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Flexible Bayesian analysis of first price auctions using
a simulated likelihood

Dong-Hyuk Kim
Department of Economics, Vanderbilt University

I propose a Bayesian method to analyze bid data from first-price auctions under
private value paradigms. I use a series representation to specify the valuation den-
sity so that bidding monotonicity is always satisfied, and I impose density affilia-
tion by the nonparametric technique of Beresteanu (2007). This flexible method is,
therefore, fully compatible with the underlying economic theory. To handle such
a rich specification, I use a simulated likelihood, yet obtain a correct posterior by
regarding the draws used for simulation as a latent variable to be augmented in
the Bayesian framework; see Flury and Shephard (2011). I provide a step-by-step
guide of the method, report its performance from various perspectives, and com-
pare the method with the existing one for a range of data generating processes
and sample sizes. Finally, I analyze a bid sample for drilling rights in the outer
continental shelf that has been widely studied and propose a reserve price that is
decision theoretically optimal under parameter uncertainty.

Keywords. First price sealed bid auctions, affiliated private values, revenue max-
imizing reserve price, Bayesian analysis, method of series, simulated likelihood,
shape restriction.

JEL classification. C11, C13, C15, C44, D44, L38.

1. Introduction

Structural data analysis of first-price auctions has, in its early stage, specified the den-
sity of bidders’ latent values (willingness to pay) and constructed the likelihood using
the density of observed bids, which is linked to the valuation density via an equilibrium.
When a complex statistical model is employed, the likelihood evaluation was computa-
tionally impractical and, therefore, the early literature has employed strong parametric
assumptions mostly within the independent private value paradigm (IPVP). See, for ex-
ample, Donald and Paarsch (1993), Laffont, Ossard, and Vuong (1995).
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The seminal article by Guerre, Perrigne, and Vuong (2000) has greatly widened the
scope of this line of research. By showing that the inverse bidding function is a functional
of the density of the optimal bid, the article established the nonparametric identification
of the valuation density and proposed a two step estimation method. This method first
estimates the bid density functions to form the inverse bidding function and then un-
covers the distribution of values by evaluating the inverse bidding function at the bid
data. Since the method starts from the bid density, which is not the model primitive, the
authors named it the indirect approach. This approach enables nonparametric analysis
as well as extensions to more general paradigms such as the conditional independent
private value paradigm (CIPVP) and the affiliated private value paradigm (APVP); see Li,
Perrigne, and Vuong (2000, 2002).

The indirect approach may, however, be incompatible with the paradigm on which
the empirical method is based. In particular, the estimated inverse bidding function
may not be increasing and/or the estimated densities of bids and values may not be
affiliated. Even if the estimates are consistent, such problems could in practice lower
efficiency and invalidate policy recommendations. This is important to researchers and
policy makers because policy prescriptions may have to be drawn even when the sample
is small. For example, Li, Perrigne, and Vuong (2003) estimated the revenue maximizing
reserve price (RMRP) for the outer continental shelf (OCS) wildcat auctions under the
APVP using a bid sample of 217 auctions, each with two bidders. Although the RMRP in
this article is valid only when the bid density is affiliated and the inverse bidding strategy
is strictly increasing, the article estimated the bid density without imposing the shape
restrictions.

Motivated by this, I propose an empirical framework that is fully consistent with the
underlying paradigm.1 Following the earlier literature, I directly specify the valuation
density so that the bidding monotonicity is automatically satisfied.2 I use a flexible se-
ries representation on which the density affiliation can be imposed via the nonparamet-
ric shape restriction method of Beresteanu (2007): interdependence among valuations
is allowed to be flexible. To handle such a rich specification, the method employs a sim-
ulated likelihood, yet obtains the exact posterior by regarding the draws used for sim-
ulation as a latent variable to be augmented in the Bayesian framework; see Andrieu,
Doucet, and Holenstein (2010), Flury and Shephard (2011). To make use of this, I finely
discretize the sample space to construct a multinomial likelihood, which is then unbias-
edly estimated by simulated bid data: the Bayesian method with a simulated likelihood
(BSL), therefore, does not suffer simulation error.

An important objective of this paper is also to provide a step-by-step guide of the BSL
because this paper introduces these recent techniques to the auction literature. I discuss

1Similarly motivated, two recent articles developed the idea to impose shape restrictions independently
and simultaneously with the present paper, but adopting a different approach. Henderson, List, Millimet,
Parmeter, and Price (2012) imposed bidding monotonicity in the IPVP and Hubbard, Li, and Paarsch (2012)
restricted density affiliation using a parametric copula in the APVP. These articles took the indirect ap-
proach.

2The failure of bidding monotonicity arises only in the indirect approach. Bierens and Song (2012) also
proposed a method of simulated moments using a sieve representation of the valuation density for the IPVP.



Quantitative Economics 6 (2015) Bayesian analysis of first price auctions 431

in detail the theoretical justification and implementation of the method, including the
conditions under which the posterior inference is exact and how to carry out the BSL
while imposing density affiliation. I also explain the Bayesian model selection to choose
the statistical model that fits the data the best, and document the performance from
various perspectives such as precision and accuracy of inference, robustness against the
prior and discretization, and computing time. In particular, the BSL is more accurate
than the previous indirect method for a wide range of data generating processes (DGPs)
and sample sizes. The posterior analysis is robust against the prior and discretization for
a number of well behaved distributions.

Finally, the Bayesian method naturally provides a decision theoretic framework,
which is shown to be useful for auction design problems in Aryal and Kim (2013),
Kim (2013). I revisit the bid sample from OCS wildcat sales that was investigated by
Li, Perrigne, and Vuong (2000, 2003) under the CIPVP and the APVP, respectively. The
distribution of the bid data is highly skewed to the left, having a long tail to the right
with outliers. These outliers imply a positive probability of extremely large values, sug-
gesting an unreasonably large RMRP. First, I use a strong prior to control the tail be-
havior and implement the BSL to obtain the posterior of the valuation density. I then
choose a reserve price of $163 that maximizes the posterior predictive revenue. This
proposal is optimal under the subjective expected utility principle of Savage (1954),
Anscombe and Aumann (1963) as well as under the average frequentist risk principle.
I find that the posterior revenue distribution at the reserve price of $163 first-order
stochastically dominates the one at the actual reserve price of $15. The revenue gain
is economically significant.

In the paper, I assume that the policy maker commits not to sell the auctioned item
when no bid exceeds the reserve price following the convention of the empirical auction
literature.3 However, if the policy maker may sell the unsold item in a future auction and
bidders expect this, then the auction today competes with the auction tomorrow. There-
fore, the RMRP that accounts for such dynamic effects should be lower, and it depends
on many factors, including bidders’ discount factor and the number of bidders; e.g., for
a fixed number of bidders, the more patient are the bidders, the lower is the RMRP (see
McAfee and Vincent (1997)).

In the next section, I provide an overview of the empirical environment and the BSL.
In Section 3, I illustrate the BSL using the simplest paradigm, the IPVP, and extend, in
Section 4, the BSL to the APVP and analyze the bid sample from the OCS wildcat sales.
I then conclude the paper by discussing auctions with many bidders. The Appendix col-
lects computational details.

2. Methodology overview

The goal of bid data analysis in this paper is to make inference on the valuation distri-
bution and propose policy recommendations for future auctions. Having this in mind,
consider an environment with a bid sample zT := {(b1�t � � � � � bn�t)}Tt=1, where n ≥ 2 is the

3See, for example, Paarsch (1997), Li, Perrigne, and Vuong (2003), Krasnokutskaya (2011), Aryal and Kim
(2013), Kim (2013) among many.
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bid profile at auction t ∈ {1� � � � �T }. All the T sales are in the format of the first-price
sealed-bid auction: each bidder i at auction t bids bi�t after observing her own value vi�t ,
and obtains the auctioned item by paying bi�t if and only if bi�t = max(b1�t � � � � � bn�t).4 It
is important to note that without any a priori knowledge, the bid sample zT is useless
for achieving the goal of data analysis: one can learn the valuation density only when he
knows how the observed bids are related to the unobserved values, and one can predict
the bidding behavior under different auction rules only under some behavioral assump-
tions. Thus, a theoretical paradigm is assumed to be known.

Let P be the set of all absolutely continuous distributions on R
n+ with a differentiable

density. Let FAPV ⊂ P collect all exchangeable and affiliated distributions; a distribution
F ∈ P is said to be affiliated if and only if its density f satisfies

∂n

∂v1 · · · ∂vn log f (v1� � � � � vn) ≥ 0� (1)

and f is said to be exchangeable if and only if

f (v1� � � � � vn)= f (vi1� � � � � vin) (2)

for every permutation (i1� � � � � in), e.g., f (v1� v2) = f (v2� v1) for n = 2. If v := (v1� � � � � vn) ∼
F ∈ FAPV, the first-price sealed-bid auction induces a game with incomplete informa-
tion among n bidders for which Milgrom and Weber (1982) derive a symmetric Bayesian
Nash equilibrium with a strictly increasing bidding function. Let fy1|v1(·|·) be the condi-
tional density of y1 := max{v2� � � � � vn} given v1. The equilibrium bidding function is then
given by

β(v;F�ρ) := v −
∫ v

ρ
exp

[
−

∫ v

α

fy1|v1(u|u)∫ u

0
fy1|v1(t|u)dt

du

]
dα (3)

for v ≥ ρ, the reserve price; otherwise, bidding any b < ρ is optimal. Let β(v;F) :=
β(v;F�ρ = 0). The APVP includes the CIPVP and the IPVP as special cases. In particu-
lar, let FIPV ⊂ FAPV collect all distributions such that F(v1� � � � � vn) = ∏n

i=1 F1(vi), where
F1 is the marginal distribution of v1. If F ∈ FIPV, the bidding strategy (3) simplifies to

β(v;F�ρ) := v −
∫ v

ρ

{
F1(α)

F1(v)

}n−1

dα� (4)

I consider the empirical environment where the correct paradigm is known and bi�t =
β(vi�t |F) for all (i� t), where v1� � � � �vT

i�i�d�∼ F and the valuation distribution F satisfies
all the theoretical shape restrictions under the given paradigm. Such prior knowledge is
critical not only because it links bids to values, but also because it allows a prediction on
bidding behavior and seller’s revenue under a different ρ.

