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Markov-switching dynamic stochastic general equilibrium (MSDSGE) modeling
has become a growing body of literature on economic and policy issues related
to structural shifts. This paper develops a general perturbation methodology for
constructing high-order approximations to the solutions of MSDSGE models.
Our new method—“the partition perturbation method”—partitions the Markov-
switching parameter space to keep a maximum number of time-varying param-
eters from perturbation. For this method to work in practice, we show how to
reduce the potentially intractable problem of solving MSDSGE models to the
manageable problem of solving a system of quadratic polynomial equations. This
approach allows us to first obtain all the solutions and then determine how many
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of them are stable. We illustrate the tractability of our methodology through two
revealing examples.

Keywords. Partition principle, naive perturbation, quadratic polynomial system,
Taylor series, high-order expansion, time-varying coefficients, nonlinearity, Gröb-
ner bases.

JEL classification. C6, E3, G1.

1. Introduction

In this paper we extend the conventional perturbation method, as described in Judd
(1998) and Schmitt-Grohe and Uribe (2004) and advocated recently by Lombardo (2010)
and Borovic̆ka and Hansen (2013), to approximating the solutions of Markov-switching
dynamic stochastic general equilibrium (MSDSGE) models. The extension poses a very
challenging task because the presence of time-varying parameters in MSDSGE mod-
els makes high-order approximations potentially intractable. We advance the literature
in three significant respects. First, we develop a general methodology for approximat-
ing the solution to a wide class of Markov-switching models with any order of accuracy.
Second, our methodology preserves the time-varying coefficients to the maximum ex-
tent in high-order Taylor series expansions. Third, we show the feasibility and practi-
cality of constructing high-order approximations by reducing the potentially intractable
problem to the manageable problem of solving a system of quadratic polynomial equa-
tions.

The literature on Markov-switching linear rational expectations (MSLRE) models
has been an active field in empirical macroeconomics (Leeper and Zha (2003), Blake and
Zampolli (2006), Svensson and Williams (2007), Davig and Leeper (2007), and Farmer,
Waggoner, and Zha (2009)). Building on standard linear rational expectations mod-
els, the MSLRE approach allows parameters to change over time according to discrete
Markov processes. This nonlinearity has proven to be important in explaining shifts in
monetary policy and macroeconomic time series (Schorfheide (2005), Davig and Doh
(2008), Liu, Waggoner, and Zha (2011), and Bianchi (2010)) and in modeling the ex-
pected effects of future fiscal policy changes (Davig, Leeper, and Walker (2010, 2011),Bi
and Traum (2012), Bianchi and Melosi (2013)). In particular, Markov-switching models
provide a tractable way to study how agents form expectations over possible discrete
changes in the economy, such as those in technology and policy.

There are, however, two major shortcomings with the MSLRE approach advocated
by Farmer, Waggoner, and Zha (2011). First, the approach begins with a system of stan-
dard linear rational expectations equations that have been obtained by linearizing equi-
librium conditions as though the parameters were constant over time. Discrete Markov
processes are then annexed to certain parameters. As a consequence, the resultant
MSLRE model may be incompatible with the optimizing behavior of agents in an orig-
inal economic model with Markov-switching parameters. Second, because it builds on
linear rational expectations models, the MSLRE approach does not take into account
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higher-order coefficients in the approximation. Not only do higher-order approxima-
tions improve the approximation accuracy but they are essential to addressing impor-
tant questions such as whether time-varying volatility is the driving force of fluctuations
in the financial markets and business cycles (Bloom (2009)).

This paper develops a general perturbation methodology for constructing first-order
and second-order approximations to the solutions of MSDSGE models in which certain
parameters vary over time according to discrete Markov processes.1 The key is to derive
high-order approximations to the equilibrium conditions implied by the original non-
linear economic model when Markov-switching parameters are present. Our method-
ology, therefore, overcomes the serious shortcomings associated with the MSLRE short-
cut. By working with the original MSDSGE model directly rather than taking a system of
linear rational expectations equations with fixed parameters as a shortcut, we maintain
the congruity between the original economic model with Markov-switching parameters
and the resultant approximations to the model solution. Such congruity is necessary for
researchers to derive both first-order and higher-order approximations consistent with
the original nonlinear model. Our general methodology leads to several developments
as follows.

• We show that the steady state must be independent of the realization of any regime
in the discrete Markov process governing parameter changes. We follow the literature
and define the steady state with the ergodic mean values of Markov-switching param-
eters. One natural extension of the conventional perturbation method commonly used
for dynamic stochastic general equilibrium (DSGE) models with no time-varying pa-
rameters is to perturb all Markov-switching parameters around their ergodic mean val-
ues. We call this the naive perturbation method.

• Since certain Markov-switching parameters such as time-varying volatilities do not
influence the steady state, we develop a rigorous framework called the partition prin-
ciple for partitioning the Markov-switching parameter space such that those Markov-
switching parameters are not perturbed. By not perturbing the Markov-switching
parameters that have no bearing on the steady state, we preserve the original Markov-
switching nonlinearity in first-order as well as higher-order approximations. This preser-
vation improves approximation accuracy, especially at low orders, in comparison to the
naive perturbation method. We call this newly developed method the partition pertur-
bation method. We provide a revealing Markov-switching model to illustrate the impor-
tance of our methodology. In addition, we use a Markov-switching real business cycle
(RBC) model as a more realistic example to demonstrate that the partition perturbation
method delivers more accurate first-order and second-order approximations than the
naive perturbation method.

• Much of the MSDSGE literature focuses on a first-order approximation with MSLRE
models. One exception is Amisano and Tristani (2011), who extend the literature to a
second-order approximation but with only Markov-switching shock variances. We show

1We show in the paper that one can extend our methodology to higher-order approximations through
standard linear algebra.
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that our methodology is tractable and general enough to allow for Markov-switching
coefficients in the DSGE model in high-order approximations without much additional
computational burden.

• We show that any finite-order approximation to the model solution can be reduced
to the manageable problem of solving a system of quadratic polynomial equations. The
rest of the approximation involves solving a system of linear equations recursively—
a key insight of our methodology. This result is powerful because it provides a viable way
of approximating the solution of an MSDSGE model at a high order without incurring
much computational time. Obtaining such a result is difficult because Markov switch-
ing compounds the complexity of implicit differentiation when deriving the Taylor series
expansion. The most difficult part is the potentially rampant notation that inhibits the
reader from following and implementing our methodology. Our notation makes trans-
parent to the reader (as well as us) that simple linear algebra is all researchers need to ac-
complish high-order approximations, even in the presence of time-varying coefficients
in the Taylor series expansion.

• We first use the Gröbner-bases method to obtain all solutions and then determine
how many of these solutions are stable according to the mean-square-stability crite-
rion (Costa, Fragoso, and Marques (2005) and Farmer, Waggoner, and Zha (2009)). This
procedure enables researchers to ascertain both the existence and the uniqueness of a
stable solution.

The rest of the paper is organized as follows. Section 2 presents the framework for
solving a general class of MSDSGE models. We outline our methodology, review the
conventional perturbation method, extend this commonly used method to the naive
perturbation method, and develop the partition perturbation method according to the
partition principle. Section 3 derives both first-order and second-order approximations
that have convenient forms for researchers to use. We show how to reduce the com-
plex Markov-switching problem to solving a system of quadratic polynomial equations.
We prove that the rest of the approximation of any order involves simple linear alge-
bra. Section 4 discusses different approaches to solving a system of quadratic polyno-
mial equations and reviews the concept of mean square stability to obtain a stable so-
lution. Section 5 uses a simple Markov-switching model to illustrate why the partition
perturbation method is more accurate than the naive perturbation method. Section 6
applies our methodology to a Markov-switching RBC model and compares approxima-
tion errors between the two perturbation methods. Replication files for numerical re-
sults in Sections 5 and 6 are available in a supplementary file on the journal website,
http://qeconomics.org/supp/596/code_and_data.zip. Concluding remarks are offered
in Section 7.

2. The framework

This section establishes the theoretical foundation of our proposed partition perturba-
tion method for a general class of MSDSGE models. We present the class of MSDSGE
models and introduce the key idea of partitioning the Markov-switching parameter

http://qeconomics.org/supp/596/code_and_data.zip
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space. Based on this idea we propose the partition perturbation method and highlight
the importance of our method in contrast to the naive perturbation method that derives
directly from the conventional perturbation method, which has been used for DSGE
models. Throughout the paper, we use a stylized real business cycle (RBC) model as an
illustrative example to guide the reader through our new methodology.

2.1 A general class of MSDSGE models

We study a general class of MSDSGE models in which some of the parameters fol-
low a discrete Markov process indexed by st ∈ {1� � � � � ns} with the transition matrix
P = [pst�st+1]. The element pst�st+1 represents the probability of st+1 at time t + 1 condi-
tional on observing st at time t. We denote the time t vector of all Markov-switching pa-
rameters by θ(st) ∈ R

nθ .2 We assume that the Markov process is ergodic and denote the
ns vector of ergodic probabilities by p̄. The ergodic mean of θ(st) is θ̄= [θ(1) · · ·θ(ns)]p̄.

