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Bayesian inference in a class of partially identified models

Brendan Kline
Department of Economics, University of Texas at Austin

Elie Tamer
Department of Economics, Harvard University

This paper develops a Bayesian approach to inference in a class of partially identi-
fied econometric models. Models in this class are characterized by a known map-
ping between a point identified reduced-form parameter μ and the identified
set for a partially identified parameter θ. The approach maps posterior inference
aboutμ to various posterior inference statements concerning the identified set for
θ, without the specification of a prior for θ. Many posterior inference statements
are considered, including the posterior probability that a particular parameter
value (or a set of parameter values) is in the identified set. The approach applies
also to functions of θ. The paper develops general results on large sample approxi-
mations, which illustrate how the posterior probabilities over the identified set are
revised by the data, and establishes conditions under which the Bayesian credible
sets also are valid frequentist confidence sets. The approach is computationally
attractive even in high-dimensional models, in that the approach avoids an ex-
haustive search over the parameter space. The performance of the approach is
illustrated via Monte Carlo experiments and an empirical application to a binary
entry game involving airlines.

Keywords. Partial identification, identified set, criterion function, Bayesian in-
ference.

JEL classification. C10, C11.

1. Introduction

This paper considers the problem of Bayesian inference in a class of partially identified
models. These models are characterized by a known mapping between a point identi-
fied reduced-form parameter μ and the identified set for a partially identified parame-
ter θ. This set exhausts the information concerning θ contained in the data. Often μ can
be viewed as directly observable characteristics of the data and θ can be viewed as the
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parameter of an underlying econometric model. The parameter of interest is either θ or
some function of θ. For example, if θ is a parameter of an underlying econometric model
and μ are statistics concerning the data, then the identified set mapping is the set of θ∗
such that the underlying econometric model evaluated at θ∗ generates μ.

Since μ is point identified, there is a significant literature concerning the posterior
μ|X , where X is the data. This paper takes the existence of a posterior μ|X as given.
When establishing the theoretical results, the main condition this paper requires about
μ|X is that it is approximately normally distributed in large samples, which is implied
by “Bernstein–von Mises”-like results. In particular, such results are available even in
the absence of finite-dimensional distributional assumptions about X . However, some
of the theoretical results in this paper do not depend on the assumption that μ|X is
approximately normally distributed in large samples, and the inference approach can
be applied without that condition.

Then, given a posterior μ|X and the mapping from μ to the identified set for θ, it is
possible to construct various posterior probabilities concerning the identified set for θ
without specifying a prior for θ. One possibility is the posterior probability that a partic-
ular parameter value (or set of parameter values) is in the identified set, which concerns
the question of whether a particular parameter value (or set of parameter values) could
have generated the data. Another possibility is the posterior probability that all of the
parameter values in the identified set have some property, which concerns the ques-
tion of whether the parameter that generated the data necessarily has some property.
Yet another possibility is the posterior probability that at least one of the parameter val-
ues in the identified set has some property, which concerns the question of whether the
parameter that generated the data could have some property. Further, by checking the
posterior probability that the identified set is nonempty, it is possible to do “specifica-
tion testing.” It is possible to make similar posterior probability statements concerning
essentially any function of the identified set, including subvector inference.

For example, in many structural econometric models θ characterizes the utility func-
tions of the decision makers and μ summarizes the observed behavior of the decision
makers. Particularly in the case of models involving multiple decision makers, often θ

is only partially identified, in which case it is not possible to uniquely recover the utility
functions from the data. The identified set for θ exhausts the information in the data
concerning the utility functions. In this setting, the posterior probabilities addressed
in this paper answer empirically relevant questions including, “Are the data consistent
with a particular specification of the utility functions?,” “Do all utility functions consis-
tent with the data possess a certain property?” (e.g., is it possible to conclude on the
basis of the data that a certain observed explanatory variable has a positive effect on
utility?), and “Are the data consistent with the utility function possessing a certain prop-
erty?” (e.g., is it consistent with the data for a certain observed explanatory variable to
have a positive effect on utility, or has the data ruled out that possibility?). See for ex-
ample Manski (2007) or Tamer (2010) for further motivation for the identified set as the
object of interest.

Prior results on inference in partially identified models has tended to follow other
approaches. The frequentist approach (e.g., Imbens and Manski (2004), Rosen (2008),
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Andrews and Guggenberger (2009), Stoye (2009), Andrews and Soares (2010), Bugni
(2010), Canay (2010), and Andrews and Barwick (2012)) generally requires working with
discontinuous-in-parameters asymptotic (repeated sampling) approximations to test
statistics. In contrast, the Bayesian approach is based only on the finite sample of data
observed by the econometrician, and thereby avoids repeated sampling distributions.

Moreover, existing frequentist approaches are often difficult to implement compu-
tationally, especially in high-dimensional models, and especially as concerns the need
to use a “exhaustive search” grid search (or “guess and verify” approach) to determine
the set of parameter values belonging to the confidence set. In contrast, the Bayesian
approach in this paper can use the developed literature on simulation of posterior dis-
tributions for point identified parameters, and also can use a variety of analytic and
computational simplifications concerning the identified set mapping, implying that it
is not necessary to use such an exhaustive search grid search. This is because there is
separation between the “inference” problem, which concerns the posterior μ|X (not the
whole parameter space), and the remaining computational problem of determining the
identified set for θ evaluated at a particular value of μ.

Because the inference concerns the identified set, the approach in this paper can be
viewed as a sort of Bayesian analogue to the frequentist “random sets” approach (e.g.,
Beresteanu and Molinari (2008) and Beresteanu, Molchanov, and Molinari (2011, 2012)),
in the sense that the posterior concerns the random set that arises due to uncertainty
about the identified set.1

However, from the Bayesian perspective, it is possible to further revise the poste-
rior inference concerning θ by introducing a prior over θ. Such prior information would
influence “conventional” posterior inference statements concerning θ even asymptoti-
cally (e.g., Poirier (1998)). In contrast, the typical situation with point identified parame-
ters is that prior information does not influence posterior inference statements asymp-
totically. This issue with Bayesian inference in partially identified models causes the typ-
ical “asymptotic equivalence” between Bayesian and frequentist inference to fail to hold
in partially identified models. Moon and Schorfheide (2012) establish that the Bayesian
credible set for a partially identified parameter will tend to be contained in the identified
set, whereas a frequentist confidence set for a partially identified parameter will tend to
contain the identified set.2

Recently, a few alternative approaches to Bayesian inference in partially identified
models have been proposed. The robust Bayes results of Kitagawa (2012) establish the

1However, there are some differences beyond simply Bayesian versus frequentist inference. In one for-
mulation of the prior random sets approach, each observation in the data maps to a random set, and the
identified set is the “average” (or some other random set operation) of those random sets. In other formu-
lations, the econometric model evaluated at any specification of the parameters implies a certain random
set that the observables must be “contained in,” in a suitable sense. See also Beresteanu, Molchanov, and
Molinari (2012). In contrast, the random set approach in this paper arises due to the mapping between the
uncertainty concerning μ and uncertainty concerning the identified set. Kaido and White (2014) and Shi
and Shum (2015) have addressed certain questions about improving frequentist inference in similar model
frameworks.

2Woutersen and Ham (2014) study another nonstandard inference problem (where delta method argu-
ments fail), and show that a certain proposed bootstrap method for constructing confidence intervals has
a Bayesian interpretation and fails to provide valid frequentist inference. See also Freedman (1999).
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“bounds” on the posterior for a partially identified parameter due to considering a class
of priors, and shows a sense in which this robust Bayes approach reconciles Bayesian
and frequentist inference for a partially identified parameter, in the sense that a cred-
ible set from the robust Bayes perspective also is a valid frequentist confidence set.
Kitagawa (2012) establishes those results in a different model framework based on a
standard likelihood with a partially identified parameter, with a standard prior specified
only over the “sufficient parameter,” and a class of priors specified over the remaining
parameters. Intuitively, the sufficient parameter is a point identified reparameterization
of the likelihood.3  Norets and Tang (2014) study Bayesian inference in partially identi-
fied dynamic binary choice models. Similar to the approach in this paper, Norets and
Tang (2014) relate the Bayesian inference on point identified quantities (i.e., conditional
choice probabilities and transition probabilities) to partially identified quantities, but
due to a different focus of the paper, do not address the same posterior inference ques-
tions concerning the identified set, and do not formally derive the theoretical properties
of their proposed inference approach that would be analogous to the results derived in
this paper. Liao and Simoni (2012) study Bayesian inference on the support function
of a convex identified set, particularly in the context of an identified set characterized
by inequality constraints, and show that under appropriate conditions, the associated
credible sets are valid frequentist confidence sets. Convex sets are uniquely character-
ized by their support functions, but it may not be straightforward how to map inference
on the support function to the posterior probability statements addressed in this paper.
Further comparison is elaborated in Remark 4.

By focusing on posterior probability statements concerning the identified set rather
than the partially identified parameter, this paper establishes a method for Bayesian in-
ference that results in posterior inference statements that do not depend on the prior
asymptotically. Indeed, this approach does not even require the specification of any
prior for the partially identified parameter, and hence is a starting point that summarizes
the information about θ given the data and the model.4 See Section 3 and particularly
Remark 2 for a discussion of the role of priors and posteriors in this approach. Intuitively,
the identified set in a partially identified model is itself a point identified quantity, and
therefore large sample approximations to posterior probability statements concerning
the identified set do not depend on the prior, which is similar to the “typical” situation
with point identified parameters in general.

3The sufficient parameter is the mapping of the parameter of the likelihood to the “sufficient parame-
ter space,” with two values of the parameter of the likelihood mapping to the same value of the sufficient
parameter if and only if the likelihood function is the same evaluated at those two values of the parame-
ter. Kitagawa (2012, p. 9) describes the sufficient parameter: it “carries all the information for the structural
parameters through the value of the likelihood function.”

4Broadly, the approach of not specifying a prior for the partially identified parameter is shared also by
Kline (2011). Kline (2011) focuses on comparing Bayesian and frequentist inference on testing inequality
hypotheses concerning a moment of a multivariate distribution, which can be interpreted to provide some
limited results on posterior probability statements about whether a specified value of the parameter is in
the identified set (because it satisfies the moment inequality conditions). However, already at the level of
model framework, Kline (2011) differs substantially from this paper, with the consequence that the main
contributions of the approach in this paper are not present in Kline (2011).
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One consequence is that, under certain regularity conditions, in large samples the
posterior probabilities associated with true statements concerning the identified set are
approximately 1, and the posterior probabilities associated with false statements con-
cerning the identified set are approximately 0. The behavior for statements that are “on
the boundary” is complicated, but can be derived analytically. See Section 4.

Another consequence is that, under certain necessary and sufficient conditions, the
(1 − α)-level Bayesian credible set for the identified set is also an exact (1 − α)-level fre-
quentist confidence set for the identified set. This result means that there is an “asymp-
totic equivalence” between Bayesian and frequentist approaches to partially identified
models, if the focus is on inference concerning the identified set rather than the par-
tially identified parameter, which was the focus in other results including Moon and
Schorfheide (2012). These results concern pointwise, but not necessarily uniform, va-
lidity of the resulting frequentist inference.

The remainder of the paper is organized as follows. Section 2 sets up the class of
models considered in this paper, and provides examples. Section 3 sets up the poste-
rior probabilities over the identified set that concern the question of whether a cer-
tain value of the partially identified parameter is in the identified set, and derives the
large sample approximations to that posterior probability. Section 4 sets up the further
posterior probabilities over the identified set that concern other questions about the
identified set, and derives the large sample approximations to those posterior probabil-
ities. Section 5 establishes the frequentist coverage properties of the Bayesian credible
sets. Section 6 describes the computational implementation. Section 7 reports Monte
Carlo experiments. Section 8 provides an empirical example of estimating a binary en-
try game with airline data. Section 9 concludes. Moreover, the Supplement, available
in files on the journal website, http://qeconomics.org/supp/399/supplement.pdf and
http://qeconomics.org/supp/399/code_and_data.zip, contains additional material.5

2. Model and examples

The model is characterized by a point identified reduced-form finite-dimensional pa-
rameter μ, a partially identified finite-dimensional parameter θ, and a known mapping
between μ and the identified set for θ. Often, μ can be viewed as statistics concerning
the observable data (e.g., moments) and θ can be viewed as the parameter of an under-
lying econometric model. The parameter space for μ is M and the parameter space for θ
is Θ. The parameter space M is a subspace of Rdμ , endowed with the subspace topology,
where dμ is the dimension of μ. The parameter space Θ is a subset of Rdθ , where dθ is
the dimension of θ. The unknown true value of μ is μ0.

The defining property of this class of models is the existence of a known mapping
from μ to the identified set for θ. For example, this mapping might give the set of param-
eter values θ∗ such that the underlying econometric model evaluated at θ∗ generates μ.
This mapping often arises as an obvious implication of the specification of the under-
lying econometric model. Examples are provided below. The mapping can equivalently

5Section S1 provides further examples of the model framework, Section S2 provides results on measura-
bility, and Section S3 provides further Monte Carlo experiments.

http://qeconomics.org/supp/399/supplement.pdf
http://qeconomics.org/supp/399/code_and_data.zip
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be expressed as a level set of a known criterion function of θ and μ, or as a known set-
valued mapping of μ. In either case, this mapping gives the set of θ consistent with μ,
and thus the identified set for θ.

