variable (MIV) restrictions. A random variable Z is a MIV if it shifts monoton-

ically the poverty rate, possibly after conditioning on a set X of observable covariates. Formally,

Z is a MIV if, for any x ∈ X ,

Pr(DY = 1 |X = x,Z = z) ≥ Pr(DY = 1 |X = x,Z = z′) (2)

whenever z ≥ z′ (or z ≤ z′). It is often easier to find a variable which is monotonically related to

the outcome of interest than to find a proper IV. Manski and Pepper (2000) show that if Z is a

MIV, then sharp bounds on the conditional poverty rate Pr(DY = 1 |X = x,Z = z) are

UBMIV (x, z) = inf
z′≥z

{Pr(DY = 1 |X = x,Z = z′, DR = 1) Pr(DR = 1 |X = x,Z = z′)+

+ Pr(DR = 0 |X = x,Z = z′)},

LBMIV (x, z) = sup
z′≤z

{Pr(DY = 1 |X = x,Z = z′, DR = 1) Pr(DR = 1 |X = z, Z = z′)}.

Bounds on the population poverty rate Pr(DY = 1) are simply obtained by averaging the conditional

bounds LBIV (x) and UBIV (x) with respect to the distribution of X, or the conditional bounds

LBMIV (x, z) and UBMIV (x, z) with respect to the joint distribution of (X, Z).

As a third possibility, we suggest exploiting another source of information, namely the fact that

nonrespondents may provide partial information on their income. In the ECHP, and many other

surveys where household income is obtained by adding-up a number of different income components

across household members, nonresponse to household income is only partial, in the sense that at

least some household members provide information on at least some of the income components that

they received. This information on partially reported income provides a simple but effective way

of shrinking the worst-case bounds, or the bounds obtained by imposing IV or MIV restrictions.

For example, if Y ∗ denotes partially reported income, that is, the sum of all reported income

components across all members of the household, then the unknown poverty rate among the non-
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respondents may be decomposed as follows

Pr(DY = 1 |DR = 0) = Pr(DY = 1 |DY ∗ = 1, DR = 0) Pr(DY ∗ = 1 |DR = 0)+

+ Pr(DY = 1 |DY ∗ = 0, DR = 0) Pr(DY ∗ = 0 |DR = 0),
(3)

where DY ∗ equals one if Y ∗ ≤ γ and equals zero otherwise. In the absence of measurement error,

Pr(DY = 1 |DY ∗ = 0, DR = 0) = 0 because partially reported income Y ∗ cannot exceed true

income Y . Since the probability Pr(DY = 1 |DY ∗ = 1, DR = 0) must necessarily lie between zero

and one, we obtain the following upper and lower bounds on the population poverty rate

UB∗ = Pr(DY = 1 |DR = 1) Pr(DR = 1) + Pr(DY ∗ = 1 |DR = 0) Pr(DR = 0),

LB∗ = LB = Pr(DY = 1 |DR = 1) Pr(DR = 1).

Thus, the information on partially reported income provides a smaller upper bound but does not

affect the lower bound, which remains the same as the worst-case bound LB. This narrows the

width of the identification region from Pr(DR = 0) to Pr(DY ∗ = 1 |DR = 0) Pr(DR = 0).

Our use of partially reported income to narrow the “worst-case” bounds is similar in spirit to

the use of income bracket information by Vasquez-Alvarez et al. (1999, 2001) to bound income

quantiles. They consider a sample survey where people who fail to provide their income are then

asked to report whether their income exceeds a given threshold. We instead know that the income

of nonrespondents is at least equal to partially reported income Y ∗, which is not a fixed threshold

but varies across individuals and can take any value between zero and Y .

3.2 Partial Identification in the Presence of Measurement Error

Measurement error in the poverty status occurs when either total household income or the household

equivalent scale are measured with error. When the poverty line is also estimated, it may itself be

affected by sampling noise or systematic bias.

If W denotes the observed (error-ridden) equivalized net income of a household and γ̂ denotes

the estimated poverty line, then the observed poverty indicator DW is equal to one if W ≤ γ̂ and

is equal to zero otherwise, and the observed poverty rate is Pr(DW = 1) = Pr(W ≤ γ̂). When

DY 6= DW , poverty status is measured with error. Since DY and DW are categorical indicators, the

measurement error problem becomes a problem of misclassification that may arise either because

Y 6= W due to measurement error in total household income or in the equivalence scale, or because
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γ̂ 6= γ due to sampling noise or systematic bias in the estimated poverty line. Ignoring the problem

may lead to biased estimates of the population poverty rate Pr(DY = 1). An alternative approach,

introduced by Horowitz and Manski (1995) and adopted by Chavez-Martin del Campo (2004),

Pudney and Francavilla (2006), and Molinari (2003, 2008), is to partially identify Pr(DY = 1)

using the sample information along with weak assumptions about the measurement error process.

Horowitz and Manski (1995) model the observed outcome as a mixture of the true outcome

and an unknown contaminating variable (the corrupted sampling model), and provide a general

framework for partially identifying population parameters of interest by imposing a non-trivial

upper bound on the probability of observing the contaminating variable. For a binary poverty

indicator, their mixture model takes the form

DW = DY (1 − D∗) + DV D∗, (4)

where D∗ is equal to zero when we observe the true poverty indicator DY and is equal to one when

we observe the contaminating binary indicator DV .