Given the vector of state variables (xt−1�εt � st), the equilibrium conditions for MS-
DSGE models have the general form

Etf
(
yt+1�yt �xt �xt−1�εt+1�εt �θ(st+1)�θ(st)

) = 0ny+nx� (1)

where Et denotes the mathematical expectation operator conditional on information
available at time t, yt ∈ R

ny is a vector of non-predetermined (control) variables, xt ∈
R
nx is a vector of (endogenous and exogenous) predetermined variables, 0ny+nx is an

(ny + nx) vector of zeros, and εt ∈ R
nε is a vector of independent and identically dis-

tributed (i.i.d.) innovations to the exogenous predetermined variables with Etεt+1 = 0nε

and Etεt+1ε
ᵀ
t+1 = Inε . The superscript ᵀ indicates the transpose of a matrix or a vector

and Inε denotes the nε × nε identity matrix. The function f is defined on an open subset
of Rnf , where nf = 2(ny + nx + nε + nθ), and its range is a subset of Rny+nx . We make the
following assumptions about f throughout the paper. These assumptions are satisfied
by almost all economic models.

Assumption 1. The function f is infinitely differentiable with respect to all arguments.

Assumption 2. Integration and differentiation of f are exchangeable.

Assumption 3. There exist the steady-state values yss and xss such that

f(yss�yss�xss�xss�0nε�0nε� θ̄� θ̄)= 0ny+nx� (2)

We use a simple RBC model to illustrate how the equilibrium conditions can be
arranged in the form of (1). Consider an economy with the representative household
whose preferences over a stochastic sequence of consumption goods, ct , are represented
by the expected utility function

maxE0

∞∑
t=0

βt c
υ
t

υ
�

2The parameters that are constant over time, which we call constant parameters for the rest of the paper,
are not included in the vector θ(st). Unless otherwise stated, all vectors in this paper are column vectors.
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where β is the discount factor and υ relates to risk aversion. The resource constraint is

ct + kt = z1−α
t kα

t−1 + (1 − δ)kt−1�

where δ is the rate of depreciation, kt is a stock of physical capital, and zt represents a
technological process that evolves according to

log
zt

zt−1
= (

1 − ρ(st)
)
μ(st)+ ρ(st) log

zt−1

zt−2
+ σ(st)εt�

where εt ∼ N(0�1) is a standard normal random variable. The drift, persistence, and
volatility parameters are time-varying with st ∈ {1�2}. The three equations characterizing
the equilibrium are the equation describing the technological process and the two first-
order equations

cυ−1
t = βEtc

υ−1
t+1

[
αz1−α

t+1 k
α−1
t + (1 − δ)

]
�

ct + kt = z1−α
t kα

t−1 + (1 − δ)kt−1�

The economy is nonstationary. To obtain a stationary equilibrium we define z̃t =
zt

zt−1
, k̃t = kt

zt
, and c̃t = ct

zt−1
. The stationary equilibrium conditions summarized by (1)

can be specifically expressed as

03 = Et f
(
yt+1�yt �xt �xt−1�εt+1�εt �θ(st+1)�θ(st )

)
(3)

= Et

⎡
⎣ c̃υ−1

t −βz̃υ−1
t c̃υ−1

t+1
{
αe[(1−ρ(st+1))μ(st+1)+ρ(st+1) log(z̃t )+σ(st+1)εt+1](1−α)k̃α−1

t + 1 − δ
}

c̃t + z̃t k̃t − z̃1−α
t k̃αt−1 − (1 − δ)k̃t−1

log z̃t − (
1 − ρ(st )

)
μ(st )− ρ(st ) log z̃t−1 − σ(st)εt

⎤
⎦ �

where yt = c̃t , xt = [k̃t z̃t]ᵀ, εt = εt , and θ(st) = [μ(st)ρ(st)σ(st)]ᵀ. The dimensions of this
RBC model are ny = 1, nx = 2, nε = 1, nθ = 3, and ns = 2.

2.2 The conventional perturbation method

Before we propose our partition perturbation method for solving MSDSGE models,
we review the conventional perturbation method used for solving constant-parameter
DSGE models (Judd (1998), Schmitt-Grohe and Uribe (2004), Lombardo (2010), Holmes
(2012), Borovic̆ka and Hansen (2013), Gomme and Klein (2011)). The constant-para-
meter model can be considered as a special Markov-switching model with either ns = 1
or θ(st) = θ̄ for all st .

The conventional perturbation method begins with positing that the solutions yt
and xt are of the form3

yt = g(xt−1�εt �χ)� (4)

xt = h(xt−1�εt �χ)� (5)

3Some researchers may prefer to perturb εt in addition to εt+1. To do so, one would replace equations

(4), (5), and (8) with yt = g̃(xt−1�χεt �χ), xt = h̃(xt−1�χεt �χ), and

0ny+nx =
∫
Rnε

f
(
g(xt �χεt+1�χ)�yt �xt �xt−1�χεt+1�χεt � θ̄� θ̄

)
dμ(εt+1)�
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where g : Rnx+nε+1 → R
ny and h : Rnx+nε+1 → R

nx are functions with the Taylor series
representation about the point (xss�0nε�0) satisfying

yss = g(xss�0nε�0)� (6)

xss = h(xss�0nε�0)� (7)

and χ ∈ R is the perturbation parameter. The conventional perturbation is a method
that recursively finds the Taylor series expansion of g and h by positing that equations
(4) and (5) are a solution of

0ny+nx = F(yt �xt �xt−1�εt �χ)
(8)

≡
∫
Rnε

f
(
g(xt �χεt+1�χ)�yt �xt �xt−1�χεt+1�εt � θ̄� θ̄

)
dμ(εt+1)

for all xt−1, εt , and χ, where μ(εt+1) is a σ-finite measure on the space of εt+1. When
χ= 1, equation (8) reduces to equation (1). By construction, g and h satisfy equation (8)
when xt−1 = xss , εt = 0nε , and χ= 0.

To form the Taylor series expansion of g and h, one must be able to compute the
derivatives of g and h and evaluate these derivatives at the point (xss�0nε�0). By repeated
implicit differentiation of equation (8), one can recursively solve for the derivatives of g
and h evaluated at (xss�0nε�0).

2.3 The naive perturbation method

It is natural and straightforward to extend the conventional perturbation method dis-
cussed in Section 2.2 to MSDSGE models. Suppose that yt and xt are of the form

yt = gst (xt−1�εt �χ)� (9)

xt = hst (xt−1�εt �χ) (10)

for all st , where gst : Rnx+nε+1 → R
ny and hst : Rnx+nε+1 → R

nx are continuously differ-
entiable functions. In the constant-parameter case, the choice of the steady state as the
approximation point is natural and one needs to perturb εt+1 only. The choice of ap-
proximation point in the Markov-switching case is more involved and takes two steps.
First, we show that the steady state in the Markov-switching case must be independent
of regime st .

Suppose that the steady-state variables xss(st) depend on regime st . As in the
constant-parameter case, we must choose the values of gst (xss(st)�0nε�0) and hst (xss(st)�
0nε�0) such that

f
(
gst+1

(
hst

(
xss(st)�0nε�0

)
�0nε�0

)
�gst

(
xss(st)�0nε�0

)
�

(11)
hst

(
xss(st)�0nε�0

)
�xss(st)�0nε�0nε�θ(st+1)�θ(st)

) = 0ny+nx

The resultant Taylor expansion of g̃ and h̃ around xt−1, εt , and χ can be obtained from the original Taylor
expansion of g and h by simply substituting χεt for εt . When χ = 1 the two techniques produce the same
result, but the alternative perturbation approach requires higher-order terms to achieve the same accuracy
of approximation.
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for all st and st+1. Because the value of gst+1 is evaluated at the point (xss(st+1)�0nε�0), it
follows that xss(st+1) = hst (xss(st)�0nε�0) for all st and st+1. For the latter relationship to
hold, it must be that xss(st) = xss and xss(st+1) = xss for all st and st+1. That is, the steady
state must be regime independent.

Second, we show that the Markov-switching parameters θ(st+1) and θ(st) must in
general be perturbed. Since xss(st) = xss for all st , the system of equations (11) becomes

f
(
gst+1(xss�0nε�0)�gst (xss�0nε�0)�xss�xss�0nε�0nε�θ(st+1)�θ(st)

) = 0ny+nx� (12)

This is a system of n2
s (ny +nx) equations with nsny +nx unknowns (ny unknowns in each

gk(xss�0nε�0) for 1 ≤ k ≤ ns and another nx unknowns in xss), which cannot be solved
in general. We must, therefore, perturb the Markov-switching parameters to reduce the
number of equations.

One natural approach is to define a perturbation function for Markov-switching pa-
rameters by

θ(k�χ)= χθ(k)+ (1 −χ)θ̄ (13)

for 1 ≤ k ≤ ns. When χ = 0, we have θ(k�0) = θ̄; when χ = 1, we have θ(k�1) = θ(k).
Given xss(k) = xss for 1 ≤ k≤ ns, we have the following assumption.

Assumption 4. The function gk(xss�0nε�0) has the same value for all 1 ≤ k ≤ ns. We
denote this value by yss .