Under the criterion function approach, there is a function Q(θ�μ) ≥ 0 that sum-
marizes the relationship between μ and the identified set for θ. The criterion func-
tion is a function of the point identified parameter (which essentially substitutes for the
data) and the partially identified parameter, which differs from the prior literature (e.g.,
Chernozhukov, Hong, and Tamer (2007), and Romano and Shaikh (2008, 2010)) where
the criterion function depends on the data and the (potentially) partially identified pa-
rameter.

By construction, the identified set for θ can be expressed as

ΘI ≡ΘI(μ0) ≡ {
θ ∈Θ :Q(θ�μ0) = 0

}
�

Further, the identified set for θ that would arise at any parameter value μ∗ is

ΘI

(
μ∗) ≡ {

θ ∈Θ : Q(
θ�μ∗) = 0

}
�

Therefore, ΘI is the true identified set, whereas ΘI(μ) is the identified set as a mapping
of μ. If the model is point identified, then ΘI(μ) is a singleton for all μ ∈ M .

It is allowed that ΘI(μ) is a “potentially nonsharp” specification of the identified set,
in the sense that it potentially contains values of the partially identified parameter that
are not consistent with the data summarized by μ and the assumptions of the under-
lying econometric model. All inference statements on the identified set are relative to
the specification of ΘI(μ). In many applications, ΘI(μ) will be a “sharp” specification
of the identified set, and therefore the inference will “fully exploit” the assumptions of
the underlying econometric model. If ΘI(μ) is a potentially nonsharp specification of
the identified set, then inference will be valid relative to that specification, but will not
necessarily fully exploit the assumptions of the underlying econometric model.

Let the inverse identified set be μI(θ) ≡ {μ : Q(θ�μ) = 0}. It follows that μI(θ) is the
set of μ consistent with θ being in the identified set evaluated at μ. Therefore, the state-
ment that μ ∈ μI(θ) is equivalent to the statement that θ ∈ΘI(μ).

Finally, let Δ(·) be a function defined on Θ. Suppose that δ is the partially identi-
fied parameter of interest, defined by δ ≡ Δ(θ). For example, if Δ(θ) = θ1, then the first
component of θ is the parameter of interest, resulting in subvector inference. Alterna-
tively, if Δ(θ) = θ, then the entirety of θ is the parameter of interest. Then Δ(Θ) is the
induced parameter space for δ, ΔI ≡ Δ(ΘI) is the induced true identified set for δ, and
ΔI(μ) ≡ Δ(ΘI(μ)) is the induced identified set for δ as a mapping of μ. The parameter
space Δ(Θ) is a subset of Rdδ , where dδ is the dimension of δ.

The following paragraphs give a few examples of models that fit this framework. The
Supplement discusses further examples, including moment inequality models.

Example 1 (Intersection Bounds). Suppose that μ is a dμ × 1 parameter vector whose
estimation satisfies “standard regularity conditions,”6 perhaps moments of a distribu-

6“Standard regularity conditions” means, essentially, that the conclusions of the Bernstein–von Mises
theorem applies to μ|X , as characterized by Assumption 3. See references following Assumption 3 for suf-
ficient conditions.
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tion. Suppose μ0 is the true value. Suppose that the identified set for θ is the interval
[maxj∈L μ0j�minj∈U μ0j]. The sets L and U are a partition of {1�2� � � � � dμ} that determine
which of the elements of μ contribute to the lower and upper bounds for θ. See also, for
example, Chernozhukov, Lee, and Rosen (2013). Then one possible specification of the
criterion function is Q(θ�μ) = (maxj∈L μj − θ)+ + (θ − minj∈U μj)+. The identified set
at μ is ΘI(μ) = {θ : maxj∈L μj ≤ θ ≤ minj∈U μj}. Note that ΘI(μ) = ∅ when maxj∈L μj >

minj∈U μj . The inverse identified set is μI(θ) = {μ : maxj∈L μj ≤ θ ≤ maxj∈U μj}.
In particular, “simple interval identified parameters” concerns dμ = 2, and arises in

the context of missing data and general “selection problems” (e.g., Manski (2003)) and
best response functions in games (e.g., Kline and Tamer (2012)).

Example 2 (Discrete-Support Models). Suppose that X has discrete support, and let μ
be a parameter vector that characterizes the distribution of X . (X comprises all of the
data, not just the “explanatory variables.”) Then for any such model, f (θ) can be the
discrete distribution of the data implied by the econometric model at the parameter θ,
and μ can be the actual distribution of the data. Evaluated at the truth, μ0 = f (θ0), so one
possible specification of the criterion function is Q(θ�μ) = ‖μ − f (θ)‖. The identified
set at μ is ΘI(μ) ≡ {θ : μ = f (θ)}. The inverse identified set is μI(θ) = {μ : μ= f (θ)}. This
shows that essentially any partially identified model, with discretized observables, fits
the framework of this paper.7

In particular, consider the example of a discrete game involving N players, such
that the actions available to player i are Ai ≡ {0�1� � � � �Ai} for some finite Ai. Then
the observables are the outcomes of the game Y ∈ ∏

Ai, and possibly discretized co-
variates Z. The game theory model implies that there is some function from unknown
parameters θ to the distribution of the observables μ, where μ = {P(Y = y|Z = z)}y�z ,
so that the model has the form that f (θ) = μ for some function f that is implied by
the game theory model. See the Monte Carlo experiments in Section 7.1 and the em-
pirical application in Section 8 for specifications of f (·). The parameters in θ can in-
clude parameters characterizing how the utility functions depend on the covariates, pa-
rameters characterizing the distribution(s) of the unobservables, and parameters char-
acterizing the selection mechanisms over regions of multiple equilibrium outcomes.
See for example Tamer (2003), Berry and Tamer (2006), or Kline (2015a, 2015b) for fur-
ther details of various models of this general form, each of which imply a certain form
for f (·).

3. Posterior probabilities over the identified set

3.1 Setup

Since μ is point identified, let Π(μ|X) be a posterior for μ after observing the data X .
This paper takes Π(μ|X) as given, only supposing that it satisfies standard regular-
ity conditions elaborated later in this section. The posterior Π(μ|X) induces posterior

7This is a minimum distance approach to inference in models with discrete data, but the approach allows
θ to be non-point identified.
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probability statements concerning ΔI . This section addresses the posterior probability
statements concerned with answering questions related to “Could δ∗ have generated the
data?” and “Could each δ∗ ∈ Δ∗ have generated the data?”.

Definition 1. Based on the posterior for μ, define the following posterior probability
statements:

(i) For a singleton δ∗ ∈ Δ(Θ),

Π
(
δ∗ ∈ ΔI |X

) ≡Π
(
δ∗ ∈ Δ

(
ΘI(μ)

)|X) = Π

(
μ ∈

⋃
{θ:Δ(θ)=δ∗}

μI(θ)
∣∣X

)
�

(ii) For a set Δ∗ ⊆ Δ(Θ),

Π
(
Δ∗ ⊆ ΔI |X

) ≡Π
(
Δ∗ ⊆ Δ

(
ΘI(μ)

)|X) =Π

(
μ ∈

⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)
∣∣X

)
�

The posterior probability statements on the left correspond to statements concern-
ing the “posterior uncertainty” about ΔI . These are then expressed in terms of the pos-
terior for μ. The nontrivial identities in Definition 1 are proved by Lemma 2.

The posterior Π(δ∗ ∈ ΔI |X) answers an important question about the identified set:
“Does a specified δ∗ belong to the identified set?”. It answers this question by giving the
posterior probability that δ∗ is in the identified set. This can be used to check whether δ∗
could have generated the data. The posterior Π(Δ∗ ⊆ ΔI |X) answers another important
question: “Is a specified set Δ∗ contained in the identified set?”. It answers this question
by giving the posterior probability that Δ∗ is contained in the identified set. This can be
used to check whether all parameter values in Δ∗ could have generated the data.

These posterior probability statements concerning ΔI do not address questions re-
lating to the actual “true value” of δ that generated the data. In partially identified mod-
els, the data reveal only that the true value of δ is contained in ΔI , suggesting that ΔI

rather than δ should be the target of inference.
In the context of a simple interval identified parameter, the following example illus-

trates the approach to inference.

Example 3 (Posterior Probabilities for the Simple Interval Identified Parameter). Sup-
pose θ is a simple interval identified parameter, as in Example 1, so ΘI(μ) = [μL�μU ],
where μ = (μL�μU). In this example, Δ(θ) = θ, so δ ≡ θ. Therefore, {θ : Δ(θ) = δ} = {δ},
so essentially all expressions involving δ can be “replaced” by θ. Suppose Θ∗ = [a�b] is a
finite interval, possibly with a= b so Θ∗ is a singleton.

Consider Π(Θ∗ ⊆ ΘI |X). This is the posterior probability that each of the val-
ues in Θ∗ is contained in the identified set, or equivalently the posterior probability
that each of the values in Θ∗ could have generated the data. Note that

⋂
θ∈Θ∗ μI(θ) =⋂

θ∈Θ∗{μ : μL ≤ θ ≤ μU } = {μ : μL ≤ a�μU ≥ b}, so Π(Θ∗ ⊆ ΘI |X) = Π({μ : μL ≤ a�μU ≥
b}|X). Consequently, Π(Θ∗ ⊆ ΘI |X) is the posterior probability of the set {μ : μL ≤ a�

μU ≥ b}. Equivalently, Π(Θ∗ ⊆ΘI |X) is the posterior probability of the set of μ such that
the identified set evaluated at μ does indeed contain Θ∗.
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Similarly, note that before the econometrician observes the data, Π(Θ∗ ⊆ΘI) would
be the prior probability of the set {μ : μL ≤ a�μU ≥ b}. In that sense, as discussed in
more detail in Remark 2, this approach to inference implicitly entails the specification
of a prior over the identified set.

Some of the main theoretical results in this paper concern large sample approxima-
tions to posterior probability statements about the identified set. Intuitively, these are
derived from the large sample approximations of the posterior μ|X , via the identified
set mapping ΘI(μ). In this example, the large sample approximation to the posterior
probability that Θ∗ ⊆ ΘI is derived from the large sample approximation to the poste-
rior probability of the set {μ : μL ≤ a�μU ≥ b} according to μ|X . For example, if μ0 is such
that Θ∗ is contained in the interior of ΘI(μ0), then μ0L < a and μ0U > b, so consistency
of the posterior μ|X implies that the posterior probability of the set {μ : μL ≤ a�μU ≥ b}
is approximately 1 in large samples, and therefore that the posterior probability that
Θ∗ ⊆ ΘI is approximately 1 in large samples.

Section 3.2 formalizes this intuition and establishes the properties of the large sam-
ple approximations. One technical consideration is the necessity to establish that pos-
terior probability statements concerning the identified set are equivalent to posterior
probability statements concerning measurable sets of μ.

3.2 Large sample approximations

This section establishes the regularity conditions under which there is a large sample
approximation to Π(Δ∗ ⊆ ΔI |X). Intuitively, because the identified set is a point identi-
fied quantity, under regularity conditions Π(Δ∗ ⊆ ΔI |X) does not depend on the prior
asymptotically. The results establish that, in many cases, in large samples Π(Δ∗ ⊆ ΔI |X)

equals either 1 or 0 depending on whether Δ∗ ⊆ ΔI is true or false.

Definition 2 (Topological Terminology). This paper uses standard topological termi-
nology. For a given subset A of B, the interior of A is int(A). The exterior of A is ext(A),
which is the complement of the closure of A. The boundary of A is bd(A). The comple-
ment of A is AC . The convex hull of A is co(A). The subset A is a convex polytope if A
is convex and compact, and has finitely many extreme points (i.e., A is the convex hull
of finitely many points).

The first regularity condition concerns the probability space for the posterior for μ.

Assumption 1 (Regularity Condition for Π(μ|X)). The parameter space for μ (i.e., M) is
a subspace of the Euclidean space Rdμ endowed with the subspace topology. The posterior
distribution for μ, Π(μ|X), is a probability measure defined on the Borel8 σ-algebra of
M , B(M).

8The Borel sets of M are the Borel sets corresponding to the subspace topology on M viewed as a sub-
space of a Euclidean space, that is, B(M)= {A∩M : A ∈ B(Rdμ)}. Note in particular that if M ∈ B(Rdμ), then
B(M)= {A ∈ B(Rdμ) :A ⊆M} ⊆ B(Rdμ).
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Also, the results suppose the following regularity conditions on the large sample be-
havior of the posterior for μ.

Assumption 2 (Posterior for μ Consistent at μ0). Along almost all sample sequences, for
any open neighborhood U of μ0 it holds that Π(μ ∈U |X) → 1.

Posterior consistency for a point identified parameter holds under very general con-
ditions, for example by Doob’s theorem. This requires, in particular, that the prior for
μ has support on a neighborhood of μ0 (e.g., the prior for μ has support on the entire
parameter space).

Assumption 3 (Large Sample Normal Posterior for μ). There is a function of the data
μn(X) and a covariance matrix Σ0 such that along almost all sample sequences,

√
n(μ−

μn(X))|X converges in total variation to N(0�Σ0).

This assumption is essentially the conclusion of the various Bernstein–von Mises-
like theorems for a point identified parameter (e.g., Van der Vaart (1998), Shen (2002),
or Bickel and Kleijn (2012)), taking μn(X) to be the maximum likelihood estimator and
Σ0 to be the inverse Fisher information matrix.9 This assumption can also hold, for ex-
ample, for the Bayesian bootstrap for nonparametric estimation of moments of an un-
known distribution under a suitably flat Dirichlet process prior, taking μn(X) to be the
sample average and Σ0 to be the covariance of the unknown distribution (e.g., Ferguson
(1973), Rubin (1981), Lo (1987), Gasparini (1995), and Choudhuri (1998)). See also for
example Kline (2011) for a connection to a different (more limited) way to pointwise
test moment inequality conditions from a Bayesian perspective. Note that some of the
theoretical results in this paper do not depend on Assumption 3, and that the inference
approach can be applied without Assumption 3.

