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Bayesian estimation of a dynamic stochastic general
equilibrium model with asset prices

Martin Kliem
Economic Research Center, Deutsche Bundesbank

Harald Uhlig
Department of Economics, University of Chicago

This paper presents a novel Bayesian method for estimating dynamic stochastic
general equilibrium (DSGE) models subject to a constrained posterior distribu-
tion for the implied Sharpe ratio. We apply our methodology to a DSGE model
with habit formation in consumption and leisure, and show that the constrained
estimation produces both reasonable asset-pricing and business-cycle implica-
tions. Next, we estimate the Smets–Wouters model subject to the same Sharpe
ratio constraint. The results move the model closer to reproducing observed risk
premia, but at increasing cost to its macroeconomic performance.

Keywords. Bayesian estimation, stochastic steady state, prior choice, Sharpe ra-
tio.

JEL classification. C11, E32, E44, G12.

1. Introduction

This paper presents a novel Bayesian method for estimating dynamic stochastic general
equilibrium (DSGE) models subject to constraints on the posterior distribution for some
implied statistic of interest, such as the Sharpe ratio, that is, the market price for risk.
This is akin to imposing a version of the Hansen–Jaganathan bound; see Hansen and
Jagannathan (1997). We use the log-linearized law of motion to calculate a version of the
Sharpe ratio as minus the ratio of the correlation between the log stochastic discount
factor and the log return on capital, divided by the standard deviation of the log return
on capital; see (18). Starting from an initial, unconstrained prior, we construct a con-
strained prior so that the resulting implied posterior for some variable of interest (the
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Sharpe ratio, for instance) coincides with some a priori chosen distribution, and such
that the constrained prior is proportional to the original prior, conditional on that vari-
able. We apply our methodology to a DSGE model with habit formation in consumption
and leisure, real wage rigidities, and capital adjustment costs, extending Uhlig (2007).
As a constraint, we use a sharply peaked density centered at 0�2, a previous estimate
of the Sharpe ratio. We show that the estimation subject to this constraint produces a
quantitative model with both reasonable asset-pricing and business-cycle implications.
Next, we estimate the Smets–Wouters model (see Smets and Wouters (2007)) subject to
a Sharpe ratio constraint centered around the more modest value of 0�075. The results
move the model closer to reproducing observed risk premia, but at increasing cost to its
macroeconomic performance.

It can be challenging to specify a dynamic stochastic general equilibrium (DSGE)
model with reasonable macroeconomic implications as well as asset-pricing implica-
tions. Considerable advances have been made here in the literature in recent years.
One branch of the literature exploits Epstein–Zin preference specifications developed
by Epstein and Zin (1989, 1991), and includes Tallarini (2000), Rudebusch and Swan-
son (2012), Guvenen (2009), and Piazzesi and Schneider (2007). Another branch of the
literature has pursued habit-formation specifications; see, for example, Abel (1990),
Ljungqvist and Uhlig (2000), Campbell and Cochrane (1999), Boldrin, Christiano, and
Fisher (2001), Uhlig (2007), Ljungqvist and Uhlig (2015), and Campbell, Pflueger, and
Viceira (2015). Finally, smartly chosen tail risk distributions and disaster risks have been
successfully utilized by Barro (2006), Gabaix (2012), and Gourio (2012).

But even if a model is cleverly crafted for that purpose, the estimation of such a
model may not necessarily lead to parameters that allow one to deliver on both. In
essence, the practical problem appears to boil down to having just a single observation
on the size of the risk premium, while there are many observations helping to identify
parameters crucial for the macroeconomic dynamics of the model. Thus, rather than
calculating the implied posterior for the risk premium among many other statistic, our
methodology instead imposes a constraint. The constraint is expressed as a density and
therefore is a bit softer than an exact numerical value: this allows the use of standard
sampling techniques.

Our procedure, which expands Kliem (2009), adds to the existing literature on en-
dogenous prior choice for Bayesian estimation of DSGE models pioneered by Del Negro
and Schorfheide (2008). Similarly to us, these authors propose a methodology to con-
struct prior distributions for DSGE model parameters from beliefs about statistics of
interest, which are themselves functions of the parameters. More specifically, they fo-
cus on the model-implied pth-order vector autoregression. Christiano, Trabandt, and
Walentin (2011) pointed out how to modify the approach if some additional statistics of
interest are provided: in the context here, that would be the Sharpe ratio. Like Del Negro
and Schorfheide (2008) and Christiano, Trabandt, and Walentin (2011), our approach
amounts to multiplying the original prior with a term that involves the statistics of
interest as a function of the parameters. The main difference between our approach
and Christiano, Trabandt, and Walentin (2011) lies in modifying the prior, so that the
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marginal posterior for the parameter of interest has a particular shape. This is advanta-
geous if one wants to avoid using the data twice: the prior view about, say, the Sharpe
ratio truly comes from having observed the entire data already, and it may then be odd
to use these data again to calculate a posterior for that statistic of interest. The posterior
will be informative about the other aspects of the model, and that will be the focus of
interest. Furthermore Del Negro and Schorfheide (2008) and Christiano, Trabandt, and
Walentin (2011) focus on statistics from a hypothetical pre-sample and thus their sam-
ple moments, while we allow for a free implied posterior for the statistic of interest. Our
emphasis here is on constraining asset-pricing implications, and it may be instructive
to compare these approaches, when applying the other two with that focus in mind.

To demonstrate our methodology and to set ourselves a bit of a challenge, we ap-
ply our method to two models, which do not easily account for asset-pricing observa-
tions. The first and main application in Section 3 is the habit-formation model in Uhlig
(2007), extended to include additional shocks. Unsurprisingly and in line with a large
literature, the constrained estimation delivers a high degree of risk aversion with respect
to short-term fluctuations in consumption and thereby a low degree of intertemporal
substitution. This is simply an unavoidable consequence of employing a log-linearized
habit-formation model and seeking to match risk premia on asset markets.

The novel contribution of the methodology and insights here is to respect that con-
sumption fluctuations now arise endogenously in the model, rather than being exoge-
nously given as in much of the asset-pricing literature: our estimation methodology then
seeks to find the optimal compromise between matching macroeconomic facts and risk
premia, taking into account these general equilibrium repercussions.

The constrained estimator does so for the model in Section 3 by increasing the per-
sistence of the response of the investment-to-output ratio, using the capital stock as a
long-run buffer to smooth out short-term consumption fluctuations. This increase in
the long-run volatility of the investment–output ratio may provide an intriguing con-
nection to the long-run risk literature for Epstein–Zin preferences; see Bansal and Yaron
(2004) and Hansen, Heaton, and Li (2008). The estimates further suggest that labor
rigidities rather than external habits in consumption play an important role for pro-
ducing our results, in line with Uhlig (2007). Remarkably, the volatility of the risk-free
return is similar in size to what is observed in the data and the “risk-free rate puzzle”
(Weil (1989)) is avoided. The Bayesian posterior odds ratio between the unconstrained
and the constrained model is around 6�6, demonstrating that the constrained model is
not “obviously false” from the unconstrained perspective.

This is in rather marked contrast to the constrained estimation of the Smets–Wouters
model, pursued in Section 4. Now, the posterior odds ratio of the unconstrained model
over the constrained model is 3�7e24, even though we set ourselves the more modest tar-
get of only matching half of the observed Sharpe ratio. Clear gaps open in the macroe-
conomic implications of the unconstrained and constrained model. For illustration, we
then additionally impose a second constraint in Section 4.2, asking the estimated model
to also deliver an upwardly sloping term structure of interest rates. It turns out that the
method now hits a rather hard wall in terms of delivering on both the Sharpe ratio and
the term premium, and cannot fully deliver the constraints one is asking for.
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This, of course, should not be a surprise. If one wishes to construct a DSGE model
for the purpose of, say, analyzing monetary policy or fiscal policy, and wishes that model
to account for asset-pricing features such as the Sharpe ratio, it is worth introducing
features that it will help to do so. Our procedure is certainly not a “cure-all.” Rather,
our methodology is useful for finding a good parameterization, when the model has a
chance to succeed in principle, and for finding the least bad parameterization, when it
does not.