With this perturbation and Assumption 4, system (12) becomes

f(yss�yss�xss�xss�0nε�0nε� θ̄� θ̄) = 0ny+nx�

By Assumption 3 there is a solution to this system of equations.
For illustration we return to the RBC model in which the system of equations f is

given by (3). Let the steady state and ergodic mean values of parameters be denoted by
yss = c̃ss , xss = [k̃ss z̃ss]ᵀ, and θ̄= [μ̄ ρ̄ σ̄]ᵀ. The steady state must satisfy

03 = f(yss�yss�xss�xss�0nε�0nε� θ̄� θ̄)
(14)

=
⎡
⎣ c̃υ−1

ss −βz̃υ−1
ss c̃υ−1

ss

{
αe[(1−ρ̄)μ̄+ρ̄ log(z̃ss)](1−α)k̃α−1

ss + 1 − δ
}

c̃ss + z̃ssk̃ss − z̃1−α
ss k̃α

ss − (1 − δ)k̃ss

log z̃ss − (1 − ρ̄)μ̄− ρ̄ log z̃ss

⎤
⎦ �

Solving for the steady state is the same as in the constant-parameter case. With the
perturbation function (13), it is straightforward to write down an equation analog of
the constant-parameter case (8) and obtain the Taylor series expansions for gst and hst

around the point (xss�0nε�0). We call this approach the naive perturbation method. In
Section 5 we show, through a revealing example, why this method is naive in compari-
son to the alternative perturbation method developed below.
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2.4 The partition perturbation method

The steady state expressed in (14) can be obtained in closed form as

z̃ss = eμ̄�

k̃ss = (
α−1e(α−1)μ̄(

β−1e(1−υ)μ̄ − 1 + δ
))1/(α−1)

� and

c̃ss = k̃ss
(
1 − δ− eμ̄ + α−1(β−1e(1−υ)μ̄ − 1 + δ

))
�

Clearly, the steady-state solution does not depend on either ρ̄ or σ̄ . As argued in Sec-
tion 2.3, the purpose of perturbing the Markov-switching parameters around their er-
godic mean values is to solve the steady state when the perturbation parameter χ and
the innovations εt are set to 0. Since ρ(st) and σ(st) do not influence the steady state,
perturbing these parameters generates unnecessary approximations. If we do not per-
turb these parameters, we maintain the Markov-switching nonlinearity along the direc-
tion of these parameters in the original model. We formalize this idea by proposing the
perturbation function

θ(k�χ) = χ

[
θ1(k)

θ2(k)

]
+ (1 −χ)

[
θ̄1

θ2(k)

]
=

[
θ̄1 +χ

(
θ1(k)− θ̄1

)
θ2(k)

]
(15)

for 1 ≤ k≤ ns with the partition principle stated below.

Partition Principle. Let the Markov-switching parameters be ordered and partitioned
as θᵀ(st) = [θᵀ1 (st) θ

ᵀ
2 (st)]. The second block θ2(st) is chosen to contain the maximum

number of Markov-switching parameters such that

f
(
yss�yss�xss�xss�0nε�0nε�θ(st+1�0)�θ(st�0)

)
(16)

= f(yss�yss�xss�xss�0nε�0nε� θ̄� θ̄) = 0ny+nx

for all st and st+1.

According to the partition principle, the second block of Markov-switching parame-
ters is not perturbed. Since perturbation is necessary only for approximations to the orig-
inal nonlinear model, the fewer number of Markov-switching parameters we perturb,
the more accurate are finite-order approximations. We illuminate this point through ex-
amples discussed in Sections 5 and 6.

It is practicable to implement the partition principle. Whenever we write down
DSGE models, we should be able to write down the steady-state equilibrium conditions
and identify which Markov-switching parameters have no influence on these condi-
tions. We group all such Markov-switching parameters into θ2(st) as long as the critical
system (16) is satisfied. Verifying whether (16) holds is straightforward.
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To obtain the analog of system (8), we define the continuously differentiable func-
tion Fst : Rny+2nx+nε+1 → R

ny+nx as

Fst (yt �xt �xt−1�εt �χ) =
ns∑

st+1=1

pst�st+1

∫
Rnε

f
(
gst+1(xt �χεt+1�χ)�yt �xt �xt−1�

χεt+1�εt �θ(st+1�χ)�θ(st�χ)
)
dμ(εt+1)

such that (9) and (10) are a solution to

Fst (yt �xt �xt−1�εt �χ) = 0ny+nx (17)

for all st , xt−1, εt , and χ. The perturbation functions θ(st+1�χ) and θ(st�χ) are given
by (15). When χ = 1, the perturbed system (17) reduces to the original system (1). By
construction, system (17) is satisfied for all st when yt = yss , xt = xt−1 = xss , εt = 0nε , and
χ= 0. We call this approach the partition perturbation method.

Like the conventional perturbation method or the naive perturbation method, the
partition perturbation method allows one to solve recursively for the partial deriva-
tives of gst and hst by repeated implicit differentiation of system (17) and evaluate these
derivative at (xss�0nε�0). Unlike those perturbation methods, the partial derivatives of
gst and hst depend on the partial derivatives of f evaluated at(

yss�yss�xss�xss�0nε�0nε�θ(st+1�0)�θ(st�0)
)
�

Because the second block of Markov-switching parameters is not perturbed, the Taylor
series coefficients for gst and hst are in general time-varying when the set containing
θ2(st) is not empty. The presence of such time-varying Taylor series coefficients makes
high-order approximations a potentially intractable problem. One principal contribu-
tion of this paper is to prove that the partition perturbation method can be implemented
by reducing this potentially intractable problem to a recursive problem involving only
simple linear algebra once we remove the bottleneck of solving a system of quadratic
polynomial equations. This theoretical result is provided in Section 3. In Section 5 we
provide a revealing Markov-switching dynamic equilibrium example that has closed-
form solutions. Using this example we illustrate that the partition principle delivers a
more accurate solution than the naive perturbation method for an approximated solu-
tion of any order.

3. First-order and second-order approximations

This section gives a detailed description of how to derive first-order and second-order
approximations to the model solution by using the partition perturbation method. We
present the results up to only second order to conserve space, but it is straightforward
to derive higher-order approximations with a similar approach. To make our theoret-
ical results transparent to a general reader, we develop notation that proves crucial to
the clarity of our derivations; moreover, it enables us to show that Markov-switching
volatility (uncertainty) has first-order effects on dynamics while the naive perturbation
method nullifies such effects by construction.
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3.1 Notation

We stack the regime-dependent solutions (9) and (10) as

Yt = G(xt−1�εt �χ) =
⎡
⎢⎣

g1(xt−1�εt �χ)
���

gns (xt−1�εt �χ)

⎤
⎥⎦ and

Xt = H(xt−1�εt �χ)=
⎡
⎢⎣

h1(xt−1�εt �χ)
���

hns (xt−1�εt �χ)

⎤
⎥⎦ �

Define Yss = 1ns ⊗ yss and Xss = 1ns ⊗ xss , where 1ns is the ns vector of 1s. It follows that
yt = gst (xt−1�εt �χ) = (eᵀst ⊗ Iny )Yt and xt = hst (xt−1�εt �χ) = (eᵀst ⊗ Inx)Xt for all st , where
ek, for 1 ≤ k≤ ns, is the kth column of the ns × ns identity matrix. Approximating a solu-
tion to yt and xt is equivalent to approximating a solution to Yt and Xt .

Define Fi : Rnsny+nsnx+nx+nε+1 →R
ny+nx for i = 1� � � � � ns by

Fi(Yt �Xt �xt−1�εt �χ)= Fi

((
eᵀi ⊗ Iny

)
Yt �

(
eᵀi ⊗ Inx

)
Xt �xt−1�εt �χ

)
and F : Rnsny+nsnx+nx+nε+1 → R

ns(ny+nx) by

F(Yt �Xt �xt−1�εt �χ) =
⎡
⎢⎣

F1(Yt �Xt �xt−1�εt �χ)
���

Fns (Yt �Xt �xt−1�εt �χ)

⎤
⎥⎦ �

With these definitions, system (17) is equivalent to

F(Yt �Xt �xt−1�εt �χ) = 0ns(ny+nx)� (18)

We now introduce a derivative notation that is used throughout the paper. Let w(u)
be a continuously differentiable function from R

nu into R
nw . Let u be the th compo-

nent of u for 1 ≤  ≤ nu and let wk(u) be the kth component of w(u) for 1 ≤ k ≤ nw.
The term Dw

k(u), a real number, denotes the partial derivative of wk with respect to u
evaluated at the point u. The term Dw(u), the nw × nu matrix [Dw

k(u)] for 1 ≤ k ≤ nw
and 1 ≤ ≤ nu, denotes the total derivative of w evaluated at the point u.

As for second-order partial derivatives, let D2D1w
k(u), a real number, denote the

second partial derivative of wk with respect to u1 and u2 evaluated at u. The term
D2D1 w(u) denotes the nw vector [D2D1w

k(u)] for 1 ≤ k ≤ nw. The term D2Dw(u)
denotes the nw × nu matrix [D2Dw

k(u)] for 1 ≤ k ≤ nw and 1 ≤  ≤ nu. It is straightfor-
ward to extend this notation to higher-order partial derivatives.