Remark 1 (Technical Consideration: Measurability). It is not immediate that posterior
probabilities over the identified set exist, because it is possible that there are subsets
Δ∗ such that Π(Δ∗ ⊆ ΔI |X) ≡ Π(μ ∈ ⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)|X) does not exist because
it corresponds to a nonmeasurable event. Consequently, M1 is introduced as the sub-
sets such that for Δ∗ ∈ M1, Π(Δ∗ ⊆ ΔI |X) ≡ Π(μ ∈ ⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)|X) corre-
sponds to a measurable event. The theoretical analysis of the posterior probabilities
over the identified set necessarily restrict attention to assigning posterior probabilities
to those Δ∗. Lemma 3 in the Supplement shows that if the criterion function is continu-
ous, Δ(·) is continuous, and Θ is closed, then M1 contains all the Borel sets. Therefore,
although measurability could potentially be a problem in some settings, measurability
is not a problem for assigning posterior probabilities concerning “nice” sets (i.e., Borel
sets) in “nice” models (i.e., continuous Q(·) and Δ(·) and closed parameter space).

9Depending on the topological “complexity” of μI(·) and the posterior probability under study, it is pos-
sible to relax this assumption to require only convergence in distribution and an application of Pólya’s the-
orem or similar results to get uniform convergence over the relevant subsets of the parameter space M . (See
the proof of part (iii) of Theorem 1, or parts (iii) and (vi) of Theorem 3 for the relevant considerations.) For
example, see Rao (1962), Billingsley and Topsøe (1967), or Bickel and Millar (1992) for the cases including
convex subsets.
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Theorem 1. Under Assumptions 1 and 2, for any Δ∗ such that Π(Δ∗ ⊆ ΔI |X) is defined
(i.e., Δ∗ ∈ M1; see Remark 1), along almost all sample sequences the following statements
hold:

(i) If μ0 ∈ int(
⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)), then Π(Δ∗ ⊆ ΔI |X) → 1.

(ii) If μ0 ∈ ⋃
δ∈Δ∗:{δ}∈M1

(ext(
⋃

{θ:Δ(θ)=δ}μI(θ))), then Π(Δ∗ ⊆ ΔI |X) → 0.

Under the additional Assumption 3,

(iii) |Π(Δ∗ ⊆ ΔI |X)− PN(0�Σ0)(
√
n(

⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)−μn(X)))| → 0.

It is possible to simplify the statement of Theorem 1 under the assumption of “con-
tinuity” of the identified set.

Assumption 4 (Continuity of the Identified Set). For all δ ∈Rdδ , if δ ∈ int(ΔI), then μ0 ∈
int(

⋃
{θ:Δ(θ)=δ}μI(θ)). For all δ ∈ Rdδ ,

⋃
{θ:Δ(θ)=δ}μI(θ) is closed. For any open Δ∗ ⊆ Rdδ ,⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C is open.

The first part of this assumption requires that if δ is in the interior of ΔI , then there
is a neighborhood of μ0 such that δ is also in the identified sets ΔI(μ) for all μ in that
neighborhood. The second part of this assumption requires that the set of μ such that
δ ∈ ΔI(μ) is closed. The third part of this assumption requires that the set of μ such that
ΔI(μ) ⊆ Δ∗ for open Δ∗ is open.

Lemma 3 in the Supplement shows that a sufficient condition for the second and
third parts of the assumption is continuity of the criterion function, continuity of Δ(·),
and compactness of the parameter space. Unfortunately, continuity of the criterion
function does not imply the first part of the assumption; however, this assumption is
satisfied in typical models.10 In particular, the first part of this assumption is implied by
convexity of ΔI(μ) for all μ and inner semicontinuity of ΔI(μ) at μ0 viewed as a mapping
between Euclidean spaces (e.g., Rockafellar and Wets (2009, Theorem 5.9)).

Under Assumption 4, the statement of the large sample approximation results sim-
plifies substantially. (Some parts of Theorem 1 do not change with the addition of As-
sumption 4, and so are not displayed in Corollary 2.)

Corollary 2. Under Assumptions 1, 2, and 4, along almost all sample sequences the
following statements are satisfied:

(i) If Δ∗ ⊆ int(ΔI) and Δ∗ is a convex polytope such that ΔI(μ) ∩Δ∗ is convex for all μ
in a neighborhood of μ0, then Π(Δ∗ ⊆ ΔI |X) → 1.

10The following is a counterexample, that illustrates the seeming “strangeness” of models that would
violate this assumption. Suppose that Δ(·) is the identity function, and suppose that the criterion function
Q(θ�μ0) equals zero for all θ in [0�1]. Therefore, all points in (0�1) are in the interior of the identified set.
It is consistent with Q being continuous that Q(θ�μ) > 0 for all θ and all μ = μ0, which would violate the
first part of the assumption. However, models like the interval identified parameter model share this basic
structure, but do satisfy the assumption since in that model it would not happen that Q(θ�μ) > 0 for all θ
and all μ = μ0, suggesting that this assumption is reasonable.
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(ii) If Δ∗ � ΔI , then Π(Δ∗ ⊆ ΔI |X) → 0.

Essentially, Corollary 2 shows that Π(Δ∗ ⊆ ΔI |X) is approximately 1 (respectively, 0)
in large samples if Δ∗ ⊆ ΔI is true (respectively, false).

Part (i) shows that if Δ∗ ⊆ int(ΔI) and Δ∗ is not too complex, then Π(Δ∗ ⊆ ΔI |X)→ 1.
Part (i) can be applied to finitely many convex polytopes in the interior of the identified
set, so by “piecing together” an approximation of the interior of the identified set by con-
vex polytopes, in models with sufficiently “simple” identified sets, each compact subset
Δ∗ of the interior of the identified set will have the property that Π(Δ∗ ⊆ ΔI |X) → 1.
It is not necessary that ΔI(μ) is convex in a neighborhood of μ0, because convexity of
ΔI(μ)∩Δ∗ is a weaker condition than convexity of ΔI(μ).

Part (ii) shows that if Δ∗ � ΔI , then Π(Δ∗ ⊆ ΔI |X) → 0.

Remark 2 (The Role of Prior Information). This approach to inference entails the im-
plicit specification of a prior over the identified set, in the same sense that this approach
results in a posterior over the identified set. This is because a prior for μ implies a prior
for the identified set by the same logic as appears in Definition 1, dropping condition-
ing on X . The key distinction between this approach and “conventional” Bayesian ap-
proaches concerns the inferential object (identified set versus the partially identified
parameter) and how the data revise the “prior” over the inferential object. There is “no
prior” for the partially identified parameter in the same sense that no (conventional)
posterior for the partially identified parameter results.

In the context of a simple interval identified parameter, the following example dis-
cusses the implications of Theorem 1.

Example 4 (Posterior Probabilities for the Simple Interval Identified Parameter). This
example continues the discussion from Example 3.

Case 1: Suppose that [a�b] ⊂ int(ΘI) = (μ0L�μ0U) ⊂ ΘI = [μ0L�μ0U ]. This implies
μ0L < a ≤ b < μ0U . Then μ0 ∈ int(

⋂
θ∈Θ∗ μI(θ)), so by part (i) of Theorem 1, Π([a�b] ⊆

ΘI |X) → 1. Therefore, in large samples, there will essentially be posterior certainty as-
signed to the (true) statement that [a�b] is contained in the identified set.

Case 2: Conversely, suppose that [a�b] � ΘI . Suppose also that indeed μ0L ≤ μ0U
(so that the identified set is nonempty). Therefore, either μ0L > a or μ0U < b. Note
that μI(θ)

C = {μ : μL > θ or μU < θ}. Therefore, μ0 ∈ int(μI(a)
C) = ext(μI(a)) or μ0 ∈

int(μI(b)
C)= ext(μI(b)), respectively, so by part (ii) of Theorem 1,Π([a�b] ⊆ΘI |X)→ 0.

Therefore, in large samples, there will essentially be no posterior probability assigned to
the (false) statement that [a�b] is contained in the identified set.

Further discussion of this example is in Example 6 in the Supplement.

4. Further posterior probabilities over the identified set

4.1 Setup

The posterior Π(μ|X) also induces posterior probability statements concerning ΔI that
answer questions not already addressed in Section 3. This section addresses the poste-
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rior probability statements concerned with answering questions related to “Do all pa-
rameter values in the identified set have some property?,” “Does at least one parameter
value in the identified set have some property?,” and “Do none of the parameter values
in the identified set have some property?”.

Definition 3. Based on the posterior for μ, define11 the following posterior probability
statements:

(i) For a set Δ∗ ⊆ Δ(Θ),

Π
(
ΔI ⊆ Δ∗|X) ≡Π

(
Δ

(
ΘI(μ)

) ⊆ Δ∗|X) =Π

(
μ ∈

⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}

μI(θ)
C
∣∣X

)
�

(ii) For a set Δ∗ ⊆ Δ(Θ),

Π
(
ΔI ∩Δ∗ = ∅|X) ≡Π

(
Δ

(
ΘI(μ)

) ∩Δ∗ = ∅|X) = Π

(
μ ∈

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)
∣∣X

)
�

(iii) For a set Δ∗ ⊆ Δ(Θ),

Π
(
ΔI ∩Δ∗ = ∅|X) = 1 −Π

(
ΔI ∩Δ∗ = ∅|X)

�

The posterior Π(ΔI ⊆ Δ∗|X) answers the question, “Do all parameter values in the
identified set have some property?”. It answers this question by giving the posterior
probability that the identified set is contained in Δ∗. This can be used to check whether
all parameter values that could have generated the data have the property defined by Δ∗.
For example, if δ is a scalar and Δ∗ = [0�∞), then Π(ΔI ⊆ Δ∗|X) is the posterior proba-
bility that all parameter values that could have generated the data are nonnegative. If θ is
point identified for all μ ∈M and Δ(θ)≡ θ, then Π(ΘI ⊆Θ∗|X) is the ordinary posterior
for θ, in the sense that ΘI(μ) is just a singleton, so Π(ΘI ⊆Θ∗|X) is simply the posterior
probability that θ ∈Θ∗.

The posterior Π(ΔI ∩Δ∗ = ∅|X) answers the question, “Does at least one parameter
value in the identified set have some property?”. It answers this question by giving the
posterior probability that the identified set has nonempty intersection with Δ∗. This can
be used to check whether at least one of the parameter values that could have generated
the data has the property defined by Δ∗. For example, if δ is a scalar and Δ∗ = [0�∞),
then Π(ΔI ∩Δ∗ = ∅|X) is the posterior probability that at least one nonnegative δ could
have generated the data. In particular, taking Δ∗ = Δ(Θ),

Π
(
ΔI ∩Δ∗ = ∅|X) =Π(ΔI = ∅|X) ≡ Π

(
μ ∈

⋃
δ∈Δ(Θ)

⋃
{θ:Δ(θ)=δ}

μI(θ)
∣∣X

)

is the posterior probability that the identified set ΔI is nonempty, which can be inter-
preted to be a conservative (but implementable) measure of the posterior probability

11As in Section 3, the posterior probability statements on the left correspond to statements concerning
the “posterior uncertainty” about ΔI which are then expressed in terms of the posterior for μ. The nontrivial
identities in Definition 3 are proved by Lemma 2.
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that the model is not misspecified. It is conservative because the fact that the identified
set is nonempty does not imply that the model is correctly specified. But if the identified
set is empty, then the model must be misspecified.

The posterior Π(ΔI ∩ Δ∗ = ∅|X) answers the question, “Do none of the parameter
values in the identified set have some property?”. It answers this question by giving the
posterior probability that the identified set has empty intersection with Δ∗. This can be
used to check whether none of the parameter values that could have generated the data
has the property defined by Δ∗. For example, if δ is a scalar and Δ∗ = [0�∞), then Π(ΔI ∩
Δ∗ = ∅|X) is the posterior probability that no nonnegative δ could have generated the
data.

4.2 Large sample approximations

Remark 3 (Technical Consideration: Measurability). As in Section 3, it is not immedi-
ate that posterior probabilities over the identified set exist. The collection M2 are the
subsets such that for Δ∗ ∈ M2, Π(ΔI ⊆ Δ∗|X) ≡ Π(μ ∈ ⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C |X)

corresponds to a measurable event. The collection M3 are the subsets such that for
Δ∗ ∈ M3, Π(ΔI ∩ Δ∗ = ∅|X) ≡ Π(μ ∈ ⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)|X) corresponds to a mea-
surable event. Lemma 3 in the Supplement shows that if the criterion function is con-
tinuous, Δ(·) is continuous, and Θ is closed, then M2 and M3 contain all the Borel sets.

Theorem 3. Under Assumptions 1 and 2, for any Δ∗ such that Π(ΔI ⊆ Δ∗|X) is defined
(i.e., Δ∗ ∈ M2; see Remark 3), along almost all sample sequences, the following statements
hold:

(i) If μ0 ∈ int(
⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C), then Π(ΔI ⊆ Δ∗|X)→ 1.

(ii) If μ0 ∈ ⋃
δ∈(Δ∗)C :{δ}∈M1

(ext(
⋂

{θ:Δ(θ)=δ}μI(θ)
C)), then Π(ΔI ⊆ Δ∗|X) → 0.

