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Maximum likelihood inference in weakly identified dynamic
stochastic general equilibrium models

Isaiah Andrews
Department of Economics, MIT

Anna Mikusheva
Department of Economics, MIT

This paper examines the issue of weak identification in maximum likelihood,
motivated by problems with estimation and inference in a multidimensional dy-
namic stochastic general equilibrium model. We show that two forms of the clas-
sical score (Lagrange multiplier) test for a simple hypothesis concerning the full
parameter vector are robust to weak identification. We also suggest a test for a
composite hypothesis regarding a subvector of parameters. The suggested subset
test is shown to be asymptotically exact when the nuisance parameter is strongly
identified. We pay particular attention to the question of how to estimate Fisher
information and we make extensive use of martingale theory.

Keywords. Maximum likelihood, C(α) test, score test, weak identification.

JEL classification. C32.

1. Introduction

In recent years, we have witnessed the rapid growth of the empirical literature on the
highly parameterized, microfounded macro models known as dynamic stochastic gen-
eral equilibrium (DSGE) models. A number of papers in this literature have consid-
ered estimating these models by maximum likelihood (see, for example, Altug (1989),
Ingram, Kocherlakota, and Savin (1994), Ireland (2004), Lindé (2005), and McGrattan,
Rogerson, and Wright (1997)). More recently, Bayesian estimation has become increas-
ingly popular, due in large part to the difficulty of maximum likelihood estimation in
many DSGE models. As Fernández-Villaverde (2010) points out in his survey of DSGE
estimation, “likelihoods of DSGE models are full of local maxima and minima and of
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nearly flat surfaces� � �the standard errors of the estimates are notoriously difficult to
compute and their asymptotic distribution a poor approximation to the small sample
one.” The poor performance of maximum likelihood estimation has fueled growing con-
cerns about weak identification in many DSGE models (see Canova and Sala (2009),
Guerron-Quintana, Inoue, and Kilian (2013), Iskrev (2010), and Mavroeidis (2005)).

In this paper, we consider the problem of weak identification in models estimated
by maximum likelihood, focusing in particular on weakly identified DSGE models. Weak
identification arises when the amount of information in the data about some parameter
or group of parameters is small and is generally modeled in such a way that information
about parameters accumulates slowly along some dimensions. This leads to the break-
down of the usual asymptotics for maximum likelihood, but is distinct from loss of point
identification. We assume throughout that the models we consider are point-identified,
and thus that changing the value of any parameter changes the distribution of the data,
though the effect will be small for some parameters. We provide several examples illus-
trating ways in which weak identification may arise in a DSGE context.1

We focus on the problem of testing and confidence set construction in this context.
We consider two different tasks. First, we examine the problem of testing a simple hy-
pothesis on the full parameter vector. We suggest using particular forms of the classical
Lagrange multiplier (LM) test, which we show are robust to weak identification. The as-
sumptions needed for this result are extremely weak and cover a large number of cases,
including all of our examples. An advantage of our approach is that we can remain ag-
nostic about the source and nature of weak identification, and need not rely on any par-
ticular asymptotic embedding. The proof for these tests makes extensive use of martin-
gale theory, particularly the fact that the score (i.e., the gradient of the log likelihood) is
a martingale when evaluated at the true parameter value.

Second, we turn to the problem of testing a subset of parameters without restricting
the remaining parameters. The tests we suggest for a subset of parameters are particular
forms of Rao’s score test and are asymptotically equivalent to Neyman’s C(α) test when
identification is strong. Consequently, our tests are efficient when all parameters are
strongly identified. We show that the suggested tests have a χ2 asymptotic distribution
as long as the nuisance parameter (i.e., the part of the parameter vector that we are not
testing) is strongly identified, even when the tested parameter is weakly identified. By
combining our procedure for concentrating out nuisance parameters that are strongly
identified with projection over the remaining nuisance parameters, one obtains weak
identification-robust tests more powerful than those based on projection alone.

The paper also reveals a previously unnoticed fact concerning estimation of the
Fisher information. White (1982) noted that in strongly identified models, the Fisher
information can be estimated using either the Hessian of the likelihood or the quadratic
variation of the score, and argued that a large discrepancy between these two estimates
indicates model misspecification. We show in examples that weak identification leads to
a distinct but related phenomenon. In particular, under weak identification, the appro-
priately normalized quadratic variation of the score converges to fixed positive-definite

1Due to space limitations, most of the examples are placed in a Supplement, available as a supplemen-
tary file on the journal website, http://qeconomics.org/supp/331/supplement.pdf.

http://qeconomics.org/supp/331/supplement.pdf
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matrix while the Hessian converges in distribution to a random matrix. Thus, large dis-
parities between different estimators of information may arise even in correctly speci-
fied models if identification is weak.

The issue of weak identification in DSGE models was first highlighted by Mavroei-
dis (2005) and Canova and Sala (2009), who pointed out that the objective functions
implied by many DSGE models are nearly flat in some directions. Weak identification-
robust inference procedures for log-linearized DSGE models were introduced by Du-
four, Khalaf, and Kichian (2013; henceforth DKK), Guerron-Quintana, Inoue, and Killian
(2013; henceforth GQIK), and Qu (forthcoming). With the exception of GQIK, these pa-
pers focus on tests for the full parameter vector and make extensive use of the projection
method to construct confidence sets for subsets of the structural parameters that, given
the high dimension of the parameter space in many DSGE models, has the potential to
introduce a substantial amount of conservativeness in many applications.

The LM tests we suggest in this paper can be applied whenever the correct likeli-
hood is specified and, in particular, can accommodate nonlinear DSGE models, which
are increasingly popular and cannot be treated by existing weak identification-robust
methods. We compare our LM tests with the existing weak identification-robust meth-
ods from a theoretical perspective, and report an extensive simulation study in a small-
scale DSGE model, demonstrating the advantages and disadvantages of different ro-
bust methods. In simulation, we find that our LM statistics have much higher power
than the limited information tests suggested by DKK. The test statistic proposed by Qu
(forthcoming) is almost indistinguishable from our LMe statistic, but is defined for a
much more limited set of models. The test of GQIK has power comparable to the LM
tests in our simulation example, but is highly computationally intensive and relies on
the questionable assumption of strong identification of the reduced-form parameters.
Furthermore, this test will typically be asymptotically inefficient under strong identifi-
cation of the structural parameters.

Structure of the paper. In Section 2, we discuss how weak identification can arise
in DSGE models. Section 3 introduces our notation as well as some results from martin-
gale theory; it also discusses the difference between two alternative measures of infor-
mation. Section 4 suggests a test for the full parameter vector. Section 5 suggests a test
for a hypothesis about a subset of parameters under the assumption that the nuisance
parameter is strongly identified. Section 6 contains suggestions for applied researchers.
Simulations supporting our theoretical results and comparing our procedures to exist-
ing alternatives are reported in Section 7. Section 8 concludes. Proofs of secondary im-
portance, additional derivations, and further examples can be found in the Supplement.
Replication files are also available on the journal website, http://qeconomics.org/supp/
331/code_and_data.zip.

Throughout the rest of the paper, Idk is the k × k identity matrix, I{·} is the indica-
tor function, [·] stands for the quadratic variation of a martingale, and [·� ·] stands for
the joint quadratic variation of two martingales; ⇒ denotes weak convergence (conver-

gence in distribution), while
p→ stands for convergence in probability.

http://qeconomics.org/supp/331/code_and_data.zip
http://qeconomics.org/supp/331/code_and_data.zip
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2. Weak identification in DSGE models

We begin by considering a highly stylized DSGE model that is much simpler than con-
temporary models designed to fit the data. Unlike most DSGE models used in empirical
practice, this model can be solved analytically and allows us to demonstrate how weak
identification can arise in a DSGE context.

Assume we observe data on inflation πt and a measure of real activity xt for periods
t = 1� � � � �T . Assume that the dynamics of the data are described by the simple DSGE
model

bEtπt+1 + κxt −πt + εt = 0�

−[rt −Etπt+1 − ρ
at] +Etxt+1 − xt = 0� (1)

λrt−1 + (1 − λ)φππt + (1 − λ)φxxt + ut = rt �

The first equation is a Phillips curve, the second is a linearized Euler equation, and the
third is the monetary policy rule. For this section, we assume that the interest rate rt is
not observed. The unobserved exogenous shocks 
at and ut are generated by the law


at = ρ
at−1 + εa�t; ut = δut−1 + εu�t�
(2)

(εt� εa�t� εu�t)
′ ∼ i�i�d� N(0�Σ); Σ= diag

(
σ2�σ2

a�σ
2
u

)
�

To solve the model analytically, in this section we make several simplifying assumptions.
In particular, we assume that λ = 0, φx = 0, φπ = 1

b , and σ2 = 0. The model then has six
unknown scalar parameters: θ = (b�κ�ρ�δ�σ2

u�σ
2
a).

In the Supplement, we solve the model (1) under these restrictions to obtain

(
xt
πt

)
=

⎛
⎜⎝ − b

b+ κ− δb

bρ

b+ κ− ρb

− bκ

(b+ κ− δb)(1 − δb)

bκρ

(b+ κ− ρb)(1 − bρ)

⎞
⎟⎠(

ut

at

)

= C(θ)

(
ut

at

)
�

As we can see, the observed series xt and πt are weighted sums of two unobserved au-
toregressive processes with AR coefficients ρ and δ, where the weights depend on b

and κ. It is relatively easy to see that if 0 < b< 1, κ > 0, σ2
u > 0, σ2

a > 0, and 0 < δ< ρ< 1,
then the six-dimensional parameter θ is point-identified.