If w(u�v) is a continuously differentiable function from R
nu+nv into R

nw , we use
Duw(u�v) to denote the nw × nu matrix consisting of the first nu columns of the nw ×
(nu + nv) matrix Dw(u�v). Similarly, Dvw(u�v) denotes the last nv columns of Dw(u�v)
and Dw(u�v) = [Duw(u�v) Dvw(u�v)].
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3.2 First-order approximation

Denote zᵀt = [ xᵀt−1 ε
ᵀ
t χ ] and zᵀss = [ xᵀss 0ᵀ

nε 0 ]. The dimension of both zt and zss is
nz = nx + nε + 1. The first-order approximation of G(zt ) and H(zt ) is

G(zt )≈ Yss +DG(zss)(zt − zss)�

H(zt ) ≈ Xss +DH(zss)(zt − zss)�

The following proposition shows that both DG(zss)= [Dxt−1 G(zss) Dεt G(zss) DχG(zss)]
and DH(zss) = [Dxt−1 H(zss) Dεt H(zss) DχH(zss)] can be obtained by solving a system
of quadratic polynomial equations and two systems of linear equations.

Proposition 1. Under Assumptions 1–4, the matrices Dxt−1 G(zss) and Dxt−1 H(zss) can
be obtained by solving a system of ns(ny + nx)nx quadratic polynomial equations with
ns(ny + nx)nx unknowns. Given a solution to this quadratic polynomial system, the ma-
trices Dεt G(zss) and Dεt H(zss) can be obtained by solving a system of ns(ny +nx)nε linear
equations with ns(ny + nx)nε unknowns; the vectors DχG(zss) and DχH(zss) can be ob-
tained by solving a system of ns(ny + nx) linear equations with ns(ny + nx) unknowns.

The proofs for Propositions 1–3 are given in Appendix A.
The proof of Proposition 1 shows how to represent the first-order solution in a form

that can be implemented in practice. More important is the result that reduces the po-
tentially intractable problem of solving MSDSGE models to the manageable problem of
solving a system of quadratic polynomial equations. Section 4 provides an effective way
of solving this problem.

3.3 Characterizing the first-order approximation

As shown in the proof of Proposition 1, the slope coefficient matrices, represented
by Dxt−1 G(zss) and Dxt−1 H(zss), and the impact coefficient matrices, represented by
Dεt G(zss) and Dεt H(zss), are functions of the partial derivatives Dyt+1 f(uss), Dyt f(uss),
Dxt f(uss), Dxt−1 f(uss), and Dεt f(uss), where

uᵀ
ss = [

yᵀss�yᵀss�xᵀss�xᵀss�0ᵀ
nε�0ᵀ

nε�θ(st+1�0)ᵀ�θ(st�0)ᵀ
]
�

Thus the slope and impact coefficients depend, in general, on both θ2(st+1) and θ2(st).
When the naive perturbation method is used, by contrast, the slope and impact coeffi-
cients depend only on θ̄, not on θ(st+1) or θ(st), as stated in the following corollary.

Corollary 1. Let Assumptions 1–4 hold. Under the naive perturbation method, the first-
order coefficients Dxt−1 G(zss), Dxt−1 H(zss), Dεt G(zss), and Dεt H(zss) do not depend on
θ(st), but are functions of θ̄ only.

For our RBC model summarized in (3), one can see that Dyt+1 f(uss) depends on
ρ(st+1) and σ(st+1), Dxt f(uss) depends on ρ(st+1) and σ(st+1), Dxt−1 f(uss) depends on
ρ(st+1), and Dεt f(uss) depends on σ(st+1). Thus, both the Markov-switching persistence
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and volatility parameters have first-order effects. By contrast, these effects are muted
by the naive perturbation method because the partial derivatives of f depend only on
ρ̄ and σ̄ .4 Consequently the finite-order approximation becomes less accurate. In Sec-
tion 6 we provide a numerical assessment of this accuracy by computing approximation
errors of the Euler equations.

3.4 Second-order approximation

The second-order approximation is represented by

G(zt )≈ Yss +DG(zss)(zt − zss)

+ 1
2

nz∑
1=1

nz∑
2=1

D2D1 G(zss)(zt�1 − zss�1)(zt�2 − zss�2)�

H(zt )≈ Xss +DH(zss)(zt − zss)

+ 1
2

nz∑
1=1

nz∑
2=1

D2D1 H(zss)(zt�1 − zss�1)(zt�2 − zss�2)�

where zt� and zss� are the th components of zt and zss . The following proposition de-
livers a powerful result that the vector D2D1 G(zss) and D2D1 H(zss) can be obtained
through simple linear algebra.

Proposition 2. Under Assumptions 1–4 and given a first-order approximation, the vec-
tors D2D1 G(zss) and D2D1 H(zss), for 1 ≤ 1� 2 ≤ nz , can be obtained by solving a sys-
tem of ns(ny + nx)n

2
z linear equations in ns(ny + nx)n

2
z unknowns.

Because the coefficients represented by D2D1 G(zss) and D2D1 H(zss) can be time-
varying, it is not at all obvious that Proposition 2 would hold. One of the principal de-
velopments in this paper is to reduce the potentially unmanageable complexity of the
Markov-switching problem to a straightforward linear algebra problem for higher-order
approximations. The Markov-switching problem is potentially unmanageable because
time-varying coefficients make the model inherently nonlinear for any finite-order ap-
proximation and especially for higher-order approximation. In the proof of Proposi-
tion 2 we show that, with a careful application of implicit differentiation, the second-
order approximation simply requires solving a system of linear equations even in the
presence of Markov-switching coefficients.5 As the second-order coefficients are func-
tions of the first-order coefficients, Markov-switching volatility has both first-order and
second-order effects on the slope and impact coefficients.

4The naive perturbation method resembles the existing methods for solving DSGE models with drifting
parameters, where the slope and impact coefficients in the first-order approximation are not time-varying
(Fernández-Villaverde, Guerrón-Quintana, and Rubio-Ramírez (2014)).

5Armed with our notation and applying the same technique, one can prove that the approximation of
any higher order involves solving a system of linear equations recursively. We leave the derivation to the
reader.



650 Foerster, Rubio-Ramírez, Waggoner, and Zha Quantitative Economics 7 (2016)

4. Removing the bottleneck

Propositions 1 and 2 show how to translate the complex Markov-switching DSGE prob-
lem into a simple linear algebra problem, as long as one is able to solve for Dxt−1 G(zss)
and Dxt−1 H(zss). As indicated by Proposition 1, the bottleneck involves solving a system
of quadratic polynomial equations. In this section we first discuss different approaches
to solving this quadratic system and then present the mean-square-stability (MSS) crite-
rion for selecting a stable solution to the first-order Taylor series expansion of G and H.
Higher-order expansions can be derived recursively from a first-order stable solution as
shown in Section 3.4.

4.1 Solving polynomial equations

When there are no Markov-switching parameters, the system of quadratic polynomial
equations (see system (A.4) in Appendix A) collapses to a special form that can be solved
by using the generalized Schur decomposition (Klein (2000)). When Markov-switching
parameters are present, however, the system of ns(ny + nx)nx quadratic polynomial
equations in ns(ny + nx)nx unknowns are no longer of this special form and the general
Schur technique is no longer applicable.

The literature has proposed numerical methods for the solution (Svensson and
Williams (2007), Farmer, Waggoner, and Zha (2011), Cho (2011)). Another approach is
to apply Gröbner bases to find all the solutions (see Appendix B). This approach is a
potentially powerful tool. The trade-off between the existing numerical methods and
the Gröbner-bases approach is computing time. Numerical methods can be used for
large DSGE models but may not find all the solutions, while the Gröbner-bases approach
may be computationally costly for large DSGE models but can find all the solutions. Re-
searchers should use their own judgment and experience in deciding which method is
most efficient for their own particular application. For the two models studied in this
paper, it turns out that there is a unique stable solution. In this paper we apply Gröbner
bases to these models for obtaining all the solutions to the system of quadratic polyno-
mial equations. When it is computationally feasible to apply Gröbner bases, we recom-
mend using this approach because it does not rest on arbitrary starting points required
by existing numerical methods. After we obtain all the solutions, we utilize the MSS cri-
terion (discussed below) to ascertain the uniqueness of a stable first-order solution.

4.2 Mean square stability

In the case of constant-parameter DSGE models, whether the first-order approximation
is stable or not can be determined by verifying whether its largest absolute generalized
eigenvalue is greater than or equal to 1, a condition that holds for most concepts of sta-
bility. In the MSDSGE case, the problem is both subtle and complicated because alterna-
tive concepts of stability would imply different kinds of solutions. Given the first-order
approximation, we use the concept of mean square stability (MSS) as defined in Costa,
Fragoso, and Marques (2005) and advocated by Farmer, Waggoner, and Zha (2009). The
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MSS criterion states that a solution is stable if and only if all the eigenvalues of the
nsn

2
x × nsn

2
x matrix

(
Pᵀ ⊗ In2

x

)
diag [Dxt−1h1 ⊗Dxt−1h1 � � � Dxt−1hns ⊗Dxt−1hns ]

are inside the unit circle, where diag denotes the block diagonal matrix with the
Dxt−1hk ⊗ Dxt−1hk, for k = 1� � � � � ns, along the diagonal. The nx × nx matrices Dxt−1hk

are obtained by reading off the appropriate rows of the matrix Dxt−1 H. In particular we
have

Dxt−1 H =
⎡
⎢⎣

Dxt−1h1
���

Dxt−1hns

⎤
⎥⎦ �

5. Understanding the partition perturbation method

In the preceding sections we develop the partition perturbation method and show how
to use it for obtaining first-order and second-order approximations to the solutions of
MSDSGE models. In this section we use a simple dynamic equilibrium model to reveal
the power of the partition perturbation method in comparison to the naive perturba-
tion method. The model is particularly instructive because we can obtain a closed-form
solution, which allows us to show that the naive partition method incurs needless ap-
proximation errors in the Taylor series expansion, especially in low-order expansions.