Under the additional Assumption 3,

(iii) |Π(ΔI ⊆ Δ∗|X)− PN(0�Σ0)(
√
n(

⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C −μn(X)))| → 0.

Under Assumptions 1 and 2, for any Δ∗ such that Π(ΔI ∩ Δ∗ = ∅|X) is defined (i.e.,
Δ∗ ∈ M3; see Remark 3), along almost all sample sequences, the following statements
hold:

(iv) If μ0 ∈ int(
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)), then Π(ΔI ∩Δ∗ = ∅|X) → 1.

(v) If μ0 ∈ ext(
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)), then Π(ΔI ∩Δ∗ = ∅|X)→ 0.

Under the additional Assumption 3,

(vi) |Π(ΔI ∩Δ∗ = ∅|X)− PN(0�Σ0)(
√
n(

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)−μn(X)))| → 0.

It is possible to simplify the statement of Theorem 3, under the assumption of “con-
tinuity” of the identified set.

Corollary 4. Under Assumptions 1, 2, and 4, for any Δ∗ such that Π(ΔI ⊆ Δ∗|X) is
defined (i.e., Δ∗ ∈ M2; see Remark 3), along almost all sample sequences, the following
statements hold:
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(i) If ΔI ⊆ int(Δ∗), then Π(ΔI ⊆ Δ∗|X)→ 1.

(ii) If int(ΔI)� Δ∗, then Π(ΔI ⊆ Δ∗|X)→ 0.

Under the same assumptions, for any Δ∗ such that Π(ΔI ∩ Δ∗ = ∅|X) is defined (i.e.,
Δ∗ ∈ M3; see Remark 3), along almost all sample sequences, the following statements
hold:

(iii) If ΔI(μ)∩Δ∗ = ∅ for all μ in a neighborhood of μ0, then Π(ΔI ∩Δ∗ = ∅|X) → 1.

(iv) If ΔI(μ)∩Δ∗ = ∅ for all μ in a neighborhood of μ0, then Π(ΔI ∩Δ∗ = ∅|X) → 0.

Essentially, Corollary 4 shows that the posterior probability of a true (respectively,
false) statement concerning the identified set is approximately 1 (respectively, 0) in large
samples.

Remark 4 (Relation to Robust Bayesian Inference of Kitagawa (2012)). The model
framework for Kitagawa (2012)12 is essentially as follows: There is a likelihood and φ

is a “sufficient parameter” for the likelihood, with a prior specified, resulting in a poste-
rior φ|X , and H(φ) is the identified set for the partially identified parameter of interest
η, as a function of φ. A class of priors is specified over the partially identified parameter,
and bounds are derived for the posterior for η due to specifying a class of priors. Very
roughly, φ is analogous to μ in this paper, and H(φ) is analogous to ΔI(μ) in this paper.
Despite this analogy, these two frameworks place different requirements on the econo-
metrician: φ and H(φ) arise implicitly from the specification of a likelihood, whereas
μ and ΔI(μ) are explicitly specified by the econometrician.13 The differences in model
framework result in further differences: for example, the computational approach pro-
posed in this paper depends on the separation between standard Bayesian inference
on μ and computation of the identified set as a known mapping of μ. Kitagawa (2012)
shows that, under appropriate conditions, the smallest posterior probability that can be
assigned to a set D of the parameter space for η is the posterior probability under φ|X
of the event H(φ) ⊆ D. Also, the largest posterior probability that can be assigned to a
set D of the parameter space for η is the posterior probability under φ|X of the event
H(φ) ∩ D = ∅. Therefore, if an underlying econometric model fits both model frame-
works, then the posterior probability statements concerning the identified set in this
paper can be interpreted as bounds on the possible posteriors for the partially identi-
fied parameter. However, the frameworks differ in their compatibility with underlying
econometric models. For example, it can be difficult to specify the likelihood for incom-
plete structural models (e.g., models of games as in Example 2) or moment inequality
models (e.g., Example 5 in the Supplement).

12See also Giacomini and Kitagawa (2014).
13Therefore, in particular, for an underlying econometric model that is compatible with both frame-

works, the frameworks differ in the specifics of the priors. For example, in structural econometric models,
a prior is either placed on the “sufficient parameter” φ of the underlying likelihood or the “summary statis-
tics” μ that is generated by the underlying econometric model. Despite a (possibly difficult to characterize)
one-to-one correspondence between φ and μ, because those parameters have different direct interpreta-
tions there is a practical difference between specifying a prior on φ and μ.
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5. Frequentist properties of the credible sets

A credible set for ΔI is a set CΔI
1−α(X) that satisfies the following definition.

Definition 4. For some α ∈ (0�1),

CΔI
1−α(X) has the property that Π

(
ΔI ⊆ CΔI

1−α(X)|X) = 1 − α�

Under a set of minimal regularity conditions, this section establishes necessary
and sufficient conditions for CΔI

1−α(X) to be a valid exact frequentist confidence set for

the identified set, in the sense that P(ΔI ⊆ CΔI
1−α(X)) ≈ 1 − α in repeated large sam-

ples. In general, the definition of a confidence set allows conservative coverage, P(ΔI ⊆
CΔI

1−α(X))� 1 − α. Based on previous results comparing Bayesian and frequentist infer-
ence under partial identification (i.e., Moon and Schorfheide (2012)), but for the par-
tially identified parameter rather than the identified set, the leading concern appears to
be the opposite case: a Bayesian credible set that does not even achieve at least the re-
quired frequentist coverage. Nevertheless, the results in this section do not address the
possibility of a Bayesian credible set that has conservative frequentist coverage.14 The
computation of the credible set is discussed in Remark 5, and in Section 6, alongside
other discussion of computational implementation.

Under the sufficient conditions, these results reveal an “asymptotic equivalence” be-
tween Bayesian and frequentist inference in partially identified models, implying that
CΔI

1−α(X) can also be used by frequentist econometricians, even for functions of the par-
tially identified parameter (without conservative projection methods).15 However, it is
worth noting that the frequentist coverage may not be uniform, an important problem
addressed in the frequentist literature (see prior references). It is also worth noting that
the necessary and sufficient condition can be false, in which case the credible set fails
to be an exact frequentist confidence set. But even in those cases, the credible set is
valid from the Bayesian perspective, which has been the main focus of this paper. These
properties are highlighted in the Monte Carlo experiments in Section 7.

5.1 Asymptotic independence of the credible set

The proof of Theorem 5 establishes that in repeated samples,

P
(
ΔI ⊆ CΔI

1−α(X)
)

= P

(√
n
(
μ0 −μn(X)

) ∈ √
n

( ⋂
δ∈(CΔI

1−α(X))C

⋂
{θ:Δ(θ)=δ}

μI(θ)
C −μn(X)

))
�

14Related results reconciling Bayesian and frequentist inference in point identified models (i.e., the lit-
erature on the Bernstein–von Mises theorem) is analogous, in the sense that it generally shows that the
Bayesian posterior distribution is asymptotically the same as the frequentist sampling distribution, and
therefore that a confidence set at the 1 − α significance level is asymptotically the same as a credible set at
the 1 − α credibility level. See for example Freedman (1999).

15One caveat to claims about exact credible sets concerns computation of the credible set. Some com-
putationally attractive methods for computing the credible set may result in slight “overcoverage,” but in
principle, with sufficient computing time, exact posterior probabilities are possible.
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Use the notation that Δ̃−1�ΔI
1−α (X) = √

n(
⋂

δ∈(CΔI
1−α(X))C

⋂
{θ:Δ(θ)=δ}μI(θ)

C −μn(X)). There-

fore, it is necessary to make an assumption concerning the joint sampling distribution
of

√
n(μ0 −μn(X)) and Δ̃

−1�ΔI
1−α (X).

The set Δ̃−1�ΔI
1−α (X) is the set of

√
n(μ−μn(X)) consistent with ΔI(μ) ⊆ CΔI

1−α(X). The-

orem 3 implies that PN(0�Σ0)(Δ̃
−1�ΔI
1−α (X)) ≈ 1 − α for each large data set, since CΔI

1−α(X) is
a credible set. Further, under reasonable conditions on μn(X) (see Assumption 6), the
repeated large sample distribution of

√
n(μ0 −μn(X)) is N(0�Σ0). However, those prop-

erties do not necessarily uniquely characterize the joint sampling distribution.
Use the notation that Fn(A) = P(

√
n(μ0 −μn(X)) ∈A) for any Borel set A.

Assumption 5 (Asymptotic Independence of Credible Sets). It holds that

∣∣P(√
n
(
μ0 −μn(X)

) ∈ Δ̃
−1�ΔI
1−α (X)

) −E
(
Fn

(
Δ̃

−1�ΔI
1−α (X)

))∣∣ → 0 as n → ∞�

This asymptotic independence assumption concerns repeated sampling behavior,
and therefore is inherently a frequentist (and non-Bayesian) concept. It is motivated
by and related to an assumption that, in sampling distribution,

√
n(μ0 − μn(X)) and

Δ̃
−1�ΔI
1−α (X) are independent for all sufficiently large sample sizes. Under that indepen-

dence assumption, the condition in Assumption 5 holds with equality in sufficiently
large sample sizes:

P
(√

n
(
μ0 −μn(X)

) ∈ Δ̃
−1�ΔI
1−α (X)

)
=E

(
1
[√

n
(
μ0 −μn(X)

) ∈ Δ̃
−1�ΔI
1−α (X)

])
=E

Δ̃
−1�ΔI
1−α (X)

E√
n(μ0−μn(X))

(
1
[√

n
(
μ0 −μn(X)

) ∈ Δ̃
−1�ΔI
1−α (X)

])

=E
(
Fn

(
Δ̃

−1�ΔI
1−α (X)

))
�

Therefore, Assumption 5 can be understood to be an assumption that requires that in
sampling distribution,

√
n(μ0 −μn(X)) and Δ̃

−1�ΔI
1−α (X) are “almost” independent for suf-

ficiently large sample sizes.

5.2 Characterization of the frequentist properties of the credible set

Assumption 6 (Repeated Sampling Behavior of the Estimator of μ). The estimator
μn(X) appearing in Assumption 3 satisfies one of the following properties:

(a) The distribution
√
n(μ0 −μn(X)) converges in total variation to N(0�Σ0).

(b) The distribution
√
n(μ0 −μn(X)) converges in distribution to N(0�Σ0) for nonsin-

gular Σ0 and Δ̃
−1�ΔI
1−α (X) is a finite union16 of disjoint convex Borel sets.

16There must be a number K such that Δ̃−1�ΔI
1−α (X) is the union of at most K disjoint convex Borel sets,

for all realizations of the data.
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This is essentially the “frequentist” version of Assumption 3. The fact that the asymp-
totic covariances in Assumptions 3 and 6 are the same is part of the conclusion of the
various Bernstein–von Mises-like theorems referenced after the statement of Assump-
tion 3. Central limit theorems establishing convergence in total variation are available
(e.g., Van der Vaart (1998, Theorem 2.31)), and more generally Scheffé’s lemma (e.g.,
Van der Vaart (1998, Corollary 2.30)) relates convergence of densities to convergence
in total variation. If μn(X) has a discrete sampling distribution, then it cannot converge
in total variation to the continuously distributed N(0�Σ0). If the identified set mapping
and credible set is of sufficiently low topological “complexity” so that Δ̃−1�ΔI

1−α (X) is a fi-
nite union of disjoint convex Borel sets, then Assumption 6 requires only convergence in
distribution. For example, that condition holds in the case of a simple interval identified
parameter and interval credible set, as illustrated in Example 6 in the Supplement. More
generally, because Assumption 6 is used only in one place in the proof of Theorem 5 to
establish a convergence related to sets related to the credible sets, other conditions that
also establish that convergence could be substituted for Assumption 6.

The following theorem establishes the frequentist coverage properties of CΔI
1−α(X).

This theorem can be viewed as extending the Bernstein–von Mises results from the point
identified parameter μ to the identified set for the partially identified parameter δ.17

Theorem 5. Suppose that for all realizations of the data X , CΔI
1−α(X) is a credible set for

the identified set, in the sense that

Π
(
ΔI ⊆ CΔI

1−α(X)|X) = 1 − α�

Suppose also that Assumptions 1, 3, and 6 obtain. Assumption 5 obtains if and only if
CΔI

1−α(X) are exact frequentist confidence sets:

P
(
ΔI ⊆ CΔI

1−α(X)
) → 1 − α�

In general, it is necessary to study Assumption 5 on a case-by-case basis, as it de-
pends on the model-specific structure of the identified set, similar to how inference in
“nonstandard models” tends to proceed on a case-by-case basis. However, an important
sufficient condition for Assumption 5 is discussed in Remark 5 below, with the result col-
lected in Lemma 1 that follows.