Identification of the model fails when ρ = δ. Indeed, there are two peculiarities in
this case: first, if ρ = δ, then ut and 
at share the same autoregressive coefficient, and
the dynamics of the observed series become insufficiently rich to disentangle the weight
functions and separately identify b and κ. Second, the 2×2 matrix C(θ) becomes degen-
erate (of rank 1) at ρ= δ. We show in the Supplement that at ρ= δ, the parameter θ loses
2 degrees of identification. In this case, we can identify only a four-dimensional quan-

tity: the two parameters ρ and δ, and the two functions b
b+κ−ρb

√
ρ2σ2

a + σ2
u and κ

1−ρb , but

not the parameters b, κ, σ2
a , and σ2

u separately.
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If ρ = δ, underidentification precludes us from estimating the parameter θ consis-
tently, and the usual asymptotic theory of maximum likelihood estimation does not ap-
ply. Even if ρ �= δ, when the difference ρ− δ is close to zero, we may have difficulty mak-
ing reliable statistical inferences. In particular, the finite-sample size of many statistical
tests may be quite far from the declared level and many conventional confidence sets
may be misleading. To give a concrete example, consider the Wald statistic W for testing
true hypothesis H0 :θ = θ0. According to the usual asymptotic theory of maximum like-
lihood, if ρ �= δ, then as the sample size T increases to infinity, the statistic W converges
in distribution to a χ2

6 under H0. If, on the other hand, ρ = δ, this convergence breaks
down as the maximum likelihood estimator (MLE) is not consistent. Hence, the limit
distribution of W experiences a discontinuity at ρ = δ. Since the finite-sample distribu-
tion of W is continuous in the true parameter value, this implies that the convergence
of W to a χ2 distribution is not uniform in the parameter ρ − δ in a neighborhood of
zero. Specifically, the closer ρ − δ is to zero, the larger a sample is required to achieve
a given accuracy of approximation of the distribution of W by its asymptotic (χ2

6) limit.
This phenomenon is called weak identification.

To model the problems arising from weak identification, we can use a weak asymp-
totic embedding, considering a sequence of models such that ρ = δ + C√

T
, where C is a

constant and T is the sample size. It is important to emphasize the conceptual essence
of such an embedding: the researcher does not think that the parameters ρ and δ are
changing with the sample size, but rather uses this embedding to obtain asymptotic ap-
proximations that reflect the trade-off between the proximity of the parameters ρ and δ

and the quality of the classical asymptotic approximations. When examining asymptotic
behavior along sequences of models with ρ = δ+ C√

T
as T → ∞, we often find that some

statistics, like W , have limiting distributions that differ from the χ2 limits obtained under
classical asymptotic theory. This reflects the sensitivity of those statistics to finiteness of
information along some dimensions. If, however, we find a statistic that converges to
the same χ2 limit even under weak asymptotics, we call such a statistic robust to weak
identification. Later, we will show that certain score statistics are robust in this sense.

Allowing the true parameter value to drift toward a point of nonidentification as the
sample grows is one common way to model weak identification (see Andrews and Cheng
(2012) on this), but there are other approaches. Under the approach of Stock and Wright
(2000) for weakly identified generalized method of moments (GMM) models, for exam-
ple, the objective function is modeled as indexed by the sample size and is taken to be
asymptotically flat along some directions in the parameter space, thus not providing
identification in the limit. This approach is not explicit about what parameter, if any,
measures the proximity to identification failure; neither need it assume that there is any
point of identification failure in finite samples. To cast the DSGE model discussed above
into this framework, suppose for a moment that we know (or calibrate) the true values
of ρ �= δ so that ρ and δ are excluded from the parameter space. This does not solve the
weak identification problem since the sample still contains limited information about
the two weak directions if the calibrated values of ρ and δ are close. At the same time,
the model is now point-identified over the whole parameter space.
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The Supplement gives several stylized examples illustrating different types of weak
identification that may arise in a DSGE context. In particular, we show how weak identi-
fication can arise from insufficiently rich dynamics of the observed process, for example,
when autoregressive coefficients for several processes are close to each other or when
moving average coefficients nearly cancel with autoregressive roots in an autoregressive
moving average (ARMA) process. We also give a examples of a weakly identified vector
autoregression (VAR) model and a nonlinear model with a weakly identified regime-
switching mechanism.

3. Martingale methods in maximum likelihood

Let XT be the data available at time T . To allow for the possibility of a weak identifi-
cation embedding, we consider a so-called scheme of series. In a scheme of series, we
assume that we have a series of experiments indexed by the sample size: the data XT of
sample size T are generated by distribution fT (XT ;θ0), which may change as T grows.
In general, we assume that XT = (xT�1� � � � � xT�T ). Let FT�t be a sigma algebra generated
by the first t observations XT�t = (xT�1� � � � � xT�t). We assume that the log likelihood of
the model,

�T (XT ;θ)= log fT (XT ;θ) =
T∑
t=1

log fT (xT�t |FT�t−1;θ)�

is known up to the k-dimensional parameter θ, which has true value θ0. We further as-
sume that �T (XT ;θ) is twice continuously differentiable with respect to θ, and that the
class of likelihood gradients { ∂

∂θ′ �T (XT ;θ) :θ ∈ Θ} and the class of second derivatives

{ ∂2

∂θ∂θ′ �T (XT ;θ) :θ ∈Θ} are both locally dominated integrable.
Our main object of study will be the score function

ST (θ) = ST�T (θ)= ∂

∂θ′ �T (XT �θ)=
T∑
t=1

∂

∂θ′ log fT (xT�t |FT�t−1;θ)�

and we take sT�t(θ) = ST�t(θ) − ST�t−1(θ) = ∂
∂θ′ log fT (xT�t |FT�t−1;θ) to denote the incre-

ment of the score. Under the assumption that we have correctly specified the model, we
have that E(sT�t(θ0)|FT�t−1) = 0 almost surely. This in turn implies that for each T , the
score taken at the true parameter value, ST�t(θ0), is a martingale with respect to filtra-
tion FT�t . This is a generalization of the first informational equality due to Silvey (1961).

Similarly, the second informational equality also generalizes to the dependent case.
This equality states that we can calculate the (theoretical) Fisher information, IT (θ0),
either as the expectation of the negative Hessian of the log likelihood or as the expecta-
tion of the outer product of the score. Fisher information plays a key role in the classical
asymptotics for maximum likelihood, as it is directly related to the asymptotic variance
of the MLE, and the second informational equality suggests two different ways of esti-
mating it that are asymptotically equivalent in the classical context. To generalize the
second informational equality to the dynamic context, following Barndorff-Nielsen and
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Sorensen (1991), we introduce two measures of information based on observed quanti-
ties. The first is the observed information and is equal to the negative Hessian of the log
likelihood,

IT (θ) = − ∂2

∂θ∂θ′ �T (XT ;θ) =
T∑
t=1

iT�t(θ)�

where iT�t(θ) = − ∂2

∂θ∂θ′ log fT (xT�t |FT�t−1;θ). The second is the incremental observed in-
formation and is equal to the quadratic variation of the score,

JT (θ)= [
ST (θ)

] =
T∑
t=1

sT�t(θ)s
′
T�t(θ)�

where as before sT�t(θ) is the increment of ST (θ). Both observed measures IT (θ) and
JT (θ) are unbiased estimates of the (theoretical) Fisher information for the whole sam-
ple: IT (θ0) = E(IT (θ0)) = E(JT (θ0)). Using these definitions, let AT(θ) = JT (θ) − IT (θ)

be the difference between the two measures of observed information. The second infor-
mational equality implies that AT�t(θ0) is a martingale with respect to FT�t . Specifically,
the increment of AT�t(θ0) is

aT�t(θ0) =AT�t(θ0)−AT�t−1(θ0) = sT�t(θ0)s
′
T�t(θ0)− iT�t(θ0)�

and a simple argument gives us that E(aT�t |FT�t−1) = 0 almost surely (a.s.).
In the classical context, IT (θ0) and JT (θ0) are asymptotically equivalent, which plays

a key role in the asymptotics of maximum likelihood. In the independent and identically

distributed (i.i.d.) case, for example, the law of large lumbers implies that 1
T IT (θ0)

p→
−E( ∂2

∂θ∂θ′ log f (xt� θ0)) = I1(θ0) and 1
T JT (θ0)

p→ E( ∂
∂θ′ log f (xt� θ0)

∂
∂θ log f (xt� θ0)) =

I1(θ0). As a result of this asymptotic equivalence, the classical literature in the i.i.d. con-
text uses these two measures of information more or less interchangeably.