Consider a simple inflation model in which the nominal interest rate is linked to the
real interest rate and the expected inflation rate by the Fisher equation

Rt = r +Etπt+1�

where Rt is the nominal interest rate at time t, πt+1 is the inflation rate at time t + 1, and
the steady-state real interest rate r =R−π. Monetary policy follows the rule

Rt =R+φ(st)(πt −π)+ σ(st)εt�

where the monetary policy shock εt is an i.i.d. normal random variable. A positive
monetary policy shock raises the nominal interest rate and lowers inflation. Denoting
π̂t = πt − r and combining the previous two equations lead to

φ(st)π̂t + σ(st)εt = Et π̂t+1� (19)

Suppose that st ∈ {1�2} follows a two-state Markov process. Because of the presence of
Markov-switching parameters φ(st) and σ(st), equation (19) is in essence a nonlinear
model.

To write this model in the same form as (1), we define a new variable such that
π∗
t = πt and let yt = π∗

t and xt = πt . We thus have yss = π and xss = π. To use the par-
tition perturbation method, we follow the partition principle and partition the Markov-
switching parameters so that no Markov-switching parameter is perturbed. Specifically,
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θ(k�χ) = [φ(k) σ(k) ]ᵀ. The equilibrium conditions can be expressed as

Etf
(
yt+1�yt �xt �xt−1�χεt+1�εt �θ(st+1�χ)�θ(st�χ)

)
(20)

= Et

[(
1 −φ(st)

)
π +φ(st)πt −π∗

t+1 − σ(st)εt
π∗
t −πt

]

such that

f
(
yss�yss�xss�xss�0�0�θ(j�0)�θ(i�0)

) = 0 for 1 ≤ i� j ≤ 2�

Proposition 3. With the partition perturbation method, a first-order approximation to
the nonlinear model (20) is an exact solution and there are no higher-order Taylor series
expansions (i.e., higher-order coefficients are all 0).

The proof of Proposition 3 in Appendix A shows that the implication of Proposi-
tion 3 is more general than the result specific to model (19) or (20). For MSLRE models in
the Markov-switching literature, a first-order solution generated by the partition pertur-
bation method delivers an exact solution. Indeed, applying the partition perturbation
method to our example yields the exact solution as

π̂t = −σ(st)

φ(st)
εt �

By contrast, the naive perturbation method perturbs the Markov-switching param-
eters as

θ(k�χ)=
[
φ̄

σ̄

]
+ (1 −χ)

[
φ(st)− φ̄

σ(st)− σ̄

]
�

where φ̄ and σ̄ are the ergodic means of φ(st) and σ(st). The first-order approximation
generated by the naive perturbation method is πt = −(σ̄/φ̄)εt for all st . Clearly, this so-
lution is not exact and higher-order Taylor series expansions are needed to improve the
solution accuracy.

We demonstrate these results numerically with the parameterization p1�1 = 0�95,
p2�2 = 0�85,φ(1) = 1�25,φ(2) = 0�96,σ(1) = 0�1, and σ(2) = 0�6. The Gröbner-bases anal-
ysis gives four solutions for this parameterization, but only one is stable according to the
MSS criterion. The first-order stable approximation generated by the partition perturba-
tion method is

π̂t = −0�08εt for st = 1 and π̂t = −0�625εt for st = 2�

Because all higher-order coefficients are exactly zero, the first-order approximation is
the exact solution.
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Table 1. Euler-equation errors (base-10 log absolute value).

Perturbation Method

Partition Naive

Exact First Order First Order Second Order

EE −∞ −∞ −0�5564 −1�3691

Similarly, the first-order stable approximation produced by the naive perturbation
method is

π̂t = −0�191083εt for st = 1 and π̂t = −0�191083εt for st = 2�

Because all the Markov-switching parameters are perturbed according to (13), the first-
order solution does not depend on the realization of a particular regime. The regime-
dependent nature relies on the second-order solution

π̂t = 0�0447610εt for st = 1 and π̂t = −0�8986170εt for st = 2�

How does this approximation compare to the exact solution? To assess the accuracy
of the two perturbation methods, we compute Euler-equation errors (EEs) as suggested
in Judd (1998). Table 1 reports the base-10 log absolute value of the approximation error
for the original nonlinear equation (19), where the initial condition is set as εt = 1�0. We
discuss the reason for using the base-10 log value in Section 6.3.

Given the simplicity of this model, we can compute EEs without any simulation.
Since the first-order solution generated by the partition perturbation method is the ex-
act solution (Proposition 3), the absolute value of the approximation error is 0 (the log
absolute value of the error is −∞). On the other hand, the naive perturbation method
relies on higher-order approximations to get a more accurate solution. As indicated in
Table 1, the second-order approximation obtained by the naive perturbation method
is closer to the exact solution with a much smaller approximation error than the error
generated by the first-order approximation, but it is still not close to the exact solution.
This example clearly illustrates the importance of the partition perturbation method in
obtaining an accurate low-order approximation.

6. Application to the RBC model

In this section we apply the partition perturbation method to the two-state Markov-
switching RBC model introduced in Section 2.1. We then compare approximation errors
generated by the partition perturbation method with those incurred by the naive per-
turbation method to asses the accuracy of both methods.

The parameterization we use is presented in Table 2 and it is motivated by business-
cycle facts related to emerging markets. The value of β corresponds to a real rate of
3 percent in steady state, the value of α corresponds to a capital share of one-third,
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Table 2. The parameterization for the Markov-switching RBC model.

α β υ δ μ(1) μ(2) ρ(1) ρ(2) σ(1) σ(2) p1�1 p2�2

0�33 0�9976 −1 0�025 0�0274 −0�0337 0�1 0�0 0�0072 0�0216 0�75 0�5

and the value of δ corresponds to an annual capital depreciation rate of approxi-
mately 10 percent. The growth-rate parameters μ(1) and μ(2) and the standard devi-
ation parameters σ(1) and σ(2) are set to make the output growth and its uncondi-
tional variance differ across regimes in magnitudes consistent with the emerging mar-
kets such as the Argentinian economy (Fernández-Villaverde and Rubio-Ramírez (2007),
Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramírez, and Uribe (2011)). Note that
the first regime is associated with positive growth while the second is associated with
negative growth. Moreover, the first regime is less volatile and more persistent than the
second regime. Given this parameterization, the stationary steady-state values of con-
sumption, capital, and technology are c̃ss = 2�08259, k̃ss = 22�1504, and z̃ss = 1�007. De-
note ĉt = c̃t − c̃ss , k̂t = k̃t − k̃ss , and ẑt = z̃t − z̃ss .

6.1 Solution from the partition perturbation method

For the first-order approximation, the Gröbner-bases approach delivers four solutions.
According to the MSS criterion, only one of these solutions is stable. We report below the
second-order approximation associated with the unique stable solution:

⎡
⎣ ĉt
k̂t

ẑt

⎤
⎦ =

⎡
⎣0�0405 0�1264 0�0091 0�000049

0�9692 −2�1406 −0�1552 −0�3720
0�0 0�1 0�0072 0�0184

⎤
⎦

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

+ 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0�0009 −0�0003 0
0�0022 −0�0957 0
0�0002 −0�0069 0

−0�0004 −0�0168 0
0�0022 −0�0957 0

−0�1173 2�3364 −0�0894
0�0006 0�0153 0�0007
0�0008 0�0374 0�0018
0�0002 −0�0069 0
0�0006 0�0153 0�0007
0�0000 0�0011 0�0001
0�0001 0�0027 0�0001

−0�0004 −0�0168 0
0�0008 0�0374 0�0018
0�0001 0�0027 0�0001

−0�0495 0�0557 0�0003

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ᵀ

⎡
⎢⎢⎣

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

⎤
⎥⎥⎦
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if st = 1, and

⎡
⎣ ĉt
k̂t

ẑt

⎤
⎦ =

⎡
⎣0�0405 0�0 0�0268 −0�0968

0�9692 0�0 −0�4649 0�9227
0�0 0�0 0�0217 −0�0410

⎤
⎦

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

+ 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0�0009 −0�0003 0
0 0 0

0�0005 −0�0208 0
−0�0021 0�0405 0

0 0 0
0 0 0
0 0 0
0 0 0

0�0005 −0�0208 0
0 0 0

0�0004 0�0100 0�0005
−0�0012 −0�0193 −0�0009
−0�0021 0�0405 0

0 0 0
−0�0012 −0�0193 −0�0009
−0�0467 0�0869 0�0017

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ᵀ

⎡
⎢⎢⎣

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

⎤
⎥⎥⎦

if st = 2. For the dynamics of ĉt and k̂t , one can see that the coefficients of ẑt−1 and εt are

considerably different across regimes. The large difference across regimes also shows up

in the coefficients of k̂t−1εt , ẑt−1εt , and ε2
t . These differences are induced by the Markov-

switching volatility parameter σ(st), which has both first-order and second-order effects

on the dynamics of ĉt and k̂t .6

6.2 Solution from the naive perturbation method

The naive perturbation method, according to Corollary 1, does not have the time-

varying effects as discussed in the previous section. In particular, it can be seen from

the following second-order solution that the coefficients of ẑt−1, εt , k̂t−1ẑt , k̂t−1εt , ẑ2
t−1,