Remark 5 (Sufficient Condition: Smooth Interval Identified Set). Suppose that the iden-
tified set for δ is an interval ΔI(μ) = [ΔIL(μ)�ΔIU(μ)], where ΔIL(·) and ΔIU(·) are func-
tions that may not be explicitly known by the econometrician. The identified set for δ

is an interval in many important cases, including the case where the identified set for
θ is convex and δ is a scalar element of θ. Suppose that the credible set has the form
CΔI

1−α(X) = [ΔIL(μn(X)) − c1−α(X)√
n

�ΔIU(μn(X)) + c1−α(X)√
n

], where c1−α(X) is chosen to

17In particular, in the case of a point identified δ with δ ≡ ΔI(μ), where ΔI(·) satisfies the regularity
conditions of the (Bayesian) delta method, then arguments similar to the proof of Lemma 1 establish that

Assumption 5 is satisfied for the credible set CΔI
1−α(X) = [ΔI(μn(X))− c1−α(X)√

n
�ΔI(μn(X))+ c1−α(X)√

n
], where

c1−α(X) is chosen to have the credible set property, given that Assumptions 1, 3, and 6 obtain.
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have the credible set property. Suppose that for all μ in a neighborhood of μ0, ΔI(μ) = ∅.
This essentially requires that the identified set be nonempty in a sufficiently small neigh-
borhood around μ0.18 Then if ΔIL(·) and ΔIU(·) satisfy the regularity conditions of the
(Bayesian) delta method, in a neighborhood of μ0, with positive definite covariance,
then Assumption 5 is satisfied. This result is formalized in Lemma 1.

The existence of derivatives of ΔIL(·) and ΔIU(·) with respect to μ from the delta
method rules out kinks in ΔIL(·) and ΔIU(·) at μ0, for example intersection bounds with
multiple simultaneously binding constraints at μ0.19 If the functions ΔIL(·) and ΔIU(·)
are explicitly known by the econometrician (e.g., Example 3), then existence of deriva-
tives can be checked directly. If the functions ΔIL(·) and ΔIU(·) are only implicitly known
by the econometrician, then other methods are required. In particular, in some models
it is possible to write ΔIL(·) and ΔIU(·) as the optimal value functions of an optimiza-
tion problem with parameterized constraints. For example, if the criterion function is
Q(θ�μ)= ‖f (θ)−μ‖ and Δ(θ)= θk (e.g., Example 2), then ΔIL(μ) is the solution to min-
imizing θk subject to the parameterized constraints f (θ) = μ and ΔIU(μ) is the solution
to maximizing θk subject to the parameterized constraints f (θ) = μ. Sufficient condi-
tions for the differentiability of these optimal value functions are provided in the opti-
mization literature (e.g., Fiacco and McCormick (1990, Section 2.4)). The requirement
of a positive definite covariance rules out identified sets such that ΔIL(·) and/or ΔIU(·)
have zero derivative at μ0. In particular, the requirement of a positive definite covari-
ance rules out identified sets such that one or both of ΔIL(·) and ΔIU(·) are functions of
a scalar element of μ, and are nonmonotonic at μ0 (which implies ΔIL(·) and/or ΔIU(·)
have zero derivative at μ0).20 Since the frequentist coverage is not necessarily uniform,
frequentist inference based on the Bayesian credible set can have poor performance in
small samples if these conditions are “almost” violated.

The credible set CΔI
1−α(X) can be computed by computing an “estimate” of the identi-

fied set (i.e., [ΔIL(μn(X))�ΔIU(μn(X))]) and then symmetrically “expanding” from that
estimate outward until the credible set achieves the required Bayesian credibility level.
The identified set is “estimated” by computing the identified set at μn(X) rather than
a draw from the posterior μ|X . Using the approach discussed in Remark 4, Kitagawa
(2012) provides a computationally attractive method for computing a shortest-width in-
terval.

Lemma 1. Suppose that Assumptions 1, 3, and 6 obtain. Suppose also that the setup
in this remark obtains: both the Bayesian and frequentist delta methods (e.g., Bernardo
and Smith (2009, Section 5.3)) apply to (ΔIL(μ)�ΔIU(μ)) with the same full rank covari-
ance, and for all μ in a neighborhood of μ0, ΔI(μ) = ∅. Then Assumption 5 is satisfied
for CΔI

1−α(X) = [ΔIL(μn(X))− c1−α(X)√
n

�ΔIU(μn(X))+ c1−α(X)√
n

], where c1−α(X) is chosen to

have the credible set property.

18Note that in many models this rules out point identification, since in many models if ΔI(μ0) is a sin-
gleton, then some μ in any neighborhood of μ0 results in ΔI(μ) = ∅.

19The reconciliation between robust Bayes credible sets and frequentist confidence sets, in Kitagawa
(2012), also tends to not hold in this sort of setting.

20For example, suppose that μ = (μL�μU) and ΔIL(μ) = μ2
L. Then ΔIL(·) is nonmonotonic at μ0L = 0

and has zero derivative at μ0L = 0.
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A generic converse of Theorem 5, a result that says that any frequentist confidence
set can be interpreted as an approximation (in large samples) to a Bayesian credible
set, is not available. For example, one (1 − α)-level confidence set is the entire param-
eter space with probability 1 − α and the empty set with probability α. This cannot be
expected to have a Bayesian interpretation, even though it is a valid frequentist con-
fidence set.21 One method to “nudge” a desired frequentist confidence set to have at
least a minimal Bayesian interpretation is to compute that frequentist confidence set
as usual, compute the Bayesian credible set proposed in this paper, and then report the
union of those two sets. This will inherit all of the coverage properties of both underlying
approaches, although of course it can be “conservative” from one or both perspectives.

Remark 6 (Frequentist Properties of the Credible Set for the Partially Identified Pa-
rameter). A credible set for the partially identified parameter is Cδ1−α(X) ≡ {δ∗ : Π(δ∗ ∈
ΔI |X)≥ α}. Roughly, since δ∗ ∈ ΔI means that the model specification with δ∗ generates
the same distribution of the data as does the true data generating process, Cδ1−α(X) can
be viewed as collecting all model specifications (i.e., specifications of δ) that have at least
1 − α posterior probability of generating the same distribution of the data as the true
data generating process. Alternatively, Cδ1−α(X) can be viewed as collecting all model
specifications for which there is at least a minimal amount of evidence (in the above
sense). It is a necessary implication of this definition that it is possible that Cδ1−α(X) is
the empty set, particularly for large α and/or situations of (near) point identification.
Consider the limiting situation of point identification. Then δ∗ ∈ ΔI is equivalent to δ∗
being the singleton “true value” of δ. Often there will not be high posterior probability
that any particular δ∗ is the “true value” of δ (e.g., if the “posterior for δ” is an ordinary
density), in which case Cδ1−α(X) may be the empty set.

A related possibility is to report the set Rδ
r (X) ≡ {δ∗ ∈ Δ(Θ) : Π(δ∗ ∈ ΔI |X) ≥

r maxδΠ(δ ∈ ΔI |X)} for some r ∈ (0�1). This is a highest relative odds set for δ, in the
sense that Rδ

r (X) is the set of all values δ∗ that are at least r times as likely to be in the
identified set as the most likely parameter value. In some but not all cases Cδ1−α ≈ Rδ

α(X),
because in some but not all cases maxδΠ(δ ∈ ΔI |X) ≈ 1.

For this to be a valid frequentist confidence set, considering θ rather than some δ

of interest for simplicity, it must be that for any θ∗ ∈ ΘI that in repeated large samples
P(θ∗ ∈ Cθ1−α(X)) ≥ 1 − α, or equivalently that P(Π(θ∗ ∈ ΘI |X) ≥ α) ≥ 1 − α, or equiv-
alently P(Π(θ∗ ∈ ΘI |X) < α) ≤ α. Therefore, essentially, it must be that Π(θ∗ ∈ ΘI |X)

has the U[0�1] distribution in repeated large samples, or stochastically dominates the
U[0�1] distribution, or equivalently it must be that Π(θ∗ ∈ ΘI |X) can be interpreted as
a (possibly conservative) p-value for the null hypothesis that θ∗ ∈ ΘI . By the large sam-
ple approximation in Theorem 1, for fixed realization of the data X , Π(θ∗ ∈ ΘI |X) ≈
PN(0�Σ0)(

√
n(μI(θ

∗) − μn(X))) = PN(0�Σ0)(
√
n(μI(θ

∗) − μ0 + μ0 − μn(X))). In repeated
large samples, this is distributed approximately as PN(0�Σ0)(

√
n(μI(θ

∗)−μ0)+N(0�Σ0)).
So the credible set for the partially identified parameter is a valid frequentist confidence

21In point identified models, the “obvious” frequentist confidence set to study is the confidence set based
on inverting the Wald test based on the asymptotic approximation to μn(X), but that is not sensible in
partially identified models.
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set whenever PN(0�Σ0)(
√
n(μI(θ

∗) − μ0) + N(0�Σ0)) is (or stochastically dominates) the
U[0�1] distribution. (Obviously, this is only a heuristic argument as n appears in the
“limiting” distribution.) For example, this is true in the important special case of an in-
terval identified parameter, without point identification, from Example 1. See also Kline
(2011) for cases where it is not true.

Remark 7 (Measurability of Δ̃−1�ΔI
1−α (X)). The discussion in this section treats Δ̃−1�ΔI

1−α (X)

essentially as a random variable. This is understood to be justified based on the underly-
ing measurability of the random variables that characterize the set Δ̃−1�ΔI

1−α (X): Δ̃−1�ΔI
1−α (X)

is “equivalent” to the bundle of random variables that characterize Δ̃
−1�ΔI
1−α (X) plugged

into the functional form for Δ̃−1�ΔI
1−α (X).

Remark 8 (An Alternative Credible Set). Another approach to constructing a credible
set for the identified set is to project a credible set for μ onto the space of subsets of
Δ(Θ). That is, for any credible set Cμ1−α(X) for μ, ΔI(Cμ1−α(X)) = {δ : ∃μ ∈ Cμ1−α(X) s.t. δ ∈
ΔI(μ)} is a credible set for the identified set, such that Π(ΔI(μ) ⊆ ΔI(Cμ1−α(X))|X) ≥
1 − α. Moreover, because per Lemma 2, ΔI(μ) ⊆ CΔI

1−α(X) is logically equivalent to
μ ∈ ⋂

δ∈(CΔI
1−α(X))C

⋂
{θ:Δ(θ)=δ}μI(θ)

C , any 1−α credible set for the identified set can be as-

sociated with a 1−α credible set for μ:
⋂

δ∈(CΔI
1−α(X))C

⋂
{θ:Δ(θ)=δ}μI(θ)

C . Under the condi-

tion that the credible set for μ is also a valid frequentist confidence set under Bernstein–
von Mises-like conditions, then also this credible set for the identified set will be a valid
frequentist confidence set for the identified set, in the sense of having at least the re-
quired coverage probability. However, as with projection methods in general, such an
approach is likely to be conservative (from both the Bayesian and frequentist perspec-
tives), unless the credible set for μ is somehow constructed in a special way to avoid
conservativeness under the projection. That is, even though every 1 − α credible set for
the identified set can be associated with a 1−α credible set for μ, in general a 1−α cred-
ible set for μ will project as a greater than 1 − α credible set for the identified set. This
sort of approach is mentioned in Moon and Schorfheide (2009).

6. Computational implementation

An important feature of this approach is that it is computationally attractive even in
high-dimensional models. In general, inference is accomplished by the following sam-
pler that can be used to approximate the posterior probabilities:

Step 1. Generate a large sample {Δ(ΘI(μ
(s)))}Ss=1 according to the following proce-

dure:

(a) Draw μ(s) ∼ μ|X by any method that is appropriate for Π(μ|X).

(b) Compute Δ(ΘI(μ
(s))), the identified set at μ(s).

Step 2. Based on {Δ(ΘI(μ
(s)))}Ss=1, compute an approximation to the desired poste-

rior probability.
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For example, Π(Δ∗ ⊆ ΔI |X) is the percentage of the draws {Δ(ΘI(μ
(s)))}Ss=1 such that

indeed Δ∗ ⊆ Δ(ΘI(μ
(s))), and a credible set (i.e., Definition 4) is a set that contains 1 − α

percent of the draws {Δ(ΘI(μ
(s)))}Ss=1.

By separating the “inference” problem, which concerns the posterior μ|X (not the
whole parameter space), from the remaining computational problem of determining
the identified set for θ evaluated at a particular value of μ, which admits a variety of
analytic and computational simplifications, it is possible to avoid in general the sorts of
“exhaustive search” grid search (or “guess and verify”) procedures that are commonly
used to construct frequentist confidence sets.

6.1 Computational approaches

Step 1(b) involves getting the set ΘI(μ) for a given draw of μ from the posterior μ|X ,
which is the problem of finding all solutions in θ to Q(θ�μ)= 0 for a given μ. The compu-
tational difficulty is increased due to the necessity of finding the set of solutions, rather
than just one of the solutions. The best approach to Step 1(b) depends on the applica-
tion.

One approach involves “guessing and verifying”: guessing values of θ and verifying
whether Q(θ�μ)= 0. That will always work, but often there are much faster approaches.

In some models, ΘI(μ) has a known expression as a function of μ that is computa-
tionally simpler than checking whether each θ ∈ Θ satisfies θ ∈ ΘI(μ). For example, in
a simple interval identified parameter model, ΘI(μ) = [μL�μU ]. This is computation-
ally simpler than computing the identified set by guessing and verifying based on the
definition that ΘI(μ) ≡ {θ : Q(θ�μ)= 0}.

In some other models, and for some Δ(·), it is possible to simplify the computation of
Δ(ΘI(μ)). For example, suppose that ΘI(μ) is a compact and convex set, and that Δ(θ) =
θk is the kth element of θ. Then Δ(ΘI(μ)) is a finite closed interval in R. Consequently,
Δ(ΘI(μ)) can be computed by computing minθ∈ΘI(μ) θk and maxθ∈ΘI(μ) θk, which can
be computationally simpler than guessing and verifying by computing ΘI(μ) and then
checking whether each δ ∈ Δ(Θ) satisfies δ ∈ Δ(ΘI(μ)). This is demonstrated by example
in Section S3.2 of the Supplement in a Monte Carlo experiment involving interval data
on the outcome in a linear regression model.