The paper is organized as follows. Section 2 introduces our methodology. Section 3
applies our method to the habit-formation model of Uhlig (2007). Section 4 exam-
ines our procedure when applied to the Smets and Wouters (2007) model, includ-
ing a multivariate constraint application for illustration. Section 5 concludes the pa-
per. An additional appendix, available in a supplementary file on the journal website,
http://qeconomics.org/supp/396/supplement.pdf, provides auxiliary results. Technical
material is available in a supplementary file on the journal website, http://qeconomics.
org/supp/396/code_and_data.zip.

2. Constructing the constrained prior

Our methodology can broadly be understood as a Bayesian estimation subject to a con-
straint: we shall describe it in general terms first, and then provide additional details for
our core application to constraining asset-pricing implications in a DSGE model.

2.1 Bayesian estimation subject to a posterior density constraint

Suppose one wishes to impose the constraint (or a priori belief) that a vector of values or
statistics ω ∈ R

m, which can be expressed as a function of the parameters ω=Ω(θ), lies
within bounds a≤ω≤ b, where a�b ∈R

m. Given dataX , a straightforward modification
of some unconstrained prior would then be to constrain its domain to the set

p(θ|X)∝
{
p(θ)p(X|θ)� if ω(θ) ∈Q�
0� if ω(θ)/∈Q� (1)

whereQ≡ {
θ : a≤ω(θ)≤ b}� (2)

We wish to refine this approach for several reasons, building on insights learned
from the specific application to constraining the Sharpe ratio in a DSGE model. First,
since such a model will often favor parameters with a low Sharpe ratio, the approach
above will lead to a pile-up of the constrained parameters at the lower bound a: the re-
sults will then be rather sensitive to specifying that lower bound. Second, our a priori
beliefs regarding the Sharpe ratio are more appropriately formulated as a probability
distribution, or, more precisely, are given by an uncertain estimate of the Sharpe ratio,
given observed data, rather than imposing that it lie within some interval. Finally, the
procedure becomes both more flexible and more reasonable. We argue that it is more
appealing to learn the implications of the model if the Sharpe ratio is constrained to be
high with considerable probability, rather than imposing that it be within some interval.
We believe this insight applies more generally to other statistics of interest as well.

http://qeconomics.org/supp/396/supplement.pdf
http://qeconomics.org/supp/396/code_and_data.zip
http://qeconomics.org/supp/396/code_and_data.zip
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Consequently, we use the following approach. The model generates dataX : the par-
ticular observation at hand is the realization X̄ . We start from some unconstrained prior
p(θ) in the parameter vector θ. We then construct a constrained prior p̃X̄(θ), such that
the following two properties hold:

P1. The implied posterior for the statistic of interest ω = Ω(θ) ∈ R
m coincides with

some a priori given distribution F(ω), with density f (ω) at the given observation X̄ .

P2. The constrained prior is proportional to the unconstrained prior, given any ω.

This approach should be viewed as a modification or refinement of the standard ap-
proach of Bayesian estimation subject to a constraint, described above. Rather than im-
posing an inequality constraint on a parameter or function of the parameters, we im-
pose a probability density. We believe that P2 is a particularly appealing property and a
useful benchmark. It says that prior views regarding the parameters remain unchanged,
conditional on any particular value forω. We only wish to impose that some values ofω
are more likely than others, compared to the unconstrained prior. While that necessarily
shifts the prior regarding the underlying parameters due to the reweighting of different
ω’s, we do not want to additionally impose a change in our prior views regarding various
combinations of these parameters if they all result in the same value of ω.

More formally, we start with the following criteria:

1. A proper prior p(θ), which we call the unconstrained prior.

2. A likelihood function �(X|θ).
3. A mappingΩ(θ)=ω ∈R

m.

4. A differentiable probability distribution function F(ω) on R, that is, an increasing
function with limω→−∞ F(ω)= 0, limω→∞ F(ω)= 1, and1 the corresponding probability
density function

f (ω)= ∂mF(ω)

∂ω1 ∂ω2 · · · ∂ωm � (3)

Given any dataX , calculate the implied unconstrained posterior for ω,

G(ω|X) =
∫
θ|Ω(θ)≤ω

p(θ|X)dθ� (4)

as well as its density g(ω|X) defined analogously to (3). Define the transformation func-
tion

hX̄(ω) = f (ω)

g(ω|X̄) � (5)

Note that h depends on the particular observation X̄ , indicated by the subscript. We
shall use this notation throughout whenever that dependence needs to be indicated. It

1We assume throughout that the mathematical conditions for performing the differentiation and inte-
gration steps are satisfied.
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is important that hX̄ does not vary with the data when defining the constrained prior
below in (6), that is, h(ω) is a function of ω only from here onward.

We claim that the following prior has the two desired properties listed above. Define
the constrained prior p̃X̄ as

p̃X̄(θ)= C−1
X̄
p(θ)hX̄

(
Ω(θ)

)
� (6)

where

CX̄ =
∫
p(θ)hX̄

(
Ω(θ)

)
dθ (7)

is the integration constant. Note that (6) implies the second of the desired properties,
that is, that the constrained prior is proportional to the unconstrained prior for any
given ω. We need to verify the first desired property. The implied posterior for ω, given
some observationX , is given by the distribution function

G̃X̄(ω|X)=
∫
θ|Ω(θ)≤ω

p̃X̄(θ|X)dθ� (8)

We need to show that G̃X̄(·|X̄)= F(·).
To that end, let g̃X̄(ω̃|X) be the density function for the multivariate distribution

function G̃X̄ , defined analogously to (3). Moreover, let Δ = (Δ1� � � � �Δm) be a volume
element or vector of small positive entries Δi > 0. Substituting the explicit expression for
the posterior, it follows that

g̃X̄(ω̃|X)Δ1Δ2 · · ·Δm

≈
∫
θ|ω̃≤Ω(θ)≤ω̃+Δ̃

(
p(θ)hX̄

(
Ω(θ)

)
�(X|θ)∫

p(θ)hX̄
(
Ω(θ)

)
�(X|θ)dθ

)
dθ

(9)

≈ hX̄(ω̃)∫
p(θ)hX̄

(
Ω(θ)

)
�(X|θ)dθ

∫
θ|ω̃≤Ω(θ)≤ω̃+Δ

p(θ)�(X|θ)dθ

∝ f (ω̃)

gX̄(ω̃|X̄)
∫
θ|ω̃≤Ω(θ)≤ω̃+Δ

p(θ)�(X|θ)dθ�

Likewise,

g(ω̃|X)Δ1Δ2 · · ·Δm ∝
∫
θ|ω̃≤Ω(θ)≤ω̃+Δ̃

p(θ)�(X|θ)dθ� (10)

Therefore, atX = X̄ ,

g̃X̄(ω̃|X̄)Δ1Δ2 · · ·Δm ∝ f (ω̃)Δ1Δ2 · · ·Δm� (11)

Integrating and recognizing that both sides of this equation are probability densities
delivers

G̃X̄(ω̃|X̄)= F(ω̃)
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as claimed.

These calculations also show what happens in the limit as F(ω) approaches a point

mass at a particular value for ω = ω∗, as it would in the case of estimation subject to

an exact constraint. In that case, f (ω) and hX̄(ω) approach a multiple of a Dirac delta

function atω=ω∗, and the dependence on the sample X̄ disappears, except in insisting

that the constrained prior p̃X̄ integrates to unity. This should alleviate concerns that our

procedure uses the data twice: instead, it should be viewed as imposing a soft constraint.

Moreover, near the point-mass limit, one nearly does not need to know g(ω|X̄) unless

one wishes to calculate posterior odds of models and therefore needs CX : all that one

needs is to check that it is not zero, and then to normalize p̃ to integrate to unity. This

is of importance in cases where the unconstrained prior assigns very little mass to the

area near ω∗, making it hard to calculate g(ω|X) accurately. Of course, if the constraint

is imposed rather softly, the dependence on X̄ and the precise calculation of g(ω|X)
matters relatively more.

The following algorithm provides a numerical implementation of our methodology:

1. Estimate the model by sampling from the unconstrained posterior p(θ|X).
2. Approximate the implied unconstrained probability density function g(ω|X̄).
3. Calculate the transformation function hX̄(ω) per (5).