ẑt−1εt , and ε2
t are all identical across regimes:

⎡
⎣ ĉt
k̂t

ẑt

⎤
⎦ =

⎡
⎣0�0406 0�0836 0�0152 0�0314

0�9692 −1�4264 −0�2586 −0�4169
0 0�0667 0�0121 0�0191

⎤
⎦

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

6The time-varying coefficients of the cross terms k̂t−1� ẑt−1, and ẑ2
t−1 are related to the Markov-switching

persistence parameter ρ(st).
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+ 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0�0009 −0�0003 0
0�0014 −0�0638 0
0�0003 −0�0116 0
0�0006 −0�0185 0
0�0014 −0�0638 0

−0�0794 1�5100 −0�0618
0�0007 0�0170 0�0008
0�0438 −0�6868 0�0346
0�0003 −0�0116 0
0�0007 0�0170 0�0008
0�0001 0�0031 0�0001

−0�0057 0�1082 −0�0046
0�0006 −0�0185 0
0�0438 −0�6868 0�0346

−0�0057 0�1082 −0�0046
−0�1080 0�1431 −0�0010

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ᵀ

⎡
⎢⎢⎣

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

⎤
⎥⎥⎦

if st = 1, and

⎡
⎣ ĉt
k̂t

ẑt

⎤
⎦ =

⎡
⎣0�0406 0�0836 0�0152 −0�0628

0�9692 −1�4264 −0�2586 0�8339
0 0�0667 0�0121 −0�0383

⎤
⎦

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

+ 1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0�0009 −0�0003 0
0�0014 −0�0638 0
0�0003 −0�0116 0

−0�0011 0�0369 0
0�0014 −0�0638 0

−0�0794 1�5100 −0�0618
0�0007 0�0170 0�0008

−0�0876 1�3735 −0�0692
0�0003 −0�0116 0
0�0007 0�0170 0�0008
0�0001 0�0031 0�0001
0�0114 −0�2164 0�0092

−0�0011 0�0369 0
−0�0876 1�3735 −0�0692
0�0114 −0�2164 0�0092

−0�1124 0�2550 −0�0040

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ᵀ

⎡
⎢⎢⎣

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦ ⊗

⎡
⎢⎢⎣
k̂t−1

ẑt−1

εt
1

⎤
⎥⎥⎦

⎤
⎥⎥⎦

if st = 2.
The only Markov-switching effect is through the coefficient of the perturbation pa-

rameter χ. Moreover, the computed coefficients are very different, implying different
magnitudes and shapes of impulse responses. For example, in the regime st = 2, the co-
efficients of z̃t−1 for all the three equations are 0 for the partition solution, but the same
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coefficients can be as large as −1�4264 or 1�3735 for the naive solution, where −1�4264 is
the first-order coefficient of z̃t−1 and 1�3735 is the second-order coefficient. As a result,
the naive perturbation method produces less accurate approximations as shown in the
following section—a result that confirms what we find in Section 5.

6.3 Assessing approximation errors

Using the parameterization in Table 2, we compare the accuracy of approximated so-
lutions from the two perturbation methods. Our results confirm that the partition per-
turbation method is more accurate than the naive perturbation method, especially for
first-order and second-order approximations.

As a basis for comparison, we solve the nonlinear model using value function iter-
ations (Uhlig (1999)). To accomplish this task we formulate the value function problem
for the Markov-switching stationary RBC model as

V (k̃� z̃� ε� s) = max
c̃�k̃

{
c̃υ

υ
+βz̃υEV (k̃′� z̃′� ε′� s′)

}

subject to

c̃ + z̃k̃′ = z̃1−αk̃α + (1 − δ)k̃ and log z̃′ = (
1 − ρ(s)

)
μ(s)+ ρ(s) log z̃ + σ(s)ε�

Following Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006), we solve the prob-
lem on a grid of 25,600 points for k̃, 51 points for z̃, and 51 points for ε. We use Tauchen’s
(1986) method to discretize the stochastic process and smooth the policy functions us-
ing the shape-preserving splines described in Judd and Solnick (1994). Since we need
to find two value functions (one for each regime), the computation is very expensive.
To solve the above value function problem within a reasonable amount of time, we rely
on the CUDA (compute unified device architecture) of NVIDIA to build algorithms that
utilize graphics processing units (GPUs). This approach leads to a remarkable improve-
ment in computing time. Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramírez
(2011) document that utilization of the GPU delivers a speed improvement of about 200
times.

Let gorder
st

and horder
st

denote the solution from the Taylor series expansion of a par-
ticular order of interest. For our Markov-switching RBC model, the dimension of gorder

st
is just one (i.e., ny = 1) and we consider approximations up to the first three orders. Let

hk�order
st be the kth function of horder

st
(there are two functions because nx = 2). The EE

evaluated at k̃t−1, z̃t−1, εt , and st is

EEorder(k̃t−1� z̃t−1� εt� st)

= 1 −β

2∑
st+1=1

pst�st+1

∫
R

(gorder
st+1

(
h1�order
st

(k̃t−1� z̃t−1� εt�1)� z̃t � εt+1�1
)υ−1

gorder
st

(k̃t−1� z̃t−1� εt�1)υ−1

× [
αexp

{
(1 − α)h2�order

st

(
h1�order
st

(k̃t−1� z̃t−1� εt�1)� z̃t � εt+1�1
)}

× h1�order
st

(k̃t−1� z̃t−1� εt�1)α−1 + 1 − δ
])

μ(εt+1)dεt+1�
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where μ denotes the unconditional probability density. The associated absolute value of
the unconditional EE is

EEEorder =
2∑

st=1

[∫
R

∫
R

∫
R

∣∣EEorder(k̃t−1� z̃t−1� εt�1� st)
∣∣

×μ(k̃t−1� z̃t−1� εt)dk̃t−1 dz̃t−1dεt

]
p̄(st)�

where p̄(st) is the ergodic probability of st . Again, μ(k̃t−1� z̃t−1� εt) denotes the uncondi-
tional probability density function of k̃t−1� z̃t−1, and εt .

We use the following procedure to approximate EEEorder for order ∈ {first� second�
third}. We begin by simulating εt from the standard normal distribution and st from
the ergodic distribution. Conditioning on each simulated set {εt� st}, we use horder

st
to

simulate k̃t and z̃t . The length of the simulated path is 10,000 periods, with the first 1000
periods discarded as a burn-in. The remaining 9000 simulations are used to form the
unconditional distribution of the variables k̃t−1 and z̃t−1. This procedure is justified by
Santos and Peralta-Alva (2005).

For each set of k̃t−1, z̃t−1, εt , and st randomly selected from these 9000 simu-
lations, we draw 10,000 values of εt+1 from the standard normal distribution and
10,000 values of st+1 from the transition probability pst�st+1 to compute the expecta-
tion that depends on the functions gorder

st+1
, gorder

st
, and horder

st
. The result is 9000 values

of EEorder(k̃t−1� z̃t−1� εt� st). We average across these 9000 values to compute EEEorder.
We repeat this procedure for each order ∈ {first� second� third}, and for both the par-
tition and naive perturbation methods. When simulating a path for second-order and
third-order approximations, we use the pruning technique described in Andreasen,
Fernández-Villaverde, and Rubio-Ramírez (2013). We repeat the same procedure for the
value function iteration approach except there is no need for pruning.

Table 3 reports the base-10 log absolute values of EEs for each solution method.7

Although the value function iteration method is most accurate as expected, the partition
perturbation method fares remarkably well in comparison. This is an important result
because, even with the advanced CUDA technology, value function iterations take about
15 minutes to find an approximation to the model solution (with the steady state as an
initial starting point), while either perturbation method takes only a fraction of a second
to find a third-order approximation.

For both perturbation methods, Table 3 indicates that higher-order approximations
produce a higher degree of accuracy. In all cases, increasing the approximation from first
order to second order delivers significant gain without taking much more computational
time. The accuracy gain is much smaller when the approximation moves from second
order to third order. More important is the result that the partition perturbation method
is more accurate than the naive perturbation method for any order of approximation.
As argued in Section 3 and illuminated in Section 5, the partition perturbation method

7As a reference, the base-10 log value has this interpretation: the value −4 implies an error of $1 for each
$10,000 of consumption.



Quantitative Economics 7 (2016) Perturbation for Markov-switching DSGE models 659

Table 3. Euler-equation errors
(base-10 log absolute value).

Value function iteration −4�54

Partition perturbation
First order −3�01
Second order −3�59
Third order −3�73

Naive perturbation
First order −2�48
Second order −3�07
Third order −3�16

does not take approximation along the direction of θ2(st) and thus preserves the time-
varying nature of these parameters even for the first-order approximation.