Chavez-Martin del Campo (2004) specializes the results of Horowitz and Manski (1995) to

poverty measures. By considering a mixture model for household income and by assuming a non-

trivial upper bound on the measurement error probability, he shows how to bound poverty measures

that are additively separable, a class which includes the headcount ratio.

Pudney and Francavilla (2006) also consider a mixture model for household income to investigate

the effect of measurement error on estimation of poverty rates. Assuming that there are non-trivial

levels of wellbeing at which people can be classified without error as poor or non-poor, that the

contaminating variable does not depend on the level of wellbeing, and that the measurement error

depends neither on the level of wellbeing nor on true or contaminated income (after conditioning

on a set of variables), they show that one can exactly identify the poverty rate. They also show

how to partially identify the poverty rate when some of these assumptions are relaxed.

An alternative approach, pioneered by Molinari (2003, 2008), is to directly bound the poverty

rate by exploiting the identity

Pr(DW = 1) = Pr(DW = 1 |DY = 1) Pr(DY = 1) + Pr(DW = 1 |DY = 0) Pr(DY = 0). (5)

This is just an implication of the law of total probability and places no restrictions on the relation
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between the error-ridden indicator DW and the error-free indicator DY . When coupled with as-

sumptions about its elements, however, it generates a statistical model which Molinari (2008) calls

a direct misclassification model. The main advantage of this approach is that it takes into account

all the errors which may lead to misclassifying poverty status–errors affecting the income measure,

the equivalence scale, or the poverty line–without having to explicitly model their role.

Molinari’s base-case assumptions are non-trivial upper bounds on either the overall misclassifi-

cation probability Pr(DW 6= DY ) or the direct misclassification probabilities Pr(DW = i |DY = j),

for i 6= j.

Assumption B Pr(DW 6= DY ) ≤ λ < 1.

Assumption D Pr(DW = i |DY = j) ≤ λ < 1, for i 6= j.

Notice that Assumption D is stronger than Assumption B. In some cases, for example when

validation studies are available, one may be able to directly estimate the upper bound λ in these

two assumptions. Even when this is not possible, it may still be of interest to determine how

inference about the population poverty rate changes with changes in the assumed bounds.

Proposition 3 in Molinari (2008) presents the bounds on the population poverty rate implied

by the two assumptions. Assumption B gives

UBB = min{Pr(DW = 1) + λ, 1},

LBB = max{Pr(DW = 1) − λ, 0}.

These are the same bounds obtained by Horowitz and Manski (1995) under the assumption of an

upper bound λ on Pr(D∗ = 1) in the mixture model (4). Assumption D gives instead

UBD = min

{
Pr(DW = 1)

1 − λ
, 1

}
,

LBD = max

{
Pr(DW = 1) − λ

1 − λ
, 0

}
.

These are the same bounds obtained by Horowitz and Manski (1995) when replacing the mixture

model (4) by a contaminated sampling model, namely one where DY and D∗ are independent.

Molinari (2008) also shows how to identify narrower bounds by imposing additional restrictions

on the direct misclassification probabilities. One such restriction is that the direct misclassification

probabilities are constant, which together with Assumption D implies the following:
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Assumption CD Pr(DW = 1 |DY = 0) = Pr(DW = 0 |DY = 1) ≤ λ < 1.

Another restriction is monotonicity in correct reporting, that is, Pr(DW = j |DY = j) ≥

Pr(DW = j + 1 |DY = j + 1), which together with Assumption D implies the following:

Assumption MD Pr(DW = 1 |DY = 0) ≤ Pr(DW = 0 |DY = 1) ≤ λ < 1.

Assumption MD states that it is more likely for poor people to report an income above the poverty

line than for rich people to report an income below the poverty line. This may possibly be the case

when poverty (low income) is perceived by survey respondents as a stigma. The assumption that

people underreport social undesirable characteristics is often made by survey methodologists and

cognitive psychologists (see for example DeMaio 1984, Groves 1989, and Tourangeau et al. 2004).

Assumption MD is also supported by several validations studies which find that measurement error

in income is negatively correlated with true income (see for example Bound and Krueger 1991,

Rodgers et al. 1993, Bound et al. 1994).

Although our approach is very similar in spirit to Molinari’s direct misclassification approach,

our starting point is neither the mixture model (4) nor the direct misclassification model (5).

Instead, we consider the following relationship

Pr(DY = 1) = Pr(DY = 1 |DW = 1) Pr(DW = 1) + Pr(DY = 1 |DW = 0) Pr(DW = 0). (6)

Again, this is simply an implication of the law of total probability and imposes no restriction on

the relation between the error-free and the error-ridden indicator of poverty. However, placing

assumptions on its elements Pr(DY = i |DW = j) gives a new statistical model which we call an

indirect misclassification model.

Given (6), an assumption that partially identifies the population poverty rate is the following:

Assumption I Pr(DY = i |DW = j) ≤ λ < 1, for i 6= j.