The classical literature in the dependent context makes use of a similar set of con-
ditions to derive the asymptotic properties of the MLE, focusing in particular on the
asymptotic negligibility of AT(θ0) relative to JT (θ0). For example, Hall and Heyde (1980)
show that for θ scalar, if the higher order derivatives of the log likelihood are asymptot-
ically unimportant, JT (θ0) → ∞ a.s. and lim supT→∞ JT (θ0)

−1|AT(θ0)| < 1 a.s., then the
MLE for θ is strongly consistent. If, moreover, JT (θ0)

−1IT (θ0) → 1 a.s., then the MLE is
asymptotically normal and JT (θ0)

1/2(θ̂− θ0) ⇒N(0�1).
We depart from this classical approach in that we consider weak identification. We

find that in weakly identified models, the difference between our two measures of in-
formation is important and AT(θ0) is no longer negligible asymptotically compared to
observed incremental information JT (θ0).

Example 1. To illustrate this nonequivalence in a simple example, suppose we observe
data Yt for t ∈ {1� � � � �T }, generated by the model

Yt = (π +β)Yt−1 + et −πet−1� et ∼ i�i�d� N(0�1)� (3)
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The true value of the parameter θ0 = (β0�π0)
′ satisfies the restrictions |π0| < 1,

β0 �= 0, and |π0 + β0| < 1, which guarantee that the process is stationary and invert-
ible. For simplicity we assume that Y0 = 0 and e0 = 0, though the initial condition will
not matter asymptotically. One can rewrite the model as (1 − (π +β)L)Yt = (1 −πL)et .
It is easy to see that if β0 = 0, then the parameter π is not identified. Andrews and Cheng
(2012) modeled weak identification using the drifting parameter value β0 = C√

T
, leading

to the parameter π being weakly identified.
Consider the normalization matrix KT = diag(1/

√
T�1). Then

KTJT (θ0)K
′
T

p→ Σ and KTIT (θ0)K
′
T ⇒ Σ+

(
0 ξ

ξ Cη

)
�

where Σ is a positive-definite matrix, while ξ and η are two Gaussian random variables.2

As we can see, the difference between the two information matrices is asymptotically
nonnegligible compared with the information measure JT (θ0).

The Supplement contains several examples of weakly identified models. For all of
them, we observe the same phenomenon: the appropriately normalized quadratic vari-
ation of the score JT converges in probability to a positive-definite matrix, while the
Hessian normalized in the same way converges weakly to a random matrix. White (1982)
shows that the two measures of information may differ if the likelihood is misspecified.
As our examples show, even if the model is correctly specified these two measures may
differ substantially if identification is weak. This result is quite different from that of
White (1982). In particular, correct specification implies that EAT(θ0) = 0, and it is this
restriction that is tested by White’s information matrix test. In contrast, weak identifica-
tion in correctly specified models is related to AT(θ0) being substantially volatile relative
to JT (θ0) while maintaining the assumption that EAT(θ0) = 0. Correct specification can
still be tested by comparing the realized value of AT(θ0) to the metric implied by a con-
sistent estimator of its variance. One may potentially create a test for weak identification
based on a comparison of AT with JT , though this is beyond the scope of the present pa-
per. We will, however, treat nonpositive-definiteness of the Hessian as an informal sign
of weak identification.

4. Test for full parameter vector

In this section, we suggest tests for a simple hypothesis on the full parameter vector,
H0 : θ = θ0, which are robust to weak identification. We introduce our first assumption.

Assumption 1. Assume that there exists a sequence of constant matrices KT such that

(a) for all δ > 0,
∑T

t=1 E(‖KTsT�t(θ0)‖I{‖KT sT�t(θ0)‖ > δ}|FT�t−1) → 0,

(b)
∑T

t=1 KT sT�t(θ0)sT�t(θ0)
′K′

T = KTJT (θ0)K
′
T

p→ Σ, where Σ is a constant positive-
definite matrix.

2Details can be found in the Supplement.
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Discussion of Assumption 1. Assumption 1(a) is a classical infinitesimality (or limit
negligibility) condition. It requires that no single observation matter too much asymp-
totically, and holds quite generally in stationary models. Assumption 1(b) imposes the
ergodicity of the quadratic variation JT (θ0) of martingale ST (θ0) = ST�T (θ0), which rules
out some potentially interesting models including persistent (unit root) processes and
nonergodic models. A key aspect of Assumption 1 is that we impose no restriction on
the form of the sequence of normalizing matrices KT . In particular, while in strongly
identified models we can generally take KT = 1√

T
Idk, in weakly identified models we

will typically need to take some directions of KT to be constant, or even growing with T ,
to obtain an appropriate normalization.

Assumption 1 holds for the analytically solved DSGE model discussed in Section 2
and for Example 1 above. It also holds in all the weakly identified models we examine
in the Supplement. Under this assumption, we obtain the following theorem as a direct
corollary of the multivariate martingale central limit theorem (see Theorem 8, Chapter 5
in Liptser and Shiryayev (1989)).

Theorem 1. If Assumption 1 holds, then KTST (θ0) ⇒N(0�Σ) and

LMo(θ0) = ST (θ0)JT (θ0)
−1ST (θ0) ⇒ χ2

k� (4)

LMe(θ0)= ST (θ0)IT (θ0)
−1ST (θ0) ⇒ χ2

k� (5)

where k= dim(θ0).

We consider two formulations of the well known LM statistic in equations (4) and (5),
one using observed incremental information JT (θ0) and the other using the (expected)
Fisher information IT (θ0). Theorem 1 shows that pairing either of these statistics with
χ2
k critical values results in a weak identification-robust test. The two statistics are

asymptotically equivalent under the null provided Assumption 1 holds, but may have
different finite-sample performance, and we find in simulations (see Section 7) that
LMe(θ0) controls size somewhat better. On the other hand, the statistic LMo(θ0) has
two advantages. First, in many cases, calculating JT (θ0) is much more straightforward
than calculating IT (θ0), particularly when we do not have an analytic expression for the
likelihood. Second, if we weaken Assumption 1(b) to require only that Σ be an almost
surely positive-definite random matrix, then (4) still holds while (5) does not. Hence (4),
unlike (5), has the additional advantage of being robust to nonergodicity. Statistical ex-
amples of nonergodic models can be found in Basawa and Koul (1979).

Unlike the classical maximum likelihood (ML) Wald and likelihood ratio (LR) tests,
the derivation of the asymptotic distribution of the LM statistics (4) and (5) uses no as-
sumptions about the strength of identification. It is important to note, however, that
the LM statistic calculated with other estimators of the Fisher information (for example,
IT (θ0)) is not necessarily robust to weak identification. It is also unwise to estimate the
information matrix using an estimator of θ, that is, to use JT (θ̂). All of these alternative
formulations deliver asymptotically equivalent tests in strongly identified models, but
this equivalence fails under weak identification.
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A remark on point versus weak identification. Assumption 1(b) rules out locally
nonidentified models by assuming that Σ is positive definite. In ML models, it is usu-
ally possible to check local point identification by checking the nondegeneracy of the
Fisher information. The corresponding literature for DSGE models includes Komunjer
and Ng (2011) and Iskrev (2010). If one wants to test the full parameter vector at a point
of nonidentification, under the null there exists a nondegenerate linear transformation
of the score such that a subvector of the transformed score is identically zero while the
rest has nondegenerate quadratic variation. If Assumption 1 holds for the nonzero part
of the transformed score, our LM tests (replacing the inverse with the Moore–Penrose
pseudo-inverse) are asymptotically χ2-distributed with reduced degrees of freedom.3

See Andrews (1987) for a discussion of related issues.

5. Test for a subset of parameters

In applied economics, it is very common to report separate confidence intervals for
each one-dimensional subparameter in the multidimensional parameter vector θ. Cur-
rent standards require that each such confidence interval be valid, that is, it should
have at least 95% coverage asymptotically (assuming the typical 95% confidence level).
These one-dimensional confidence sets need not be valid jointly: if dim(θ) = k, the k-
dimensional rectangle formed by the Cartesian product of the one-dimensional confi-
dence intervals need not have 95% asymptotic coverage. Going the other direction, if
one has a 95% confidence set for θ and projects it on the one-dimensional subspaces
corresponding to the individual subparameters, the resulting confidence sets for the
one-dimensional parameters will of course be valid. However, confidence sets obtained
in such a manner, usually called the projection method, tend to be conservative.

Using the proposed weak identification-robust LM tests of the full parameter vector,
we have the option to produce robust confidence sets for subparameters via the projec-
tion method. This approach has been used many times in the literature, for example, by
Dufour and Taamouti (2005) for weak instrumental variables (IV) and by DKK for DSGE.
The typical DSGE model has a large number of parameters to estimate (often between
20 and 60), however, which makes the projection method less attractive as the degree of
conservativeness may be very high, rendering the resulting confidence sets less infor-
mative. Below, we introduce an alternative procedure that has better power properties
than the projection method but can only be applied under additional assumptions.

5.1 LM statistic for composite hypotheses

Assume that θ = (α′�β′)′ and we are interested in constructing a robust test of the hy-
pothesis H0 :β = β0, while treating α as a nuisance parameter. We consider the same
LM statistics as defined in (4) and (5) and evaluated at θ = (α̂�β0), where α̂ is the re-
stricted MLE, that is, α̂ = arg maxα �(α�β0). Denoting our subset tests by L̃Mo(β0) and
L̃Me(β0), we have that

L̃Mo(β0) = LMo(α̂�β0)= S′
β

(
Jββ − JβαJ

−1
αα J

′
βα

)−1
Sβ

∣∣
θ=(α̂�β0)

� (6)

3We are grateful to an anonymous referee for pointing this out.
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where ST (θ) = (Sα(θ)
′� Sβ(θ)′)′ and J(θ) = ( Jαα Jαβ

J′
αβ Jββ

)
are the natural partitions of the

score and observed information. Statistic L̃Me(β0) can be defined analogously using
statistic LMe(θ0).