6.2 Markov chain Monte Carlo approximation

It may only be known that ΘI(μ) ≡ {θ : Q(θ�μ) = 0}, without any known analytic sim-
plifications as above. If so, then some numerical method must be applied to compute
ΘI(μ). One approach is based on simulating a random variable whose support is the
identified set.

Let

fΘI(μ)(θ) = 1
[
Q(θ�μ)= 0

]
λ
(
ΘI(μ)

)
be the ordinary Lebesgue density of the uniform distribution on ΘI(μ), where λ(·) is
Lebesgue measure on Θ. If ΘI(μ) is measurable and bounded with positive Lebesgue
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measure, then fΘI(μ) is well defined and has support on ΘI(μ). Consequently, any
method that can simulate draws from the density fΘI(μ) can be used to numerically ap-
proximate ΘI(μ), by taking the approximation of ΘI(μ) to be the support of the simu-
lated draws from fΘI(μ). However, the normalizing constant λ(ΘI(μ)) is difficult to de-
termine, because it is difficult to explicitly characterize ΘI(μ). Therefore, let

f̃ΘI(μ)(θ)= 1
[
Q(θ�μ)= 0

]

be the corresponding unnormalized density. There are many methods for simulating
draws from an unnormalized density: among these methods are Metropolis–Hastings
sampling and slice sampling. See for example Gamerman and Lopes (2006) for a text-
book on related methods.

In some cases, especially when ΘI(μ) has empty interior, that (unnormalized) den-
sity may not perform well because the density is supported on a lower-dimensional sub-
space. In those cases, it is possible to use the alternative unnormalized density

f̃ΘI(μ)�T (θ)= exp
(−Q(θ�μ)

T

)
�

where T > 0 is a small tuning parameter.22 Then f̃ΘI(μ)�T (θ) = 1 on ΘI(μ), and
f̃ΘI(μ)�T (θ) ≈ 0 far from ΘI(μ) (i.e., when Q(θ�μ) � 0 and/or T is small). Therefore,

ΘI(μ) can be simulated as ΘI(μ) ≈ {θ : f̂ (θ) > 1 − ε} for small ε > 0, where f̂ (θ) is the
density of the simulated draws from f̃ΘI(μ)�T (θ). In practice, it seems reasonable to take
ΘI(μ) to be the support of the draws from f̃ΘI(μ)�T . This will potentially result in a nu-
merical approximation of the identified set that is “too big,” but that is generally ac-
ceptable in the literature on partially identified models (as “nonsharp” identified sets).
Another possibility is to check that each of the draws from f̃ΘI(μ)�T (θ) at least approx-
imately satisfies the condition that the criterion function evaluated at the draw equals
zero,23 which will sharpen the numerical approximation of the identified set.

There are many methods for drawing from unnormalized densities in the Markov
chain Monte Carlo literature. Particularly from the perspective of the difficulty of the
computational implementation, slice sampling (e.g., Neal (2003)) is recommended.
Specifically, the Monte Carlo experiments and empirical application are based on the
slicesample implementation that is provided in MATLAB. More generally, slice sam-
pling is implemented in many computational and statistical software packages. Some
implementations require an initial “guess” for θ in the identified set (i.e., a guess for
where the “density” is nonzero). This can be accomplished by finding one solution to
Q(θ�μ) = 0 by a standard optimization method. One useful feature of slice sampling is

22It can be shown under certain conditions that as T → 0, the limit of the sequence f̃ΘI (μ)�T is supported
on the set of minimizers (the identified set). Consequently, as discussed in the text, with small T , most
draws from the density f̃ΘI (μ)�T will be close to ΘI(μ). See Hwang (1980).

23In some models, it may not be desirable to require that the criterion function evaluated at the draw
equals exactly zero. For example, if the evaluation of the criterion function itself involves a complicated
numerical problem (like evaluating a multivariate normal cumulative distribution function) that is subject
to numerical error, a “numerical error tolerance” may be desired.
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that it does not require the specification of auxiliary distributions (e.g., a proposal dis-
tribution) required by some other methods like Metropolis–Hastings sampling. Overall,
the advantage of this approach is the low difficulty of the programming required, be-
cause of built-in slice sampling implementations. Generically, it is enough to program
the criterion function Q(μ�θ) and the density f̃ΘI(μ)(θ) or f̃ΘI(μ)�T (θ), and then apply
the slice sampling implementation to that density.

7. Monte Carlo experiments

This section reports Monte Carlo experiments that illustrate the behavior of this ap-
proach to inference. The Supplement provides further Monte Carlo experiments in the
context of moment inequality models (a simple interval identified parameter and re-
gression with interval data).

7.1 Binary entry game

This section reports the results of a Monte Carlo experiment in the context of a simple
version of a binary entry game. A related model will be estimated with real data in Sec-
tion 8. For the experiment, consider the standard specification of a binary entry game
described in Table 1.

In each cell, the first entry is the payoff to player 1, and the second entry is the payoff
to player 2. It is assumed that Δ1 and Δ2 are both negative, and that players play a pure
strategy Nash equilibrium. This game admits two pure strategy Nash equilibria when
−βi ≤ εi ≤ −βi −Δi, i = 1�2: in this region, there are no assumptions on equilibrium se-
lection. The true parameters are set at Δ01 = −0�5 = Δ02 and β01 = 0�2 = β02, and ε1 and
ε2 are jointly normally distributed with variance 1 and correlation ρ0 = 0�5, and this cor-
relation is constrained by the econometrician to be positive. It is assumed to be known
that the econometrician correctly knows the sign of the parameters.

There are six parameters: β1, β2, Δ1, Δ2, ρ, and the equilibrium selection probability
for the region of multiple equilibria. The equilibrium selection probability is “profiled
out,” as described below when defining the criterion function. The point identified pa-
rameter μ is the vector of choice probabilities μ = (P11�P10�P01�P00), where Pa1a2 is the
probability that player 1 takes action a1 and player 2 takes action a2, and the partially
identified parameter is θ = δ = (β1�Δ1�β2�Δ2�ρ). The mapping that links μ to the iden-
tified set for θ results from the assumptions made on the game, as follows.

Table 1. Payoff matrix for the binary entry game.

Player 2

0 1

Player 1 0 0 0 0 β2 + ε2

1 β1 + ε1 0 β1 +Δ1 + ε1 β2 +Δ2 + ε2
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The criterion function is Q(θ�μ)= (P11 −P11(θ))
2 +(P10 −P10(θ))

2 +(P01 −P01(θ))
2 +

(P00 −P00(θ))
2 +min{|s(θ�μ)|� |s(θ�μ)−1|}(1−1[0 ≤ s(θ�μ)≤ 1]), where P00(θ)= P(ε1 ≤

−β1� ε2 ≤ −β2) and P11(θ)= P(ε1 ≥ −β1 −Δ1� ε2 ≥ −β2 −Δ2) correspond to the model-
predicted probabilities of the outcomes that occur only as a unique equilibrium, at θ.
The s(θ�μ) term is the candidate equilibrium selection probability at θ and μ, described
below.

The terms P10(θ) and P01(θ) are more complicated, as they correspond to the model-
predicted probabilities of outcomes that occur in the region of multiple equilibria. By
the law of total probability and using the definition of pure strategy Nash equilibrium,

P01(θ) = P(−β1 ≤ ε1 ≤ −β1 −Δ1� ε2 ≥ −β2 −Δ2)+ P(ε1 ≤ −β1� ε2 ≥ −β2)

+ s × P(−β1 ≤ ε1 ≤ −β1 −Δ1�−β2 ≤ ε2 ≤ −β2 −Δ2)�

where the parameter s represents the equilibrium selection probability (of choosing the
(0�1) equilibrium) in the region of multiple equilibria. Since it must be that P01 = P01(θ)

in the identified set, there is a unique candidate value for s after fixing θ and μ, given by
s(θ�μ) = P01−(P(−β1≤ε1≤−β1−Δ1�ε2≥−β2−Δ2)+P(ε1≤−β1�ε2≥−β2))

P(−β1≤ε1≤−β1−Δ1�−β2≤ε2≤−β2−Δ2)
. For this to be a valid proba-

bility, it must be that 0 ≤ s(θ�μ) ≤ 1, explaining that part of the criterion function. The
expression for P10(θ) is similar (and is uniquely determined by the others since prob-
abilities sum to 1). When simulating data from the game, (1�0) and (0�1) are actually
chosen with equal probability whenever the game is in the region of multiple equilibria,
but this is not known by the econometrician.

So as to compute the identified set, the slice sampler is used to sample from the
“density” f̃ΘI(μ)(θ) = 1[Q(θ�μ) = 0], as described in Section 6.2.24 The support of draws
from f̃ΘI(μ)(θ) is taken to be the identified set for θ evaluated at that value of μ, which
is then used in the sampler described at the beginning of Section 6. Moreover, the iden-
tified set evaluated at that value of μ, for any function Δ(·) of θ, can be taken to be Δ(·)
applied to that computed identified set. In particular, the identified sets for subvectors
of θ can be easily computed by “ignoring” the other elements of θ. By computing the
identified set at each draw μ(s) from a sample of draws from the posterior μ|X , it is pos-
sible to simulate draws from the posterior distribution “over the identified set.” Based
on numerical approximation, the parameters are not point identified (which is not sur-
prising since there are four equations (one of which is redundant) and six unknowns).
The true marginal identified sets for Δ1 and Δ2 are each approximately [−1�50�−0�04],25

24So as to account for numerical error in the computation of the multivariate normal cumulative dis-
tribution function, actually a small tolerance is allowed; that is, the criterion function can be very slightly
above zero. The tolerance implies that in practice the “density” is 1[Q(θ�μ) ≤ 0�0015].

25By numerical approximation, 0 is not in the identified sets. This is also possible to see analytically.
Suppose that indeed (Δ1�Δ2) = (0�0). Then it must be that βi = −Φ−1(P(yi = 0)). For this data generating
process, P(yi = 0) > 1

2 , so βi < 0. Further, P01 = P(ε1 ≤ β1� ε2 ≥ −β2) + P(β1 ≤ ε1 ≤ 0� ε2 ≥ −β2) + P(0 ≤
ε1 ≤ −β1� ε2 ≥ −β2) and P00 = P(ε1 ≤ β1� ε2 ≤ β2) + P(β1 ≤ ε1 ≤ 0� ε2 ≤ β2) + P(0 ≤ ε1 ≤ −β1� ε2 ≤
β2) + P(ε1 ≤ −β1�β2 ≤ ε2 ≤ −β2). By the rotational symmetry property of the multivariate normal dis-
tribution, P00 − P01 = P(ε1 ≤ β1� ε2 ≤ β2) − P(ε1 ≤ β1� ε2 ≥ −β2) + P(ε1 ≤ −β1�β2 ≤ ε2 ≤ −β2) ≥ P(ε1 ≤
β1� ε2 ≤ β2) − P(ε1 ≤ β1� ε2 ≥ −β2) since some terms cancel. This is nonnegative since ρ ≥ 0. But for this
data generating process, this is actually false (albeit numerically close to being true). So it cannot be that
(Δ1�Δ2) = (0�0) is in the identified set.
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Figure 1. Posteriors Π(·|X) for various parameters.

while the true identified sets for β1 and β2 are each approximately [0�0�75]. Further, the

data appear to be uninformative about the correlation coefficient, in the sense that the

identified set is essentially the entire parameter space.

Figure 1 displays posterior probabilities that various values of the parameters belong

to the identified set based on samples of size N = 500 from this data generating process.

Each posterior “curve” of a different gray shade in panels 1(a) and 1(b) corresponds to

a different draw from the data generating process. The μ parameters are multinomial,
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so an uninformative conjugate Dirichlet prior is used, implying a Dirichlet posterior for
μ|X .

Panel 1(a) displays the posterior probabilities that various values of Δ1 belong to the
identified set. Panel 1(b) does the same for β1. Panel 1(c) displays the posterior proba-
bilities that various values of (β1�Δ1) belong to the identified set, whereas panel 1(d)
displays the true identified set for (β1�Δ1), computed by numerical approximation.
Panel 1(c) displays a “contour plot” of the posterior, with the legend showing the inter-
pretation of the level curves: points inside the outermost level curve have at least pos-
terior probability 0�1 of being in the identified set, points inside the middle level curve
have at least posterior probability 0�6 of being in the identified set, and points inside the
innermost level curve have posterior probability approximately 1 of being in the iden-
tified set. Unlike the graphs in the first row, the posterior displayed in panel 1(c) corre-
sponds to just one draw from the data generating process, as it would be too cluttered to
try to show the results across draws. It is interesting to note from panel 1(d) that the joint
identified set for (β1�Δ1) lies on a diagonal, that is, large values of Δ1 are associated with
small values of β1 and vice versa, and that this is indeed reflected in the posterior over
the identified set for this pair of parameters. In all of the panels, the posterior “curve”
closely approximates an indicator function for the true identified set, as expected based
on the theoretical results. The results corresponding to (β2�Δ2) are similar and so are
not reported.