4A nonbinding reserve price is assumed. This assumption is consistent with many empirical situations
including the bid sample analyzed in Section 4 of this paper.
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To analyze the bid data, I use a flexible statistical model {F(·|θ);θ ∈ Θ} to approxi-
mate F , where Θ is the parameter space. Throughout the paper, the theoretical auction
model is referred to as the paradigm, but the flexible density family that is used to ap-
proximate the underlying valuation density is referred to as the statistical model or, sim-
ply, the model. Let β(·|θ) := β[·|F(·|θ)], let b̄(θ) := limv→∞ β(v|θ), and let 1(A) be the
indicator for event A. The likelihood is proportional to

T∏
t=1

g(b1�t � � � � � bn�t |θ)� (5)

where the joint density of the equilibrium bids is given as

g(b1� � � � � bn|θ) = f
[
β−1(b1

∣∣θ)
� � � � �β−1(bn∣∣θ)|θ] ×

n∏
i=1

1[bi ≤ b̄(θ)]
β′[β−1(bi|θ)|θ] �

Since there is no closed form expression for the likelihood (5) for a richly parametrized
model, the inverse bidding function β−1(bi�t |θ) must be numerically approximated for
every data point bi�t in the sample zT for each evaluation of the likelihood; an optimiza-
tion routine needs to run n× T times. Notice that for one evaluation of the inverse bid-
ding function, the routine computes (just) the bidding function β(·|θ) repeatedly many
times until it finds a point x ∈ R+ to solve bi�t = β(x|θ); moreover, one evaluation of the
bidding function β(·|θ) can already be time consuming, as it involves many integrals in
the bidding strategy (3) under the APVP. For this reason, a direct evaluation of the orig-
inal likelihood (5) has been regarded as impractical, especially for large T . Therefore,
the literature has employed either a tightly parametrized statistical model (see Donald
and Paarsch (1993), Laffont, Ossard, and Vuong (1995)) or the indirect approach (see
Guerre, Perrigne, and Vuong (2000), Li, Perrigne, and Vuong (2002, 2003), Campo, Per-
rigne, and Vuong (2003), Krasnokutskaya (2011)). Typically, the latter accommodate a
nonparametric specification of the density functions.

In this paper, I propose a computationally feasible approach that directly speci-
fies the valuation density using a flexible statistical model. Instead of evaluating the
true likelihood (5), however, I employ a method of simulated likelihood that evaluates
β−1(·|θ) only a small number of times.5 I shall discuss in the subsequent sections how
to do this.

Once the likelihood is approximated by simulation, one could use the maximum
likelihood estimator (MLE), taking the classical framework. But I adopt the Bayesian
framework for the following reasons. First, the upper bound b̄(θ) depends on the param-
eter θ, in which case the statistical model is irregular and the MLE fails to be efficient,

5For all the exercises in this paper, I evaluate β(·|θ) at equidistant grid points (x0�x1� � � � � x100) on the
support of the value and evaluate β−1(·|θ) by interpolation. I consider the number of grid points as suffi-
ciently large because when I increase the number of grid points to 1001, the approximation quality does not
change.
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while the Bayes estimator continues to be efficient (see Hirano and Porter (2003)).6 Sec-
ond, the Bayesian framework naturally provides a decision theoretic framework that is
shown to be useful for auction design under parameter uncertainty (see Aryal and Kim
(2013), Kim (2013)). Third, if the simulated likelihood is unbiased for the original like-
lihood, a Bayesian inference can be exact (see Andrieu, Doucet, and Holenstein (2010),
Flury and Shephard (2011)).

To elaborate the last point, let y be the sample, let p(θ) be the prior, let p(y|θ) be the
likelihood, and let p(θ|y) be the posterior. The objective is to draw an ergodic sample
of random parameters θ1� � � � �θS ∼ p(θ|y) ∝ p(θ)p(y|θ). Let p̂u(y|θ) be the simulated
likelihood such that

p(y|θ)= Eu
[
p̂u(y|θ)]� (6)

where the expectation is over the simulation draws, u, which are independent and iden-
tically distributed (i.i.d.) uniforms. Since p̂u(y|θ) is a joint density of y based on the uni-
form u, equality (6) implies that p̂u(y|θ) gives p(y|θ) after being integrated over u. Thus,
p̂u(y|θ) can be interpreted as a joint density of (u�y), i.e., p̂u(y|θ) = p(u�y|θ). Thus, if
one draws

(
u1�θ1)� � � � � (uS�θS) ∼ p(u�θ|y) ∝ p(θ)p(u�y|θ)�

then {θs}Ss=1 are draws from the correct posterior. The only requirement here is the un-
biasedness (6), for which the number of simulation draws can be moderate and do not
need to grow rapidly as T increases. Flury and Shephard (2011) discussed this property
in detail and argued that it is a great advantage over the simulated MLE, which requires
the simulation size to grow at a rate faster than T 2.

3. Independent private value paradigm

In this section, I propose the BSL for the IPVP; I shall extend it to the APVP in Section 4.
Since F ∈ FIPV, the marginal density f1 is the only model primitive of interest. I first
demonstrate how to construct the likelihood that is to be unbiasedly estimated by sim-
ulated data and provide a detailed implementation guide, documenting various aspects
of the method. I then run a series of Monte Carlo experiments to compare the BSL with
the nonparametric method of Guerre, Perrigne, and Vuong (2000).

3.1 Valuation density and simulated likelihood

Consider v1 ∈ [0�1]. Let H be the Hilbert space of functions from [0�1] to R and let
{φj} ⊂ H be a sequence of linearly independent functions whose linear span is dense
in H, i.e., for any h ∈ H and for any ε > 0, there is an index set I and a sequence of real

6For example, consider X1� � � � �Xn
i�i�d�∼ Uniform[0� δ0], where δ0 is to be estimated. Then the MLE is

δMLE = max{X1� � � � �Xn}, and its asymptotic distribution is a shifted exponential distribution, where δ0
does not belong to the interior of the support of the sampling distribution of the MLE. Specifically,

n(δMLE − δ0)
d→ −Y , where Y is exponentially distributed with density pY (y) = δ0 exp(−δ0y) · 1(y > 0).
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numbers {θj}j∈I such that ‖h − ∑
j∈I θjφj‖ < ε.7 Polynomials, splines, or Fourier func-

tions can be used to construct such {φj}. The log density of v1 can be approximated by

log f1(v|θ) =
∑
j∈I

θjφj(v)+ c(θ)� (7)

with θ := {θj}j∈I and the normalizing constant c(θ) for any given accuracy; therefore,
the statistical model (7) is said to be flexible. The statistical literature develops non-
parametric methods using this property. The classical statistics theoretically establishes
the asymptotic properties of the estimate and derives the rate at which the number
of components, |I|, increases as the sample size grows to obtain the desirable asymp-
totic properties. In practice, the number of components is always chosen informally (as
Wasserman (2006) pointed out) by the Bayesian information criterion (BIC), the Akaike
information criterion (AIC), or some other data driven method such as cross-validation.

The Bayesian statistics, on the other hand, regards the number of components as
one of the parameters and updates its prior over the set of all positive integers via Bayes
rule; see Ferguson (1973), Escobar and West (1995), Petrone (1999). The Bayesian non-
parametric methods are technically complicated, and I do not attempt to develop a fully
nonparametric method that adopts a simulated likelihood. In Section 3.3, instead, I il-
lustrate how to choose the number of components using the Bayesian model selection.
Note that the BIC and the AIC are rough approximations of this formal model selection,
each assuming a different prior.

Since F ∈ FIPV and (b1� � � � � bn) are all equilibrium bids, g(b1� � � � � bn|F) =∏n
i=1 g1(bi|F), where g1(·|F) denotes the marginal bid density of b1; see Guerre, Per-

rigne, and Vuong (2000). Therefore, zT is considered as a random sample of size n × T

from g1(·|F) with a one dimensional sample space. Let B ⊂ [0�1] include all bids in zT
and let {[b∗

d−1� b
∗
d]}Dd=1 denote the sequence of bins with B = ⋃D

d=1[b∗
d−1� b

∗
d]. The bin

probability under θ is given by

πd(θ) := Pr
(
b ∈ [

b∗
d−1� b

∗
d

]|θ) =
∫ b∗

d

b∗
d−1

g1(b|θ)db� (8)

To define the likelihood, let yd := ∑T
t=1

∑n
i=1 1(bi�t ∈ [b∗

d−1� b
∗
d]), the number of bids in

[b∗
d−1� b

∗
d] for d = 1� � � � �D. The associated sample histogram is then y := (y1� � � � � yD),

which can be viewed as a nonparametric estimate of the bid density up to normaliza-
tion.8 Let ȳ := max y. Then the probability mass of y under θ (the likelihood of θ for
given y) is

p(y|θ) := (n · T)!
y1! × · · · × yD!

D∏
d=1

[
πd(θ)

]yd ∝
ȳ∏

j=1

{
D∏

d=1

[
πd(θ)

]1(yd>j−1)
}
� (9)

7For example, the index set I can be the set of all nonnegative integers less than some prespecified num-
ber. But I do not specify I for the time being because the elements of I depend on the choice of φ. The norm
is here defined by the usual inner product, i.e., ‖h‖ := (

∫
h2 dν)1/2, where ν denotes the Lebesgue measure.