While Assumption D restricts the conditional distribution of DW given DY by placing an upper

bound on the direct misclassification probabilities Pr(DW = i |DY = j), for i 6= j, Assumption I

restricts the conditional distribution of DY given DW by placing an upper bound on the indi-

rect misclassification probabilities Pr(DY = i |DW = j), for i 6= j. It is easy to verify that,
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while Assumption I implies Assumption B, there is no simple relation between Assumption I and

Assumption D.

For expositional convenience, and without loss of generality, we use the same symbol λ for the

upper bounds in Assumptions B, D and I, and the rest of our theoretical presentation. On the

contrary, in our empirical application we allow λ to vary depending on the assumption considered.

The next proposition presents the bounds on the population poverty rate implied by Assump-

tion I. To save space, all proofs are omitted but can be downloaded as Supplemental Materials from

the JBES web site.

Proposition 1 If Assumption I holds, then

UBI = (1 − λ) Pr(DW = 1) + λ,

LBI = (1 − λ) Pr(DW = 1).

Further, these bounds are sharp.

Figure 1 plots the upper and lower bounds implied by Assumptions B, D and I against λ for

different values of Pr(DW = 1). If λ = 0, then Pr(DY = 1) is point-identified and coincides

with Pr(DW = 1). When λ > 0, the identification region implied by Assumption B contains

those implied by Assumptions D and I. This is not surprising since Assumption B is weaker than

Assumptions D and I.

Assumptions D and I are different, and there are no theoretical reasons to prefer one to the other.

Their validity can be supported only by validation studies, while their usefulness in narrowing the

bounds depends on the values of λ and Pr(DW = 1). One important difference between the bounds

based on Assumption D and those based on Assumption I is that, unlike the former, the latter are

always informative (that is, they are different from zero and one whenever 0 < λ < 1) and change

smoothly with λ. As for the width of the implied bounds, LBD is always lower or equal to LBI if

λ > 1 − Pr(DW = 0)/Pr(DW = 1), while UBD is lower or equal to UBI if λ < Pr(DW = 0) and

λ > 1 − Pr(DW = 1)/Pr(DW = 0). Moreover, if λ(1 − λ) ≤ Pr(DW = 1) ≤ 1 − λ(1 − λ), then the

interval identified by Assumption I is narrower than the one identified imposing Assumption D. On

the contrary, if Pr(DW = 1) lies outside the interval [λ(1 − λ), 1 − λ(1 − λ)], then Assumption D

implies a narrower interval.
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We also consider two additional assumptions, which represent the analogues of Assumptions CD

and MD in Molinari (2008). The first is the assumption that the probability of indirect misclassi-

fication is constant:

Assumption CI Pr(DY = 0 |DW = 1) = Pr(DY = 1 |DW = 0) ≤ λ < 1.

The second is the assumption that the probability of indirect misclassification is monotonic:

Assumption MI Pr(DY = 0 |DW = 1) ≤ Pr(DY = 1 |DW = 0) ≤ λ < 1.

The next result gives the identification intervals for the population poverty rate under these

two assumptions.

Proposition 2

(i) If Assumption CI holds, then

UBCI =

{
(1 − 2λ) Pr(DW = 1) + λ, if Pr(DW = 1) ≤ 1/2,
Pr(DW = 1), otherwise,

LBCI =

{
Pr(DW = 1), if Pr(DW = 1) ≤ 1/2,
(1 − 2λ) Pr(DW = 1) + λ, otherwise.

(ii) If Assumption MI holds, then

UBMI = (1 − λ) Pr(DW = 1) + λ,

LBMI = LBCI .

Tables showing the identification intervals and their width under our Assumptions CI and MI,

and the analogue Assumptions CD and MD in Molinari (2008), can be downloaded as Supplemental

Materials from the JBES web site.

Following Manski and Pepper (2000) and Manski (2003), we may further narrow the bounds

by imposing IV and MIV restrictions. Adopting the notation in Section 3.1, let Z be the IV or the

MIV, let X be a set of covariates, and replace Assumptions B, D and I by the stronger assumptions:

Assumption B∗ Pr(DW 6= DY |X = x, Z = z) ≤ λ < 1 for any (x, z) ∈ (X × Z).

Assumption D∗ Pr(DW = i |DY = j, X = x,Z = z) ≤ λ < 1 for i 6= j and any (x, z) ∈ (X ×Z).
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Assumption I∗ Pr(DY = i |DW = j,X = x, Z = z) ≤ λ < 1 for i 6= j and any (x, z) ∈ (X × Z).

Since these assumptions are stronger than Assumptions B, D, and I, in our application we choose

higher values of λ when considering IV and MIV restrictions. Except for this, the basic idea is

very simple. We first use these restrictions to bound the conditional poverty rate Pr(DY = 1 |X =

x,Z = z), and then we obtain bounds on the population poverty rate Pr(DY = 1) by averaging

the conditional bounds with respect to the joint distribution of (X, Z).

3.3 Partial Identification in the Presence of Missing Data and Measurement

Error

In the presence of both missing data and measurement error, identification of the poverty rate

becomes more problematic. In the equation

Pr(DY = 1) = Pr(DY = 1 |DR = 1) Pr(DR = 1) + Pr(DY = 1 |DR = 0) Pr(DR = 0),

both Pr(DY = 1 |DR = 1) and Pr(DY = 1 |DR = 0) are now unknown. This is because for

responding people we only observe a contaminated poverty indicator DW instead of the unobserved

indicator DY , while for nonresponding people we observe neither DW nor DY .