Indeed, the accuracy of the first-order approximation from the partition perturba-
tion method is almost as good as the accuracy of the second-order approximation from
the naive perturbation method. For likelihood-based estimation of an MSDSGE model,
a lower-order approximation with the same degree of accuracy as a higher-order is al-
ways preferred because the cost of the programming and computing time increases
nonlinearly with the order of approximation. As the model becomes larger and the ap-
proximation order becomes higher, the estimation time can quickly become explosive.
From both theoretical and practical points of view, therefore, the partition perturbation
method is superior to the naive perturbation method.

7. Conclusion

Markov switching has been introduced as an essential ingredient to a large class of
models usable for analyzing structural breaks in the economy and regime shifts in pol-
icy, ranging from backward-looking models (Hamilton (1989) and Sims and Zha (2006))
to forward-looking rational expectations models (Clarida, Gali, and Gertler (2000),
Lubik and Schorfheide (2004), Davig and Leeper (2007), Farmer, Waggoner, and Zha
(2009)). This paper expands the literature by developing a general methodology for con-
structing high-order approximations to the solutions of MSDSGE models. Higher-order
approximations enable researchers to study many economic problems, such as how im-
portant is uncertainty in both the private sector and government policies for shaping
the business cycle.

While the key developments have been extensively discussed in the Introduction,
we emphasize that the contribution of this paper is not only theoretically substantive
but also practically important. We show through a Markov-switching RBC model that
the implementation of the partition perturbation method is not burdensome but rather
straightforward, once one knows how to solve a system of quadratic polynomial equa-
tions efficiently. It is our hope that the advance made in this paper enables applied re-
searchers to estimate MSDSGE models by focusing on particular economic problems.
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Appendix A: Proofs of Propositions 1, 2, and 3

Before presenting the proofs of Propositions 1, 2, and 3, we briefly review the two forms
of the chain rule in our notation and clarify the notation for the arguments of the func-
tion f. If w : Rnu → R

nw , u : Rnv → R
nu , and v ∈ R

nv , the chain rule for total derivatives
is Dw ◦ u(v) = Dw(u(v))Du(v). This will be the form used for the first-order expansion.
For second- and higher-order expansions, we need the form

Dw ◦ u(v) =
nu∑

m=1

Dmw
(
u(v)

)
Dum(v)

for 1 ≤  ≤ nv. We will write the function f as f(yt+1�yt �xt �xt−1� ε̃t+1�εt �θt+1�θt ). This
will prevent confusion when making the substitutions ε̃t+1 = χεt+1, θt+1 = θ(st+1�χ),
and θt = θ(st�χ).

A.1 Proof of Proposition 1

Define

vi(zt )=
⎡
⎣

(
eᵀi ⊗ Inx

)
H(zt )

χεt+1

χ

⎤
⎦ and ui�j(zt )=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
eᵀj ⊗ Iny

)
G

(
vi(zt )

)
(
eᵀi ⊗ Iny

)
G(zt )(

eᵀi ⊗ Inx
)
H(zt )

xt−1

χεt+1

εt

θ(j�χ)

θ(i�χ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

With this notation,

0(ny+nx) = Fi(zt ) =
ns∑
j=1

pi�j

∫
Rnε

f
(
ui�j(zt )

)
dμ(εt+1)

for 1 ≤ i ≤ ns. Thus,

0(ny+nx)×nz =DFi(zt ) =
ns∑
j=1

pi�j

∫
Rnε

Df
(
ui�j(zt )

)
Dui�j(zt ) dμ(εt+1) (A.1)

for 1 ≤ i ≤ ns. The nf × nz matrix Dui�j(zt ) can computed implicitly as

Dui�j(zt ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
eᵀj ⊗ Iny

)
DG

(
vi(zt )

)
Dvi(zt )(

eᵀi ⊗ Iny
)
DG(zt )(

eᵀi ⊗ Inx
)
DH(zt )⎡

⎢⎢⎢⎢⎣
Inx 0nx×nε 0nx×1

0nε×nx 0nε×nε εt+1

0nε×nx Inε 0nε×1

0nθ×nx 0nθ×nε θ(j�1)− θ(j�0)
0nθ×nx 0nθ×nε θ(i�1)− θ(i�0)

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� (A.2)
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where

Dvi(zt )=
⎡
⎣

(
eᵀi ⊗ Inx

)
DH(zt )[

0nε×(nx+nε) εt+1

01×(nx+nε) 1

]
⎤
⎦ � (A.3)

Substituting (A.2) and (A.3) into equation (A.1), evaluating at zss , and integrating, one
obtains

0(ny+nx)×nz

=DFi(zss)

=
ns∑
j=1

pi�jDf
(
ui�j(zss)

)

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
eᵀj ⊗ Iny

)(
Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
DH(zss)+ [

0nsny×(nx+nε)DχG(zss)
])

(
eᵀi ⊗ Iny

)
DG(zss)(

eᵀi ⊗ Inx
)
DH(zss)⎡

⎢⎢⎢⎢⎢⎣

Inx 0nx×nε 0nx×1

0nε×nx 0nε×nε 0nε×1

0nε×nx Inε 0nε×1

0nθ×nx 0nθ×nε θ(j�1)− θ(j�0)

0nθ×nx 0nθ×nε θ(i�1)− θ(i�0)

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

Here we have used the fact that
∫
Rnε εt+1 dμ(εt+1) = Etεt+1 = 0nε . Since there is an ex-

plicit expression for f and ui�j(zss), the (ny + nx) × nf matrix Df(ui�j(zss)) also has an
explicit representation. The above system can be written as

0(ny+nx)×nx =
ns∑
j=1

pi�j

{
Dxt−1 f

(
ui�j(zss)

)

+Dyt+1 f
(
ui�j(zss)

)(
eᵀj ⊗ Iny

)
Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
Dxt−1 H(zss)

(A.4)
+Dyt f

(
ui�j(zss)

)(
eᵀi ⊗ Iny

)
Dxt−1 G(zss)

+Dxt f
(
ui�j(zss)

)(
eᵀi ⊗ Inx

)
Dxt−1 H(zss)

}
�

0(ny+nx)×nε =
ns∑
j=1

pi�j

{
Dεt f

(
ui�j(zss)

)

+Dyt+1 f
(
ui�j(zss)

)(
eᵀj ⊗ Iny

)
Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
Dεt H(zss)

(A.5)
+Dyt f

(
ui�j(zss)

)(
eᵀi ⊗ Iny

)
Dεt G(zss)

+Dxt f
(
ui�j(zss)

)(
eᵀi ⊗ Inx

)
Dεt H(zss)

}
�
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0(ny+nx)×1 =
ns∑
j=1

pi�j

{
Dθt+1 f

(
ui�j(zss)

)(
θ(j�1)− θ(j�0)

)

+Dθt f
(
ui�j(zss)

)(
θ(i�1)− θ(i�0)

)
+Dyt+1 f

(
ui�j(zss)

)(
eᵀj ⊗ Iny

)(
Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
DχH(zss)

(A.6)
+DχG(zss)

)
+Dyt f

(
ui�j(zss)

)(
eᵀi ⊗ Iny

)
DχG(zss)

+Dxt f
(
ui�j(zss)

)(
eᵀi ⊗ Inx

)
DχH(zss)

}

for 1 ≤ i ≤ ns. From this representation, it is easy to see that equation (A.4) represents a

system of ns(ny + nx)nx quadratic equations in the ns(ny + nx)nx unknowns Dxt−1 G(zss)

and Dxt−1 H(zss). For each solution of the quadratic system (A.4), equation (A.5) repre-

sents a linear system in the unknowns Dεt G(zss) and Dεt H(zss), and equation (A.6) rep-

resents a linear system in the unknowns DχG(zss) and DχH(zss). This completes the

proof of Proposition 1.

A.2 Proof of Proposition 2

The ns(ny +nx)n
2
z unknowns D2D1 G(zss) and D2D1 H(zss) can be found by solving the

system of equations

D2D2Fi(zss)= 0

for 1 ≤ i ≤ ns and 1 ≤ 1� 2 ≤ nz . Since

D1Fi(zt )=
ns∑
j=1

pi�j

∫
Rnε

nf∑
m1=1

Dm1 f
(
ui�j(zt )

)
D1 um1

i�j (zt ) dμ(εt+1)�

we obtain

D2D1Fi(zt )

=
ns∑
i=1

pi�j

∫
Rnε

nf∑
m1=1

Dm1 f
(
ui�j(zt )

)
D2D1 um1

i�j (zt ) dμ(εt+1) (A.7)

+
ns∑
i=1

pi�j

∫
Rnε

nf∑
m2=1

nf∑
m1=1

Dm2Dm1 f
(
ui�j(zt )

)
D2 um2

i�j (zt )D1 um1
i�j (zt ) dμ(εt+1)�
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Each of the terms in the second summation in equation (A.7) can either be explicitly
computed or is known from the first-order expansion. All that remains is to compute
the term D2D1 um1

i�j (zt ), which is the m1th component of

D2D1 ui�j(zt ) =

⎡
⎢⎢⎢⎣

(
eᵀj ⊗ Iny

)
D2D1 G ◦ vi(zt )(

eᵀi ⊗ Iny
)
D2D1 G(zt )(

eᵀi ⊗ Inx
)
D2D1 H(zt )

0nx+2nε+2nθ

⎤
⎥⎥⎥⎦ � (A.8)

The term D2D1 G ◦ vi(zt ) is equal to

(
eᵀj ⊗ Iny

)( nz∑
k1=1

Dk1 G(zt )D2D1 vk1
i (zt )

+
nz∑

k2=1

nz∑
k1=1

Dk2Dk1 G(zt )D2 vk2
i (zt )D1 vk1

i (zt )

)
�

where

D2D1 vi(zt ) =
[(

eᵀi ⊗ Inx
)
D2D1 H(zt )

0nε+1

]
�

Substituting this into equation (A.7) and evaluating at zss , it is easy to see that this will
be linear in the unknowns D2D1 G(zss) and D2D2 H(zss). This completes the proof of
Proposition 2.