The classical theory of maximum likelihood considers two LM tests for such a set-
ting: Rao’s score test and Neyman’s C(α) test. Rao’s score test is based on the statistic
Rao = 1

T ST (θ̂0)
′I(θ̂0)

−1ST (θ̂0), where θ̂0 is the restricted ML estimator, while Neyman’s
C(α) test was developed as a locally asymptotically most powerful (LAMP) test for com-
posite hypotheses in the classical ML framework. If the classical ML assumptions are sat-
isfied, both statistics have an asymptotic χ2

kβ
distribution, and, in fact, Kocherlakota and

Kocherlakota (1991) show that the two statistics are asymptotically equivalent. One can
also see that our proposed statistics are asymptotically equivalent to both Rao’s score
and Neyman’s C(α) if the classical ML assumptions are satisfied, and hence that our test
does not lose power compared to the classical tests if the model is strongly identified.

The approach we take in this paper differs from that of Stock and Wright (2000). In
particular, rather than minimizing the LM statistic over the nuisance parameter α as in
Stock and Wright (2000) and the projection method, we instead plug in the restricted ML
estimate. One may show in a linear weak IV model that plugging in the restricted MLE for
strongly identified nuisance parameters leads to a χ2 limiting distribution, while mini-
mizing the LM statistic does not.

5.2 Robust tests with strong nuisance parameters

The critical issue in the literature on robust testing is whether α is weakly or strongly
identified. In this section, we provide conditions that guarantee that the subset LM tests
will be asymptotically valid in models with strongly identified nuisance parameters. We
begin by adapting Bhat’s (1974) result to establish the consistency and asymptotic nor-
mality of the MLE. Let Aαα�T = Jαα�T − Iαα�T , where the last two quantities are the sub-
matrices of JT (θ0) and IT (θ0) corresponding to α.

Assumption 2. Assume that matrix KT from Assumption 1 is diagonal4 with Kα�T and
Kβ�T the submatrices of KT corresponding to α and β, respectively. Furthermore,

(a) Kα�TAαα�TKα�T
p→ 0,

(b) for any δ > 0, we have

sup
‖K−1

α�T (α1−α0)‖<δ

∥∥Kα�T

(
Iαα(α1�β0)− Iαα(α0�β0)

)
Kα�T

∥∥ p→ 0�

(c) α̂(β0) is such that K−1
α�T (α̂− α0) =Op(1).

Lemma 1. If Assumptions 1 and 2 are satisfied, then

K−1
α�T (α̂− α0) =K−1

α�T J
−1
αα�T Sα�T + op(1) ⇒ N

(
0�Σ−1

αα

)
� (7)

4Lemma 1 continues to hold if we replace the diagonality assumption on KT by the requirement that KT

be block-diagonal with blocks Kα�T and Kβ�T .
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Discussion of Assumption 2. Assumption 2(a) implies that Kα�T Iαα�TKα�T
p→ Σαα

and, hence, that the two observed information matrices for α are the same asymptot-
ically. We mentioned a condition of this nature in our discussion of weak identification
in Section 3. One approach to checking Assumption 2(a) in many contexts is to establish
a law of large numbers for Aαα�T . Indeed, Aαα�T is a martingale of the form

Aαα�T =
T∑
t=1

1
fT (xT�t |FT�t−1� θ0)

∂2

∂α∂α′ fT (xT�t |FT�t−1� θ0)�

If the terms 1
fT (xT�t |FT�t−1�θ0)

∂2

∂α∂α′ fT (xT�t |FT�t−1� θ0) are uniformly integrable and Kα�T

converges to zero no slower than 1√
T

, then the martingale law of large numbers gives
us Assumption 2(a).

Assumption 2(c) is a high-level assumption on the behavior of the restricted MLE.
If KT�α is decreasing to zero, then this assumption requires that the restricted MLE for
the nuisance parameter α be consistent at a particular rate under the null. Such con-
sistency can be obtained using standard arguments for strongly identified models, for
example, by appealing to uniform convergence of the objective function together with
identification of α. Assumption 2(b) is an assumption on the smoothness of the log like-
lihood.

Assumption 3. Consider the sequence of martingales

MT = (
ST (θ0)

′�vec
(
Aαβ�T (θ0)

)′)′ =
T∑
t=1

mt�T �

Assume that there exists a sequence of nonstochastic diagonal matrices KM�T such that

(a) for all δ > 0,
∑T

t=1 E(‖KM�Tmt�T ‖I{‖KM�Tmt�T ‖> δ}|FT�t−1) → 0,

(b)
∑T

t=1 KM�Tmt�Tm
′
t�TKM�T

p→ ΣM , where ΣM is a constant matrix whose submatrix
Σ corresponding to the martingale ST is positive-definite.

Let us define the martingales associated with the third derivative of the likelihood
function:

Λαiαjβn =
T∑
t=1

1
fT (xT�t |FT�t−1� θ0)

· ∂
3fT (xT�t |FT�t−1� θ0)

∂αi ∂αj ∂βn
�

If we can interchange integration and differentiation three times, then each entry of
Λααβ�T is a martingale. For the proof of the theorem below, we will also need the fol-
lowing assumption.

Assumption 4. (a) limT→∞Kαi�TK
−1
αiβj�T

Kβj�T = Cij , where C is some finite matrix

(which may be zero).

(b) Kαi�TKαj�TKβn�T

√
[Λαiαjβn ]

p→ 0 for any i, j, n.

(c) sup‖K−1
α�T (α−α0)‖<δ

‖Kβj�TKα�T (
∂

∂βj
Iαα(α�β0)− ∂

∂βj
Iαα(α0�β0))Kα�T ‖ p→ 0.
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Discussion of Assumption 4. Assumption 4(b) and (c) state that higher order like-
lihood derivatives with respect to α are not important for the analysis. If α is strongly
identified, then Assumptions 4(b) and (c) generally hold and can be checked using a law
of large numbers.

Theorem 2. If Assumptions 2, 3, and 4 are satisfied, then under the null H0 :β = β0, we
have L̃Me(β0) ⇒ χ2

kβ
and L̃Mo(β0)⇒ χ2

kβ
.

Example 1 (Continued). In the Supplement, we show that Assumptions 2, 3, and 4 hold
in the ARMA(1�1) model with nearly canceling roots when testing a hypothesis H0 : π =
π0 about the weakly identified parameter π. Thus, our subset test for this parameter is
robust to weak identification.

6. Suggestions for applied researchers

Below we highlight some practical details concerning testing and confidence set con-
struction that are particularly relevant for applied researchers interested in using the
tests discussed in this paper. First, one tractable approach to calculating the score in
models where the likelihood is not available analytically is to approximate derivatives
by considering appropriately scaled small differences (i.e., numerical derivatives). While
the correct step size for such differences is typically not obvious, in the DSGE applica-
tion studied in this paper, we have found that our results are generally insensitive to
the choice of step size (though this will, of course, not be the case universally). The re-
sults discussed in the simulation section below, for example, were generated using finite
differences with steps of size 10−6, but considering steps of size 10−5 instead yields the
same results.

Second, calculating the observed incremental information JT (θ0) is typically quite
straightforward in linear, Gaussian models. Unfortunately, calculating the theoretical
Fisher information IT (θ0) can be considerably more involved, especially in models
where the likelihood is not available analytically. One way to approximate the theo-
retical Fisher information is by averaging draws of the observed information IT or ob-
served incremental information JT over a large number of simulations, but calculating
the Fisher information in this way can be slow. In our simulations, we instead use an
approach suggested by Iskrev (2008). Specifically, we first calculate the information ma-
trix with respect to the parameters of the DSGE model’s state-space representation and
then use this information matrix, together with the derivatives of the state-space param-
eters with respect to the structural parameters (which we evaluate analytically, though
approximating them numerically gives the same results), to obtain the information ma-
trix for the nine model parameters. For further details and additional references, see
Iskrev (2008) and Iskrev (2010). There are packages available for Matlab that can be used
to evaluate the theoretical information matrix for the state-space parameters in linear
models with Gaussian shocks. In particular, we use the e4 time-series toolbox for Mat-
lab (see Jerez, Casals, and Sotoca (2011)).
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The third suggestion is related to construction of confidence sets by inverting the
tests proposed in this paper. So as to calculate a 95% LMo confidence set for the param-
eter β, for example, we need to collect all values β0 such that H0 :β = β0 is not rejected
by an LMo test with size 5%. How best to do this in practice depends on the context. For
cases—like many DSGE applications—where the researcher specifies a bounded param-
eter space, the simplest approach may be to take draws at random from the parameter
space for β, storing those values that are not rejected. We implement this approach to
calculate LMo-based confidence sets in the simulation section below. One may alterna-
tively evaluate the test on a grid of points and record those values that are not rejected,
though this may be very computationally costly when β is high dimensional. To create a
projection-method confidence interval for a component βi of β, we can take the upper
and lower bounds to be the largest and smallest values βi consistent with nonrejected
values of β, which corresponds to projecting the convex hull of the nonrejected values
of β on subspace corresponding to βi.