The circles along the horizontal axis in panels 1(a) and 1(b) are the endpoints of the
95% credible sets for the identified sets, for each draw from the data generating pro-
cess, and the corresponding parameter. The credible set of a given shade corresponds
to the same draw of X as the posterior “curve” displayed in the same shade. In approx-
imately 92�8% of the draws from the data generating process, the 95% credible set for
the identified set for β1 indeed does contain the true identified set for β1, and in ap-
proximately 92�0% of the draws from the data generating process, the 95% credible set
for the identified set for Δ1 indeed does contain the true identified set for Δ1, with sim-
ilar results for β2 and Δ2, so the credible sets are also valid frequentist confidence sets.
As also discussed above, since these credible sets/confidence sets concern functions of
the partially identified parameter, other frequentist approaches might require conser-
vative projection methods. The credible sets throughout this paper are computed as de-
scribed in Remark 5. In particular, the identified set is “estimated” by computing the
identified set using the slice sampling routine, evaluating the criterion function at the
sample choice probabilities rather than a draw from the posterior μ|X , and then ex-
panded outward until it achieves the required Bayesian credibility level.

8. Empirical illustration: Estimating a binary entry game

This section reports the results of applying this approach to inference to a real data ap-
plication. The model is a binary entry game (similar to that used in Section 7.1), applied
to data from airline markets. The data come from the second quarter of the 2010 Air-
line Origin and Destination Survey (DB1B). The data contain 7882 markets, which are
formally defined as trips between two airports irrespective of intermediate stops. The
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empirical question concerns the entry behavior of two kinds of firms: LCC (low cost car-
riers)26 and OA (other airlines). A firm that is not an LCC is by definition an OA. Essen-
tially the question is, “What explains the decision of these firms to enter each market?”
or, equivalently, “What explains the decision of an airline to provide service between
two airports?”. The unconditional choice probabilities are (0�16�0�61�0�07�0�15), which
are respectively the probabilities that both OA and LCC serve the market, that OA and
not LCC serve the market, that LCC and not OA serve the market, and finally that neither
serves the market.

The model is essentially the same as that in Section 7.1 except that explanatory vari-
ables are introduced to the utility functions. For the purposes of mapping the data to
a binary entry game, the airlines are aggregated into two firms: LCC and OA. So, firm
LCC (resp. OA) enters the market if any low cost carrier (resp. other airline) serves that
market. The payoff to firm i from entering market m is

βcons
i +βx

i xim +Δiy3−i + εim�

which essentially results in the payoff matrix in Section 7.1 except that βcons
i + βx

i xim
replaces βi. This implies that the “nonstrategic” terms (that part of utility that does not
depend on the action of the opponent) varies across firms and markets. The variables
yim indicate whether firm i enters market m. As in Section 7.1, the unobservables are
assumed to be normally distributed with variance 1 and unknown correlation.

The analysis considers two explanatory variables: market presence and market size.
The first explanatory variable is market presence, which is a market- and airline-specific
variable: for each airline and for each airport, compute the number of markets that air-
line serves from that airport and divide by the total number of markets served from that
airport by any airline. The market presence variable for a given market and airline is
the average of these ratios (excluding the one market under consideration) at the two
endpoints of the trip, providing some proxy for an airline’s presence in the airports as-
sociated with that market. See also Berry (1992). This variable is important because it is
an excluded regressor: the market presence for firm i enters only firm i’s payoffs. Since
the airlines are aggregated into two firms (LCC and OA), the market presence variable
must also be aggregated: the market presence for the LCC firm (resp. OA firm) is the
maximum among the actual airlines in the LCC category (resp. OA category). The sec-
ond explanatory variable is market size, which is a market-specific variable (but shared
by all airlines in that market), which is defined as the population at the endpoints of the
trip. The market size and market presence variables actually used in the empirical appli-
cation are discretized binary variables based on the continuous variables just described.
They take the value of 1 if the variable is higher than its median value and 0 otherwise.

The point identified parameter μ is a vector of choice probabilities conditional on
the explanatory variables, and the partially identified parameter θ is the vector that char-
acterizes the payoff functions and the correlation in the unobservables, as in Section 7.1.
The link between μ and θ uses the assumptions that players are playing a pure strategy

26The low cost carriers are AirTran, Allegiant Air, Frontier, JetBlue, Midwest Air, Southwest, Spirit, Sun
Country, USA3000, and Virgin America.
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Nash equilibrium, and that the Δ parameters are both negative. However, the approach
can handle a weakening of either of these assumptions.

The link between μ and θ is based on moment equalities that match the model-
predicted probabilities of the outcomes (conditional on the explanatory variables) to the
observed probabilities, similar to those used in Section 7.1.27 The criterion function is
the “sum” of the criterion functions in Section 7.1 across the types of market defined by
the explanatory variables (the “nonstrategic” term varies across different types of mar-
kets). The computation otherwise parallels that in Section 7.1.

The model specification has two binary explanatory variables: market presence and
market size. The payoff of firm LCC if it enters market m is

βcons
LCC +βsize

LCCXm�size +β
pres
LCCXLCCm�pres +ΔLCCyOAm + εLCCm;

similarly, the payoff of firm OA if it enters market m is

βcons
OA +βsize

OA Xm�size +β
pres
OA XOAm�pres +ΔOAyLCCm + εOAm�

The variable Xim�pres is a binary firm- and market-specific variable that is equal to 1 if
market presence for firm i in market m is larger than the median market presence for
firm i. The variable Xm�size is a binary market-specific variable that is equal to 1 if mar-
ket size for market m is larger than the median market size. In this specification, μ is a
32-dimensional vector of conditional choice probabilities (because there are three bi-
nary explanatory variables per market resulting in eight types of markets and each type
of market is characterized by four choice probabilities). The partially identified param-
eter θ is 9-dimensional. The equilibrium selection function (which is a function of the
explanatory variables) is profiled out for a given θ, as in Section 7.1.

Figure 2 reports the posterior probabilities that various parameter values belong to
the identified set. The posterior probabilities over the identified sets for the Δ param-
eters and the βsize parameters seem similar across the two types of firms. The effect of
market presence seems to be greater for LCC firms compared to OA firms, since it seems
that the identified set for the LCC firms is disjoint from and greater than the identified
set for the OA firms. The monopoly profits associated with a market with below-median
size and below-median market presence (i.e., the constant terms) seem to be smaller for
LCC firms compared to OA firms. And the “curve” of posterior probabilities associated
with ρ is basically flat and equal to 1 for values of ρ greater than approximately 0�7, im-
plying that any sufficiently high correlation almost certainly could have generated the
data. The circles along the horizontal axes in Figure 2 are the endpoints of the 95% cred-
ible sets for the identified set for the corresponding parameter.

9. Conclusions

This paper has developed a Bayesian28 approach to inference in partially identified
models. The approach results in posterior probability statements concerning the iden-

27An alternative is moment inequalities similar to those used in Ciliberto and Tamer (2009), but with
only two firms, the approach is to use moment equalities that “profile out” the selection probabilities.

28There is some disagreement in the overall statistical literature concerning the appropriate meaning
of “Bayesian”; for example, Good (1971) has identified the existence of 46,656 varieties of Bayesians. Since
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Figure 2. Posterior probabilities that various parameter values belong to the identified set in
the model with market presence and market size.
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tified set, which is the quantity about which the data are informative, without the spec-
ification of a prior for the partially identified parameter. The resulting posterior proba-
bility statements have intuitive interpretations and answer empirically relevant ques-
tions, are revised by the data, require no asymptotic repeating sampling approxima-
tions, can accommodate inference on functions of the partially identified parameters,
and are computationally attractive even in high-dimensional models. Also, this paper
establishes conditions under which the credible sets for the identified set also are valid
frequentist confidence sets for the identified set, providing an “asymptotic equivalence”
between Bayesian and frequentist inference in partially identified models. The approach
works well in Monte Carlo experiments and in an empirical illustration.

This paper has restricted attention to finite-dimensional models (i.e., μ and θ are in
finite-dimensional Euclidean spaces), consistent with much of the literature on partially
identified models. However, nothing about the approach in this paper fundamentally re-
lies on the fact that the parameters are finite-dimensional. A formal extension to models
with infinite-dimensional parameters would involve recent work in Bayesian statistics.
Just to give one recent example, Castillo and Nickl (2013) prove a nonparametric version
of the Bernstein–von Mises theorem that could replace Assumption 3.

Appendix: Proofs

Lemma 2. The event Δ∗ ⊆ ΔI(μ) is equivalent to the event μ ∈ ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ).

The event ΔI(μ) ⊆ Δ∗ is equivalent to the event μ ∈ ⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C , which
is equivalent to the event μ ∈ ⋂

δ∈(Δ∗)C∩Δ(Θ)

⋂
{θ:Δ(θ)=δ}μI(θ)

C . The event ΔI(μ) ∩ Δ∗ = ∅
is equivalent to the event μ ∈ ⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ), which is equivalent to the event
μ ∈ ⋃

δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ).

Proof. The relation Δ∗ ⊆ Δ(ΘI(μ)) is equivalent to δ ∈ Δ(ΘI(μ)) for all δ ∈ Δ∗. The re-
lation δ ∈ Δ(ΘI(μ)) is equivalent to the existence of θ ∈ΘI(μ) such that δ= Δ(θ), which
in turn is equivalent to μ ∈ μI(θ) for some θ such that δ= Δ(θ), and that is equivalent to
μ ∈ ⋃

{θ:Δ(θ)=δ}μI(θ).
The relation Δ(ΘI(μ)) ⊆ Δ∗ is equivalent to δ /∈ Δ(ΘI(μ)) for all δ ∈ (Δ∗)C . δ /∈

Δ(ΘI(μ)) is equivalent to the nonexistence of θ ∈ ΘI(μ) such that δ = Δ(θ), which in
turn is equivalent to μ ∈ μI(θ)

C for all θ such that δ = Δ(θ), and that is equivalent to
μ ∈ ⋂

{θ:Δ(θ)=δ}μI(θ)
C .

It is immediate that if μ ∈ ⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C , then μ ∈⋂
δ∈(Δ∗)C∩Δ(Θ)

⋂
{θ:Δ(θ)=δ}μI(θ)

C . Suppose that μ ∈ ⋂
δ∈(Δ∗)C∩Δ(Θ)

⋂
{θ:Δ(θ)=δ}μI(θ)

C , and
let δ∗ ∈ (Δ∗)C and θ∗ such that δ∗ = Δ(θ∗) be given. Then it must be that δ∗ ∈ Δ(Θ).
Therefore, if μ ∈ ⋂

δ∈(Δ∗)C∩Δ(Θ)

⋂
{θ:Δ(θ)=δ}μI(θ)

C , then μ ∈ ⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C .

the approach to inference in this paper does not result in a conventional posterior over the parameters,
this approach does not satisfy the requirements of all varieties of Bayesianism. However, it does satisfy the
following definition: “It seems to me [I. J. Good, in Good (1965)] that the essential defining property of a
Bayesian is that he regards it as meaningful to talk about the probability P(H|E) of a hypothesis H, given
evidence E.” The approach to inference in this paper talks about hypotheses concerning the identified set.
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The relation Δ(ΘI(μ)) ∩ Δ∗ = ∅ is equivalent to the existence of some δ ∈ Δ∗ such
that δ ∈ Δ(ΘI(μ)). The relation δ ∈ Δ(ΘI(μ)) is equivalent to μ ∈ ⋃

{θ:Δ(θ)=δ}μI(θ) from
above, so Δ(ΘI(μ))∩Δ∗ = ∅ is equivalent to μ ∈ ⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ).
It is immediate that if μ ∈ ⋃

δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ), then μ ∈⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ). Suppose that μ ∈ ⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ). Then it must be

that there is δ∗ ∈ Δ∗ and θ∗ such that δ∗ = Δ(θ∗) and μ ∈ μI(θ
∗). Therefore, it

must be that δ∗ ∈ Δ(Θ), and, therefore, if μ ∈ ⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ), then μ ∈⋃

δ∈Δ∗∩Δ(Θ)

⋃
{θ:Δ(θ)=δ}μI(θ). �

Proof of Theorems 1 and 3. For Theorem 1(i), since μ0 ∈ int(
⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)),
there is an open neighborhood U of μ0 such that U ⊆ int(

⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)).

Therefore, since μ|X is consistent by Assumption 2, Π(Δ∗ ⊆ ΔI |X) ≡ Π(μ ∈⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)|X) ≥Π(μ ∈U |X) → 1 along almost all sample sequences.

For Theorem 1(ii), let δ∗ ∈ Δ∗ be such that μ0 ∈ int((
⋃

{θ:Δ(θ)=δ∗} μI(θ))
C). Then

it follows Π(Δ∗ ⊆ ΔI |X) ≤ Π(δ∗ ∈ ΔI |X) = Π(μ ∈ ⋃
{θ:Δ(θ)=δ∗} μI(θ)|X) = 1 − Π(μ ∈

(
⋃

{θ:Δ(θ)=δ∗} μI(θ))
C |X). Since μ0 ∈ int((

⋃
{θ:Δ(θ)=δ∗} μI(θ))

C), there is an open neigh-
borhood U of μ0 such that U ⊆ int((

⋃
{θ:Δ(θ)=δ∗} μI(θ))

C). Therefore, since μ|X is consis-
tent by Assumption 2, Π(μ ∈ (

⋃
{θ:Δ(θ)=δ∗} μI(θ))

C |X) ≥ Π(μ ∈ U |X) → 1 along almost
all sample sequences.

For Theorem 3(i), note that Π(ΔI ⊆ Δ∗|X) ≡ Π(μ ∈ ⋂
δ∈(Δ∗)C

⋂
{θ:Δ(θ)=δ}μI(θ)

C |X).
Therefore, by the same arguments as in the proof of Theorem 1(i), but applied to⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C , the result follows.