4. Estimate the model with the constrained prior by sampling from p̃X̄(θ|X).
5. For Bayesian posterior odds ratio calculations and model comparisons, for exam-

ple, calculate the normalization constant CX̄ of (7).

The choice of the imposed implied posterior for the variable of interest is entirely up

to the researcher employing this methodology and simply a generalization of textbook

estimation subject to constraint. From a pure methodological perspective, it should not

matter much whether such constraints are imposed a priori so as to express strong be-

liefs about the properties of some parameter, or a posteriori so as to learn more about

certain features of a model. From the perspective of econometrics as conversation and

rhetoric (see McCloskey (1983)), we view this as a practical and appealing way to explore

and communicate model properties within a range of specifications of interest, rather

than being forced to examine model estimates, that deliver noncredible implications for

key variables. For these practical reasons, one may then wish to obtain a data-driven

implied posterior for the variable of interest. Indeed, the main difference between our

approach and Christiano, Trabandt, and Walentin (2011) lies in modifying the prior, so

that the marginal posterior for the parameter of interest has a particular shape. This is

advantageous if one wants to avoid using the data twice: the prior view about, say, the

Sharpe ratio truly comes from having observed the entire data already, and it may then

be odd to use these data again to calculate a posterior for that statistic of interest. The

posterior will be informative about the other aspects of the model, and that will be the

focus of interest.
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2.2 Constraining the sharpe ratio

While we have described the method with the potential of imposing a multivariate con-
straint, we shall focus on a univariate constraint in the bulk of the application below,
except for Section 4.2. In particular, we shall focus on constraining the Sharpe ratio on
the returns to capital investments.

As is well known, many estimated DSGE models typically have poor asset-pricing
implications, unless designed otherwise or—and that is the perspective in this paper—
unless the estimation pays particular attention to these aspects. From the perspective of
model applications, it is interesting to know the properties of the model if the estimation
procedure is constrained to deliver certain asset-pricing implications. In our specific
example, we seek to constrain our prior to deliver particular implications regarding the
Sharpe ratio, that is, the market price for risk.

We impose the constraint by exploiting the implications for that market price for
risk, given the log-linearized dynamics. Following Campbell (1994) and Uhlig (1999),
log-linearize the given (and possibly detrended) model and solve for the recursive law of
motion,

ŷt =Aĥt−1 +Bεt� (12)

where ŷt = log(yt)− log(yss) is a vector containing all log-linearized model variables and
ĥt = log(ht) − log(hss) is the vector containing all log-linearized state variables of the
model, with yss and hss as their corresponding steady-state values. The entries in the
matrices A and B can typically be interpreted as elasticities and are functions of the
model parameters θ,

A=A(θ)� B= B(θ)�

Following Lettau and Uhlig (2002) and using the representation (12), we can decom-
pose the log pricing kernel into its conditional expectation and its innovations,

M̂t+1 =Et[M̂t+1] + bMεt+1� (13)

where bM indicates the row vector of matrix B with respect to the pricing kernel. Let
Σ = Et[εt+1ε

′
t+1] be the variance–covariance matrix of εt : we assume it to be diagonal,

but the formulas apply more generally. The matrix Σ is a function of the underlying pa-
rameters θ,

Σ= Σ(θ)�

The conditional variance, σ2
M of the pricing kernel is

σ2
M = bMΣb′

M� (14)

Similarly, we can solve for the conditional variances σ2
Rk

of R̂kt , the log-linearized return
on some asset (where we use the superscript k to refer to the typical case of calculating
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the return of investing in capital). The conditional covariance of the pricing kernel and
the return on the asset, σMRk , is

σMRk = bMΣb′
Rk
� (15)

with bRk the row vector of matrix B for the return on the asset R̂k.
Given the log-linear law of motion and exploiting the joint normality of the innova-

tions of the logs of the variables, one can now calculate the implied risk premium on
any asset, as in Lettau and Uhlig (2002). This is similar to the second-order “update” of
the steady state in Schmitt-Grohe and Uribe (2004), in light of the first-order dynamics,
and exploits that E[X] = E[exp(log(X))] = exp(E[log(X)] + Var[log(X)]) for a normally
distributed random variable log(X). The formulas below would be exact if the log-linear
law of motion and joint normality were exact: the approximation error is in the latter.
The implied risk premium on the return of the asset over the risk-free return satisfies2

logEt
[
Rkt+1

] − logRft = −σMRk� (16)

Likewise, for the Sharpe ratio ω, defined here as in Lettau and Uhlig (2002) as

ω= logEt
[
Rkt+1

] − logRft
σRk

� (17)

we obtain

ω= −σMRk
σRk

� (18)

This provides the target for our constraint in the constrained estimation procedure.
Equation (18) provides us with the mapping Ω(θ) = ω ∈ R, which is required in the
method described above. Put differently, we shall impose constraints on the Sharpe ratio
for investing in capital, as this can be measured in the data using stock returns.

As Hansen and Jagannathan (1997) have shown and as was subsequently investi-
gated further in Campbell and Cochrane (2000) and Lettau and Uhlig (2002), the highest
possible Sharpe ratio is equal to σM when the correlation between the pricing kernel and
the return of capital is equal to −1. Alternatively, one could therefore use the mapping

Ω(θ)=ω= σM
if one wishes to impose a constraint on the maximal market price for risk, that is, to im-
pose a version of the Hansen–Jaganathan bound; see Hansen and Jagannathan (1997).

To implement the procedure practically, one needs the densities f (ω) and g(ω|X̄).
We proceed by approximating a sample histogram from the unconstrained posterior
with a gamma density, to calculate g(·). With that, one obtains an approximation to
hX̄(ω), which is easy to calculate accurately, but one may feel uncomfortable that the

2For example, Et [Rkt+1] =Et [exp(Et [logRkt+1] + bRkεt+1)] = exp(Et [logRkt+1] +σ2
Rk
/2). A few more similar

calculations deliver the equations in the text.
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approximation is accurate around the desired peakω∗ = argmaxω f(ω) of f (·). As an al-
ternative, one could pursue a kernel density estimation procedure for g(ω|X̄) in partic-
ular around ω∗, but if ω∗ is very unlikely under the unconditional prior, this may result
in long computations. In the extreme case, there is no parameter combination result-
ing in ω near ω∗, in which case g(ω|X̄) is zero in a neighborhood of ω∗ and the true
hX̄(ω) is not defined. With a kernel density approximation procedure for g(ω|X̄), this
case may be computationally hard to distinguish from the fundamentally rather differ-
ent case of a very low density. Our (potentially rather mistaken) gamma approximation
to g(ω|X̄) avoids these numerical challenges and potentially intense calculations at this
stage, and instead produces a numerical challenge in the next step, when sampling from
the constrained prior p̃X̄(θ). We sample from this prior by first obtaining its peak and
calculating the Hessian there, for the purpose of constructing a normal density approx-
imation and starting the Markov chain Monte Carlo (MCMC) algorithm. Consider first
the extreme case that the true g(ω|X̄) is zero around ω∗. The maximization procedure
then attempts to essentially climb hX̄(ω), but then stops at a sharp boundary, encoun-
tering a nondifferentiability at the peak of p̃X̄(θ) and before reaching ω∗. For the same
reason, it may even encounter difficulties of finding the peak, when using versions of the
Newton–Raphson algorithm. While these numerical challenges are solvable in principle,
it now is already clear that a parameterization with the desired ω∗ cannot be obtained.
So, rather than doggedly proceeding with the original f (ω), we recommend adjusting
this function and the target ω∗ to a more modest value, where these adverse conditions
do not hold, and restarting the calculations. Even in the less extreme case, where ω∗ is
reachable in principle, but the true g(ω|X̄) falls off rather sharply before reaching that
value, the numerical challenges in computing the peak and the Hessian there may be
rather similar in practice, and our recommendation of adjusting the target ω∗ to a more
modest value stays the same. One simply needs to recognize that our econometric ap-
proach is not a cure-all to fundamental deficiencies of the model itself. Some researchers
may wish to proceed in this slightly more benign case anyhow, however.

