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A nondegenerate Vuong test

Xiaoxia Shi
University of Wisconsin–Madison

In this paper, I propose a one-step nondegenerate test as an alternative to the clas-
sical Vuong (1989) tests. I show that the new test achieves uniform asymptotic size
control in both the overlapping and the non-overlapping cases, while the classical
Vuong tests do not. Meanwhile, the power of the new test can be substantially bet-
ter than the two-step classical Vuong test and is not dominated by the one-step
classical Vuong test. An extension to moment-based models is also developed.
I apply the new test to the voter turnout data set of Coate and Conlin (2004) and
find that it can yield model comparison conclusions different from those of the
classical tests. The implementation of the new test is straightforward and can be
done using the MATLAB and STATA routines that accompany this paper.

Keywords. Asymptotic size, model comparison, nonnested models, voter turn-
out, Vuong test.

JEL classification. C12, C52.

1. Introduction

Vuong (1989) introduced tests of the hypothesis that two nonnested parametric models
are equally distant in the Kullback–Leibler sense from the true data distribution. The
tests have become important tools for comparing statistical models in empirical work.
They have been generalized to moment-based models by Kitamura (2000), Rivers and
Vuong (2002), Chen, Hong, and Shum (2007), and Shi (2009), and to model comparisons
based on mean-squared prediction error by Li (2009).

The classical Vuong framework mainly consists of two separate tests: a one-step
test suggested for non-overlapping models and a two-step test suggested for overlap-
ping models. In this paper, I find that both can generate severe size distortions in finite
samples. I document the size distortions, and then propose a new nondegenerate test
that corrects the size distortions and applies universally to overlapping as well as non-
overlapping models. In addition, I show that the new test has good power, and demon-
strate using Monte Carlo simulations that its power can be substantially better than the
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two-step classical Vuong test and is comparable to the one-step classical Vuong test. The
new test is straightforward to compute and its computation can be easily packaged into
a MATLAB function or combined with the STATA maximum likelihood routine. Both the
MATLAB and the STATA code files are provided with this paper (available in a supple-
mentary file on the journal website, http://qeconomics.org/supp/382/code_and_data.
zip).

The classical one-step Vuong test rejects the null hypothesis if the studentized log-
likelihood ratio statistic (denoted by T̂n) exceeds a standard normal critical value. It has
size distortion because the pointwise asymptotic distribution of T̂n is discontinuous in
a parameter ω2

P at ω2
P = 0. Specifically, when ω2

P > 0, the pointwise asymptotic distribu-
tion is N(0�1), while when ω2

P = 0, it is a nonstandard distribution (denoted by J(0)).
In finite samples, the actual distribution of T̂n is often close to a point between N(0�1)
and J(0). If ω2

P is not sufficiently large, the point may be quite far from N(0�1), caus-
ing the test to overreject. The extreme case where ω2

P equals zero occurs when the best-
fitting probability density functions (p.d.f.s) of the candidate models are the same, which
is possible when the models are overlapping. But the case where ω2

P is relatively small
can occur for both overlapping and non-overlapping models. In either case, the over-
rejection may mislead the researcher into discarding a model that is not worse or even
better than the model of comparison.1

The classical two-step Vuong test adds a pretest step where one tests H00 : ω2
P = 0.

The test rejects the null hypothesis only if both steps reject. The pretest can filter out
some cases of smallω2

P , but it does not filter out all cases. Thus, even though the pretest
reduces size distortion, the reduction is often not enough. Moreover, the reduction may
come at a large cost of power possibly due to the inefficiency in using a second moment
to detect the difference between two p.d.f.s, and to the negative correlation between |T̂n|
and the pretest statistic.2 Monte Carlo Example 2 demonstrates the substantial power
loss in the two-step Vuong test.