Finally, our results allow a researcher to plug in the restricted MLE for well identi-
fied nuisance parameters, but to apply this approach one needs to know that partic-
ular parameters are strongly identified. This is a considerable problem in many DSGE
models, and we are unaware of any test applicable to DSGE models that can discrimi-
nate between strongly and weakly identified parameters. In particular we are unaware
of a pretest that, if we plug in the restricted MLE for those nuisance parameters that the
pretest indicates are strongly identified, ensures that the resulting test controls the size
of the two-step procedure. Absent formal results, we are left to rely on more indirect evi-
dence on which parameters may be well identified. One indirect approach based on our
results is to check whether a submatrix of the Hessian IT (θ0) corresponding to poten-
tially strongly identified nuisance parameters is positive-definite with high probability.
There is a common perception that in many models, parameters related to the variance
and persistence of exogenous shocks, as well as steady-state parameters, may be rela-
tively well identified provided the other model parameters are known.5 Simulation re-
sults in the next section seem to bear this out in a small-scale DSGE model. When one is
uncertain about the strength of identification for a given parameter, one can always err
on the side of caution and project over that parameter, but minimizing the number of
nuisance parameters to be projected over yields more powerful tests.

7. A small-scale DSGE model: Simulation results

We have a number of simulation results that both support our theoretical results
and suggest directions for further research. We consider a simple DSGE model based
on Clarida, Gali, and Gertler (1999). We assume that the econometrician observes a
sample {(πt�xt� rt)� t = 1� � � � �T } from a data-generating process satisfying the (log-
linearized) equilibrium conditions (1) and (2). The model has 10 parameters: the dis-
count rate b, Calvo parameter κ, the Taylor rule parameters φx, φπ , and λ, and the
parameters describing the evolution of the exogenous variables. We will treat pa-
rameter b = 0�99 as known (and calibrated to its true value). We assume that the

5We thank Frank Schorfheide for bringing this to our attention.
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Table 1. True parameter values for simulations.

φx φπ λ ρ δ κ σa σu σ

Calibrated value 2�28 2�02 0�898 0�85 0�103 0�1 0�325 0�265 0�556
Parameter space lower bound 0 0 0 −0�99 −0�99 0 0 0 0
Parameter space upper bound 10 10 0�99 0�99 0�99 1 1 1 1

econometrician is concerned with inference on the remaining nine parameters θ =
(φx�φπ�λ�ρ�δ�κ�σa�σu�σ)

′. Note that unlike in Section 2, here we take the interest
rate rt to be observable and do not restrict the parameters other than b.

For our simulation exercise, we draw samples from the model with parameters cal-
ibrated to ML estimates obtained using demeaned U.S. macro data from Smets and
Wouters (2007). The ML estimate of the parameter ρ is very close to 1, so since robust-
ness to unit roots lies beyond the scope of the present paper, for our simulations we will
instead use the smaller value ρ = 0�85. Likewise, the ML estimate for κ lies quite close
to 0, which is the boundary of the parameter space for this parameter. To ensure that
parameter-on-the-boundary issues do not greatly affect the distribution of classical test
statistics, we increase the value of this parameter, taking κ = 0�1. The baseline values of
parameters used in the simulations are reported in Table 1. The structural parameters
are point-identified at this parameter value. We generate samples of size 300 from this
model and then discard the first 100 observations, using only the last 200 for the remain-
der of the analysis.

7.1 Properties of classical ML testing

We begin by examining the behavior of the classical maximum-likelihood-based statis-
tics. Histograms for the ML estimator6 show that the marginal distributions of the esti-
mates for several parameters depart substantially from a normal distribution. We con-
sider four variations on the Wald statistic for testing the simple hypothesis H0 :θ = θ0,
where θ0 is the true value, corresponding to different estimators of the asymptotic vari-
ance, V̂ , used in the quadratic form (θ̂ − θ0)

′V̂ −1(θ̂ − θ0). In particular, Wald (IT (θ̂))
uses the inverse of the observed information, evaluated at θ̂, to estimate the asymptotic
variance. Wald (IT (θ0)), on the other hand, evaluates the observed information at the
true parameter value. Likewise, Wald (JT (θ̂)) and Wald (JT (θ0)) use J−1

T as the estimator
of the asymptotic variance, calculated at θ̂ and θ0, respectively. Under the usual strong
identification assumptions for ML, all of these statistics should have a χ2

9 distribution
asymptotically. In simulation, however, the distribution of these statistics appears quite
far from a χ2

9. Table 2 lists sizes for nominal 5% and 10% tests (based on 2500 simula-
tions), and shows that all versions of the Wald test we consider severely overreject. Taken
together, these results strongly suggest that the usual approaches to ML estimation and
inference are poorly behaved when applied to this DSGE model.

6Available from the authors by request.
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Table 2. Simulated size of Wald tests for the nine-dimensional hypothesis H0 :θ = θ0; based on
2500 simulations.

Wald (IT (θ0)) Wald (IT (θ̂)) Wald (JT (θ0)) Wald (JT (θ̂))

Size of 5% test 39�16% 42�36% 40�24% 40�44%
Size of 10% test 43�2% 47�44% 45�72% 45�88%

7.2 Behavior of the information matrix

In Section 3, we associated weak identification with the difference between two infor-
mation measures AT(θ0) being large compared to JT (θ0). Note that observed incre-
mental information JT (θ0) is an almost surely positive-definite matrix by construction,
while AT(θ0) is a mean-zero random matrix. If AT(θ0) is negligible compared to JT (θ0),
then the observed information IT (θ0) = JT (θ0)−AT(θ0) will be positive-definite for al-
most all realizations of the data. We can check positive-definiteness of IT (θ0) directly in
simulations. Considering the observed information evaluated at the true value, we find
that it has at least one negative eigenvalue in over 47% of simulation draws (based on
2500 simulations). While this falls far short of a formal test for weak identification, it is
consistent with the idea that weak identification is the source of the poor behavior of
ML estimation in this model. In line with the conjecture discussed above that the per-
sistence and variance parameters may be well identified if we know the structural pa-
rameters (φx�φπ�λ�κ), we find that the observed information for the five parameters
(ρ�δ�σa�σu�σ) alone is positive-definite in all simulation draws.

7.3 Size of the LM tests

We now turn to the weak identification-robust statistics discussed earlier in this pa-
per. Under appropriate assumptions, we have that LMo(θ0) ⇒ χ2

9 and LMe(θ0) ⇒ χ2
9,

where LMo(θ0) is the LM statistic using the observed incremental information JT (θ0)

and LMe(θ0) is calculated with the theoretical Fisher information IT (θ0). In Figure 1,
we plot the cumulative distribution functions (CDFs) of the simulated distributions of
LMo(θ0) and LMe(θ0) together with a χ2

9. Table 3 reports the size of the LM tests. Two
points are clear from these results: first, though our tests based on the LM statistics are
not exact, the χ2 approximation is very good for LMe and reasonable for LMo. Second,
the LMe statistic has somewhat better finite-sample properties.

We next consider the size of the two LM statistics for testing subsets of parameters.
Specifically, as before, we consider a partition of the parameter vector, θ = (α′�β′)′, and
consider the problem of testing H0 :β = β0, treating α as a nuisance parameter.

As discussed in Section 5, an important issue is whether the nuisance parameter α is
weakly or strongly identified. While we are unaware of any formal tests for identification
strength in DSGE models that ensure size control when used as pretests, there is a com-
mon perception that, fixing structural parameters like φx, φπ , λ, and κ, the parameters
controlling the persistence and the variance of shocks will be well identified. Since this
is consistent with our results from comparing different information measures, we treat
these parameters as strongly identified.
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Figure 1. CDF of simulated LM statistics introduced in Theorem 1 compared to χ2
9.

Table 3. Simulated size (based on 1000 simulations) of a test for the full parameter vector and
for five tests of composite hypotheses H0 :β = β0, treating all other parameters as nuisance pa-
rameters.

LMo LMe

Tested Parameters 5% 10% 5% 10%

All parameters 9% 15�3% 4�5% 9�1%
(∗1) β= (φx�φπ�λ�κ) 5�9% 11�1% 4�4% 8�1%
(∗2) β= (φx�φπ�λ�κ�ρ) 6�3% 11�5% 5�1% 9�1%
(∗3) β= (φx�φπ�λ�κ�δ) 5�9% 11�6% 4�1% 8�6%
(∗4) β= (φx�φπ�λ�κ�σa) 5�9% 10�8% 4�4% 8�2%
(∗5) β= (φx�φπ�λ�κ�σu) 5�9% 11�2% 4�0% 8�1%
(∗6) β= (φx�φπ�λ�κ�σ) 7�2% 13% 4�9% 9�6%

Note: Statistic LMo refers to the LM test using observed incremental information and statistic LMe uses theoretical Fisher
information, and in both cases we plug in the restricted MLE for nuisance parameters.