8Chamberlain (1987) obtains the asymptotic efficiency bound of the generalized method of moments
(GMM) estimator using the fact that a multinomial distribution can be arbitrarily close to the true distribu-
tion; see Lemma 3 in the article.
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Suppose now that the statistical model f1(·|θ) is given. One can then draw

ṽ
j
r � � � � � ṽ

j
R|θ i�i�d�∼ f1(·|θ) (10)

independently also across j = 1� � � � � ȳ by a standard scheme such as the inverse cumu-

lative distribution function (CDF), which first draws u
j
1� � � � � u

j
R

i�i�d�∼ Uniform[0�1] and

defines ṽjr := F−1
1 (u

j
r |θ) with F1(v|θ) := ∫ v

0 f1(α|θ)dα for all j and r.9 Then the bin proba-
bility (8) is unbiasedly estimated by

π̂
j
d(θ) := 1

R

R∑
r=1

1
(
ṽ
j
r ∈ [

v∗
d−1� v

∗
d

])
for any j = 1� � � � � ȳ�

with v∗
d := β−1(b∗

d|θ) for d = 1� � � � �D. Notice that β−1(·|·) needs to be evaluated only a

small number of times, D. Observe also that
∏D

d=1[πd(θ)]1(yd>j−1) in (9) can be unbi-

asedly estimated by
∏D

d=1[π̂j
d(θ)]1(yd>j−1) for each j ∈ {1� � � � � ȳ} up to a multiplicative

constant. To see this, suppose that the indicators are all 1. Then

D∏
d=1

π̂
j
d(θ) ∝

R∑
r1=1

· · ·
R∑

rD=1

D∏
d=1

1
(
ṽ
j
rd ∈ [

v∗
d−1� v

∗
d

]) =
∑

r1 =···=rD

D∏
d=1

1
(
ṽ
j
rd ∈ [

v∗
d−1� v

∗
d

])
�

where the equality holds because the event is negligible that a simulated value belongs
to more than one bin. Moreover, since the simulated values are all independent, the
expectation of (9) with all the indicators being 1 is written as

E

[
D∏

d=1

π̂
j
d(θ)

∣∣∣θ
]

∝
∑

r1 =···=rD

D∏
d=1

E
[
1
(
ṽ
j
rd ∈ [

v∗
d−1� v

∗
d

])|θ] ∝
D∏

d=1

πd(θ)�

When some indicators are 0, the same argument holds as the bin probability with 1(yd >
j − 1) = 0 becomes 1. Notice that the total number of simulation draws is ȳ × R with ȳ

much smaller than T . Moreover, β−1(·|·) needs to be evaluated only at the grid points:
(b∗

0� b
∗
1� � � � � b

∗
D). For the rest of the paper, let

p̂u(y|θ) := (n · T)!
y1! × · · · × yD! ×

ȳ∏
j=1

{
D∏

d=1

[
π̂
j
d(θ)

]1(yd>j−1)
}
�

which is the simulated likelihood, where u denotes the auxiliary uniform variable used
for simulation.

3.2 Illustration

I explain the implementation of the BSL in the IPVP using an artificial bid sam-
ple for which the valuation distribution is characterized by v = ṽ−0�055

2�5−0�055 , where ṽ ∼
9One could alternatively use the accept/reject sampler. For one dimensional problem, however, the in-

verse CDF is simpler and quicker. I use the accept/reject sampler for the multivariate problem in the next
section. See the Appendix for more details.
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log N(0�1) · 1(ṽ ∈ [0�055�2�5]). Guerre, Perrigne, and Vuong (2000) used log N(0�1) ·
1(ṽ ∈ [0�055�2�5]) for the Monte Carlo study in their article. I rescale this distribution
so that the support is the unit interval. I consider (n�T) = (2�200). I generate a sample
of T = 200 pairs of bids, zT , for which I find (average� standard deviation� skewness) =
(0�158�0�095�0�316). In this subsection, I illustrate the BSL only using this artificial bid
sample, but the exercise here is only one of many that are soon discussed. For example,
for this given data, I run the BSL with 10 different statistical models in Section 3.3. More-
over, I implement the method for a number of different pairs of valuation distributions
and sample sizes in Section 3.4.

3.2.1 Specification of f1(·|θ) and the prior To construct the basis functions, I use the

Legendre polynomials φj(v) := √
2j + 1 · φ̃j(2u − 1), where φ̃j(x) = dj

dxj
(x2 − 1)j/(2jj!).

I use the prior in the form of p(θ) = ∏
j∈I p(θj) with θj ∼ N(0� (10 · 2j)−1) for all j ∈ I :=

{1� � � � �k}. Since the prior mean of θj is zero for all j, the prior predicts the uniform den-
sity on [0�1], i.e., the density (7) is a constant function if θj = 0 for all j. As shown in
Figure 1, φj has j − 1 extrema. Since the prior variance of θj decreases in j, θj would get
probabilistically close to 0 as j increases. This suggests that a noisy density is unlikely
under the prior. I use k= 7. As noted above, I consider alternative models in Section 3.3,
and the statistical model with k = 7 can be chosen by the formal model selection dis-
cussed there.

Figure 1. Legendre polynomials (recentered at 0�5 with support [0�1]). Each panel shows a ba-
sis function of the Legendre polynomials φj for some j ∈ {1�2� � � � �20}. The function φj has j − 1
extrema with support [0�1], i.e., as j increases, φj gets noisy.
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Figure 2. Log normal with (n�T) = (2�200). Panels (a)–(c) [(d)–(f)] demonstrate the distribu-
tion of the summary statistics by dots of the bid data under the prior [posterior] along with the
summary statistics of the original data in solid lines.

Before computing the posterior, it would be useful to check what the prior and the
model say about the data. To do so, I draw θ ∼ p(θ) and generate a bid sample under θ of

the same size as zT , and obtain its sample mean, standard deviation, and skewness. Af-
ter repeating this many times, Figure 2(a)–(c) scatters the distributions of the summary
statistics under the prior, marking the summary statistics of the original data zT by the
plain lines. The data zT can be considered as a realization under the prior. This exercise
is called a prior predictive analysis; see Geweke (2005).

I discretize the sample space by equidistant grid points (b∗
0� b

∗
1� � � � � b

∗
D) with

(b∗
0� b

∗
D) = (0� bmax) with D = 20; I find ȳ = 34. So β−1 only needs to be evaluated D = 20

times. As will be shown in Section 3.2.4, the posterior inference is almost identical un-
der much more coarse discretizations and, therefore, the loss of information due to the
discretization with D = 20 seems to be small.

3.2.2 Posterior computation To explore the posterior distribution, I employ a Markov
chain Monte Carlo (MCMC) algorithm. In particular, I consider the Metropolis–Hastings
(MH) algorithm where each component in θ is updated one-by-one in a prespecified
order. To simplify notation, let θ−j be the (sub)vector of all θa with a < j in θ, and let

θ+j collect all θa with a > j, i.e., θ = (θ−j� θj�θ+j). At each MCMC iteration s, let u be a
new uniform draw. At each index j, going from 1 to k, the algorithm draws a candidate
θ̃j ∼ q(θ̃j|θs−1

j ), the proposal density. Let L̃ := p̂u(y|θs−j� θ̃j�θ
s−1
+j ). Then the algorithm
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sets (θsj�L
s
j) := (θ̃j� L̃) with probability

min
{
L̃

L∗
×

p(θs−j� θ̃j�θ
s−1
+j )

p(θs−j� θ
s−1
j �θs−1

+j )
×

q(θs−1
j |θ̃j)

q(θ̃j|θs−1
j )

�1
}
� (11)

where L∗ := Ls
j−1 · 1(j > 1) + Ls−1

k · 1(j = 1), or it sets (θsj�L
s
j) := (θs−1

j �L∗), otherwise.

After updating θk, the algorithm moves on to the (s + 1)th iteration. Under mild con-

ditions, Tierney (1994) shows that for any measurable function h, S−1 ∑S
s=1 h(θ

s)
a�s�−→∫

Θ h(θ)p(θ|y)dθ as S grows, regardless of the starting point θ0 ∈ Θ. A sufficient condi-
tion for this is that the posterior is absolutely continuous with respect to the proposal
density; see Theorem 4.5.5 in Geweke (2005). Thus, if q(·|·) has full support in R, the al-
gorithm converges. In this paper, I draw a candidate θ̃j from N(θs−1

j �σ2
j ) with a prespeci-

fied σ2
j for all j = 1� � � � �k. Then the algorithm converges and q(θs−1

j |θ̃j)/q(θ̃j|θs−1
j ) = 1 in

(11) due to the symmetry of the Gaussian density. This method is known as the Gaussian

MH algorithm.
In practice, the performance of the Gaussian MH algorithm depends on the choice

of the scale parameters {σ2
j }j∈I . If σ2

j is too small, θ̃j will be very close to θs−1
j and the

algorithm would not effectively explore Θ. If σ2
j is too large, the proposal density very

often generates θ̃j that is unlikely under the posterior and thereby mostly rejected: the
algorithm will seldom move to another point. Typically, when the model is simple, the
algorithm works fine for a wide range of the scale parameters. But tuning up {σ2

j }j∈I can
be hard when θ is high dimensional, and it depends on a number of factors including
the sample, the prior, and the statistical model. In this paper, I use some preliminary
MCMC outcomes to determine {σ2

j }j∈I . Here is an example. For the artificial sample zT
generated above, I consider 10 statistical models, as shown in Table 1, each with a differ-
ent k. For the simplest model (k = 3), the algorithm works well for a wide range of scale
parameters. For the models with larger k, I set {σ2

j }k−1
j=1 at the posterior standard devi-

ations obtained from the model with k − 1 components, and set σ2
k at a small number

such as (0�022).10

I check the convergence of the MCMC outcomes by the separated partial means test
of Geweke (2005). The idea of the test is as follows. Suppose I have {θsj}Ss=1 for each com-
ponent j drawn from a fixed distribution. Then the null hypothesis that the mean of
{θsj}S/2

s=S/4+1 equals the mean of {θsj}Ss=S×3/4+1 must be true.11 I test the null for each com-
ponent θj , j ∈ I. Then I have |I| p-values. I terminate the MH algorithm if the small-
est p-value exceeds 0�01. If not, the MH algorithm collects 100 additional draws and
runs the test again until the test fails to reject. Thus, the final S is random. I run the
test at s = 20,000 for the first time. Once the chain terminates, I use the last 75% of the

10For the samples of T = 500 or 1000 in Section 3.4, I set σ2
j to be proportional to the posterior standard

deviation of θj obtained from the MCMC outcomes for smaller samples of T = 200 or 500. All the program-
ming codes used in this paper pass the software validation test of Cook, Gelman, and Rubin (2006).