The partial identification approaches discussed in Section 3.2 can be directly applied to find

upper and lower bounds for Pr(DY = 1 |DR = 1), the poverty rate for the respondents. All

we need is an upper bound on either the misclassification probability, the direct misclassification

probabilities, or the indirect misclassification probabilities, after conditioning on the event DR = 1.

For example, let BR denote Assumption B modified by conditioning on the event DR = 1, and let

LBR and UBR denote the implied upper and lower bounds on Pr(DY = 1 |DR = 1), the poverty

rate for the respondents. These are the same bounds obtained in Section 3.2, except that we now

condition on the event DR = 1. The resulting bounds on the unconditional poverty rate Pr(DY = 1)

are
UBBR = UBR Pr(DR = 1) + Pr(DR = 0),

LBBR = LBR Pr(DR = 1).

The same argument may be repeated for Assumptions D, I, CD, MD, CI and MI modified by

conditioning on the event DR = 1. In what follows, we denote these modified assumptions as DR,

IR, CDR, MDR, CIR and MIR respectively.
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When nonrespondents provide partial information on their income, these bounds can be nar-

rowed further. If W ∗ is error-ridden partially-reported income and γ̂ is the estimated poverty line,

then equation (3) must be modified as follows

Pr(DY = 1 |DR = 0) = Pr(DY = 1 |DW ∗ = 1, DR = 0) Pr(DW ∗ = 1 |DR = 0)

+ Pr(DY = 1 |DW ∗ = 0, DR = 0) Pr(DW ∗ = 0 |DR = 0).

In the absence of measurement error, one can safely assume that Pr(DY = 1 |DW ∗ = 0, DR =

0) = 0. In the presence of measurement error, this assumption is still quite reasonable because

a household with partially reported income above the poverty line is unlikely to be poor. Under

this assumption, it is enough to replace the term Pr(DR = 0) in UBBR, UBDR and UBIR by

Pr(DR = 0) Pr(DW ∗ = 1 |DR = 0), leaving the lower bounds LBBR, LBDR and LBIR unchanged.

In this case, the information on reported income causes the various identification regions to shrink

by an amount equal to Pr(DR = 0) [1 − Pr(DW ∗ = 1 |DR = 0)].

Computation of the bounds using IV and MIV is straightforward after conditioning Assump-

tions B∗, D∗ and I∗ on the event DR = 1.

4 EMPIRICAL RESULTS

We now present the estimated bounds for the population poverty rates based on the results in

Section 3. These bounds are computed considering both measurement error and missing data

problems. In Section 4.1, we derive bounds by first imposing an upper bound on the misclassification

probabilities and by then imposing the additional assumption of monotonicity in correct reporting.

In Section 4.2 we study how the identification intervals for the poverty rates change when we

choose different upper bounds on the misclassification probabilities. Finally, in Section 4.3 we

impose additional IV and MIV assumptions.

4.1 Bound Estimates

This section presents, separately by country, the estimated bounds for the population poverty

rates. These bounds are functions of probabilities which are estimated nonparametrically by simple

weighted empirical frequencies using the survey weights provided by the ECHP. Since the bounds
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are estimated, we also take their sampling variability into account. This is done by construct-

ing 90%-level bootstrap confidence intervals based on the percentile method and 1,000 bootstrap

replications. These confidence intervals cover the entire identification region with 90% probability.

Unlike standard asymptotic confidence intervals, they are generally not symmetric. The bootstrap

samples are obtained by sampling with replacement households, not individuals. Further, for each

bootstrap sample, the cross-sectional weights are rescaled to have unit mean (Biewen 2002).

The choice of the upper bounds for the misclassification probabilities are based on the valida-

tion study of Epland and Kirkeberg (2002), who compare true and reported income by matching

administrative data with the 1996 Norwegian Survey of Living Conditions. Using their Table 1,

and setting the poverty line at 100,000 Norwegian crowns (which roughly corresponds to 60% of

median equivalized household income), we find that the estimated probability that true and re-

ported poverty status differ (the misclassification probability) is about 6.5 percent. The estimated

direct, indirect and overall misclassification probabilities, and their standard error, are shown in

Table 2.

Assumption MD of monotonicity in correct reporting is confirmed by the results in Table 2,

whereas the assumption MI is not. Results hardly change when increasing or decreasing the poverty

line by 50 percent. Thus, in our empirical application, we consider the following assumptions:

Assumption BR Pr(DW 6= DY |DR = 1) ≤ λBR.

Assumption MDR Pr(DW = 1 |DY = 0, DR = 1) ≤ Pr(DW = 0 |DY = 1, DR = 1) ≤ λMDR.

Assumption IR Pr(DY = i |DW = j, DR = 1) ≤ λIR, for i 6= j.

The bounds on the misclassification probabilities are set to the estimated values in Table 2 plus

twice their standard error, i.e. λBR = 0.073, λMDR = 0.113 and λIR = 0.140. In Section 4.2 we

also conduct a sensitivity analysis to study how results change when we vary the upper bounds.