Similarly, for Theorem 3(ii), let δ∗ ∈ (Δ∗)C be such that μ0 ∈ int(
⋃

{θ:Δ(θ)=δ∗} μI(θ)).
Then Π(ΔI ⊆ Δ∗|X) ≡ Π(μ ∈ ⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C |X) ≤ Π(μ ∈⋂

{θ:Δ(θ)=δ∗} μI(θ)
C |X). Then, by the same arguments as in the proof of Theorem 1(ii),

but applied to
⋂

{θ:Δ(θ)=δ∗} μI(θ)
C , the result follows.

For Theorem 3(iv), since μ0 ∈ int(
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)), there is an open neigh-
borhood U of μ0 such that U ⊆ int(

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)). Therefore, since μ|X is con-

sistent by Assumption 2, Π(ΔI ∩Δ∗ = ∅|X) ≡ Π(μ ∈ ⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)|X)≥Π(μ ∈

U |X) → 1 along almost all sample sequences.
For Theorem 3(v), since μ0 ∈ ext(

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)), there is an open neighbor-

hood U of μ0 such that U ⊆ int((
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ))
C). Therefore, since

μ|X is consistent by Assumption 2, it follows that Π(ΔI ∩ Δ∗ = ∅|X) = Π(μ ∈
(
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ))
C |X)≥Π(μ ∈U |X) → 1 along almost all sample sequences.

For Theorem 1(iii), again Π(Δ∗ ⊆ ΔI |X)≡ Π(μ ∈ ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)|X), so

∣∣∣∣Π(
Δ∗ ⊆ ΔI |X

) − PN(0�Σ0)

(√
n

( ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)−μn(X)

))∣∣∣∣

=
∣∣∣∣Π

(
μ ∈

⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)
∣∣X

)

− PN(0�Σ0)

(√
n

( ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)−μn(X)

))∣∣∣∣
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=
∣∣∣∣Π

(√
n
(
μ−μn(X)

) ∈ √
n

( ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)−μn(X)

)∣∣X
)

− PN(0�Σ0)

(√
n

( ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}

μI(θ)−μn(X)

))∣∣∣∣
→ 0�

The second equality follows from the fact that μ ∈ ⋂
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ) is equiva-

lent to
√
n(μ − μn(X)) ∈ √

n(
⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) − μn(X)). The claimed limit holds
along almost all sample sequences, by Assumption 3.

The proof of Theorem 3(iii) is similar, except applied to the posterior Π(ΔI ⊆
Δ∗|X)≡ Π(μ ∈ ⋂

δ∈(Δ∗)C
⋂

{θ:Δ(θ)=δ}μI(θ)
C |X). The proof of Theorem 3(vi) is similar, ex-

cept applied to the posterior Π(ΔI ∩Δ∗ = ∅|X) ≡Π(μ ∈ ⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)|X). �

Proof of Corollaries 2 and 4. For Corollary 2(i), the event Δ∗ ⊆ ΔI(μ), which is
equivalent to the event that μ ∈ ⋂

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ) by Lemma 2, is a measurable
event by Assumption 4, since it is the intersection of closed sets. Let the set of finitely
many extreme points of Δ∗ be S. Also, let the neighborhood of μ0 where ΔI(μ) ∩ Δ∗ is
convex be U . Then Π(Δ∗ ⊆ ΔI |X) = Π(Δ∗ ⊆ ΔI�μ ∈ U |X) + Π(Δ∗ ⊆ ΔI�μ ∈ UC |X) ≥
Π(Δ∗ ⊆ ΔI�μ ∈U |X).

Suppose that for μ ∈ U , S ⊆ ΔI(μ) ∩ Δ∗, which is implied by S ⊆ ΔI(μ). Then since
ΔI(μ) ∩ Δ∗ is convex, Δ∗ = co(S) ⊆ ΔI(μ) ∩ Δ∗ ⊆ ΔI(μ). Consequently, Π(Δ∗ ⊆ ΔI�μ ∈
U |X) ≥Π(S ⊆ ΔI�μ ∈U |X).

Since Δ∗ ⊆ int(ΔI), in particular S ⊆ int(ΔI). Therefore, for each δ ∈ S, by Assump-
tion 4, μ0 ∈ int(

⋃
{θ:Δ(θ)=δ}μI(θ)). Therefore, μ0 ∈ ⋂

δ∈S(int(
⋃

{θ:Δ(θ)=δ}μI(θ))). Since S is
finite, equivalently μ0 ∈ int(

⋂
δ∈S

⋃
{θ:Δ(θ)=δ}μI(θ)). Then, by the same arguments as in

the proof of Theorem 1(i), Π(S ⊆ ΔI�μ ∈ U |X) → 1 along almost all sample sequences,
which establishes the claim.

For Corollary 2(ii), since Δ∗ � ΔI , there is δ∗ such that δ∗ ∈ Δ∗ and δ∗ /∈ ΔI . In partic-
ular, therefore μ0 /∈ ⋃

{θ:Δ(θ)=δ∗} μI(θ), which is equivalent to μ0 ∈ (
⋃

{θ:Δ(θ)=δ∗} μI(θ))
C ,

which is an open set by Assumption 4. Therefore, Theorem 1(ii) applies, which estab-
lishes the claim.

For Corollary 4(i), let Δ̃∗ = int(Δ∗) and note that since ΔI ⊆ Δ̃∗ ⊆ Δ∗, it follows
that Π(ΔI ⊆ Δ∗|X) ≥ Π(ΔI ⊆ Δ̃∗|X). The event that ΔI(μ) ⊆ Δ∗ is measurable by
assumption. The event that ΔI(μ) ⊆ Δ̃∗ is measurable, since by Assumption 4,⋂

δ∈Δ̃∗C
⋂

{θ:Δ(θ)=δ}μI(θ)
C is open. Since ΔI ⊆ Δ̃∗, by Lemma 2, μ0 ∈⋂

δ∈Δ̃∗C
⋂

{θ:Δ(θ)=δ}μI(θ)
C , and therefore there is an open neighborhood U of μ0 such

that U ⊆ ⋂
δ∈Δ̃∗C

⋂
{θ:Δ(θ)=δ}μI(θ)

C . Therefore, part (i) of Theorem 3 applies, so Π(ΔI ⊆
Δ̃∗|X)→ 1, which establishes the claim.

For Corollary 4(ii), let δ∗ ∈ (Δ∗)C ∩ int(ΔI). Then by Assumption 4, μ0 ∈
int(

⋃
{θ:Δ(θ)=δ∗} μI(θ)). Then part (ii) of Theorem 3 establishes the claim.

For Corollary 4(iii), ΔI(μ)∩Δ∗ = ∅ for all μ in an open neighborhood of μ0 is equiva-
lent, by Lemma 2, to the statement that all such μ satisfy μ ∈ ⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ),
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which implies that μ0 ∈ int(
⋃

δ∈Δ∗
⋃

{θ:Δ(θ)=δ}μI(θ)), so part (iv) of Theorem 3 estab-
lishes the claim.

For Corollary 4(iv), ΔI(μ)∩Δ∗ = ∅ for all μ in an open neighborhood of μ0 is equiva-
lent, by Lemma 2, to the statement that all such μ satisfy μ ∈ (

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ))

C ,
which implies that μ0 ∈ ext(

⋃
δ∈Δ∗

⋃
{θ:Δ(θ)=δ}μI(θ)), so part (v) of Theorem 3 establishes

the claim. �

Proof of Theorem 5. Note that, per Lemma 2, ΔI(μ) ⊆ CΔI
1−α(X) is logically equivalent

to μ ∈ ⋂
δ∈(CΔI

1−α(X))C

⋂
{θ:Δ(θ)=δ}μI(θ)

C ≡ Δ
−1�ΔI
1−α (X).

By Assumption 3, for any given ε > 0, there is a set of sample sequences for the data
X with probability at least 1 − ε under the true data generating process and a minimal
sample size Nε such that, for any sample size n ≥Nε (and for all such sample sequences
resulting in an X), ‖Π(

√
n(μ−μn(X)) ∈ ·|X)− PN(0�Σ0)(·)‖TV < ε.

Applying this to Δ̃
−1�ΔI
1−α (X) ≡ √

n(Δ
−1�ΔI
1−α (X) − μn(X)), it follows that

PN(0�Σ0)(Δ̃
−1�ΔI
1−α (X)) ∈Π(

√
n(μ−μn(X)) ∈ √

n(Δ
−1�ΔI
1−α (X)−μn(X))|X)+ [−ε�ε].

Note that Π(
√
n(μ−μn(X)) ∈ √

n(Δ
−1�ΔI
1−α (X)−μn(X))|X) = Π(μ ∈ Δ

−1�ΔI
1−α (X)|X) =

1 − α, by definition of a credible set for the identified set. That implies
PN(0�Σ0)(Δ̃

−1�ΔI
1−α (X)) ∈ [1 −α− ε�1 −α+ ε]. That implies PN(0�Σ0)(Δ̃

−1�ΔI
1−α (X)) →a�s� 1 −α.

Finally, that implies E(PN(0�Σ0)(Δ̃
−1�ΔI
1−α (X))) → 1 − α.

By Assumption 6, for any given ε > 0, there is a minimal sample size N ′
ε such that for

any sample size n ≥ N ′
ε, Fn(A) ∈ PN(0�Σ0)(A)+ [−ε�ε] either for all Borel sets A (in case

of part (a)) or all finite unions of disjoint convex sets A (in case of part (b), in which case
also Δ̃

−1�ΔI
1−α (X) is a finite union of disjoint convex sets, after application of Rao (1962,

Theorem 4.2) or Bickel and Millar (1992, Example 4.2)). Therefore, E(Fn(Δ̃
−1�ΔI
1−α (X))) ∈

E(PN(0�Σ0)(Δ̃
−1�ΔI
1−α (X))) + [−ε�ε]. So, because E(PN(0�Σ0)(Δ̃

−1�ΔI
1−α (X))) → 1 − α from

above, E(Fn(Δ̃
−1�ΔI
1−α (X))) → 1 − α.

But also P(
√
n(μ0 − μn(X)) ∈ √

n(Δ
−1�ΔI
1−α (X) − μn(X))) = P(μ0 ∈ Δ

−1�ΔI
1−α (X)) =

P(ΔI ⊆ CΔI
1−α(X)), since μ0 ∈ Δ

−1�ΔI
1−α (X) is logically equivalent to ΔI ⊆ CΔI

1−α(X) by

Lemma 2. Therefore, P(ΔI ⊆ CΔI
1−α(X)) → 1 − α if and only if

∣∣P(√
n
(
μ0 −μn(X)

) ∈ √
n
(
Δ

−1�ΔI
1−α (X)−μn(X)

)) −E
(
Fn

(
Δ̃

−1�ΔI
1−α (X)

))∣∣ → 0�

which is Assumption 5. �

Proof of Lemma 1. In large samples, Π(ΔI(μ) ⊆ CΔI
1−α(X)|X) ≈ Π(ΔIL(μ) ≥

ΔIL(μn(X)) − c1−α(X)√
n

�ΔIU(μ) ≤ ΔIU(μn(X)) + c1−α(X)√
n

|X), since ΔI(μ) = ∅ with pos-

terior probability approaching 1 in large samples by Assumption 2. Then Π(ΔIL(μ) ≥
ΔIL(μn(X)) − c1−α(X)√

n
�ΔIU(μ) ≤ ΔIU(μn(X)) + c1−α(X)√

n
|X) = Π(

√
n(ΔIL(μ) −

ΔIL(μn(X))) ≥ −c1−α(X)�
√
n(ΔIU(μ) − ΔIU(μn(X))) ≤ c1−α(X)|X). Let Δ′

I(μ) =
(Δ′

IL(μ)Δ
′
IU(μ)) be the dμ × 2 matrix of derivatives of ΔIL(·) and ΔIU(·) with respect

to the elements of μ. By the Bayesian delta method (e.g., Bernardo and Smith (2009,
Section 5.3)), the posterior for (

√
n(ΔIL(μ) − ΔIL(μn(X)))�

√
n(ΔIU(μ) − ΔIU(μn(X))))
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is approximately N(0� (Δ′
I(μ0))

TΣ0Δ
′
I(μ0)) in large samples. Because the covariance is

full rank (i.e., (Δ′
I(μ0))

TΣ0Δ
′
I(μ0) is positive definite), c1−α(X) must converge to the

unique constant c1−α that solves PN(0�(Δ′
I(μ0))T Σ0Δ

′
I (μ0))

(μL ≥ −c1−α�μU ≤ c1−α) = 1 − α.

Therefore, P(
√
n(μ0 − μn(X)) ∈ Δ̃

−1�ΔI
1−α (X)) = P(ΔI(μ0) ⊆ CΔ1

1−α(X)) = P(ΔIL(μ0) ≥
ΔIL(μn(X)) − c1−α(X)√

n
�ΔIU(μ0) ≤ ΔIU(μn(X)) + c1−α(X)√

n
) = P(

√
n(ΔIL(μ0) −

ΔIL(μn(X))) ≥ −c1−α(X)�
√
n(ΔIU(μ0)−ΔIU(μn(X))) ≤ c1−α(X)) → 1 − α, since by the

delta method, (
√
n(ΔIL(μ0) − ΔIL(μn(X)))�

√
n(ΔIU(μ0) − ΔIU(μn(X)))) is distributed

N(0� (Δ′
I(μ0))

TΣ0Δ
′
I(μ0)) in repeated large samples. Moreover, PN(0�Σ0)(Δ̃

−1�ΔI
1−α (X)) →

1 −α by Theorem 3, so (as established in the proof of Theorem 5 without using Assump-
tion 5), also E(Fn(Δ̃

−1�ΔI
1−α (X))) → 1 − α, establishing Assumption 5. �
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