A.3 Proof of Proposition 3

Proposition 3 follows directly from the more general version given below. While there
is no constant term in equation (A.9), this case can easily be handled by appending a
variable x̃t to the vector of predetermined variables xt and adding an equation of the
form x̃t − x̃t−1 = 0. While this introduces an additional unit root into the system, this
will not pose any problems for the solutions techniques discussed in this paper.

Proposition 4. With the partition perturbation method, the first-order solution of

Et
[
A1

(
θ(st)�θ(st+1)

)
yt+1 + A2

(
θ(st)�θ(st+1)

)
yt + A3

(
θ(st)�θ(st+1)

)
xt

(A.9)
+ A4

(
θ(st)�θ(st+1)

)
xt−1 + A5

(
θ(st)�θ(st+1)

)
εt+1 + A6

(
θ(st)�θ(st+1)

)
εt

] = 0

is exact and all higher-order terms are zero, where A1 and A2 are (ny +nx)×ny , A3 and A4

are (ny + nx)× nx, and A5 and A6 are (ny + nx)× nε.

Proof. It is easy to see that the steady-state is yss = 0ny and xss = 0nx , which is inde-
pendent of all the parameters. This implies that none of the parameters needs to be
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perturbed and the perturbation function is θ(k�χ) = θ(k). We first show that the first-
order Taylor expansion of G and H exactly solves equation (A.9) and then show that all
terms of order 2 or greater in the full Taylor series expansion of G and H are zero.

The first-order Taylor expansion, evaluated at χ= 1, is

yt = (est ⊗ Iny )
(
Dxt−1 G(zss)xt−1 +Dεt G(zss)εt +DχG(zss)

)
�

xt = (est ⊗ Inx)
(
Dxt−1 H(zss)xt−1 +Dεt H(zss)εt +DχH(zss)

)
�

Substituting this into the left hand side of equation (A.9), taking expectations, and gath-
ering like terms, we obtain

ns∑
j=1

pi�j

{
A4(i� j)+ A1(i� j)

(
eᵀj ⊗ Iny

)
Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
Dxt−1 H(zss)

+ A2(i� j)
(
eᵀi ⊗ Iny

)
Dxt−1 G(zss)+ A3(i� j)

(
eᵀi ⊗ Inx

)
Dxt−1 H(zss)

}
xt−1

+
ns∑
j=1

pi�j

{
A6(i� j)+ A1(i� j)

(
eᵀj ⊗ Iny

)
Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
Dεt H(zss)

+ A2(i� j)
(
eᵀi ⊗ Iny

)
Dεt G(zss)+ A3(i� j)

(
eᵀi ⊗ Inx

)
Dεt H(zss)

}
εt

+
ns∑
j=1

pi�j

{
A1(i� j)

(
eᵀj ⊗ Iny

)(
DχG(zss)+Dxt−1 G(zss)

(
eᵀi ⊗ Inx

)
DχH(zss)

)

+ A2(i� j)
(
eᵀi ⊗ Iny

)
DχG(zss)+ A3(i� j)

(
eᵀi ⊗ Inx

)
DχH(zss)

}
�

where Ak(i� j) is shorthand notation for Ak(θ(i)�θ(j)). Since equations (A.4)–(A.6) must
hold, the above expression is equal to 0. Thus the first-order expansion is an exact solu-
tion of (A.9).

We now show that all the higher-order terms must be 0. Because none of the param-
eters is perturbed, one sees that the last 2nθ rows of the expression for Dui�j(zt ) given
in equation (A.2) are 0. So, if m> 2(ny + nx + nε), then Dum

i�j(zt ) = 0 for 1 ≤  ≤ nz . It is
also easy to see that Dm2Dm1 f(ui�j(zt )) = 0 if both m1 and m2 are less than or equal to
2(ny + nx + nε). Thus, an easy induction argument on q shows that

Dq · · ·D1Fi(zt )

=
ns∑
j=1

pi�j

∫
Rnε

2(ny+nx+nε)∑
m1=1

Dm1 f
(
ui�j(zt )

)
Dq · · ·D1 um1

i�j (zt ) dμ(εt+1)�

Finally, it follows from equation (A.8) that

Dq · · ·D1 ui�j(zt )=

⎡
⎢⎢⎢⎣

(
eᵀj ⊗ Iny

)
Dq · · ·D1 G ◦ vi(zt )(

eᵀi ⊗ Iny
)
Dq · · ·D1 G(zt )(

eᵀi ⊗ Inx
)
Dq · · ·D1 H(zt )

0nx+2nε+2nθ

⎤
⎥⎥⎥⎦
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for q > 1. Since Dq · · ·D1 G ◦ vi(zt ) is linear in Dq · · ·D1 G(zt ) and Dq · · ·D1 H(zt ),
it follows that Dq · · ·D1 G(zt ) = 0 and Dq · · ·D1 H(zt ) = 0 will be a solution of
Dq · · ·D1Fi(zt ) = 0. Thus all the terms of order 2 or greater in the Taylor series expan-
sion of G and H are 0. This completes the proof of Proposition 4. �

Appendix B: Application of Gröbner bases

Although the theory of Gröbner bases is well known in the mathematics literature, the
existing DSGE literature has not utilized this powerful application. We apply Gröbner
bases to the two models studied in this paper; this application has indeed proven very
powerful. For many MSDSGE models, Gröbner bases deliver a practical means to obtain
all the solutions to a system of quadratic polynomial equations. For this reason, we pro-
vide below an intuitive explanation of how to apply Gröbner bases to solving a system of
multivariate polynomials.

Suppose one wishes to find all the solutions to a system of n polynomial equations
in n unknowns. There exist a number of routines that transform the original system of
n polynomial equations to another system of n polynomial equations with the same set
of solutions. This transformed system is known as a Gröbner basis. The following theo-
rem, known as the shape lemma, shows that in most cases there is a Gröbner basis with
a particularly powerful form. The shape lemma is known in the mathematics and com-
putational science literature, but is still an unfamiliar object in the economics literature.
We therefore restate this theorem in a form that is suitable to our problem.

The Shape Lemma. There exists an open dense subset S of all systems of n polynomial
equations in n unknowns such that for every system

f1(x1� � � � � xn) = 0� � � � � fn(x1� � � � � xn) = 0

in S, there exists a system of n polynomial equations in n unknowns with the same set of
roots of the form

x1 − q1(xn) = 0� � � � � xn−1 − qn−1(xn) = 0� qn(xn) = 0�

where each qi(xn) is a univariate polynomial.

See Becker, Marianari, Mora, and Treverso (1993) for the proof of this result. There
are several important aspects of the shape lemma. First, most polynomial systems have
a Gröbner basis of this form. Second, most algorithms for obtaining a Gröbner basis
returns the above form. For instance, Mathematica’s GroebnerBasis[] command im-
plements the shape lemma. Third, it is straightforward to find all the roots of the univari-
ate polynomial qn(xn). With these values of xn in hand, it is trivial to find x1� � � � � xn−1.

A large strand of literature has dealt with the computation of Gröbner bases in the
shape lemma. Buchberger’s (1998) algorithm is the original technique. A number of
more efficient variants have been subsequently proposed. We refer the interested reader
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to Cox, Little, and O’Shea (1997). In this paper we use Mathematica to find a Gröbner ba-
sis.

To illustrate how powerful the shape lemma is, consider the following example fea-
turing a system of quadratic polynomial equations in four unknown variables x1� � � � � x4:

x1x2 + x3x4 + 2 = 0� x1x2 + x2x3 + 3 = 0�

x1x3 + x4x1 + x4x2 + 6 = 0� and x1x3 + 2x1x2 + 3 = 0�

A Gröbner basis of the form given in the shape lemma is

x1 − 1
28

(
9x5

4 + 6x3
4 − 15x4

) = 0� x2 − 1
28

(−9x5
4 − 6x3

4 + 99x4
) = 0�

x3 − 1
14

(−3x5
4 − 9x3

4 − 2x4
) = 0� and 3x6

4 + 9x4
4 − 19x2

4 − 49 = 0�

The last polynomial is univariate of degree 6 in x4. There are six roots for this polyno-
mial. Each of these roots can be substituted into the first three equations to obtain all
six solutions. The theory of Gröbner bases ensures that these solutions are the same as
those of the original system. This example illustrates the multiple-solution nature of a
system of quadratic polynomial equations.
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