The particular implementation in the context of our first application is discussed
in Section 3.3 and shown in Figure 1. Note that by choosing a Gamma distribution, we
implicitly impose that the Sharpe ratio is positive: this seems reasonable on economic
grounds. However, for our application the choice of the Gamma distribution itself could
also be substituted by, for example, a log-normal distribution or another distribution
that imposes a positive Sharpe ratio. We approximate f (ω) by following our estimates for
the Sharpe ratio and assume that f (ω) is Gamma distributed with mean 0�2049. For our
second application in Section 4, we found that g(ω|X̄) is numerically ill-behaved around
our initial Sharpe ratio target. Given the practical considerations explained above and to
avoid moving the macroeconomic implications too far, we reduce the mean to a third of
that value and set ourselves a more modest goal in terms of asset-pricing implications.
Moreover, it turns out that we thus need to impose some f (ω), which is considerably
tighter than would be justified on estimation uncertainty of the Sharpe ratio alone. How-
ever, this ensure that the tails of h die out and that we therefore guarantee a proper prior,
and, therefore, we choose a standard deviation of 0�001 for f (ω). Since our main aim is
a flexible implementation of estimation subject to constraint rather than the imposition
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of a particular data-driven prior, we view this as a feature, not a bug. Moreover, given that
the exercise here is to obtain a model estimate in line with the observed Sharpe ratio as
well as to illustrate our estimation methodology, we view this as perfectly adequate: after
all, this is part of the prior specification, and not necessarily entirely data-driven.

Finally, we calculate the normalization constant CX̄ = ∫
p(θ)hX̄(Ω(θ))dθ of (7). To

that end, we apply a MCMC algorithm and use the modified harmonic mean estimator
by Geweke (1999) to compute the integral. If one can show that the Sharpe ratio only
depends on a few parameters of the model, and the unconditional prior is a product of
densities in these parameters and a density of the other parameters, then one can focus
the calculation of the constant entirely on these few parameters, since that is where all
the adjustment takes place. This Rao–Blackwellization can then help to achieve accuracy
more easily.3 Note that this constant is only used for model comparison, though, since
the MCMC-based method for constrained-posterior inference does not require knowl-
edge of the normalizing constant. If such a model comparison is intended as an overall
“rough” diagnostic, one may not need to compute the normalizing constant with great
precision, or other methods, such as a Laplace approximation, may suit the purpose as
well.

Mathematically, one can obtain these restrictions on ω from the log-linearized dy-
namics, even if one calculates the log linearization around a nonstochastic steady state
without a risk premium for the various assets. One may feel that doing so builds in a
logical inconsistency, however. If the risk premium on investing in, say, capital is im-
posed to be fairly high, the steady-state level of capital should be fairly low, so as to gen-
erate this additional risk premium on average. Therefore, we follow Juillard (2011) and
Coeurdacier, Rey, and Winant (2011) by evaluating the model around its risky steady
state, which incorporates information about the stochastic nature of the economic en-
vironment. For the numerical solution, we impose that

E
[
R
f
t

] =E
[

exp
(

− logM̄ −Et[M̂t+1] − σ2
M

2

)]
(19)

as well as

E
[
Rkt+1

] =E
[

exp
(

− logM̄ −Et[M̂t+1] − σ2
M

2
− σMRk

)]
� (20)

Given M̄ as well as variances and covariances, note that the right-hand side can once
again be calculated using (12) and the assumption of normally distributed shocks.

Because the conditional second moments depend on the policy function, the
stochastic steady state is computationally more demanding than the deterministic
steady state. In particular, the calculation requires the steady state and the correspond-
ing dynamics to be jointly determined (see, e.g., de Groot (2013)). Therefore, we get
a fixed point problem by solving our model accurately with respect to the stochastic
steady state. For this reason, we use an iterative procedure. We start with the determin-
istic steady state to obtain our policy function. The resulting steady-state adjustment

3We are grateful to the co-editor for pointing this out.
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yields a new set of policy functions, etcetera. As discussed in Canton (2002), a few itera-
tions suffice to achieve convergence and to resolve the fixed point problem to a reason-
able degree of accuracy.

3. Application 1: Habit formation and asset pricing

We apply our methodology to a dynamic stochastic general equilibrium model with ex-
ternal habit formation or “catching up with the Joneses” (see Abel (1990)) in both con-
sumption and leisure, building on Uhlig (2007). We extend the model by adding shocks
to permit estimation as well as to solve the model around the stochastic steady state. We
briefly describe the model here for the sake of completeness.

3.1 The model

Output yt is produced by a competitive sector of firms. Each firm produces output yt
with capital kt−1 in place from the previous period as well as labor nt per the Cobb–
Douglas production function

yt = kθt−1
(
ezP�t nt

)1−θ
� (21)

where zP�t is a productivity or technology parameter. We assume it to follow a random
walk with drift, zP�t = γ+ zP�t−1 + εP�t , εP�t ∼N(0�σP), with γ reflecting the trend.

There is a representative household with the utility function

U =E
[ ∞∑
t=0

βt
(
(ct −Ht)

(
A+ (

ezL�t lt − Ft
)ν))1−η − 1

1 −η

]
� (22)

The discount factor β, andA, ν, and η are parameters, which we assume to satisfy ν > 0
and η> ν/(ν+1) so as to assure monotonicity and concavity; see Uhlig (2007). The vari-
ables ct and lt denote consumption and leisure of the particular household. The utility
depends on the economy-wide average level of consumption habit and leisure habit,Ht
and Ft , evolving according to

Ht = eγ
(
(1 − ρc)χCt−1 + ρcHt−1

)
� (23)

Ft = (1 − ρl)ψLt−1 + ρlFt−1� (24)

where Ct and Lt are aggregate average levels of consumption and leisure: in equi-
librium, Ct = ct and Lt = lt . The parameters ρc , ρl, χ, and ψ determine the persis-
tence and importance of the habit features. The variable zL�t represents a labor supply
shock. We assume it to follow an (autoregression) AR(1) process, zL�t = πLzL�t−1 + εL�t ,
εL�t ∼N(0�σL). Total time endowment is normalized to unity, so that total labor supply
is nt = 1 −Lt .

The budget constraint of the agent is

ct + xt + Tt = dtkt−1 +wtnt� (25)
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Capital accumulation is affected by a depreciation rate δ and investment adjustment
costs g(·),

kt =
(

1 − δ+ g
(
ezI�t

xt

kt−1

))
kt−1� (26)

Following Jermann (1998), we assume the adjustment cost function g(·) to satisfy g(δ̃)=
δ+exp(γ)−1, g′(δ̃)= 1, and g′′(δ̃)= −1/ζ ∀ζ > 0, where δ̃ is defined as δ̃= exp(γ)+δ−1,
to adjust for trend growth. Adjustment costs are affected by the parameter zI�t , follow-
ing the AR(1) process: zI�t = πIzI�t−1 + εI�t , εI�t ∼N(0�σI). Given initial capital k−1, the
household maximizes its utility by choosing leisure lt , consumption ct , and investments
xt subject to the constraints (25) and (26), taking as given the exogenous habits Ht and
Ft and their aggregate evolution, real wages wt , dividends dt , and lump-sum taxes Tt .

The agent’s first-order condition for labor supply yields the frictionless wage or the

marginal rate of substitution,wft =UL/Uc . As motivated in Uhlig (2007), we assume real
wage rigidities as postulated by, for example, Hall (2005), Shimer (2005), and Blanchard
and Galí (2007). More precisely, we assume that

wt =
(
eγwt−1

)μ(
e�+zW �twft

)1−μ
� (27)

The parameter � > 0 represents an average wage markup to ensure that w > wf lo-
cally around the steady state, and that therefore the labor market is (typically) demand
constrained. The wage markup zW �t follows an AR(1) process: zW �t = πW zW �t−1 + εW �t ,
εW �t ∼N(0�σW ). The parameter μ reflects the degree of real wage stickiness. In the spe-
cial case of μ=�= zW �t = 0, there are no frictions and wages are fully flexible.