I formalize the discussion above using the local asymptotic theory, which is a widely
used tool in the study of local power, weak instruments, and so on. Specifically, I derive
the asymptotic distribution of T̂n under sequences of data-generating processes (DGPs)
along which nω2

Pn
→ σ2 for σ2 ∈ [0�∞]. The rate n is chosen so that the local asymp-

totic distribution obtained represents a smooth transition from J(0) to N(0�1) as σ2

goes from 0 to ∞, which reflects our uncertainty about the size of ω2
P . After obtaining

the new asymptotic distribution, I examine it closely and find that a higher-order bias
in the log-likelihood ratio statistic and a random term in its standard error are the key
contributors to the size distortion of the classical Vuong tests. Based on this finding,
I design a bias correction and a variance adjustment to T̂n. The new bias-corrected and

1It is important to note that when nω2
P is too small for T̂n to be approximated by N(0�1), the models

may still yield rather different counterfactual predictions because the relatively small ω2
P may not be small

in an absolute sense in the context of empirical work and because one of the candidate models may con-
tain elements that are far from the other. Therefore, the stakes in drawing the correct model comparison
conclusion can still be high.

2The pretest statistic is the denominator in T̂n.

http://qeconomics.org/supp/382/code_and_data.zip
http://qeconomics.org/supp/382/code_and_data.zip
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variance-adjusted test statistic coupled with a simulation-based critical value forms my
new test.

The classical Vuong tests were proposed for the comparison of parametric models
based on the likelihood criterion. Yet the framework is flexible enough to be adapted to
the comparison of other models based on other criteria. Kitamura (2000) extends the
framework to moment equality models based on the relative entropy criterion. Rivers
and Vuong (2002) compare moment equality models based on general criteria. Chen,
Hong, and Shum (2007) compare a moment equality model with a parametric one.
Li (2009) compares structural models based on simulated mean-squared error of predic-
tion. Shi (2009) proposes tests for partially identified moment inequality models. In all
of those papers except Li (2009), the discontinuity in the pointwise asymptotic distri-
bution of the test statistics appears, and the non-overlapping case and the overlapping
case are treated separately in the manner of Vuong (1989). Li (2009) does not have this
discontinuity thanks to the simulated integrals used in his test statistic.

The analyses and the nondegenerate test proposed in this paper extend to the prob-
lem studied in Kitamura (2000) as well as other generalized empirical likelihood-based
(GEL) model comparison problems. Section 6 is devoted to such an extension. I note
that the nondegenerate test is even more appealing in practice in the semiparametric
context. This is because for semiparametric models it is very difficult, if at all possible, to
determine whether two models are overlapping or non-overlapping. The nondegenerate
test is robust to and can be applied in exactly the same way for both cases. Extensions
to the other semiparametric settings mentioned above require more substantially dif-
ferent derivations and are left for future research. Also, this paper is not concerned with
another important type of nonnested tests: the Cox-type tests (see, e.g., Cox (1961, 1962),
Gourieroux and Monfort (1995), Otsu and Whang (2011), and Otsu, Seo, and Whang
(2012)). Similar size distortions may occur with these tests and analyses similar to those
of this paper are of potential interest.

A paper written concurrently with mine, Schennach and Wilhelm (2011), proposes
a different test that also achieves uniform asymptotic size control. Their test is based
on a sophisticated split-sample estimator of the log-likelihood ratio and the standard
normal critical value. Because the critical value requires no simulation, their test is even
easier to implement; in fact, it is as easy as the one-step Vuong test. However, my test
has a better power property because it does not rely on sample splitting. Monte Carlo
simulations show that my test also achieves better finite sample size control.

The rest of the paper is organized as follows. Section 2 reviews the classical Vuong
test and introduces the notation. Section 3 shows that the classical Vuong test overre-
jects and discusses why. Section 4 proposes the new nondegenerate test and shows that
it has correct null rejection rates uniformly over all DGPs. Section 5 shows that the new
test has nontrivial power against n−1/2-local alternatives and some n−1-local alterna-
tives. Section 6 extends the results in the previous sections to moment-based models.
Section 7 demonstrates the finite sample performance of the classical, the nondegener-
ate, and the split-sample Vuong tests in a normal regression example and a joint normal
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location model example. Section 8 presents an empirical application to the comparison
of voter turnout models. Section 9 concludes. Appendices A and B collect the proofs of all
the formal results in the main text; Appendix C, available in a supplementary file on the
journal website (http://qeconomics.org/supp/382/supplement.pdf), gives a third sim-
ulation example based on one-dimensional normal models.