Table 3 reports the estimated upper and lower bounds on the population poverty rate and

the corresponding upper and lower limits of their bootstrap confidence interval under the three

assumptions. We denote the three identification intervals as [LB∗
BR

, UB∗
BR

], [LB∗
DR

, UB∗
DR

], and

[LB∗
IR

,UB∗
IR

] (the superscript ∗ indicates that partially reported income is used to compute the
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bounds). Upper bounds tend to be lower under Assumption MDR than under Assumptions IR and

BR, whereas lower bounds are higher under Assumption IR than under Assumption MDR and BR.

Assumption MDR produces the narrowest bounds, whose length goes from 0.136 for Denmark to

0.164 for the UK. This is unsurprising since Assumption MDR combines Assumption DR and the

monotonicity assumption.

If all three Assumptions BR, IR and MDR hold at the same time, then we can compute nar-

rower bounds. The resulting identification interval for the population poverty rate is denoted by

[LB∗
J
, UB∗

J
], where LB∗

J
is the maximum between LB∗

BR
, LB∗

MDR
and LB∗

IR
, while UB∗

J
is the

minimum between UB∗
BR

, UB∗
MDR

and UB∗
IR

. Estimates of this new set of bounds are presented

in Table 4. The range of plausible values is reduced considerably, as the width now varies be-

tween 0.055 (0.089 in terms of bootstrap confidence intervals) and 0.101 (0.186). Although the

estimated identification regions overlap partially for several countries some clear results emerge. In

Denmark the estimated upper bound on the poverty rate is lower than the lower bounds estimated

for Greece, Ireland, Italy, Portugal, Spain and the UK. Similarly, the Netherlands has an estimated

upper bound which is lower than the ones estimated for Greece, Ireland, Italy and Portugal; the es-

timated upper bound for Germany is lower than for Ireland and Portugal; and the one for Belgium

is lower than for Portugal. Based on these results we can reject the hypotheses that poverty rates

in Belgium, Denmark, Germany and the Netherlands are higher than in the remaining countries.

Furthermore, by ranking countries in terms of their upper bound on the poverty rate, we are able

to identify three groups of countries: Belgium, Denmark, Germany and the Netherlands belong to

the low-poverty group; Greece, Italy and Portugal belong to the high-poverty group; while, Spain,

Ireland and the UK make up an intermediate group. Ireland moves from the intermediate group

to the high-poverty group if we rank the countries using the lower bound. Interestingly, this is in

line with the country ranking obtained using the point estimates of poverty rates in Section 2, with

Ireland being positioned between the high-poverty group and the intermediate one.

Table 4 also presents a decomposition of the width ∆ = UB∗
J
−LB∗

J
of the identification region

into two additive components. The first component, ∆1 = Pr(DR = 0) Pr(DW ∗ = 1 |DR = 0), is

caused by the presence of missing data. The second component, ∆2 = UBJ −LBJ −∆1, is instead

caused by measurement errors affecting the observed poverty indicator. For all countries, at most
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33.2% of the interval width is determined by the presence of measurement errors problems. This

suggests that the lack of identification is mainly due to missing data problems, at least for the

values of λ that have been chosen for this application.

4.2 Sensitivity Analysis

Even if based on validation studies, the choice of upper bounds on the misclassification probabilities

is to some extent arbitrary. Thus, we also carry out a sensitivity analysis by looking at how results

change when we allow these upper bounds to vary. We compute for each country the width

of [LB∗
J
,UB∗

J
] (the intersection between [LB∗

BR
, UB∗

BR
], [LB∗

IR
, UB∗

IR
] and [LB∗

MDR
, UB∗

MDR
]) for

different values of λBR, λMDR and λIR. More precisely, we allow the upper bound of the indirect

misclassification probability, λIR, to change from 0.01 to 0.99 and the upper bounds λMDR and

λBR to vary proportionally with λIR. We keep the ratio between λMDR (λBR) and λIR equal to

the ratio between 0.113 (0.073) and 0.140, which are the values used in the previous section.

In presenting the results, we focus on the width of the intervals defined by the estimated bounds

because it is a measure of how serious the identification problem is. A zero width corresponds to

point identification of the true poverty rate, while a width that is positive but less than one

corresponds to partial identification.

Table 5 reports the minimum and the maximum widths over all countries of the estimated

interval [LB∗
J
,UB∗

J
] for different values of the λ’s. Both the minimum and the maximum widths

increase with λ. The widths are always smaller than .251 for values of λIR less than or equal

to .95. Of the three assumptions, MDR produces the lowest upper bound when λMDR is less

than 1 − Pr(DW = 1, DR = 1), while BR produces the highest lower bound. It is only when

λMDR > 1 − Pr(DW = 1, DR = 1) that Assumption IR produces a lower upper bound than

Assumption MDR, and this happens only for Italy and Portugal when λMDR is fixed at its highest

value.