Finally, there is a government, financing an exogenously given stream of expendi-
tures Gt with lump sum taxes, Gt = Tt . We assume that Gt = ḡ exp(zP�t−1 + zG�t), where
exp(zP�t−1) appears to assure a stationary spending-to-output ratio and where zG�t is
assumed to follow the AR(1) process: zG�t = πGzG�t−1 + εG�t , εG�t ∼N(0�σG).

For the further analysis, define λt as the marginal utility of consumption and define
the stochastic discount factorMt = β λt

λt−1
. Risk premia arise from investigating the Lucas

asset-pricing equation

1 =Et[Mt+1Rt+1]� (28)

where Rt+1 is the one-period return on investing one unit of resources. For investing in
capital, for example, let q(·) be the shadow price of a unit of capital and let Rkt be the
return for investing in capital.

The five entries of the shock vector εt = [εP�t� εL�t� εI�t� εW �t� εG�t]′ are assumed to be
independent. Equilibrium is defined as usual.

For the numerical analysis, the variables kt , yt , ct , Ht , wt , w
f
t , xt , λt , and Gt have

to be productivity-detrended to solve the model. This is done by dividing each variable
by exp(zP�t−1), except capital kt , which is detrended with exp(zP�t), and λt , which is de-

trended by exp(−ηzP�t−1). Beside this, lt , Ft , nt , qt , R
f
t , Rkt , Mt , and dt are stationary. We

use a logarithmic approximation around the stochastic detrended steady state for our
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computations and solve for the recursive law of motion. In the following discussion, all
detrended variables are marked with ∼ and the log deviations from the detrended vari-
ables are marked with ∧. For details, see the Supplement.

3.2 Data

The estimation of the model is based on six time series from 1963:qI to 2008:qII. All data
are quarterly and in real terms.4 For both the unconstrained and constrained estima-

tion, we use the vector of time series Xt = [Δỹt�Δc̃t� ñt � x̃t − ỹt � R̃ft �Rqt ], where Δỹt is the
demeaned first difference of log output per capita, Δc̃t is the demeaned first difference
of log consumption per capita, x̃t − ỹt is the demeaned log investment-to-output ratio,

ñt is demeaned hours worked per capita, R̃ft is the demeaned risk-free rate, and R̃qt are
the excess returns on an aggregate stock market index. Because there is no equivalent
variable in our model, we define log excess returns as

R
q
t = −σMRq + 1

1 −Υ
(
R̂kt − R̂ft

) + εQ�t� (29)

where Υ is a parameter that can be interpreted as leverage and εQ�t is an independent
and identically distributed (i.i.d.) error term and assumed to be uncorrelated with the
stochastic discount factor. One may wish to simply interpret εQ�t as a measurement er-
ror. Conceptually, however, the term reflects random variations in dividend policies or
random fluctuations in demands by heterogeneous investors, which require far more
detailed modeling, but which we view as largely immaterial for the aggregate quantita-
tive dynamics of the model.5 Similar to Section 2.2, we derive the mean excess returns
as the negative covariance between the pricing kernel and the excess returns, −σMRq .
While we can observe the Sharpe ratio of the total returns on an aggregate stock mar-
ket index in the data, we cannot observe a Sharpe ratio for the return on economy-wide
capital in the data. Hence, we assume that in our economy all assets are priced along
the implied market line and therefore excess returns and capital returns share the same
Sharpe ratio. Thus, we use ω · σRq as a proxy for the mean excess returns.

3.3 Choice of the prior

As in Uhlig (2007), we find it useful to describe our unconstrained prior in terms of an
economically meaningful transformation of the model’s parameter. Specifically, con-
sider the Frisch elasticity of labor supply, defined as the elasticity of labor supply to
frictionless wages by holding the marginal rate of consumption constant,

τ = dn

dwf
wf

n

∣∣∣∣
Ūc

� (30)

4See the Supplement for details on the source and a description of any data used in this paper.
5In the Supplement, we present a historical and variance decomposition to investigate the role of εQ�t

in more detail. Unsurprisingly, this shock explains most of the variation in Rqt . Per our model assumptions,
the pricing kernel does not depend on that shock and therefore the shock does not contribute to the Sharpe
ratio. We recheck this model property numerically in the Supplement.
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Given our preference assumptions, this yields

τ= Un

n̄

[
Unn − U2

nc

Ucc

] = 1 − n̄
n̄

· η(1 + α)(1 −ψ)
η

(
α(1 − ν)+ 1 + ν) − ν � (31)

where α =A(1 − ψ)−νl̄−ν . Therefore, rather than specifying a prior for A or ν, we shall
specify a prior for τ, and calculate the implied A and ν from τ as well as the other pa-
rameters and variables in (31). We assume that the steady-state level of hours worked is
n= 1/3. From the first-order conditions,

ν = 1 − (1 −ψ) l̄

1 − l̄
1
τ

−
(

2 − 1
η

)
1

(1 −χ)κ , (32)

with

κ= e�

1 − θ
1 − l̄
l̄

c̄

ȳ
, (33)

where the c̄/ȳ is the steady-state consumption share of output.6 Additionally, we can
solve for the remaining preference parameters,

α= κν(1 −χ)
1 −ψ − 1� (34)

A= α(1 −ψ)νl̄ν� (35)

While the real business cycle literature often assumes a relatively high Frisch elas-
ticity of 2 or more (Prescott (1986), King, Plosser, and Rebelo (1988)), recent papers of
Bayesian DSGE model estimation found far smaller values for the Frisch elasticity in a
New Keynesian model framework. For example, Justiniano and Primiceri (2008) argue
for values between 0�25 and 0�5. These findings are also in line with some microdata-
based studies, which argue for small values in a range between 0 and 0�7 (see Pistaferri
(2003) and references therein). To that end, we use a prior for the inverse of the Frisch
elasticity, which is Gamma distributed with mean 1�0 and a standard deviation of 0�75.
This assumption covers the values used in the different strands of the literature.

For explaining business cycle facts and asset-pricing facts simultaneously, we ex-
pect that the discount factor β as well as the power utility parameter η play an impor-
tant role. The business cycle literature often uses values for the discount factor that are
slightly smaller than 1 to ensure a positive time preference of the representative agent
and steady-state risk-free returns comparable to observed returns. However, from an
asset-pricing perspective, discount factors with much smaller values or values greater
than 1 are postulated. These opposing assumptions are known as the risk-free rate puz-
zle (see Weil (1989)). However, Kocherlakota (1990) has shown that values for the dis-
count factor above unity can be in line with positive time preference if the economy

6More details regarding steady-state calculation can be found in the Supplement.
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Figure 1. Implied unconstrained probability density function g(ω|X̄) and its approximation
by a Gamma distribution (solid line).

is growing. For this reason, we use a prior information for the riskless return to ensure
positive time preference and solve recursively for the discount factor:

β= exp
(
ηγ− σ2

M/2 − log
(
R̄f

))
� (36)

In particular, we assume that the steady-state risk-free real quarterly return, log(R̄f ), is
inverted-gamma distributed with mean 0�005 and standard deviation 0�01. This ensures
that the mass of the prior is on positive real annual returns that are smaller than 4%.
Finally, we assume that the power utility parameter is uniformly distributed between 1
and 200, which implies most of the prior mass on high values. This is in contrast to the
common business cycle literature, which generally assumes small values and therefore
uses a quite informative prior, but allows our procedure to consider high degrees of risk
aversion when seeking to match asset-pricing facts: this is useful when constraining the
prior in the next step. The prior for the remaining deep model parameters are chosen in
line with the recent literature. An overview of the priors can be found in the Supplement.

In addition, to the steady-state labor supply of 1/3, we also calibrate the growth rate
of the economy γ and the capital share θ. As mentioned in the previous subsection,
we calibrate the growth rate to be equal to the observed value of 0�0044 per quarter.
The capital share is calibrated to 0�33 as is common. Finally, we assume a steady-state
government expenditure-to-output ratio, ḡ/ȳ, of 0�28 and the average wage markup �
of 0�05.

To obtain the constraint on ω, we approximate g(ω|X̄) using a Gamma distribution
with mean 0�02 and standard deviation 0�002. Figure 1 shows the implied unconstrained
probability density function g(ω|X̄) and its approximation by a Gamma distribution.