2. Review of the classical Vuong tests

In this section, I review the classical Vuong tests and introduce the notation. Let {Xi ∈
X }ni=1 = {(Y ′

i �Z
′
i)

′ ∈ Y × Z}ni=1 be observed independent and identically distributed
(i.i.d.) data, where Xi is dx-dimensional, Yi and Zi are dy- and dz-dimensional, respec-
tively, and dx = dy + dz . Let the true distribution ofXi be P0. Vuong (1989) considers the
comparison between two parametric models, which are defined as parametric families
of conditional densities of Yi given Zi:

F = {fY |Z(·|·;θ) : θ ∈Θ⊂Rdθ} and G = {gY |Z(·|·;β) : β ∈ B ⊂Rdβ}� (2.1)

Vuong (1989) tests the null hypothesis that the population log-likelihood ratio is
zero,

H0 : LRP0 :=EP0Λi
(
φ∗
P0

)= 0� (2.2)

where EP denotes the expectation with respect to (w.r.t.) P , φ∗
P = (θ∗′

P �β
∗′
P )

′ is the con-
catenated vector of the pseudo-true values θ∗

P = arg maxθ∈ΘEP log fY |Z(Yi|Zi;θ) and
β∗
P = arg maxβ∈B EP loggY |Z(Yi|Zi;β), and Λi(φ) is the logarithm of the ratio of the two

p.d.f.s:

Λi(φ)= log fY |Z(Yi|Zi;θ)− loggY |Z(Yi|Zi;β)� (2.3)

The population likelihood ratio LRP0 is the difference in the Kullback–Leibler (KL) infor-
mation distances from the true data distribution P0 to the two models. Thus, H0 can be
interpreted as the models being equally distant from P0 in the Kullback–Leibler sense.
The null is tested against

H1 : LRP0 �= 0� (2.4)

which consists of two parts: LRP0 > 0 and LRP0 < 0. The former has the interpretation
that P0 is closer to model F than to G in the sense of Kullback–Leibler, while the latter
has the opposite interpretation.

Vuong (1989) distinguishes two types of testing scenarios based on the relationship
between the candidate models. Specifically, models F and G are called overlapping if
F ∩G �= ∅ and strictly nonnested otherwise.3 I review Vuong’s (1989) treatment of the two

3Note that by this definition, the overlapping case includes the nested case, where F ⊆ G or G ⊆ F .

http://qeconomics.org/supp/382/supplement.pdf
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scenarios in the next two subsections. For notational simplicity, let fi(θ)= fY |Z(Yi|Zi;θ)
and gi(β)= gY |Z(Yi|Zi;β).

2.1 One-step classical Vuong test

When the models are strictly nonnested, Vuong (1989) proposes a one-step test that is
based on the studentized log-likelihood ratio

T̂n = n1/2L̂Rn/ω̂n� where
(2.5)

L̂Rn = n−1
n∑
i=1

Λi(φ̂n) and ω̂2
n = n−1

n∑
i=1

[
Λi(φ̂n)− L̂Rn

]2
�

where φ̂n = (θ̂′
n� β̂

′
n)

′, and θ̂n and β̂n are the maximum likelihood estimators from
the two models, respectively. Vuong (1989) shows that under appropriate conditions
andH0,

n1/2L̂Rn →d N
(
0�ω2

P0

)
and ω̂2

n →p ω
2
P0
� where

(2.6)
ω2
P =ω2

P

(
φ∗
P

)≡EP(Λ2
i

(
φ∗
P

))− (EPΛi(φ∗
P

))2
�

Based on these results, Vuong (1989) proposes to reject H0 if and only if |T̂n| > zα/2,
where zα/2 is the 1 − α/2 quantile of N(0�1). I refer to this test as the one-step classi-
cal Vuong test.

2.2 Two-step classical Vuong test

When the models are overlapping, there is the possibility that fi(θ∗
P0
) = gi(β

∗
P0
) almost

surely because F ∩ G �= ∅. Recall that ω2
P0

= log fi(θ∗
P0
)− loggi(β∗

P0
). Consequently, it is

possible that ω2
P0

= 0, in which case the results in (2.6) do not imply T̂n →d N(0�1). The
one-step test thus becomes invalid.