These results may be useful to survey methodologists interested in improving the quality of a

survey by adopting techniques aimed at reducing nonresponse rates or measurement errors. For

example, from these results, it seems that the missing data problem is the main cause of lack of

identification. When λIR ≤ 0.2, the missing data problem is always the main explanation for the

lack of identification. When λIR = 0.5, there are still countries where the missing data problem is
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the main explanation for the lack of identification. Even when λIR = 0.99, we still find that the

missing data problem explains between 10% and 38.7% of the interval length. We can reject the

assumption that the missing data problem is the main explanation for the lack of identification only

when we assume that λIR = 0.500, λMDR = 0.404 and λBR = 0.261. Notice that these values are

more than three times higher than the corresponding misclassification probabilities found in the

validation studies of Epland and Kirkeberg (2002) (See Table 2). For this reason, we conclude that

measurement error is of secondary importance relative to missing data in our empirical application.

4.3 Restricting the Bounds Using IV and MIV Assumptions

When IV and MIV restrictions are introduced, estimation of the bounds is complicated by issues

of finite-sample bias, due to the small size of the cells over which we impose these assumptions.

As shown by Kreider and Pepper (2007), sample estimates based on infima and suprema will be

systematically biased and the estimated bounds will be too narrow, so we correct the estimates and

the confidence interval using the bootstrap bias correction that they propose. The Monte Carlo

experiments conducted by Manski and Pepper (2009) to study the small sample properties of this

correction show that the bias reduces considerably and becomes negligible.

In our application, we explored various IV candidates–in particular variables related to the

data collection process–by testing their statistical significance in a probit model for the response

probability. In the end, our best choice is the total number of successful interviews in the previous

waves. We use this variable as an IV after controlling for household size, the number of workers,

the number of children, and the education level of the reference person.

As MIV’s, we consider the size of the household and the number of its working members. We

use them as alternative MIV’s after controlling for the number of children, the reference person’s

education, and, in addition, either the number of working household members (for the former

MIV) or the household size (for the latter). Thus, we replace Assumptions BR, MDR and IR

in Section 4.1 by analogues based on the assumed IV or MIV and the additional covariates. For

example Assumption BR, is replaced by the more restrictive assumption that Pr(DW 6= DY |DR =

1, X = x,Z = z) ≤ λ for any (x, y) ∈ X × Z, where Z is the IV or the MIV and X contains the

control variables. We proceed in the same way with Assumptions MDR and IR.

Because misclassification probabilities may depend on X and Z, one may in principle consider
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different upper bounds for each x and z value. This approach is not feasible due to the lack of

validation studies reporting misclassification probabilities by household size, number of children,

etc. For this reason, we fix a common upper bound valid for any x and z value. This upper bound

is equal to the largest misclassification probability estimated by Epland and Kirkeberg (2002) plus

four times the standard error of this estimate. Although arbitrary, the choice of multiplying the

standard errors by four is for caution.

Table 7 presents the estimated bounds, separately for our IV and MIV restrictions, under the

assumption that BR, MDR and IR all hold when conditioning on the IV or MIV and the additional

covariates. We exclude the Netherlands from the analysis because the quality of the data on

education is doubtful. The narrowest bounds are those identified by the stronger IV restriction,

and their widths vary from 0.02 (0.04 for the bootstrap confidence interval) to 0.07 (0.09). For all

countries except Portugal, the intervals identified by these bounds are narrower than those obtained

under the joint assumptions BR, MDR and IR.

By comparing the estimated bounds across countries, we draw the following conclusions: (1)

Belgium, Denmark and Germany are the countries with the lowest poverty rates (UB∗
IV

for these

countries is lower than LB∗
IV

for all other countries); (2) Italy and Portugal have higher poverty

rates than Ireland, Spain and the UK (LBIV for Italy is higher than UBIV for Ireland and the

UK, while UBMIV2
for Spain and LBMIV1

for Portugal are higher than UBMIV1
for Ireland and

UBIV for the UK); (3) Greece has a higher poverty rate than Ireland (LBMIV1
for Greece is higher

than UBMIV2
for Ireland). If we look at the confidence interval, then the identification regions

become slightly larger and this weakens some of our conclusions. Nevertheless, our results suggest

the presence of three groups of countries with different levels of poverty: low for Belgium, Denmark

and Germany, medium for Ireland, Spain and the UK, and high for Greece, Italy and Spain.

5 CONCLUSIONS

In this paper we suggest new ways of partially identifying poverty rates in the presence of both

measurement error and missing data problems. We show that one can analytically compute bounds

for the poverty rates by assuming the existence of a non-trivial upper bound on the overall mis-

classification probability, the direct misclassification probability, or the indirect misclassification
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probability. While assumptions on the existence of an upper bound on the misclassification prob-

ability and on the direct misclassification probability have already been used to partially identify

probability distributions (see for example Horowitz and Manski 1995 and Molinari 2008), we are

the first to use assumptions on the indirect misclassification probability. Furthermore, we show

how to extend the partial identification approach to the case where measurement error and missing

data problems coexist, and how to use assumptions on misclassification probabilities together with

instrumental variables and monotone instrumental variables assumptions.

By applying this extended partial identification approach, we estimate upper and lower bounds

for the poverty rates in 10 European countries. Our main main results can be summarized as

follows. First, the use of assumptions on misclassification probabilities jointly with IV and MIV

restrictions are very useful in partial identification of poverty rates. In our empirical application,

these assumptions allow us to identify bounds which are narrow enough to be informative about

the ranking of countries by level of poverty.