3.4 Estimation results

We estimate the posterior mode of the distribution and employ a random walk Metro-
polis–Hastings algorithm to approximate the uncertainty distribution of the parameters.
We run two chains, each with 300,000 parameter vector draws. The first 75% have been
discarded. We provide results for both the unconstrained and the constrained prior.
The posterior means for the constrained estimation are μ = 0�29, η = 108�18, χ = 0�84,
ψ= 0�84, ρc = 0�66, ρl = 0�07,Υ = 0�11, ζ = 7�84, δ= 0�02, 1/τ = 7�11, log(R̄f )×100 = 0�32,
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πG = 0�93, πI = 0�70, πW = 0�93, πL = 0�65, σP × 100 = 0�90, σI × 100 = 1�32, σL × 100 =
0�29, σW × 100 = 2�11, σG × 100 = 1�90, σQ × 100 = 7�38. In the Supplement, we show
detailed posterior statistics, for example, the posterior mean and the highest probabil-
ity density (HPD) interval, using the range between 5% and 95%. The results indicate
that the posterior distributions of all structural parameters are well approximated and
different from the prior distribution. In the following discussion, we highlight the key
differences between both estimation results.

By comparing the results of the estimation with unconstrained prior and con-
strained prior, we find the biggest difference for the power utility parameter η. This re-
sult is expected, because introducing the constrained prior decisively shifts the marginal
prior distribution with respect to η to high values. Additionally, for this class of prefer-
ences, the parameter is directly linked to the agents’ relative risk aversion (RRA) regard-
ing short-term fluctuations in consumption, which can be calculated as

RRA = η

1 −χ� (37)

We calculate the relative risk aversion for every draw from the posterior. This cal-
culation of the relative risk aversion regarding short-term fluctuations in consumption
has been criticized by Boldrin, Christiano, and Fisher (1997), who argue that relative
risk aversion with respect to wealth is more meaningful. Likewise, Swanson (2012) ar-
gues that this measure ignores the labor margin. We do not seek to take a stand here
on this debate: rather, our results illustrate the intuitive insight that high relative risk
aversion for short-term consumption fluctuations is needed to explain stylized asset-
pricing facts. In particular, the implied posterior mean of the relative risk aversion with
unconstrained prior and constrained prior is 39�2 and 719�25, respectively. For both
estimations, we identify similar volatilities of the exogenous shocks. This means both
economies face the same economy-wide risk. Since high economy-wide risk is therefore
not at the heart of matching the high Sharpe ratio according to these estimates, a high
relative risk aversion (in the sense described above) is unavoidable; see also Rudebusch
and Swanson (2008) or Lettau and Uhlig (2002). For habit-based DSGE models as pre-
sented in the present paper, the elasticity of intertemporal substitution is the inverse
of the relative risk aversion. This elasticity can be calculated as 0�026 and 0�0013 for the
estimation with unconstrained prior and constrained prior, respectively. Compared to
the findings by Hall (1988) or Vissing-Jørgensen (2002), these are very small, but un-
avoidably so due to the need for a high degree of relative risk aversion. Some recent
DSGE models likewise postulate high parameter values for external or internal habit and
therefore also imply small elasticities. As shown by Uhlig (2007), wage rigidities can be
a helpful ingredient to explain a high risk premium in habit-based DSGE models. Our
estimation results, however, show that the degree of wage rigidity is small and similar
for both estimation. Instead, the constrained estimation prefers a smaller Frisch elastic-
ity, τ, compared to the unconstrained estimation: the Frisch elasticity of labor supply τ
decreases from 0�18 for the unconstrained estimation to 0�14 for the constrained estima-
tion. Both values are in line with findings of the microeconomic literature (see Pistaferri
(2003)), but are at odds with some of the macroeconomic literature. We feel comfortable
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Figure 2. Prior and posterior distribution for selected parameters. The solid grey and solid
black lines correspond to the unconstrained prior and posterior distribution, while the dashed
grey and dashed black lines correspond to the constrained prior and the posterior distribution,
respectively.

with these results, however, since the model is nonetheless capable of matching aggre-
gate labor fluctuations as shown in Section 3.6: it is these aggregate observations that
are at the heart of the motivation for the large macroeconomic Frisch elasticities used
elsewhere. Intuitively, these estimates indicate high labor market rigidities for the esti-
mation with the constrained prior, in line with the insights of Uhlig (2007), but focus on
supply elasticities rather than wage elasticities.

Figure 2 shows the unconstrained and constrained prior and posterior distributions
for selected key parameters. In particular, Figure 2(a) and 2(b) present the prior and pos-
terior of the unconstrained and constrained estimation, respectively. The constrained
estimation of the Sharpe ratio affects the prior for η strongly. While the prior distribu-
tion is still diffuse, the prior is also more concentrated around values of 100. In com-
parison, as illustrated in Figure 2(c), the prior of the inverse of the Frisch elasticity 1/τ
is not affected by the constrained estimation. Finally, Figure 2(d) illustrates the mecha-
nism behind our approach. The constrained prior and the corresponding posterior are
close to being identical as intended.

3.5 Implied asset-pricing facts

Table 1 shows the implied distribution of the first and conditional second moments
for both estimations. In general, the estimation with constrained prior delivers asset-
pricing facts similar to those observed in the data. The estimation with unconstrained
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Table 1. Implied quarterly asset-pricing facts by the estimated models. All values in percent
with the exception of the Sharpe ratio.

Unconstrained Prior Constrained Prior

Posterior Posterior

Mean 5% 95% Mean 5% 95% Data

Mean risk-free rate × 100 log(R̄f ) 0�47 0�27 0�65 0�32 0�17 0�46 0�42
S.d. risk-free return σRf 0�39 0�35 0�42 0�38 0�35 0�42 0�54
S.d. return on capital σRk 1�19 0�97 1�41 1�18 0�98 1�37 –
S.d. excess returns σRq 7�86 7�20 8�54 7�59 6�98 8�22 7�27
S.d. pricing kernel σM 4�16 1�90 6�82 92�15 72�13 110�92 –
Risk premium (Rk/Rf ) −σMRk 0�02 0�01 0�03 0�24 0�20 0�28 –
Mean excess returns ω · σRq 0�16 0�11 0�23 1�55 1�41 1�69 1�49
Sharpe ratio (Rk) × 100 ω 2�03 1�40 2�70 20�5 20�3 20�6 20�49

prior can only explain the moments of the risk-free rate appropriately. Especially, the
Sharpe ratio and the risk premium illustrate the well known difficulty of explaining
asset-pricing facts using standard DSGE models.

The conditional second moments of the risk-free rate are similar for both estima-
tions and are comparable to the data. In particular, the mean of risk-free return for the
estimation with constrained prior is slightly smaller but still in line with observations.
Additionally, the moments of the return of capital for both estimations are compara-
ble with each other. The high risk aversion parameter η delivers the large conditional
volatility of the stochastic pricing kernel σM , which in turn is needed to obtain the ob-
served Sharpe ratio: this standard deviation is also the maximal Sharpe ratio for any asset
and is approximately five times as high as the Sharpe ratio for the return on capital. Put
differently, the constrained estimate of our model is in principle compatible with Sharpe
ratios for other asset classes, which happen to be up to five times as large as those ob-
served for the stock market, and therefore are compatible in principle with the findings
in Scholl and Uhlig (2008) and Piazzesi and Schneider (2012). By contrast, the implied
Sharpe ratio and risk premium for the unconstrained estimates is too low by a factor of
10, compared to observations.

3.6 Implied business cycle facts

The improvement regarding the asset-pricing implications may worsen the macroe-
conomic implications and, potentially, dramatically so. Remarkably, the predicted
standard deviations and contemporaneous correlations with output for the Hodrick–
Prescott- (HP-) filtered model variables do not change much as one moves from the un-
constrained to the constrained prior; see Table S4 in the Supplement. That table shows
that with both, the standard deviation of output is underpredicted a bit and consump-
tion volatility is overpredicted a bit, compared to the data, but overall, that table suggests
a decent match to macroeconomic observations either way.