We consider testing six different composite hypotheses (corresponding to cases
(∗1)–(∗6) in Table 3): a hypothesis on the four structural parameters (φx�φπ�λ�κ) and
five hypotheses on these four parameters plus each of the other five parameters taken
one at a time, (φx�φπ�λ�κ�ρ), (φx�φπ�λ�κ�δ), and so forth. In each case we follow the
approach discussed in Section 5 and plug in the restricted MLE for the parameters not
under test, reducing the critical value appropriately. Our simulation results, reported
in Table 3, are consistent with the assumption that the parameters (ρ�δ�σa�σu�σ) are
strongly identified. In particular, we see that all the tests we consider for composite hy-
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Table 4. 95% LMo confidence intervals for parameters based on single draw of simulated data,
where we treat the parameters (ρ�δ�σa�σu�σ) as well identified and project over the other pa-
rameters.

Level φx φπ λ ρ δ κ σa σu σ

Lower 1�04 0�58 0�76 0�74 0�04 0 0�28 0�24 0�46
Upper 9�97 8�88 0�97 0�91 0�46 0�18 0�50 0�34 0�56

potheses control size fairly well, though the size control of the LMe tests is again some-
what better.

7.4 Calculation of confidence sets

Despite weak identification, we can produce informative confidence sets. To illustrate
this point, we take one random draw from the model, treat it as a sample, and report
LMo confidence intervals for each of our nine parameters separately in Table 4.

To calculate these one-dimensional confidence intervals, we follow the approach
discussed in Section 6, and first form four- and five-dimensional confidence sets by in-
verting the LMo tests for the six composite hypotheses corresponding to (∗1)–(∗6) in Ta-
ble 3, that is, for each group of parameters, we collect all values of β0 such that the corre-
sponding hypothesesH0 :β = β0 are not rejected. For example, in case (∗1), we construct
a joint four-dimensional confidence set for parameters (φx�φπ�λ�κ). For each group of
tested parameters, we take 5 · 104 draws uniformly at random over the parameter space
for β formed by the Cartesian product of the one-dimensional parameter spaces given
in Table 1, and keep those draws that are not rejected by the LMo test that plugs in the
restricted MLE for the nuisance parameters (all parameters other than β). By project-
ing the (four-dimensional) convex set obtained for the case (∗1) on the subspace cor-
responding to each parameter separately, we obtain one-dimensional confidence sets
for each of the parameters φx, φπ , λ, and κ. To obtain one-dimensional confidence sets
for the remaining five parameters ρ, δ, σa, σu, and σ , we project the corresponding five-
dimensional confidence sets obtained for cases (∗2)–(∗6) on the subspace correspond-
ing to the parameter of interest. We can see that while the confidence intervals for many
parameters are wide, in all instances they exclude some values and in most cases they
cover only a small portion of the parameter space.

7.5 Alternative weak identification-robust methods

Issues of weak identification in DSGE models have recently attracted the attention
of econometricians, and several weak identification-robust methods for DSGE mod-
els have been suggested independently by Dufour, Khalaf, and Kichian (2013) (DKK),
Guerron-Quintana, Inoue, and Kilian (2013) (GQIK), and Qu (forthcoming). It is im-
portant to note that DKK and Qu focus primarily on testing the full parameter vector,
while GQIK allow one to concentrate out strongly identified nuisance parameters. None
of the competing papers offers procedures to determine which specific parameters are



Quantitative Economics 6 (2015) Maximum likelihood inference 141

strongly identified. They all use projection for testing with weak nuisance parameters or
parameters whose identification strength is unknown.

Our method differs from the three approaches mentioned above in that it is valid
in a general ML framework with potentially weak identification and is not restricted to
log-linearized DSGE models. The LM statistics we propose can be used whenever we
can evaluate the likelihood function. In contrast, the three approaches above are spe-
cially designed for log-linearized DSGE models that can be written as linear expecta-
tion equations. In general, these methods cannot be applied to the nonlinear DSGE
models that are increasingly popular; see, for example, Fernández-Villaverde and Rubio-
Ramírez (2011). Though the range of nonlinear DSGE models for which one can differ-
entiate the likelihood function is quite limited at present, the number of such models is
growing; see, for example, Amisano and Tristani (2011).

The method closest to ours is the LM test suggested by Qu (forthcoming) for log-
linearized DSGE models with normal errors. Qu (forthcoming) notices that in large sam-
ples, the Fourier transforms of the observed data at different frequencies are approxi-
mately independent Gaussian random variables with variance equal to the spectrum of
the observed series; this allows him to write an approximate likelihood for the data in a
very elegant way and to discuss the properties of the likelihood analytically. His statistic
is almost the same as our statistic LMe(θ0) for testing the full parameter vector, the main
difference being that Qu (forthcoming) uses an approximate likelihood, while we use
the exact likelihood. Hence, we expect that the two statistics applied to a log-linearized
DSGE model with normal errors should be very close provided Qu’s approximate likeli-
hood is well behaved.

GQIK consider models with a linear state-space representation and assume that the
coefficients of the state-space representation, Υ = Υ(θ), are either strongly identified or
not identified at all, while no assumption is made on the identification of the structural
parameters θ. For testing a hypothesis H0 :θ = θ0 about the structural parameter vector,
GQIK suggest testing the hypothesis H̃0 :Υ = Υ(θ0) about the reduced-form parameter,
using the classical LR statistic and the usual χ2 critical values with degrees of freedom
equal to the dimensionality of the identified reduced-form parameter. The assumption
of GQIK that the reduced-form parameters are strongly identified seems quite problem-
atic in some DSGE applications and no test is available to check it. Schorfheide (2010)
provides an example in which weak identification of the structural parameters leads to
weakly identified reduced-form parameters. Unlike the tests suggested in this paper, the
LR test proposed by GQIK is typically asymptotically inefficient under strong identifica-
tion, since the dimension of the reduced-form parameter is usually higher than that of
the structural parameter. GQIK also suggest a test based on Bayes factors, which we do
not discuss here as it is less directly comparable to our approach.

DKK propose a limited information approach based on a set of exclusion restric-
tions implied by a system of linear expectation equations, which they then test using
a seemingly unrelated regression-based (SUR-based) F-statistic in the spirit of Stock
and Wright (2000). Advantages of this approach are that a researcher has the freedom to
choose which restrictions he or she wishes to use for inference, and that it does not re-
quire distributional assumptions on the error term and hence is robust to misspecifica-
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tion. A disadvantage of the method is its limited ability to accommodate latent state vari-
ables. Furthermore, this limited information test may be expected to have lower power
than full-information methods if the model is correctly specified. DKK also suggested a
full-information ML method based on a VAR approximation to the DSGE solution, but
the authors seem to prefer and advocate their limited information approach, so we focus
on this method.

7.6 Power comparisons with alternative methods

Here we compare the power of the alternative approaches to that of the proposed LM
tests. As the alternative approaches deal primarily with testing the full parameter vector,
we will focus on this case.

Table 5 reports actual size, while Figure 2 shows (non-size-corrected) power curves
for 5% tests based on the statistics LMo(θ0) and LMe(θ0), a version of Qu’s (forthcoming)
LM test, the LR test introduced in GQIK, and the limited information (LI) test of DKK. Im-
plementation details are discussed below. Power is calculated for alternatives that entail
a change in one element of the parameter vector while the other elements remain at
their null values. The label on each subplot denotes the parameter whose value changes
under the alternative.

First, we consider Qu’s (forthcoming) frequency-domain LM test.7 Initial simula-
tions showed that this test tended to overreject at some parameter values and that the
degree of overrejection seemed to be related to how close ρ was to 1. At our baseline
parameter value, a nominal 5% test based on Qu’s approach had size of approximately
8%, but if we increased ρ to 0�9 or 0�95, we obtained size of approximately 15% and 33%,
respectively. While the tests proposed in this paper are not robust to unit roots, they did
not show similar sensitivity to the choice of ρ and had roughly the same size for a wide
range of values for ρ. Qu suggested that the size distortions of the frequency-domain
LM test were due to bias in the periodogram, and proposed a prewhitened version of his
test that resolves these size issues in our context.8 Our power simulations focus on this
prewhitened (PW) test, which we call Qu’s PW LM test.

Table 5. Simulated test size for the full parameter vector (number of simulations is 1000).

Level LMo(θ0) LMe(θ0) Qu LM Qu PW LM GQIK DKK

5% 9% 4�5% 8�4% 4�8% 6�7% 6�4%
10% 15�3% 9�1% 13�6% 8�6% 11�8% 11�5%

7Qu’s test allows one to test hypotheses using only a subset of frequencies, if desired. For comparability
with the other tests studied, we focus on results obtained using the whole spectrum.

8In private correspondence with the authors. The prewhitening procedure consists of simulating a long
sample under the null and fitting a VAR(1) model to this simulated data. Letting A be the matrix of VAR
coefficients and XT be the T × 3 matrix of data, one then applies Qu’s approach using the transformed
data YT = XT (Id3 −A ·L), where L denotes the lag operator. Correspondingly, in all later expressions, the
spectral density fθ(ω) is replaced by gθ(ω) = (Id3 − A′ · exp(−iω))fθ(ω)(Id3 − A′ · exp(−iω))∗, where M∗
denotes the conjugate transpose of M .
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Figure 2. Power functions for 5% tests of the null hypothesis H0 :θ = θ0 for the following
statistics: LMe(θ0), LMo(θ0), prewhitened version of Qu’s test, GQIK LR, and DKK test with
Newey–West covariance matrix. Power is calculated based on 500 simulations.