11In other words, the sample is divided into four equally sized blocks, and tests whether the second
and the fourth have the same mean. Section 4.7 in Geweke (2005) discusses how to conduct the test when
accounting for the autocorrelation.
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Table 1. Posterior analysis for alternative specifications.

log Marg. L2 Diff. Convergence Bayes Posterior 95% Posterior True Rev.
Likelihood From f0 (minp-Value) Action ρB Pred. Rev. Credible Set at ρB

k (A) (B) (C) (D) (E) (F) (G)

3 −68�533 0�159 0�532 0�312 0�263 [0�253�0�273] 0�267
4 −65�151 0�121 0�277 0�329 0�260 [0�249�0�270] 0�267
5 −64�295 0�114 0�444 0�368 0�261 [0�249�0�274] 0�266
6 −64�105 0�104 0�351 0�364 0�262 [0�250�0�274] 0�267
7 −64�093 0�096 0�493 0�359 0�263 [0�251�0�274] 0�267
8 −64�167 0�105 0�314 0�357 0�262 [0�250�0�273] 0�267
9 −64�126 0�097 0�480 0�357 0�262 [0�250�0�274] 0�267

10 −64�141 0�102 0�228 0�358 0�262 [0�250�0�274] 0�267
11 −64�085 0�096 0�190 0�358 0�262 [0�250�0�275] 0�267
12 −64�060 0�100 0�047 0�359 0�262 [0�250�0�275] 0�267

iterations, i.e., {θ}Ss=S/4+1, for inference and decision making because the convergence
test suggests that they are drawn from the posterior. This decision rule is conservative
because the component of the worst case has to pass the test. In the exercises of this
section, the algorithm mostly passes the convergence test at s = 20,000 and, thereby,
S = 20,000. For example, for the model with k = 7, the smallest p-value among the nine
p-values is 0�493 at s = 20,000 while the average of the p-values is 0�765.

For given S, the computing time increases linearly in k.12 For example, for the model
with k = 5 for the given sample of T = 200 auctions, the computing time is 3352 sec-
onds (≈ 56 minutes). When k = 7 and k = 10, it increases to 4522 seconds and 6510 sec-
onds, respectively. Similarly, the computing time increases linearly in T as well. In Sec-
tion 3.4, I consider larger samples. For k = 7, the computing time for T = 500 (T = 1000)
is roughly 120% (340%) longer than the case of T = 200.

3.2.3 Inference and decision making First of all, to see what the posterior says about
the data, I generate a bid sample of the same size as the data zT under each θs and com-
pute its summary statistics. Panels (d)–(f) in Figure 2 show the distributions of the sum-
mary statistics under the posterior. The posterior predicts the original summary statis-
tics more precisely and accurately than the prior. This exercise is called posterior pre-
dictive analysis; see Geweke (2005).

Second, the posterior predictive valuation density is
∫
f (v|θ)p(θ|y)dθ, which is the

most widely used Bayesian density estimate. Panel (b) in Figure 3 shows the predictive
valuation density and the pointwise 2�5 and 97�5 percentiles of the posterior distribution
of the valuation density (dashed lines) along with the true valuation density (plain line).
This 95% posterior credible band is narrow, i.e., the inference is precise, yet it contains
the true density over the entire support [0�1], i.e., the estimate is accurate. The L2 differ-
ence of the posterior predictive density from the true density is 0�096; see Table 1 under
column B.

12I use an iMac 27, which has 2�9 GHz Intel Core i5 and 8 GB 1600 MHz DDR3 with OS X 10.9.2 (13C64).
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Figure 3. Posterior predictive density and revenue. Panels (a)–(c) [(d)–(f)] plot the posterior
predictive density [revenue] functions and the 95% credible bands, (dashed lines) along with the
true density [revenue] functions (solid lines) for the statistical models with the Legendre polyno-
mials and k ∈ {5�7�10}.

Third, the posterior predictive revenue of the seller at reserve price ρ is∫
Π(θ�ρ)p(θ|y)dθ� (12)

where Π(θ�ρ) is the revenue function under θ at ρ.13 Under the preference orderings
of Savage (1954), Anscombe and Aumann (1963), it is optimal for the seller to maxi-
mize the posterior predictive revenue in (12); the solution to this problem is called the
Bayes action. Moreover, the decision rule that chooses the Bayes action is called the
Bayes rule, which is shown to be optimal under the average risk frequentist decision
principle; see Berger (1985), Kim (2013). Panel (e) in Figure 3 shows the predictive rev-
enue function and the pointwise 2�5 and 97�5 percentiles of the posterior of the revenue
function (dashed lines) along with the true revenue function (plain line). The posterior
analysis of the revenue function is precise and accurate. The Bayes action is ρ̂B = 0�359,
at which the (maximized) predictive revenue is 0�263 with the 95% posterior credible
interval [0�251�0�274], which includes the true revenue at ρ̂B, 0�267; see Table 1 under
columns D–G. The true revenue is maximized at ρ0 = 0�340 with the revenue 0�2672.

13The revenue function under the IPVP is given as Π(θ�ρ) := nρ[1 −F(ρ|θ)]F(ρ|θ)n−1 + n(n− 1)
∫ v̄
ρ y[1 −

F(y|θ)]F(y|θ)n−2f (y|θ)dy ; see Riley and Samuelson (1981).
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Figure 4. Robustness to prior. Panels (a)–(c) [(d)–(f)] reprint the dashed lines from Figure 3(b)
[Figure 3(e)], i.e., the posterior predictive density [revenue] and the 95% credible band under the
original prior and, additionally, put the posterior predictive density [revenue] under the alterna-
tive priors (solid line).

3.2.4 Robustness: Prior and discretization The posterior analysis here is robust with
respect to the prior and the discretization. Recall that the prior is in the form of
p(θ) = ∏k

j=1 p(θj), each θj ∼ N(0� c2 · (10 · 2j)−1) with c = 1. I additionally consider
c ∈ {0�5�2�5}—priors 1, 2, and 3, respectively. The upper (lower) panels in Figure 4 reprint
the dashed lines in Figure 3(b) [Figure 3(e)], i.e., the posterior predictive density (rev-
enue) and the 95% credible band under the original prior and, additionally, put the
posterior predictive density (revenue) under the alternative priors (plain lines). Those
predictive functions under alternative priors are almost identical to the ones under the
original prior.

The original discretization is formed by the equidistant knot points (b∗
0� b

∗
1� � � � � b

∗
D)

with (b∗
0� b

∗
D) = (0� bmax) and D = 20. I consider three coarser discretizations, i.e.,

(b̂∗
0� b̂

∗
1� � � � � b̂

∗
D̂
);

Disc. 1. We have (b̂∗
0� b̂

∗
1� b̂

∗
2� � � � � b̂

∗
9� b̂

∗
10) := (b∗

0� b
∗
2� b

∗
4� � � � � b

∗
18� b

∗
20), i.e., two adjacent

bins are combined.

Disc. 2. We have (b̂∗
0� b̂

∗
1� � � � � b̂

∗
9� b̂

∗
10) := (b∗

0� b
∗
1� � � � � b

∗
9� b

∗
10) and (b̂∗

11� b̂
∗
12� b̂

∗
13� b̂

∗
14�

b̂∗
15) := (b∗

12� b
∗
14� b

∗
16� b

∗
18� b

∗
20), i.e., the first 10 bins are the same, but the 2 adjacent bins

are combined for the rest.
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Disc. 3. We have (b̂∗
0� b̂

∗
1� � � � � b̂

∗
13� b̂

∗
14) := (b∗

0� b
∗
1� � � � � b

∗
13� b

∗
14) and (b̂∗

15� b̂
∗
16� b̂

∗
17) :=

(b∗
16� b

∗
18� b

∗
20), i.e., the first 14 bins are the same, but the 2 adjacent bins are combined

for the rest.

Those predictive functions under alternative discretizations are almost identical to the
ones under the original discretization. As a result, the graphical representation is essen-
tially the same as Figure 4.

3.3 Bayesian model selection

I employ the Bayesian model comparison to choose the statistical model that fits the
data the best. The model is indexed by the number of components k for a given spec-
ification of {φj}. Let θk denote the parameter of the model k. The marginal likelihood
of model k with the sample y is then given as p(y|k) = ∫

p(θk)p(y|θk)dθk, which can
be estimated using the MCMC outcomes {θsk} by the Bridge sampler of Fruhwirth-
Schnatter (2004), Meng and Wong (1996). Let p(k) be the prior probability mass func-
tion over the model space. The posterior probability of model k is then given by p(k|y) ∝
p(k)p(y|k). The Bayesian model selection chooses k to maximize the posterior proba-
bility. This formal model selection is often approximated by the BIC and AIC, each as-
suming a different prior over the model space.

Column A in Table 1 documents the log marginal likelihoods for the statistical mod-
els under consideration. The marginal likelihoods do not vary much across k. Kass and
Raftery (1995) proposed a widely used rule of thumb: model k is strongly preferred to
model k̃ if logp(y|k)− logp(y|k̃) > 1/3. This condition is not met for all the models with
k ≥ 5 when compared against the model with k = 7.14 Moreover, the posterior anal-
ysis is robust across the statistical models. The posterior predictive densities and the
posterior predictive revenue functions are all similar (see Figure 3), and the Bayes ac-
tions for choosing a reserve price ρ and the policy implications are robust (see Table 1,
columns D–G).

3.4 Comparison with previous methods

In this section, I compare the BSL and the two-step kernel method of Guerre, Perrigne,
and Vuong (2000). I fix n = 2 but vary T ∈ {200�500�1000} with three different valuation
distributions: log normal, exponential, and asymmetric uniform. Thus, there are nine
Monte Carlo experiments, each with a different pair of sample size and distribution. In
each experiment, I employ 1000 replications. In each replication, I draw a new sample of
(n�T) from the fixed DGP and run the empirical methods.