To guard against data distributions (P0’s) such that ω2
P0

= 0, Vuong (1989) suggests a
two-step test instead. In the first step, test

H00 :ω2
P0

= 0� (2.7)

If the first step does not reject, proceed no further and acceptH0. If the first step rejects,
proceed to the one-step Vuong test. The first-step test (or the pretest) uses nω̂2

n as the
test statistic. UnderH00, Vuong (1989) shows that

nω̂2
n →d Z

′V 2Z� (2.8)

whereZ ∼N(0� Idθ+dβ) and V is a diagonal matrix defined later. Let cω(V 2�1 −α) be the

1 − α quantile of Z′V 2Z and let V̂n be a consistent estimator of V (also defined later).
Vuong (1989) uses the plug-in critical value cω(V̂ 2

n �1 − α) for the pretest. To sum up, the
two-step Vuong test rejectsH0 if and only if nω̂2

n > cω(V̂
2
n �1 − α) and |T̂n|> zα/2.
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3. Problems with the classical Vuong tests

In this section, I first use a Monte Carlo example to motivate the local asymptotic analy-
sis, then derive the local asymptotic distribution, and finally use the new approximation
to study the problems with the classical Vuong tests.

Both classical Vuong tests rely onN(0�1) to approximate the distribution of T̂n when
H0 holds and ω2

P0
> 0. The following example illustrates that the actual distribution of

T̂n can be very different fromN(0�1) even whenH0 holds and ω2
P0
> 0. As a result of the

mismatch between the actual distribution and the pointwise asymptotic distribution,
both classical Vuong tests demonstrate noticeable overrejection. The multiple regres-
sion models are used to ensure that LRP0 and ω2

P0
have closed-form solutions under

some DGPs, so that H0 can be easily imposed and ω2
P0

can be flexibly adjusted. The

particular DGPs are used to generate a clear mismatch between the distribution of T̂n
andN(0�1).

Example 1 (Normal Regression). Suppose the two models to be compared are multiple
regression models with a known standard normal error term,

F : Y = θ(0) +
Kf∑
j=1

θ(j)Zf�j + v� v|Zf �Zg ∼N(0�1)�

(3.1)

G : Y = β(0) +
Kg∑
j=1

β(j)Zg�j + u� u|Zf �Zg ∼N(0�1)�

where Zf = (1�Zf�1� � � � �Zf�Kf )′ and Zg = (1�Zg�1� � � � �Zg�Kg)′. Consider DGPs of the form

Y = 1 +
Kf∑
j=1

Zf�j +
Kg∑
j=1

Zg�j + ε� (3.2)

where Zf�j ∼N(0� a2/Kf ), Zg�j ∼N(0� a2/Kg), and ε∼N(0�1 − a2), and these variables
are jointly independent. Under this DGP, H0 holds for all a ∈ [0�1] and ω2

P0
= 2a2 − a4.

Consider a large sample size n = 1000, a moderately large Kf = 15, and a small Kg = 1.
The lengths of the regression equations, Kf and Kg, are designed to differ because
the theory presented later shows that the higher-order bias in the log-likelihood ratio
statistic is related to the relative magnitude of Kf and Kg (see Remark (b) of Theo-
rem 3.2).

The probability density functions of T̂n for three a’s are drawn in Figure 1 along with
the p.d.f. of N(0�1). The figure shows that the distribution of T̂n for smaller a’s (0 and
0�125) is quite different from N(0�1). As a result, the one-step Vuong test of nominal
level 5% rejects H0 with probability 31% when a= 0 and 14% when a= 0�125. Remark-
ably, the two-step Vuong test also has a 14% rejection rate when a = 0�125, suggesting
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Figure 1. The p.d.f.s of T̂n versus those ofN(0�1) under different DGPs.

that the rejection of the pretest is not a sufficient indication that N(0�1) well approxi-
mates the distribution of T̂n.

The example shows that the pointwise-asymptotic distribution does not approxi-
mate the actual distribution of T̂n well. This suggests that we should seek better approx-
imation in a different asymptotic framework. I use the local asymptotic framework for
this purpose. The local asymptotic framework is commonly used to study local power,
weak identification, near unit root, and boundary issues. It is suitable here because we
encounter a boundary issue at ω2

P = 0.