Second, in the presence of both measurement errors and missing data, partial identification pro-

vides information on which of the two problems survey methodologists and applied social scientists

should be more concerned with. This is possible by decomposing the identification intervals into

the part due to the missing data and that due to the measurement error. To reject the assumption

that the missing data problem is the main explanation for the lack of identification, we have to

increase the upper bounds on the misclassification probabilities to values which are much larger

than those observed in validation studies. We conclude that missing data should be the major

concern when estimating poverty rates using surveys similar to the ECHP.
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Table 1: Estimated poverty rates and nonresponse rates by country in 2001 (standard errors in
parentheses).

Country No. obs. Poverty rate Poverty rate Nonresponse
with imputation for respondents rate

Belgium 5607 0.116 0.127 0.201
(0.005) (0.006) (0.005)

Denmark 4975 0.110 0.101 0.144
(0.009) (0.008) (0.005)

Germany 13489 0.111 0.109 0.157
(0.004) (0.005) (0.003)

Greece 11114 0.192 0.195 0.131
(0.004) (0.004) (0.003)

Ireland 5421 0.185 0.194 0.099
(0.008) (0.008) (0.004)

Italy 15317 0.195 0.211 0.190
(0.004) (0.005) (0.003)

Netherlands 10395 0.116 0.109 0.073
(0.004) (0.004) (0.003)

Portugal 12917 0.211 0.222 0.138
(0.007) (0.007) (0.003)

Spain 13689 0.172 0.173 0.123
(0.004) (0.004) (0.003)

UK 10681 0.160 0.165 0.102
(0.004) (0.004) (0.003)

Table 2: Misclassification probabilities in Epland and Kirkeberg (2002).

Estimated value S.E.

Pr(DW 6= DY ) 0.065 0.004
Pr(DW = 1 |DY = 0) 0.052 0.005
Pr(DW = 0 |DY = 1) 0.094 0.009
Pr(DY = 1 |DW = 0) 0.041 0.004
Pr(DY = 0 |DW = 1) 0.119 0.010
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Table 3: Estimated bounds by country. For each country, the estimates of the upper (lower)
bounds are reported in the first row, while the corresponding upper (lower) limits of the bootstrap
confidence intervals are reported in the second row.

Country LB∗

BR
UB∗

BR
LB∗

MDR
UB∗

MDR
LB∗

IR
UB∗

IR

Belgium 0.043 0.214 0.012 0.156 0.086 0.253
0.027 0.248 0.000 0.188 0.072 0.289

Denmark 0.024 0.199 0.000 0.136 0.074 0.244
0.003 0.263 0.000 0.198 0.054 0.311

Germany (SOEP) 0.031 0.212 0.000 0.150 0.080 0.256
0.020 0.238 0.000 0.175 0.070 0.283

Greece 0.107 0.299 0.081 0.235 0.147 0.334
0.094 0.324 0.067 0.259 0.135 0.360

Ireland 0.109 0.290 0.083 0.225 0.151 0.326
0.084 0.339 0.055 0.272 0.127 0.378

Italy 0.113 0.298 0.091 0.238 0.149 0.329
0.099 0.326 0.075 0.265 0.135 0.358

Netherlands 0.034 0.210 0.000 0.142 0.087 0.258
0.023 0.235 0.000 0.166 0.077 0.284

Portugal 0.124 0.321 0.103 0.260 0.159 0.351
0.099 0.384 0.076 0.321 0.136 0.417

Spain 0.085 0.277 0.057 0.215 0.126 0.313
0.072 0.311 0.044 0.248 0.113 0.350

UK (BHPS) 0.083 0.283 0.053 0.217 0.128 0.322
0.072 0.307 0.040 0.240 0.118 0.348

Note: BR (DR and IR) stands for the assumption that the overall (the direct and the indirect) misclassification

probability is lower than 0.073 (0.113 and 0.140). The superscript ∗ indicates that the bounds are computed using

information on partial reported income.
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Table 4: Estimates of UBJ , LBJ and of the width ∆ = UBJ − LBJ by country. For each country,
the estimates of the upper (lower) bounds are reported in the first row, while the corresponding
upper (lower) limits of the bootstrap confidence intervals are reported in the second row. ∆1 is
the part of the interval width due to missing data problems, while ∆2 is that due to measurement
error problems.

Country LB∗

J
UB∗

J
Width=∆ ∆1/∆ % ∆2/∆ %

Belgium 0.086 0.156 0.070 0.056 79.8 0.014 20.2
0.072 0.188 0.117

Denmark 0.074 0.136 0.062 0.050 80.6 0.012 19.4
0.054 0.198 0.144

Germany (SOEP) 0.080 0.150 0.071 0.058 81.7 0.013 18.3
0.070 0.175 0.106

Greece 0.147 0.235 0.088 0.064 72.7 0.024 27.3
0.135 0.259 0.124

Ireland 0.151 0.225 0.074 0.049 66.8 0.025 33.2
0.127 0.272 0.145

Italy 0.149 0.238 0.090 0.066 73.1 0.024 26.9
0.135 0.265 0.130

Netherlands 0.087 0.142 0.055 0.041 74.3 0.014 25.7
0.077 0.166 0.089

Portugal 0.159 0.260 0.101 0.075 74.4 0.026 25.6
0.136 0.321 0.186

Spain 0.126 0.215 0.089 0.068 76.8 0.021 23.2
0.113 0.248 0.135

UK (BHPS) 0.128 0.217 0.088 0.068 76.4 0.021 23.6
0.118 0.240 0.122
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Table 5: Minimum and maximum width ∆ = UBJ − LBJ across countries for different values of
λIR and λMDR. ∆1/∆ is the part of the width due to missing data problems over the total width.