Guerre, Perrigne, and Vuong (2000) showed that the valuation density is nonpara-
metrically identified via the inverse bidding function ξ(b) := β−1(b) = b +
G(b)[(n − 1)g(b)]−1, which is a functional of the bid density g and the bid distribu-
tion function G. The method first nonparametrically estimates ĝ and Ĝ to construct ξ̂,

14I have considered alternative statistical models where B-splines construct {φj}. Those models generate
similar posterior analysis for the valuation density and the seller’s revenue, but they are all dominated by
the models with the Legendre polynomials in the marginal likelihood comparison.
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and uncovers the valuation density f̂1 using “pseudo” values {v̂i�t := ξ̂(bi�t)} for bi�t in the
sample. Like all other nonparametric methods, this method is sensitive to the choice
of smoothing parameters, i.e., bandwidths for kernels. I consider two bandwidth con-
figurations: one is the bandwidth selection in Guerre, Perrigne, and Vuong (2000); the
other is the bandwidths that minimize the L2-difference of the estimate from the true
density.15 The former, which I call GPV, is the most natural (or initial) choice for prac-
titioners, whereas the latter, “Oracle GPV,” gives the most accurate estimate, but it is
infeasible in practice because the true density is unknown. For the BSL, I consider the
statistical models with k ∈ {5�7�10} instead of implementing the formal model selection
because the posterior analysis is robust to a wide range of statistical models as shown in
Section 3.3 and below as well. The experiments below show that the BSL is much more
accurate than the GPV, and even better than the Oracle GPV.

3.4.1 Log normal The log normal density used here is defined in Section 3.2. Fig-
ure 3(a) shows the posterior predictive density estimate (middle dashed line) in the first
replication of the Monte Carlo experiment with T = 200. This is a typical density esti-
mate under the BSL with k = 5. Since I employ 1000 replications, each generating a dif-
ferent estimate, I have 1000 density estimates, which form the sampling distribution of
the density estimator. Figure 5(a) summarizes the sampling distribution by its pointwise
mean, and 2�5 and 97�5 percentiles (dashed) along with the true valuation density (solid).
For the models with k ∈ {7�10}, Figures 3(b),(c) and 5(b),(c) are read in the same way. For
all k ∈ {5�7�10}, the BSL closely approximates the valuation density with narrow 95%
frequency bands. Here, a distinction needs to be made: the frequency band represents
the variation of the posterior predictive density,

∫
f (·|θ)p(θ|zT )dθ, over the distribution

of the sample zT , while the posterior credible band measures the variation of f (·|θ) with
respect to the posterior p(θ|zT ) for a given sample zT .

Figure 5(d) illustrates a typical GPV estimate—the one obtained from the first repli-
cation (dashed)—and panel (e) summarizes the sampling distribution of GPV by its 95%
frequency band. The typical GPV estimate does not well approximate the valuation den-
sity and the frequency band is far wider than any of the BSL models. As Table 2 (first
block for T = 200) documents, the mean integrated squared error (MISE) of the GPV
estimate is about five times larger than the MISEs for the BSL models; see columns A
and B.16 Although the Oracle GPV approximates more accurately than the GPV, its MISE
is still larger than those of the BSLs.

Table 2 also summarizes policy implications on choosing a reserve price for the rev-
enue maximizing seller across the methods. For the BSL, I maximize the seller’s posterior
predictive revenues (12), and for the GPV, I use the nonparametric RMRP estimate of Li,

15Guerre, Perrigne, and Vuong (2000) used the triweight kernel (35/32)(1 − u2)31(|u| ≤ 1) for both bid
density and valuation density. Their article proposed a combination of bandwidths hg = 1�06ω̂b(nT)

−1/5

for the bid density estimate and hf = 1�06ω̂v(nT̃ )
−1/5 for the valuation density estimate where ω̂b and ω̂v

are the sample standard deviations of the observed T bids and the estimated T̃ values after trimming out
boundaries.

16Let f̂z be an estimate for the true density f0. Then MISE(f̂z) = ∫
Ez(f̂z(x)−f0(x))

2 dx= ∫
Vz(f̂z(x))dx+∫

(Ezf̂z(x)− f0(x))
2 dx= variance + bias2. The MISE is small only when both variance and bias are small.
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Figure 5. Monte Carlo, exponential, T = 200. The solid line in each panel is the true valuation
density. Panels (a)–(c) show the sampling distributions of the BSLs by the pointwise mean and
the 95% frequency band in dashed lines. Panel (d) shows a typical GPV estimate. Panels (e) and
(f) are the sampling distribution of the GPV and the Oracle GPV, respectively.

Table 2. Summary of Monte Carlo experiments, exponential.

MISE Revenue % Revenue % of
BSL GPV (Oracle) BSL GPV Gain BSL > GPV

T k (A) (B) (C) (D) (E) (F)

200 5 0�134 0�975 [0�385] 0�111 0�102 8�77 89�00
7 0�127 0�111 0�102 8�79 91�70

10 0�150 0�111 0�102 8�75 87�40

500 5 0�090 0�862 [0�322] 0�111 0�107 3�46 81�90
7 0�094 0�111 0�107 3�48 82�90

10 0�103 0�111 0�107 3�45 80�80

1000 5 0�057 0�792 [0�284] 0�111 0�108 2�25 86�70
7 0�075 0�111 0�108 2�18 77�10

10 0�075 0�111 0�108 2�18 77�10

Perrigne, and Vuong (2003), which constructs the revenue as a functional of the bid dis-
tribution functions, Ĝ and ĝ, to choose a point in the bid space, say x, that maximizes
this revenue function and proposes ρ̂x := ξ̂(x) = x+ Ĝ(x)[(n− 1)ĝ(x)]−1 as the RMRP.

In each replication, I choose a reserve price and find the associated true revenue
under each procedure. Since I employ 1000 replications considering four procedures,
I have four sets of 1000 true revenues. Columns C and D in the first block of Table 2
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present their averages for T = 200.17 The average revenues of the BSL models are 5�6
percent larger than the GPV (column E), and the BSL produces higher revenues than the
GPV 863 ∼ 889 times out of 1000 replications (column F).

The use of the GPV can be justified by its large sample properties, e.g., as the sample
size grows, the estimates converge to the true quantities. I repeat the Monte Carlo study
with larger sample sizes, T ∈ {500�1000}. The BSL continues to produce smaller MISEs
and larger revenues than the GPV; see Table 2, columns A and B. As T grows, the 90%
frequency bands get narrower for all the methods under consideration, but typical GPV
estimates continue to be noisy and the frequency bands of the GPV are much wider than
the frequency bands of the BSL models. I do not present graphical comparisons as they
are qualitatively the same as the case of T = 200, i.e., Figure 5.

3.4.2 Exponential All the settings for the Monte Carlo experiments are the same, but
values are drawn from the exponential distribution with mean 1/6 that is truncated at 1,
i.e., f (v) ∝ exp(−6 ·v) ·1(v ∈ [0�1]). The upper block of Figure 5 summarize the sampling
distributions of the BSLs for T = 200, panel (d) plots a typical GPV estimate, and panels
(e) and (f) summarize the sampling distributions of the GPV and the Oracle GPV estima-
tors. The BSL estimates are much closer to the true density than the GPV estimate and
even closer than the Oracle GPV estimate, which is confirmed by the MISE comparisons
in Table 2. From such results, it is natural to expect that choosing a reserve price us-
ing the BSL should be more profitable, which is again confirmed in Table 2. I repeat the
exercise for larger sample sizes T ∈ {500�1000}. The BSLs unanimously produce smaller
MISEs and larger revenues than the previous methods; see Table 2. I do not graphically
present the results for T ∈ {500�1000} as the results are qualitatively the same as Figure 5,
but with narrower frequency bands.

3.4.3 Nonexchangeable In practice, the prior knowledge on the shape of the valu-
ation distribution and bidders’ bidding behavior can be incorrect. To see how the
BSL and GPV perform when the paradigm is misspecified, I run an additional set
of Monte Carlo experiments where the valuation density violates exchangeability (2),
thereby, leading to an asymmetric bidding game. In particular, I consider the vector
of (v1� v2) that is distributed as f (v1� v2) ∝ 1(v1 ∈ [0� v̄1]) × 1(v2 ∈ [0� v̄2]). For the in-
duced game, a Bayesian Nash equilibrium is characterized by the bidding strategies

βi(vi) = (1 −
√

1 − kiv
2
i )/(kivi), where ki := 1/v̄2

i − 1/v̄2
j for i� j ∈ {1�2}, j = i; see Chap-

ter 4 in Krishna (2002). I use (v̄1� v̄2) = (1�4/5). In each Monte Carlo replication, I draw
{(v1�t � v2�t)}Tt=1 from the true valuation density and compute bi�t = βi(vi�t) for every
i = 1�2 and t = 1� � � � �T . Then I implement the empirical methods for the bid sample,
{(b1�t � b2�t)}Tt=1, under the false assumption that the true density is exchangeable and the
bidding game is symmetric. Figure 6 summarizes the results of the Monte Carlo experi-
ment for T = 200. The solid lines on each panel represent the marginal densities of the
true valuation distribution. The BSL estimates pass between the two marginals with nar-
row 95% frequency bands, but the GPV estimate is very different from the true density

17The standard deviations of the true revenues are very small, on the order of 1% of the revenue averages
for the BSL specifications and 10% for the GPV.
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Figure 6. Monte Carlo, asymmetric, T = 200. The solid lines on each panel are the true marginal
valuation density. Panels (a)–(c) show the sampling distributions of the BSLs by the pointwise
mean and the 95% frequency band in dashed lines. Panel (d) shows a typical GPV estimate.
Panel (e) [(f)] is the sampling distribution of the GPV [Oracle].

with a greater sampling variation. I find that the MISEs of the BSL for k ∈ {5�7�10} are
less than 50% of the MISEs of the GPV and are slightly smaller than the MISEs of the
Oracle GPV.18

4. Affiliated private value paradigm: OCS wildcat auctions

In this section, I implement the BSL under the APVP to analyze the data set used in
many articles including Li, Perrigne, and Vuong (2000, 2003). Especially, I explain how to
flexibly impose the density affiliation (1).