For a more detailed examination, we compare the cross-correlations of the HP-
filtered variables from the two model analyses (unconstrained and constrained) to those
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Figure 3. Predicted cross-correlations for the DSGEs and the BVAR(2) based on 1200 draws
from the corresponding posterior.

generated from a Bayesian vector autoregression (BVAR) with two lags, using HP-filtered
data;7 see Figure 3. Once again, the differences between the unconstrained and con-
strained predictions are remarkably small to each other, and overall reasonably close to
those of the BVAR model, with some obvious differences.

To find a difference between the predictions from the constrained and the uncon-
strained prior, one needs to look elsewhere. We repeat the exercise above, though this
time fitting a BVAR(2) to the variables used in the estimation of the DSGE model, that is,
the (log) growth rate of output, the (log) growth rate of consumption, the log investment-
to-output ratio, log labor, and the log of the risk-free rate, and comparing the resulting
posterior distribution over the unconditional moments to those of the two model analy-
sis. Figure 4 shows the results. While the two model results are fairly similar for the (log)
growth rate of output, the (log) growth rate of consumption, log labor, and the log of
the risk-free rate, and overall differ from the BVAR(2) results for the (log) growth rate
of output and the log of the risk-free rate, differences between the two model analyses

7We fit a BVAR(2) to HP-filtered variables. We assume a weak Normal–Wishart prior for the coefficients
and the covariance matrix of the BVAR. For the comparison, we draw 1200 parameter vectors from the
posterior of the BVAR as well as 1200 parameter vectors from the posterior distributions of both estimated
DSGE models.
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Figure 4. Predicted standard deviations of the DSGEs and the BVAR(2) based on 1200 draws
from the corresponding posterior.

arise for the log investment-to-output ratio. While the unconstrained estimation pre-
dicts values close to those of the BVAR, the constrained estimation predicts a consider-
ably larger standard deviation. One may interpret this as turning short-run shocks into
long-run risks. This may point to an interesting connection to the long-run risk litera-
ture for Epstein–Zin preferences; see Bansal and Yaron (2004) and Hansen, Heaton, and
Li (2008).

3.7 Model comparison

Our procedure allows a formal comparison of the constrained and the unconstrained
estimate. We use the modified harmonic mean estimator by Geweke (1999) to calculate
the marginal data density of each model. The log marginal data density for the uncon-
strained model is 3439�74 and 3437�86 for the constrained model. This difference in the
marginal data density implies posterior probabilities of 0�87 versus 0�13 and a posterior
odds ratio of 6�6 in favor of the model estimated with the unconstrained prior. The differ-
ence strikes us as remarkably small, and confirms the similarities between both model
analyses exhibited in Figures 3 and 4. For comparison, we follow Smets and Wouters
(2007) and also calculate the log marginal data density for the BVAR(2) model, which
is 3569�77. The 130 log-point difference indicates that the BVAR(2) fits quite a bit bet-
ter than the model, though this may be rather unsurprising, given the simplicity of the
DSGE model. Indeed, we view these numbers as tolerably close, confirming the impres-
sions from Figure 3 that both estimated DSGE models make reasonably similar predic-
tions as the BVAR model about the second moments. In sum, our method has accom-
plished shifting the model parameters so as to match the Sharpe ratio without giving up
too much on the macroeconomic implications, which are tolerable overall to begin with,
given the simplicity of the model.
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4. Application 2: Smets and Wouters

The model of Smets and Wouters (2007) had become a benchmark medium-scale New
Keynesian model prior to the financial crisis in 2008. Versions of it were in widespread
use, in particular at central banks. It still often provides a starting point for post-crisis
DSGE models. Given the widespread use of this model, we think of it as a natural choice
to apply our method. We first investigate a single constraint on the Sharpe ratio and next
investigate a two-dimensional constraint on both the Sharpe ratio and the slope of the
yield curve.

The Smets–Wouters model features a representative household with nonseparable
utility in consumption and leisure and an external consumption habit. The households
own the capital stock, choose the level of capital utilization, and pay the investment
adjustment costs. Firms produce output with capital and labor. Prices and wages are
Calvo sticky. The monetary authority follows a Taylor rule in inflation, output gap, and
the change in output gap. Seven disturbances drive the model: the technology shock,
the risk premium or equity premium shock, the government expenditure shock, the in-
vestment adjustment cost shock, the price and wage markup shocks, and the shock to
monetary policy. For the details, the reader is referred to Smets and Wouters (2007).

4.1 Constraining the sharpe ratio

To apply our method and to highlight characteristics, we try to stay as close as possible
to the original code and data files provided by the authors.8 Nevertheless, it is necessary
to extend and to adjust some issues to make the application feasible and also compara-
ble to the former one. In the Supplement, we provide a list of equations for a complete
comparison. The set of log-linearized equations is just slightly extended. In particular,
we add the asset-pricing equations (19) and (20), which were substituted out in the orig-
inal code. Finally, we add equation (29), which defines log excess returns, which goes
along with adding the Ψ to the list of parameters and adding εQ to the list of exogenous
shocks. Next to these changes, we solve the model around a “quasi”-stochastic steady
state. More precisely, we correct the deterministic steady state by the conditional sec-
ond moments from (19) and (20). We call this a quasi-stochastic steady state because
we correct just for risk related to the asset-pricing equations but not for risk related to,
for example, the price setting equations. This also allows us to use a more diffuse ini-
tial prior than Smets and Wouters (2007) did. Similarly to our first application, we are
not restricting the discount factor β to be smaller than 1, but rather to ensure a positive
time preference via the mean of the real risk-free rate. Hence, we avoid the risk-free rate
puzzle by construction and solve recursively for the implied discount factor. In particu-
lar, we assume that the expression 100(R̄f − 1) is Gamma distributed with mean 1 and
standard deviation 0�5 and we calculate the discount factor recursively as

β= 1

R̄f exp
(
σ2
m/2

)
(1 + γ/100)−σc

,

8Data and Dynare code are available on http://www.aeaweb.org/aer/data/june07/20041254_data.zip.

http://www.aeaweb.org/aer/data/june07/20041254_data.zip
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where σc is the consumption preference parameter in the Smets–Wouters model and
γ is the quarterly growth rate of the economy. As in our main application, we assume
that the prior of σc is uniformly distributed between 1 and 200. The prior distributions
of the remaining parameters are the same as in Smets–Wouters. Finally, we extend the
original Smets–Wouters data set with the time series for excess returns as described in
Section 3.2. To keep our estimation results comparable to the original Smets–Wouters
paper, we use the same time episode for estimation. The Sharpe ratio in the data for this
time is around 0�15, and thus is somewhat smaller than the longer time episode used
for estimation in Section 3. To avoid drastic changes to its macroeconomic performance
as well as to avoid numerical maximization problems, we soften our Sharpe ratio con-
straint by imposing a mean of 0�075 instead of 0�15 as in the data. That way, the model
will only go half the way of accounting for the observed risk premium: our interest will
be in how much the parameters and the macroeconomic implications change.

Figure 5 shows the unconstrained as well as constrained prior, and the posterior dis-
tributions for selected key parameters.9 There are similarities to the findings from our
first application. As should be expected, the distribution for the power utility parameter
σc is now centered around a value corresponding to high relative risk aversion. This goes
along with a tighter constrained prior distribution for the higher values of σc . The Frisch
elasticity of labor supply 1/σl decreases and nominal rigidities increase when impos-
ing the constraint. These effects are similar to those observed in Section 3. Interestingly
and also similar to the first application, the parameter for habit formation h becomes
smaller in both constrained estimations. While this parameter is often mentioned as
a key parameter to explain asset-pricing facts, our estimation results suggest a smaller
importance, especially compared to the curvature parameters, that is, σc . The estimated
standard deviations of the preference shock becomes smaller in the constrained model,
because of the higher volatility of the pricing kernel due to, for example, higher risk aver-
sion. There are some further, but minor differences, concerning the remaining parame-
ters. The technology shock becomes more persistent in the constrained model (see Ta-
ble S6 in the Supplement), which is again an interesting connection to the long-run risk
literature.