We find that the power function for Qu’s PW LM test is nearly indistinguishable from
the power function for the LM statistic LMe(θ0) based on theoretical Fisher information.
On the one hand, this may seem surprising, since the non-prewhitened version of Qu’s
test had behavior (in particular, size) that differed substantially from that of the LMe test.
On the other hand, Qu’s statistic has the same form as LMe(θ0) but is calculated with an



144 Andrews and Mikusheva Quantitative Economics 6 (2015)

approximate likelihood while LMe(θ0) is calculated with the exact likelihood. The dis-
crepancy between Qu’s original LM test and the LMe test is thus due to the difference be-
tween the approximate likelihood and the true likelihood. Insofar as the quasi-likelihood
based on the prewhitened data offers a better approximation to the true likelihood, one
would expect the behavior of the prewhitened LM test to be closer to that of LMe. Con-
sistent with this interpretation, the correlation between the prewhitened version of Qu’s
statistic and LMe(θ0) under the null is 0�9.

In the GQIK LR approach, rather than testing a hypothesis about the nine-
dimensional structural parameter H0 :θ = θ0, one instead tests a hypothesis about
the reduced-form parameter (i.e., the coefficients of the state-space representation)
H̃0 :Υ = Υ(θ0) using the LR statistic. While simulating GQIK’s method, we encountered
several difficulties. First, it is not obvious how many degrees of freedom to use. Examin-
ing the solution of the model, we noticed that matrices of the state-space representation
have numerous zeros. We imposed these zeros, which left us with 28 nonzero reduced-
form parameters. However, the effective dimensionality of the reduced-form parameter
space is lower since some values of the reduced parameters are observationally equiva-
lent. Hence, we used degrees of freedom equal to the rank of the Fisher information with
respect to the state-space coefficients evaluated under the null, which leads us to think
that the (local) dimensionality of the reduced-form parameter space is 18.

The second difficulty is that computing the GQIK LR statistic is numerically very
involved and time consuming, as noted by GQIK in their paper. To test a hypothesis on
the full parameter vector, one must solve a high-dimensional nonlinear optimization
problem, while no optimization is required for the other methods discussed here. From
Figure 2, one can see that the GQIK test gives us power comparable to the LM tests for
all considered alternatives.

For the test of DKK, we consider the transformation of the data

ξπ�t = bπt+1 + κxt −πt�

ξx�t = ξ̃x�t − ρξ̃x�t−1�

ξr�t = ξ̃r�t − δξ̃r�t−1�

where

ξ̃x�t = −[rt −πt+1] + xt+1 − xt;
ξ̃r�t = λrt−1 + (1 − λ)φππt + (1 − λ)φxxt − rt �

The transformed data (ξπ�t� ξx�t� ξr�t) comprise a linear combination of the uncorre-
lated structural error terms (εt� εa�t� εu�t) and the expectation errors Etπt+1 − πt+1,
Et−1πt −πt , Etxt+1 − xt+1, and Et−1xt − xt . We base the test on the exclusion restriction
that (ξπ�t� ξx�t� ξr�t) are not predictable by the instruments Yt−1 = (πt−1�xt−1� rt−1). It is
easy to see that (ξπ�t� ξx�t� ξr�t) follows a (moving average) MA(1) process and hence that
the heteroskedasticity and autocorrelation robust (HAC) formulation of DKK should be
used. We calculate the DKK test using the Newey–West HAC estimator for the long-run
covariance matrix (using three lags). DKK formulate the null in such a way that variances
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of the shocks do not enter, and the test is not supposed to have power against alterna-
tives that differ only in these parameters. Hence, we do not depict the corresponding
power functions.

Based on Figure 2, the DKK test in our context is significantly less powerful than the
other tests considered and has nearly flat power curves in the neighborhoods where the
LM tests achieve almost 100% power. Power simulations on larger neighborhoods show
that the DKK test has nontrivial power against some alternatives, but confirm that for
the null and alternatives considered, it has substantially less power than the other tests
we study. This lower power is to be expected given the limited-information nature of the
test, and may be a reasonable price to pay for robustness to misspecification.

8. Conclusion

This paper studies the problem of weak identification in DSGE models and explores how
weak identification can arise in several examples. We show that two forms of the LM
statistic may be used to construct robust tests for hypotheses about the full parameter
vector, as well as hypotheses about subvectors of parameters for which the nuisance
parameter is strongly identified. How to determine whether the nuisance parameter is
strongly identified is an open question. We give suggestive evidence that the discrepancy
between two measures of information may serve as an indication of weak identification,
but further exploration of this issue is an important topic for future research.

Appendix: Proofs

We denote by superscript 0 quantities evaluated at θ0 = (α′
0�β

′
0)

′. In the Taylor expan-
sions used in the proofs, the expansion is assumed to be for each entry of the expanded
matrix.

Proof of Lemma 1. The proof follows closely the argument of Bhat (1974), starting with
the Taylor expansion

0 = Sα(α̂�β0) = S0
α − I0

αα(α̂− α0)− (
Iαα

(
α∗�β0

) − I0
αα

)
(α̂− α0)�

where α∗ is a convex combination of α̂ and α0. We may consider different α∗ for differ-
ent rows of Iαα. Assumption 2(b) helps to control the last term of this expansion, while
Assumption 2(a) allows us to substitute Jαα�T for Iαα�T in the second term. Assumption 1
gives the central limit theorem (CLT) for Kα�T Sα�T . �

Lemma 2. Let MT = ∑T
t=1 mt be a multidimensional martingale with respect to sigma

field Ft and let [X]t be its quadratic variation. Assume that there is a sequence of diagonal
matrices KT such that MT satisfies the conditions of Assumption 3. Let mi�t be the ith
component of mt and let Ki�T be the ith diagonal element of KT . For any i, j, l,

Ki�TKj�TKl�T

T∑
t=1

mi�tmj�tml�t
p→ 0�
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Proof of Theorem 2. For simplicity of notation, we assume in this proof that Cij = C

for all i, j. The generalization of the proof to the case with different Cij ’s is obvious but
tedious. According to the martingale CLT, Assumption 3 implies that

(
Kα�T S

0
α�Kβ�T S

0
β�Kαβ�T vec

(
A0

αβ

)′) ⇒ (ξα�ξβ�ξαβ)� (8)

where the ξ’s are jointly normal with variance matrix ΣM .
We Taylor expand Sβj (α̂�β0), the jth component of vector Sβ(α̂�β0), keeping in mind

that I0
βjα

= − ∂2

∂βj ∂α
�(α0�β0), and receive

Kβj�T Sβj (α̂�β0) = Kβj�T S
0
βj

−Kβj�T I
0
βjα

(α̂− α0)

+ 1
2
Kβj�T (α̂− α0)

′(I0
ααβj

)
(α̂− α0)+ R̃j

with residual

R̃j = Kβj�T
1
2
(α̂− α0)

′(I∗
ααβj

− I0
ααβj

)
(α̂− α0)�

where I0
ααβj

= ∂3

∂α∂α′ ∂βj
�(α0�β0), I∗

ααβj
= ∂3

∂α∂α′ ∂βj
�(α∗�β0), and α∗ is a point between α̂

and α0. From Assumption 2(c), we have that K−1
α�T |α̂− α0| = Op(1). As a result, Assump-

tion 4(c) makes the Taylor residual negligible:

Kβj�T Sβj (α̂�β0) = Kβj�T S
0
βj

−Kβj�T I
0
βjα

(α̂− α0)

+ 1
2
Kβj�T (α̂− α0)

′(I0
ααβj

)
(α̂− α0)+ op(1)�

We plug asymptotic statement (7) into this equation and get

Kβj�T Sβj (α̂�β0) = Kβj�T S
0
βj

−Kβj�T I
0
βjα

(
I0
αα

)−1
S0
α

+ 1
2
Kβj�T S

0′
α

(
I0
αα

)−1(
I0
ααβj

)(
I0
αα

)−1
S0
α + op(1)�

Recall that by definition I0
βα = J0

βα −A0
βα. We use this substitution in the equation above

and receive

Kβj�T Sβj (α̂�β0) = Kβj�T S
0
βj

−Kβj�T J
0
βjα

(
I0
αα

)−1
S0
α +Kβj�TA

0
βjα

(
I0
αα

)−1
S0
α

(9)

+ 1
2
Kβj�T S

0′
α

(
I0
αα

)−1(
I0
ααβj

)(
I0
αα

)−1
S0
α + op(1)�

One can notice that we have the informational equality

I0
ααβj

= −[
A0

αα�S
0
βj

] − [
A0

αβj
� S0

α

] − [
S0
α�A

0
αβj

] + 2
T∑
t=1

sα�ts
′
α�tsβj�t +Λααβj � (10)
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Assumption 4(b) implies that Kβj�TKα�TΛααβjKα�T
p→ 0. Assumption 2(a) and Assump-

tion 3 together imply that (Kα�T ⊗Kα�T )K
−1
αα�T → 0. Using Assumption 2(a) and Lemma 2,

we notice that

−Kα�T I
0
ααβj

Kα�T = Kα�T

[
A0

αβj
� S0

α

]
Kα�T +Kα�T

[
S0
α�A

0
αβj

]
Kα�T

(11)
+ op

(
K−1

βj�T

)
�

According to Assumption 4(a), Kβj�TKα�T [A0
αβj

� S0
α]Kα�T is asymptotically bounded, so

Kβj�TKα�T I
0
ααβj

Kα�T = Op(1). By Assumption 2(a), Kα�T I
0
ααKα�T = Kα�T JααKα�T + op(1);