4.1 Data

The U.S. Department of the Interior has organized auctions to sell off drilling rights
on offshore oil and gas development in areas of the Gulf of Mexico. Li, Perrigne, and
Vuong (2003) studied a data set of T = 217 auctions, each with n = 2 bidders between
1954 and 1969. Let zT := {(b1�t � b2�t)}Tt=1, the sample of the T = 217 bid pairs. The aver-
age bid and standard deviation are, respectively, $145�78 and $255�72 per acre in 1972
dollars, and the sample extremums are $19�70 and $2220�28. Li, Perrigne, and Vuong

18I do not evaluate the methods by revenues, not only because the required computation is more in-
volved, but also because the revenue comparisons should be obvious given the MISE comparisons and the
estimates shown in Figure 6.
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Figure 7. OCS wildcat bid data. Panel (a) shows histograms of the bid sample and panel (b)
shows histograms of the log of bid data. Panel (c) shows a scatter diagram of the bid data with
b1 > b2, and panel (d) shows a scatter diagram of the log of bid data. The sample average is
$145�78 per acre in 1972 dollar with the standard deviation of $255�72.

(2003) nonparametrically estimated the RMRP under the APVP. In particular, it is as-

sumed that {(v1�t � v2�t)}Tt=1
i�i�d�∼ F(·� ·) ∈ FAPV and bi�t = β(vi�t |F�ρ = 0) in (3) for all (i� t) ∈

{1�2} × {1� � � � �217}.19 Figure 7(a) shows a histogram of the (marginal) bid sample. It is
highly skewed to the left (skewness = 5�09), having a long tail to the right with some out-
liers. Let b1�t > b2�t with abuse of notation. Panel (c) shows a scatter diagram of winning
bids {b1�t}Tt=1 and losing bids {b2�t}Tt=1.

Panels (b) and (d) demonstrate the log bids. All the log bids are included in
[2�980�7�233]. Consider the set of equidistant grid points {b∗

0� b
∗
1� � � � � b

∗
D} with (b∗

0� b
∗
D) :=

(2�980�7�233).20 Then the collection of Bd�e := [b∗
d−1� b

∗
d] × [b∗

e−1� b
∗
e] for all d ∈ {1� � � � �D}

and e ∈ {1� � � � � d} discretizes the joint log bid space (a two dimensional space) under the
45◦ line by D(D + 1)/2 equally sized square bins. I use D = 10, i.e., 55 bins, for which I
find ȳ = 20. I consider D ∈ {7�9�11} later.

4.2 Specification of valuation density with shape restrictions

When F ∈ FAPV, the entire joint density has to be specified, unlike the IPVP case, because
the independence is not guaranteed. In a bivariate case, the statistical model (7) extends

19The empirical auction literature agrees that the actual reserve price of $15 per acre is nonbinding as it
is too low to screen some bidders with low values; see Li, Perrigne, and Vuong (2003) and refereces therein.

20If the original bid sample space was discretized by some equidistant grid points, most bins would have
a very small number of data points or be empty because of the large tail area, and there would be a few
bins near the origin with a large number of data points. So ȳ will be large and, therefore, the number of
simulation draws, i.e., ȳ ·R, has to be large. By discretizing the log bid space, not only do I avoid this practical
problem, but also I let the prior be more informative on the tail area, which is more coarsely discretized.
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to

log f (v1� v2|Θ)=
∑
i∈I

∑
j∈I

θi�jφi(v1)φj(v2)+ c(Θ)� (13)

where I is the index set that determines the number of components and Θ is the matrix
of all coefficients {θi�j}(i�j)∈I2 . To exploit the prior knowledge that F ∈ FAPV, I employ a
statistical model on which it is convenient to impose the theoretical shape restrictions,
especially density affiliation (1). The statistical model (13) satisfies (1) if and only if

∂2

∂v1 ∂v1

∑
i∈I

∑
j∈I

θi�jφi(v1)φi(v2) ≥ 0 (14)

for every (v1� v2) ∈R
2. This gives infinitely many inequality conditions.

To impose this restriction allowing for a flexible interdependence structure, I em-
ploy the nonparametric method of imposing shape restrictions of Beresteanu (2007),
who uses B-splines. Thus, I construct the basis functions using B-splines. Let φj(x) :=
φ̃(x−j/k

1/k ), where φ̃(x) := ∑3
s=0

(−1)s
2 [ 3!

s!(3−s)! ](x + 3
2 − s)2+ · 1(x ∈ [− 3

2 �
3
2 ]) with x+ =

x ·1(x > 0), with k≥ 4. Figure 8 shows {φj}k+1
j=−1 with k ∈ {4�6�8}. Let I := {−1�0�1� � � � �k�

k + 1} include φ−1 and φk+1 that are centered outside [0�1]. Then almost every point
in [0�1] has the same number of positive kernels, which is necessary for shape restric-
tion. The statistical model (13) is then affiliated if the inequality condition in (14) holds
at every point in the finite set { 0

k�
1
k� � � � �

k
k } × { 0

k�
1
k� � � � �

k
k }. That is, the infinitely many

constraints in (14) are represented only by (k + 1)2 inequalities. To simplify the nota-
tion, define the matrix of the basis functions evaluated at the points in { 0

k�
1
k� � � � �

k
k }

Figure 8. Basis functions constructed by B-splines. Each panel shows {φ�}�∈I for different k as
shown. To impose shape restrictions, φ−1 and φk+1 are required so that every point in [0�1] has
the same number of positive kernels.
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as Φ := [φi(j/k)](i�j)∈I×{0�1�����k}. This (k + 3) × (k + 1) matrix contains the (k + 3) ba-
sis functions, each evaluated at every point in { 0

k�
1
k� � � � �

k
k }. The inequality conditions

in (14) with the B-splines is then written as Φ′ΘΦ ≥ 0(k+1)×(k+1) with the element-by-
element inequality ≥. Finally, the statistical model (13) is exchangeable if and only if
Θ is symmetric, i.e., θi�j = θj�i.21 Thus, the number of effective components in Θ is
(k+ 3)(k+ 4)/2. Moreover, since only the sample space below 45◦ line needs to be con-
sidered under exchangeability, the number of constraints reduces to (k+ 1)(k+ 2)/2.

To use the statistical model (13) with the support [0�1]2, one may, in principle,
rescale the bid data so that the rescaled pair of values belongs to [0�1]2. Two problems
arise. First, the bid distribution with such a heavy tail in Figure 7 suggests that the upper
boundary of the valuation may be extremely large, but it is unknown. Second, even if
the boundary is known, since it is very large, the true density of the rescaled value would
be highly condensed on a small neighborhood of the origin (0�0) in the support [0�1]2.
However, to approximate such a high peak, the model (13) must have many compo-
nents, i.e., large k, but most coefficients are close to zero. To see this, look at Figure 8:
as k increases, the support of φ0 at zero gets narrower. So, to express a peak highly con-
densed around zero, k has to be large and only φ0 has a large coefficient, but the other
coefficients are all close to zero. Then the marginal likelihood of such a model would
be small because the prior over a higher dimensional space is more diffused, penalizing
overparametrization.

For this reason, I transform the value in such a way that the distribution of the trans-
formed value spreads out more evenly over the unit square than the case of rescaling. Let
F̃(·|μ) be a strictly monotone transformation, parametrized by μ, that maps from R+ to
[0�1]. I can now employ the model (13) with much smaller k to approximate the joint
density of the transformed value (x1�x2) := [F̃(v1|μ)� F̃(v2|μ)]. The statistical model for
the original value (v1� v2) is then written as

log f (v1� v2|μ�Θ) = log f̃ (v1|μ)+ log f̃ (v2|μ)
(15)

+
∑
i∈I

∑
j∈I

θi�jφi(x1)φj(x2)+ c(Θ)�

where f̃ (·|μ) denotes a derivative of F̃(·|μ). Since F̃(·|μ) is a monotone mapping onto
[0�1], it is essentially a distribution function. For example, the exponential distribution
or the log normal distribution could be used. I interpret (15) to mean that f̃ (·|μ) first
approximates the marginal valuation density and that the additional terms improve the
approximation, accounting for a flexible interdependence structure. For a given accu-
racy, therefore, if f̃ (·|μ) is close to the true density, a moderate number of components
would suffice.

Since the role of F̃ is simply to spread out the probability mass more evenly over
the support of the statistical model (13), I choose a simple parametric distribution

21Exchangeability has been considered in the auction literature. Especially, Li, Perrigne, and Vuong
(2002) estimated the valuation density without first imposing exchangeability and then symmetrized the
density estimate by taking an average over all possible permutations of the arguments in the density.
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that is skewed to the left. In particular, since the histogram of the bid data (Fig-
ure 7(a)) is similar to the exponential density (solid line), believing that the value
might be similarly distributed, I use the exponential distribution with density f̃ (v|μ) =
1(v ≥ 0)exp(−v/μ)/μ.22 Such beliefs do not have to be exact because the additional
terms explain the gap between the leading terms and the true density function. One
could, in principle, choose F̃ formally via the Bayesian model selection discussed in
Section 3.3 with a larger set of statistical models, each indexed by a pair of (F̃�k), but
the computing costs would then increase substantially, without much improvement in
the data analysis.