λBR λMDR λIR min width max width min ∆1/∆ max ∆1/∆ mean ∆1/∆

0.005 0.008 0.010 0.042 0.077 0.966 0.984 0.977
0.026 0.040 0.050 0.046 0.084 0.849 0.926 0.896
0.052 0.081 0.100 0.051 0.094 0.738 0.862 0.813
0.104 0.161 0.200 0.061 0.112 0.585 0.757 0.686
0.156 0.242 0.300 0.071 0.131 0.484 0.675 0.594
0.261 0.404 0.500 0.092 0.168 0.360 0.555 0.469
0.365 0.565 0.700 0.110 0.205 0.287 0.471 0.388
0.417 0.646 0.800 0.119 0.223 0.260 0.438 0.357
0.469 0.726 0.900 0.128 0.242 0.238 0.410 0.331
0.495 0.767 0.950 0.132 0.251 0.229 0.397 0.319
0.516 0.799 0.990 0.135 0.688 0.100 0.387 0.274

Table 6: Means of the instrumental and monotone instrumental variables and the control variable

Country IV MIV1 ≤ 2 MIV1 = 3 MIV2 = 0 MIV2 = 1 x

Belgium 0.767 0.351 0.188 0.227 0.244 0.305
Denmark 0.699 0.444 0.176 0.161 0.242 0.188
Germany 0.750 0.364 0.223 0.164 0.297 0.183
Greece 0.777 0.252 0.215 0.187 0.317 0.596
Ireland 0.871 0.21 0.151 0.157 0.272 0.538
Italy 0.672 0.216 0.261 0.148 0.332 0.626
Portugal 0.766 0.254 0.255 0.15 0.245 0.684
Spain 0.722 0.252 0.22 0.172 0.323 0.608
UK 0.762 0.379 0.206 0.217 0.284 0.405

Note: IV is the dummy variable for households that participated in the survey for at least 7 waves; MIV1 is the

household size (the excluded category is a household of size greater than 3); MIV2 is the number of working household

members (the excluded category is 2 or more); and x is the control for lower education.
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Table 7: Estimated bounds by country. For each country, the estimates of the upper (lower) bounds
are reported in the first row, the estimated finite-sample bias is reported in the second row while
the corresponding upper (lower) limits of the corrected bootstrapped 90% confidence intervals are
reported in the third row.

Country LB∗

IV
UB∗

IV
LB∗

MIV1
UB∗

MIV1
LB∗

MIV2
UB∗

MIV2

Belgium 0.088 0.129 0.085 0.155 0.081 0.154
0.007 -0.007 0.004 -0.008 0.001 -0.003
0.078 0.141 0.075 0.168 0.069 0.171

Denmark 0.083 0.100 0.068 0.113 0.061 0.122
0.003 -0.005 0.002 -0.011 0.001 -0.009
0.069 0.111 0.060 0.126 0.052 0.132

Germany 0.119 0.139 0.087 0.154 0.083 0.159
0.006 -0.006 0.002 -0.005 0.001 -0.003
0.108 0.149 0.080 0.164 0.076 0.169

Greece 0.168 0.240 0.184 0.228 0.160 0.202
0.008 -0.008 0.005 -0.003 0.002 -0.007
0.160 0.252 0.166 0.258 0.151 0.233

Ireland 0.174 0.202 0.160 0.192 0.126 0.183
0.007 -0.015 0.007 -0.003 0.001 -0.003
0.140 0.218 0.130 0.217 0.111 0.206

Italy 0.204 0.232 0.162 0.261 0.160 0.254
0.003 -0.002 0.003 -0.004 0.001 -0.013
0.188 0.246 0.151 0.272 0.150 0.268

Portugal 0.176 0.257 0.204 0.255 0.168 0.262
0.007 -0.008 0.003 -0.002 0.001 -0.008
0.168 0.265 0.184 0.270 0.157 0.273

Spain 0.149 0.211 0.127 0.217 0.128 0.185
0.004 -0.008 0.003 -0.005 0.001 -0.005
0.133 0.221 0.119 0.231 0.117 0.203

UK 0.158 0.199 0.125 0.222 0.126 0.219
0.006 -0.004 0.003 -0.004 0.000 0.000
0.143 0.211 0.118 0.234 0.116 0.233

Note: The overall (the direct and the indirect) misclassification probabilities are assumed to be lower than 0.081

(0.130 and 0.159).
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Figure 1: Bounds on the population poverty rate under Assumptions B, D and I as functions of λ
for different values of Pr(DW = 1).
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