Assumption 4(a) implies that Kα�TAαβKβ�T is bounded. Taken together, these state-
ments imply that we can substitute J0

αα for I0
αα everywhere in (9). Doing so gives us

Kβj�T Sβj (α̂�β0) =Kβj�T S
0
βj

−Kβj�T J
0
βjα

(
J0
αα

)−1
S0
α +Kβj�TA

0
βjα

(
J0
αα

)−1
S0
α

+ 1
2
Kβj�T S

0′
α

(
J0
αα

)−1(
I0
ααβj

)(
J0
αα

)−1
S0
α + op(1)� (12)

Kβj�T Sβj (α̂�β0) =Kβj�T S
0
βj

−Kβj�T J
0
βjα

(
J0
αα

)−1
S0
α +D′

j

(
J0
ααKα�T

)−1
S0
α + op(1)�

where

Dj =Kα�TKβj�TA
0
αβj

+ 1
2
Kα�TKβj�T

(
I0
ααβj

)(
J0
αα

)−1
S0′
α �

Notice that D, a kα × kβ random matrix, is asymptotically normal (though it may
have zero variance, i.e., it may converge to zero) and asymptotically independent of
Kα�T S

0
α. Indeed, using (11) we have

Dj = Kα�TKβj�TK
−1
αβj�T

× (
Kαβj�TA

0
αβj

− (
Kαβj�T

[
A0

αβj
� S0

α

]
Kα�T

)(
Kα�T J

0
ααKα�T

)−1
Kα�T S

0′
α

)
+ op(1)

⇒ C
(
ξαβj − cov(ξαβj � ξα)Var(ξα)−1ξα

)
�

where variables (ξ′
α�ξ

′
αβj

) are as described at the beginning of the proof.

Plugging the last statement and (8) into equation (12), we have

Kβj�T Sβj (α̂�β0) ⇒ ξβj − cov(ξβj � ξα)Var(ξα)−1ξα
(13)

+C
(
ξαβj − cov(ξαβj � ξα)Var(ξα)−1ξα

)
Var(ξα)−1ξα�

Conditional on ξα, Kβ�T Sβ(α̂�β0) is an asymptotically normal vector with mean zero.
Now we turn to the inverse variance term in formula (6) for L̃Mo(β0), which is equal

to (Jββ − JβαJ
−1
αα J

′
βα)|(α̂�β0). Below we prove the following lemma.



148 Andrews and Mikusheva Quantitative Economics 6 (2015)

Lemma 3. Under the assumptions of Theorem 2, we have

(a) Kβi�TKβj�T Jβiβj (α̂�β0) ⇒ cov(ξβi � ξβj ) + C · cov(ξαβi � ξβj )
′ Var(ξα)−1ξα + C ·

cov(ξαβj � ξβi)
′ Var(ξα)−1ξα +C2ξ′

α Var(ξα)−1 cov(ξαβi � ξαβj )Var(ξα)−1ξα,

(b) Kα�TKβj�T Jαβj (α̂�β0)⇒ cov(ξα�ξβj )+C · cov(ξαβj � ξα)Var(ξα)−1ξα,

(c) Kα�T Jαα(α̂�β0)Kα�T
p→ Var(ξα).

Lemma 3 implies that

Kβi�TKβj�T

(
Jβiβj − JβiαJ

−1
αα J

′
βjα

)∣∣
(α̂�β0)

⇒ cov(ξβi � ξβj )+C · cov(ξαβi � ξβj )
′ Var(ξα)−1ξα

+C · cov(ξαβj � ξβi)
′ Var(ξα)−1ξα

+C2ξ′
α Var(ξα)−1 cov(ξαβi � ξαβj )Var(ξα)−1ξα

− (
cov(ξα�ξβi)+C · cov(ξαβi � ξα)Var(ξα)−1ξα

)′
Var(ξα)−1

× (
cov(ξα�ξβj )+C · cov(ξαβj � ξα)Var(ξα)−1ξα

)
�

Note that the last expression is the same as the variance of the right side of equation (13)
conditional on random variable ξα. That is, Kβ�T (Jββ − JβαJ

−1
αα J

′
βα)Kβ�T |(α̂�β0) is asymp-

totically equal to the asymptotic variance of Kβ�T Sβ(α̂�β0) conditional on ξα. As a re-
sult, statistic L̃Mo(β0), conditional on ξα, is distributed χ2

kβ
asymptotically and thus is

asymptotically χ2
kβ

unconditionally as well. The case of statistic L̃Me(β0) is analogous.

This completes the proof of Theorem 2. �

Proof of Lemma 3. (a) We can Taylor expand Jβiβj (α̂�β0) as

Jβiβj (α̂�β0) = J0
βiβj

+ ∂

∂α
J0
βiβj

(α̂− α0)

(14)

+ 1
2
(α̂− α0)

′ ∂2

∂α∂α′ J
0
βiβj

(α̂− α0)+Rij�

where

Kβi�TKβj�TRij = Kβi�TKβj�T
1
2
(α̂− α0)

′
(

∂2

∂α∂α′ J
0
βiβj

− ∂2

∂α∂α′ J
∗
βiβj

)
(α̂− α0)

is negligible asymptotically due to Assumption 4(c). Consider the first term of the Taylor
expansion above:

∂

∂α
Jβiβj = ∂

∂α

∑
t

sβi�tsβj�t = [Aα�βi� Sβj ] + [Aα�βj � Sβi ] − 2
∑

sα�tsβi�tsβj�t �

Using Lemma 2 and Assumption 4(a), we have

Kα�TKβi�TKβj�T
∂

∂α′ Jβiβj

p→ C · cov(ξαβi � ξβj )+C · cov(ξαβj � ξβi)� (15)



Quantitative Economics 6 (2015) Maximum likelihood inference 149

Now let us consider the normalized second derivative of Jβiβj :

Kβi�TKβj�TKα�T
∂2

∂α∂α′ JβiβjKα�T

=Kβi�TKβj�TKα�T

× ([Λααβi� Sβj ] + [Λααβj � Sβi ] + [Aαβi�Aαβj ] + [Aαβj �Aαβi ]
)
Kα�T + op(1)�

The op(1) term appears due to Lemma 2, applied to the remaining terms. Assump-

tion 4(b) implies that Kα�TKβi�TKβj�T [Λααβi� Sβj ]Kα�T
p→ 0. Finally, using Assump-

tion 3(b), we get

Kβi�TKβj�TKα�T
∂2

∂α∂α′ JβiβjKα�T

(16)
p→ C2 cov(ξαβi � ξαβj )+C2 cov(ξαβj � ξαβi)�

Putting the expressions for derivatives (15) and (16) into equation (14), and also noticing
that due to Lemma 1, K−1

α�T (α̂− α0) ⇒ Var(ξα)−1ξα, we get statement (a).
(b) Again we use Taylor expansion:

Jαβj (α̂�β0) = J0
αβj

+ ∂

∂α
J0
αβj

(α̂− α0)

(17)

+ 1
2

∑
n

∂2

∂α∂αn
J∗
αβj

(α̂− α0)(α̂n − α0�n)�

From Assumption 3(b),

Kα�TKβj�T J
0
αβj

p→ cov(ξα�ξβj )� (18)

Taking the derivative, we see

∂

∂α
Jαβj = ∂

∂α

∑
t

sα�tsβj�t = [Aαα�Sβj ] + [Sα�Aαβj ] − 2
∑

sα�ts
′
α�tsβj�t �

According to Lemma 2, Kα�TKβj�T
∑

sα�ts
′
α�tsβj�tKα�T → 0. Assumptions 2(a) and 3 imply

that Kα�TKβj�T [Aαα�Sβj ]Kα�T
p→ 0. We have

Kα�TKβj�T
∂

∂α
JαβjKα�T = Kα�TKβj�T [Sα�Aαβj ]Kα�T + op(1)

p→ C · cov(ξα�ξαβj )�

Similarly, we can show that the residual term in (17) is asymptotically negligible. Putting
the last equation, together with (18), into (17) and using Lemma 1, we get statement (b)
of Lemma 3.

(c) As before, we use Taylor expansion

Kα�T Jαα(α̂�β0)Kα�T =Kα�T J
0
ααKα�T +

∑
n

Kα�T
∂

∂αn
J∗
αα(α̂n − α0�n)Kα�T �

∂

∂αn
Jαα = [Aααn�Sα] + [Sα�Aααn ] + 2

∑
sα�ts

′
α�tsαn�t �
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By the same argument as before, Kα�TKαn�T [Aααn�Sα]Kα�T
p→ 0, and according to

Lemma 2, Kα�TKαn�T
∑

sα�ts
′
α�tsαn�tKα�T

p→ 0. Given the result of Lemma 1, we arrive at
statement (c). �
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