4.3 Prior specification and implications

The statistical model for the valuation density is parametrized by (μ�Θ) for a given k.
Recall that θi�j is the coefficient attached to the kernel centered at the grid point
(i/k� j/k) with (i� j) ∈ I2. Therefore, if θi�j is constant for all (i� j) ∈ I2, the density (13)
of the transformed value (x1�x2) = (F̃(v1|μ)� F̃(v2|μ)) is the uniform over [0�1]2. If θi�j
for a certain (i� j) is larger than other elements in Θ, the density would have a mode at
(i/k� j/k); the larger is the θi�j , the bigger is the mode. Now consider the prior given as
μ/1000 ∼N(1�1) · 1(μ > 0) and

Θ|μ∼ 1
(
Φ′ΘΦ ≥ 0

) ·
∏
i≥j

[
N

(
0� τ2

i�j

) · 1(θi�j = θj�i)
]
� (16)

τi�j = η+ (10 −η)(1 − i/k)4 · 1(i ≥ 0) (17)

with η ∈ (0�10). The indicators in (16) are associated with the theoretical shape re-
strictions; affiliation (1) and exchangeability (2). Hence, whenever the proposal func-
tion draws a parameter that violates (1), the candidate is automatically rejected because
the prior at the candidate is zero; see the acceptance probability (11). All {θi�j} are dis-
tributed around zero. The standard deviation in (17) starts with 10 at (i� j) = (0�0), de-
creases quickly, and becomes η at i = k, the right boundary of the unit square. Therefore,
the density of the transformed value (x1�x2) has a greater variation around the origin
than the tail area: the smaller is the η, the more strongly the prior controls the tail be-
havior. I use first η= 0�1 and check alternative values later.

To see the implication of the prior on the data distribution, I draw (μ�Θ) from the
prior, generate a bid sample of T = 217 auctions, each with two bidders, under (μ�Θ),
and obtain summary statistics: the average, the standard deviation, and the skewness
of the winning bids. After repeating many times, panels (a)–(c) in Figure 9 scatter the
predictive distributions of the summary statistics (÷100). The plain lines indicate the
summary statistics of the original data zT from the OCS wildcat sales.

22Such beliefs can be verified by a simple simulation exercise. I draw a bid sample of size 1000 from the
exponential distribution with mean 1, and compute associated values by evaluating the inverse bidding
function. The simulated value has a distribution similar to the exponential distribution with mean 2�4, but
with a heavier tail. Roughly, its density is decreasing and convex toward the origin, and its three quartiles are
(0�618�1�694�4�403), whereas the three quartiles of the exponential with mean 2�4 are (0�690�1�664�3�327).
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Figure 9. Predictive distributions of summary statistics under prior and posterior. Panels
(a)–(c) demonstrate the distribution of the summary statistics (dots) of the bid data under the
prior along with the summary statistics of the original data (solid line). Panels (d)–(f) do simi-
larly for the posterior.

4.4 Posterior computation, inference, and decision making

I draw {μs�Θs}Ss=1 from the posterior using the MH algorithm; see Section 3.2.2. The
parameters here include a matrix, whereas the parameters in the previous section are
one dimensional. Although slightly modified, the MH algorithm is essentially the same:
it updates, as before, one component at a time with a deterministic order at each MH
iteration s unbiasedly estimating the likelihood by simulation.23 The simulated values
in (10) drawn from f (v1� v2|μ�Θ) are now n = 2 dimensional; see the Appendix for the
accept/reject sampling scheme. Employing the statistical model with k = 4, I iterate the
MCMC algorithm S = 20,000 times, recording every 10th outcome, and check the conver-
gence by the separated partial means test.24 The smallest p-value among the 29 p-values
is 0�012 and the average of the p-values is 0�426.

To see the implications of the posterior on the summary statistics, I perform the
posterior predictive analysis. I generate a bid sample of size T = 217 and compute its

23Specifically, I update μ and then update θi�j in the order of j = i� � � � �k�k + 1 for each i, where i =
−1�0�1� � � � �k�k+ 1. I employ R= 4000.

24One could choose k formally by the Bayesian model section. In the previous version of this paper, I
found that the log marginal likelihood is maximized at k = 4 and drops sharply as k increases because the
number of components increases at a rate of O(k2) and thereby the statistical model gets quickly over-
parametrized. Moreover, when k increases, the MH algorithm must iterate more to explore dramatically
expanding parameter space and, therefore, the computing time increases.
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Figure 10. Prior predictive distributions. Panel (a) plots the data histogram along with the
posterior predictive marginal bid density (solid) and a 95% posterior credible band (dashed);
panel (b) plots similarly for the marginal valuation density. Panel (c) shows the valuation density
that is predicted only by the leading term f̃ (·|μ). Panel (d) demonstrates the posterior predictive
revenue (plain) along with the 95% posterior credible band (dashed). Panel (e) shows the eco-
nomic significance of the Bayes action of $163 per acre relative to the actual reserve price of $15
per acre.

summary statistics: the average, the standard deviation, and the skewness of winning
bids. After repeating this exercise many times, panels (d)–(f) in Figure 9 show the predic-
tive distributions of the summary statistics under the posterior along with the summary
statistics of the data zT . The distributions are more condensed than the prior and the
summary statistics of the original data zT may be considered as a realization under the
posterior.

Panel (a) in Figure 10 plots the data histogram along with the posterior predictive
marginal bid density (solid) and a 95% posterior credible band (dashed); panel (b) plots
similarly for the marginal valuation density.25 The predictive bid density well explains
the sample overall, but the prior controls the tail behavior. The valuation density is

25The posterior distribution of the bid density is obtained via a usual kernel smoothing method over
simulated data under each parameter value (μ�Θ) drawn from the MCMC algorithm.
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more diffuse toward the right than the bid densities because values are larger than bids.
Panel (c) shows the valuation density that is predicted only by the leading term f̃ (·|μ),
which suggests that a large portion of the valuation density is still explained by the ad-
ditional terms in the statistical model (15).

The seller may wish to choose a reserve price to extract the largest revenue from
the future auction. For simplicity, the seller’s value for the auctioned tract is assumed
to be zero. Let A ⊂ R+ be the set of all feasible reserve prices. The seller’s revenue un-
der (μ�Θ) with ρ ∈ A is given by Π(μ�Θ�ρ) := E[β(vh|ρ�μ�Θ) · 1(vh > ρ)|μ�Θ], where
vh := max{v1� � � � � vn}. Panel (d) in Figure 10 demonstrates the posterior predictive rev-
enue (plain) along with the 95% posterior credible band (dashed) The Bayes action (12)
for this problem is the reserve price of $163 per acre conditional on the prior and the
likelihood. The posterior predictive revenue at $163 is $283�96 per acre with the 95% pos-
terior credible interval of [$241�71�$332�61]. On the other hand, the posterior expected
revenue at the actual price of $15 is $240�56 per acre with the 95% posterior credible
interval of [$202�42�$285�88], which includes the average revenue (winning bid) in the
sample of $224�32. The predictive revenue distribution at the optimal choice dominates,
first-order stochastically, the predictive revenue distribution at the actual reserve price
as shown on panel (e). Thus, the revenue gain is economically significant.

I have so far employed the discretization with D = 10. For each D ∈ {7�9�11}, I repeat
the posterior inference and decision making. The posterior predictive bid density and
valuation density are very similar to the base specification with D = 10, i.e., Figure 10.
The Bayes actions for choosing a reserve price are also similar; they are $158, $162, and
$161 per acre for D = 7�9, and 11, respectively.

4.5 Prior sensitivity and robust decision making

I check the prior sensitivity on posterior inference and decision making. Unlike the
Monte Carlo experiments in Section 3, the data set from the OCS wildcat sales has a
long tail with some outliers, which may suggest the existence of very high values. I first
consider four priors, say, priors 1–4, that all control the tail behavior but with different
degrees; they use η ∈ {0�01�0�2�0�3�0�5}, respectively, in equation (17). Only prior 1 with
η = 0�01 controls the tail behavior more strongly than the original prior with η = 0�1.
Panels (a)–(c) in Figure 11 illustrate the posterior predictive densities of the bid and the
value (plain lines on panels (a) and (b)) along with the 95% posterior credible bands
under the original prior (dashed). All the posterior predictive densities are included in
the associated credible bands and they are very similar to the predictive densities un-
der the original prior. The posterior predictive densities and revenues are robust as long
as the prior is not substantially different. Similarly, panel (c) plots the posterior predic-
tive revenues under the priors 1–4 along with the 95% posterior credible band under the
original prior. For the priors under consideration, the posterior analysis is robust.

In addition, I consider substantially different priors with η ∈ {1�2}, under which the
posteriors predict fairly different densities of bids and valuations (panels (d) and (e)),
and completely different revenues (panel (f)); the Bayes actions are 664 and 714 for each
η ∈ {1�2}, respectively. In this case, it would be useful to employ a decision method that
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Figure 11. Prior sensitivity check. Panels (a)–(c) show the posterior predictive bid density, val-
uation density, and revenue functions, respectively, under alternative priors 1–4 that control tail
behavior in the solid line along with the 95% credible bands under the original priors. Panels
(d)–(f) do similarly but under additional priors that do not strongly control tail behavior.

is robust against the prior. Let Γ be the set of all reasonable priors. Under the preference

orderings of Gilboa and Schmeidler (1989), it is optimal to maximize

min
p(·)∈Γ

∫
Π(θ�ρ)

[
p(θ)p(y|θ)∫
p(θ̃)p(y|θ̃)dθ̃

]
dθ�

which represents the lower envelop of these posterior predictive revenues.26 The Γ -

maxmin rule chooses a reserve price to maximize this lower envelop, securing the de-

cision maker against the most pessimistic revenue. As an illustration, suppose that Γ

includes all the priors considered so far. Then the Γ -maxmin rule chooses $229; see Fig-

ure 11(f).

5. Concluding remark: Large n

I conclude the paper by discussing the empirical environment with a large number of

bidders, n ≥ 2. Since this problem does not affect the BSL for the IPVP, I focus on the

26Aryal and Kim (2013) proposed the Γ -maxmin rule for the situations where the reserve price policy is
sensitive to the prior of unidentified parameters.
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APVP where the BSL would suffer the curse of dimensionality, just like all other flexible
statistical methods. For n ≥ 2, the statistical model (13) extends to

log f (v1� � � � � vn|Θ)=
∑
i1∈I

· · ·
∑
in∈I

θi1�����in

n∏
j=1

φij (vj)+ c(Θ)�

For a small n such as 2 or 3, the BSL that I have illustrated so far would be practical. As
n grows, however, the number of components increases at a rate of O(kn): not only does
the statistical model get quickly overparametrized, but also the computation becomes
impractical. To gain tractability, therefore, it is inevitable either to employ a simple para-
metric model or to make a stronger assumption on the auction paradigm.