Table 2 shows the implied asset-pricing facts of the model for both estimation ap-
proaches. We are successful in matching the Sharpe ratio constraint: as a reminder, it
was set at half of the observed value for this episode. Moreover, the conditional second
moments of the risk-free rate are similar for both estimations and comparable to the
data. Additionally, the moments of the return of capital for both estimations are compa-
rable with each other. As before, the high risk aversion parameter σc delivers the large
conditional volatility of the stochastic pricing kernel σM , which in turn is needed to ob-
tain the Sharpe ratio constraint.

However, the posterior odds ratio is 3�7e24 to 1 in favor of the model estimated with
the unconstrained prior, compared with 6�6 for the previous application; see Section 3.7.
The Bayesian posterior odds ratio therefore makes the constrained model look non-
credible from the unconstrained perspective. To illustrate the difficulties of the Smets–
Wouters model to jointly explain both asset-pricing and macroeconomic facts, we plot

9We present detailed estimations results for all parameters in the Supplement.
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Figure 5. Prior and posterior distribution for selected parameters of the Smets and Wouters
(2007) model. The solid grey and black lines correspond to the unconstrained prior and posterior
distribution, respectively. The dashed grey and black lines correspond to the constrained prior
and posterior distribution, respectively.
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Table 2. Implied quarterly asset-pricing facts by the estimated Smets–Wouters models. All val-
ues are in percent with the exception of the Sharpe ratio.

Unconstrained Prior Constrained Prior

Posterior Posterior

Mean 5% 95% Mean 5% 95%

S.d. risk-free return σRf 0�24 0�22 0�26 0�26 0�23 0�28
S.d. return on capital σRk 1�76 1�52 2�01 1�83 1�56 2�13
S.d. return on capital σRq 8�12 7�35 8�77 8�18 7�49 8�99
S.d. pricing kernel σM 2�13 1�80 2�48 12�73 10�87 14�50
Risk premium −σMRk 0�03 0�02 0�04 0�13 0�12 0�16
Sharpe ratio (Rk) × 100 ω 1�77 1�48 2�08 7�63 7�49 7�77

Figure 6. Predicted cross-correlations (HP-filtered) of the DSGEs based on 1200 draws from the
corresponding posterior.

selected predictions of second moments for both estimations in Figure 6. In particu-
lar, we show the cross-correlation of output, consumption, and investment with infla-
tion, respectively, based on 1200 parameter vector draws from the posterior distribution.
While one prominent result of the original Smets–Wouters model is the success in ac-
counting for the cross-correlations between output and inflation, our results show that
this characteristic diminishes by using the constrained prior.

The application to the Smets–Wouters model furthermore shows the limitations of
our procedure: while it tries hard to push this model to explain both asset-pricing facts
and macroeconomic facts, larger gaps between the quantitative model results and the
observations emerge. Indeed, trying to push the Smets–Wouters model to fully explain
the observed Sharpe ratio rather than just half of it runs into the boundary problem
for the constrained prior, as described more generally in Section 2.2. We therefore fol-
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lowed the general recommendation of Section 2.2 and pursued the more modest goal of
achieving half the observed Sharpe ratio.

4.2 A two-dimensional constraint

As an illustration, we show how to impose a two-dimensional constraint and to calculate
its implications. For the Smets–Wouters (SW) model just presented, a reasonable exten-
sion is to constrain both the bond premium as well as the Sharpe ratio. Like the Sharpe
ratio, the upward sloping yield curve is a stylized fact on asset markets that is difficult to
account for in standard DSGE models. In this regard, a continuously growing literature
has started with the work by Backus, Gregory, and Zin (1989) and den Haan (1995), who
have postulated this so-called bond-premium puzzle.

We calculate the 10-year nominal zero-coupon bond premium over a one-quarter
nominal risk-free return. The return of a zero-coupon bond with k periods maturity left
is analogously priced via the Euler equation

1 =Et[Mt�t+k]R(k)t � (38)

where Mt�t+k is the nominal pricing kernel and Rkt is the safe return after k periods in

t + k. Then the quarterly bond premium, bpt , is calculated as k
√
R(k)t − R(1)t , which in

steady state can be simplified to

bp = 1
k

· σ
(k)2
M

2
− σ(1)2M

2
�

For the unconstrained SW model we find a posterior mean for bp of approximately
−0�85 basis points, which implies a slightly downward sloping yield curve. This finding
is in line with the literature investigating a similar class of models. Given our applica-
tion, let ω = [sr�bp] be a vector including the Sharpe ratio sr and bond premium bp
in percent. Taking draws from the unconstrained posterior, Figure 7(a) illustrates the
corresponding joint histogram. We approximate the joint posterior g(ω|X) with a mul-
tivariate normal distribution, g(ω)∼ (μ̄M�∑M) as illustrated in Figure 7(b). To approx-
imate the distribution f (ω), we use the bond premium data by Gürkaynak, Sack, and
Wright (2007) and the excess returns of the Standard and Poors (S&P) 500 as described
before.10 In particular, we estimate a (vector autoregression) VAR(1) model consisting
of the normalized excess returns and the demeaned bond premium data to calculate
f (ω) ∼ (μ̄D�

∑
D).

11 Moreover, to ensure a proper prior, we impose some f (ω), which
is considerably tighter than would be justified on estimation uncertainty of the joint
Sharpe ratio and bond premium process alone; see Figure 7(b).

The figure furthermore illustrates the difference between the small negative bond
premium implied by the unconstrained SW model and the bond premium of 47 ba-
sis points in the data. Our dual constraint estimation procedure only manages to push

10Due to limited data availability, we use data for the 10-year nominal zero-coupon yields from 1971:Q1
onward.

11See, for example, Lüthepohl (2007, p. 84) for estimation and asymptotic properties of the sample mean
for a mean-adjusted VAR process.
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Figure 7. Examples for potential distributions regarding application of a multidimensional
constraint for a 10-year nominal bond premium and a Sharpe ratio.

the bond premium into slightly positive territory, with a posterior mode of 0�62 basis
points, and thus rather far from the desired target of 47 basis points. Further experimen-
tation did not result in a full resolution of accounting for both the bond premium and
the Sharpe ratio, as desired. Our procedure runs into the boundary problem described
more generally in Section 2.2. This finding illustrates the general remarks in Section 2.2
that our econometric approach is not a cure-all. It may well be that adding features like
long-run inflation risk (see Rudebusch and Swanson (2012) and the discussion there) or
Epstein–Zin preferences can provide a helpful way out if one wishes to pursue a modifi-
cation of the Smets–Wouters model, which also accounts for asset market features, but
these matters are beyond the scope of the present paper.

5. Conclusion

We have presented a novel Bayesian method for estimating dynamic stochastic general
equilibrium (DSGE) models subject to constraining the posterior distribution of the im-
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plied Sharpe ratio. After presenting our methodology generally, we have applied it to two
models. The first is a DSGE model with habit formation in consumption and leisure, real
wage rigidities, and capital adjustment costs, provided by Uhlig (2007) and extended to
feature additional shocks. We show that the estimation subject to the constraint on the
Sharpe ratio produces a quantitative model with both reasonable asset-pricing as well
as business-cycle implications and with tolerable posterior odds compared to the un-
constrained model, thus offering more hope than the somewhat more pessimistic mes-
sage in Rudebusch and Swanson (2008, 2012) regarding habit-formation models. The
particular parameterization delivered by our procedure might have been hard to find
otherwise.

The second application is to the Smets and Wouters (2007) model, extended with the
appropriate asset-pricing equations. Now, the constrained estimator yields a parame-
terization, which is highly unlikely from the perspective of the unconstrained estimator.
The discrepancies in macroeconomic implications are now more substantial. The re-
sults here are akin to a glass half-full or half-empty: one can either tolerate the compro-
mise found and celebrate it as progress toward also accounting for asset market features
or point to a more fundamental inability of the model to account for them. It would
seem more reasonable to think about useful modifications of that model that could help
with the latter.

The broader lesson here is this. If one wishes to construct a DSGE model for the pur-
pose of, say, analyzing monetary policy or fiscal policy, and wishes that model to account
for asset-pricing features such as the Sharpe ratio, it is worth introducing features that it
will help to do so. Our procedure is certainly not a cure-all. Rather, our methodology is
useful for finding a good parameterization when the model has a chance to succeed in
principle and for finding the least bad parameterization when it does not.
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