I consider the CIPVP as a reasonable alternative to the APVP because the CIPVP al-
lows for a flexible specification, while values are still affiliated in a restrictive, but in-
tuitive, way: the affiliation arises through an unknown common component, denoted
by κ. Note that Li, Perrigne, and Vuong (2000) analyzed the OCS wildcat data un-
der the CIPVP. The joint density of (v1� � � � � vn�η) has the form fκ(κ)

∏n
i=1 f1(vi|κ), and

f (v1� � � � � vn) is obtained by integrating κ out. Following Li, Perrigne, and Vuong (2000),
if I assume f1(vi|κ) = fα(αi) with αi = vi/κ, then I only need to specify two one dimen-
sional densities fκ(·) and fα(·) using a flexible statistical model. Let fκ(·|θκ) and fα(·|θα)
be such specifications where θκ and θα are the parameter vectors. Then the posterior of
(θκ�θα�κ) can be obtained.27

Even if the number of components does not explode, however, there would still be
the curse of dimensionality regarding the sample space and its discretization, because
the number of bins also increases at a rate of O(Dn) and the simulation size must in-
crease accordingly.28 To get around this problem, I propose to use a summary statistic
H :Rn+ → R

m+ with small m such as 2 or 3, and discretize the space of {(h1�t � � � � �hm�t) :=
H(b1�t � � � � � bn�t)}Tt=1. As before, let yd denote the number of the summary statistics in the
dth bin and let ȳ := max{yd}. Then one could approximate the associated multinomial
likelihood by the simulated bids, {(h̃j

1�r � � � � � h̃
j
m�r) := H(b̃

j
1�r� � � � � b̃

j
n�r)}(r�j)∈{1�����R}×{1�����ȳ}.

This approach is closely related to the rapidly growing area of approximate Bayesian
computation (ABC), where high dimensional data are replaced by a low dimensional
statistic; see Marin, Pudlo, Robert, and Ryder (2012). The optimal choice of H is one of
the main topics of ongoing research in the area of ABC. In general, one should consider
several reasonable summary statistics and check the robustness of the analysis. For auc-
tion data analysis, there are useful theoretical results that shed a light on the problem of
choosing H. For example, Esponda (2008) argues that when each bidder knows the joint
density of her own bid and two top bids, she has a correct belief on the joint density of
all bids in a symmetric private value paradigm. This suggests that the summary statistic

27In Bayesian analysis, both parameters and latent variables are unobserved quantities that are dis-
tributed as some prior, which is updated via the Bayes theorem whenever data are observed. There is no
distinction between the parameters (θη�θα) and the latent variable η in the Bayesian framework.

28When there are too many bins, some bins would have no simulated bids unless the simulation size is
large. Then the estimated likelihood would often be zero and the MH algorithm does not effectively explore
the posterior.
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collecting (any) one bid and two top bids would be very informative on the entire joint
bid density, which identifies the joint valuation distribution; see Li, Perrigne, and Vuong
(2000, 2002). In addition, when the bidders’ identities are not observed, but the objec-
tive of analysis is to choose a reserve price, it would be sufficient to use only the top two
bids; see Athey and Haile (2002).

Appendix: Simulation of values and evaluation of bidding functions

I explain how to draw values from the statistical model and to evaluate the bidding func-
tions. Let (x0�x1� � � � � x100) be the equidistant knot points on [0�1] with (x0�x100)= (0�1).

A.1 Independent private value paradigm

First, I approximate the associated CDF via the trapezoid rule by evaluating the statisti-
cal model in (7) at each point in (x0�x1� � � � � x100). Let ĩ be the ith element in I. For the
Legendre polynomial basis functions, I = (1� � � � �k) and ĩ = i, but for the B-splines ba-
sis functions, I = (0�1� � � � �k) and ĩ = i − 1. Let Φx be the matrix whose (i� j) element
is φĩ(xj) and let θ be the column vector whose ith element is θĩ. Also let a1

j be the jth

element in exp[Φxθ], i.e., a1
j = exp[∑j∈I θjφj(xj)] for j = 0�1� � � � �100. Then let a2

0 := 0

and a2
j := a2

j−1 + (xj − xj−1)(a
1
j + a1

j−1)/2 for j > 0, i.e., a2
j ≈ ∫ xj

0 exp[∑j∈I θjφj(t)]dt.
Then let pj := a2

j /a
2
100, i.e., pj ≈ F1(xj|θ) for j = 0�1� � � � �1. Note that 0 = p0 < p1 < · · · <

p100 = 1. To draw ṽ ∼ F1(·|θ), I draw ũ ∼ Uniform[0�1] and let j̃ be the index such that
ũ ∈ (pj̃�pj̃+1). Finally, let

ṽ :=
(
ũ−

{
pj̃ −

[pj̃+1 −pj̃

xj̃+1 − xj̃

]
· xj̃

})
÷

[pj̃+1 −pj̃

xj̃+1 − xj̃

]
�

i.e., ṽ ≈ F−1
1 (ũ|θ). Second, observe that for n = 2,

b̂j := β(xj|θ)= xj −
∫ xj

0

F1(α|θ)
F1(xj|θ) dα

≈ xj − (2pj)
−1

j∑
s=1

(xs − xs−1) · (ps −ps−1)�

Redefine j̃ as the index such that b∗
d ∈ (b̂j̃� b̂j̃+1). Then

v∗
d :=

(
b∗
d −

{
pj̃ −

[ b̂j̃+1 − b̂j̃

xj̃+1 − xj̃

]
· xj̃

})
÷

[ b̂j̃+1 − b̂j̃

xj̃+1 − xj̃

]
� (18)

Thus, I obtain the knot points (v∗
0� v

∗
1� � � � � v

∗
D) in the valuation space that are associated

with (b∗
0� b

∗
1� � � � � b

∗
D).
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A.2 Affiliated private value paradigm

First, I employ the accept/reject sampler to draw (transformed) values from the
statistical model in (13). Consider the kernel of (13) given by η(v1� v2) :=
exp{∑i∈I

∑
j∈I θi�jφi(v1)φj(v2)}, where (v1� v2) ∈ [0�1]×[0�1]. Let η̄(·� ·) be the piecewise

linear density to approximate η(·� ·) as follows: for any given (v1� v2) ∈ [0�1] × [0�1],

η̄(v1� v2)∝ η

(
i

10
�
j

10

)
+η

(
i+ 1
10

�
j

10

)
+η

(
i

10
�
j + 1

10

)
+η

(
i+ 1
10

�
j + 1

10

)
�

where (i� j) is the pair of integers such that (v1� v2) ∈ ( i
10 �

i+1
10 ) × ( j

10 �
j+1
10 ). Then I draw

the (transformed) value (ṽ1� ṽ2) using the accept/reject algorithm as follows:

(i) Draw a proposal (ṽ′
1� ṽ

′
2) ∼ η̄(·� ·).

(ii) Let (ṽ1� ṽ2)= (ṽ′
1� ṽ

′
2) with probability

η(ṽ′
1�ṽ

′
2)

Qη̄(ṽ′
1�ṽ

′
2)

, where Q ≥ sup(v1�v2)∈[0�1]2
η(v1�v2)
η̄(v1�v2)

.

(iii) If the proposal is not accepted, go back to step 1.

Note that the original value can be drawn by evaluating F̃−1(·|μ) at the transformed
value.

Second, I evaluate the bidding function as follows: Let Θ be the k + 3 symmetric
square matrix whose (i� j) element is θĩ�j̃ , where ĩ and j̃ are the ith and jth indexes in

I = {−1�0�1� � � � �k�k + 1}, i.e., ĩ = i − 2. Also let Φx be the (k + 3) × 101 matrix whose
(i� j) element is φi(xj) with the 101 equidistant knot points {xj} in [0�1], defined above.
Let fx := exp(Φ�

xΘΦx − constant), i.e., the (i� j) element, say f xi�j , in fx is proportional to

f (xi�xj|Θ); see the statistical model (13).29 Let δx be the matrix whose (i� j) element is
δxi�j := δxi−1�j + 0�005 · (f xi�j + f xi−1�j) with δi�1 ≈ 0. Let a1 be the diagonal element of the
element-by-element product of fx and δx, i.e., its jth element is

a1
j :=

f xj�j

δxi�j
≈ f (xj�xj|Θ)∫ xj

0
f (xj� t|Θ)dt

= f (xj|xj�Θ)∫ xj

0
f (t|xj�Θ)dt

�

(If there is an inf in a1, such an element must be replaced by some large number.) Let
a2 collect a2

j := a2
j−1 + 0�005 · (a1

j + a1
j−1) with a small a2

1, i.e.,

a2
j ≈

∫ xj

0

[
f (u|u�Θ)∫ u

0
f (t|u�Θ)dt

]
du�

Let A2 be the 101 × 101 matrix whose columns are all a2 and let A3 := exp{−max[A�
2 −

A2�0101×101]} so that its (i� j) element with j > i is

a3
i�j ≈ exp

{
−

∫ xj

xi

[
f (u|u�Θ)∫ u

0
f (t|u�Θ)dt

]
du

}

29The constant is often necessary because, otherwise, some element in h will be recognized as inf in the
machine. I use the average of all elements in Φ�

xΘΦx. This constant is canceled out.
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and all other elements are zero. Now let v̄ := {v̄j := F̃−1(xj|μ)}100
j=0 be the knot points in

the original value space. Let A4 be the matrix whose (i� j) element a4
i�j := a4

i−1�j + (v̄i −
v̄i−1) · (a3

i−1�j + a3
i�j)/2 for all j. Then the jth element of the diagonal of A4 approximates

∫ v̄j

0
exp

{
−

∫ F̃(v̄j |μ)

α

[
f (u|u�Θ)∫ u

0
f (t|u�Θ)dt

]
du

}
dα�

Let a5 be the diagonal of A4. Then the jth element of the diagonal of b̂ := v̂ − A4 approx-
imates the equilibrium bidding function b̂j := β(v̄j|μ�Θ). Then one may find the knots
in the valuation space that are associated with the knots in the bid space similarly to
(18).
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