3.1 Local asymptotic theory

The pointwise-asymptotic theory considers the limiting behavior of T̂n under a fixed
DGP, P . When ω2

P > 0, as the sample size n increases to infinity, it becomes easier and
easier to distinguish the positive ω2

P from zero. However, for a given finite sample, a
positive ω2

P can be difficult to distinguish from zero due to sample variance. To reflect
this uncertainty about the value of ω2

P , I consider the sequence of DGPs, {Pn}∞n=1, where
nω2

Pn
is approximately constant, in particular, nω2

Pn
→ σ2 ∈ [0�∞] as n→ ∞. The rate n

is chosen so that the asymptotic distribution under {Pn}∞n=1 varies smoothly with σ2 over
a range of distributions.

To start, I impose the smoothness and compactness assumption on the models.

Assumption 3.1. (a) The functions log f (y|z;θ) and logg(y|z;θ) are three times con-
tinuously differentiable in θ and β, respectively, for all (y� z) ∈ X , and (b) Θ and B are
compact.

The assumptions on the DGPs are imposed in the definition of the maintained hy-
pothesis below. To introduce the definition, I need some new notation. Let the popula-
tion log-likelihood (ll) functions be

llf�P(θ)=EP log fi(θ) and llg�P(β)=EP loggi(β)� (3.3)
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Let the expectation of the second derivative and that of the outer product of the first
derivative of the log-density ratio be

AP(φ)=EP
[
∂2Λi(φ)/∂φ∂φ

′] and
(3.4)

BP(φ)=EP
[(
∂Λi(φ)/∂φ

)(
∂Λi(φ)/∂φ

′)]�
These matrix-valued functions will appear in the local asymptotic distribution of T̂n.

Let Na(b) stand for an open ball of radius a around the point b. For a symmetric
square matrix A, let |eig|min(A) denote the minimum absolute value of the eigenvalues
of A. Definition 3.1 below defines the maintained hypothesis, while Definition 3.2 de-
fines the null hypothesis. The conditions in Definition 3.1 are the uniform version of
their counterparts in Vuong (1989).

Definition 3.1. For positive constants δ�M and function δ(ε) : (0�∞)→ (0�∞), let P
be the set of probability measures, P , on X such that the following statements hold:

(i) The unique-identifiability condition holds, that is, ∃φ∗
P ∈Θ×B, such that ∀ε > 0,

sup
θ∈Θ\Nε(θ∗

P)

llf�P(θ) < llf�P
(
θ∗
P

)− δ(ε) and

sup
β∈B\Nε(β∗

P)

llg�P(β) < llg�P
(
β∗
P

)− δ(ε)�
(ii) The pseudo-true parameters lie uniformly in the interior of their space:Nδ(θ∗

P)⊆
Θ andNδ(β∗

P)⊆ B.

(iii) We have EP supθ∈Θ(| log fi(θ)| + ‖ ∂ log fi(θ)
∂θ ‖ + ‖ ∂2 log fi(θ)

∂θ∂θ′ ‖ +∑dθ
j=1 ‖ ∂3 log fi(θ)

∂θj ∂θ∂θ′ ‖)2+δ +
EP supβ∈B(| loggi(β)| + ‖ ∂ loggi(β)

∂β ‖ + ‖ ∂2 loggi(β)
∂β∂β′ ‖ +∑dβ

j=1 ‖ ∂3 loggi(β)
∂βj ∂β∂β′ ‖)2+δ ≤M .

(iv) We have EP [(Λi(φ∗
P)−EPΛi(φ∗

P))/ωP(φ
∗
P)]2+δ ≤M if ωP(φ∗

P) > 0.

(v) The Hessians are bounded away from singularity: infφ∈Nδ(φ∗
P)

|eig|min(AP(φ))≥ δ.

(vi) The data set (X1� � � � �Xn) is an i.i.d. sample drawn from P .

Definition 3.2. Let P0 = {P ∈ P :EPΛi(φ∗
P)= 0}.

The correlation between the log-density ratio and its first derivatives will also appear
in the local asymptotic distribution of T̂n. Thus we give it the notation

ρP(φ)=ω+
P (φ)

(
D

1/2
P (φ)

)+
EP
{[
Λi(φ)

][
∂Λi(φ)/∂φ

]}
� (3.5)

whereDP is the diagonal matrix with the same diagonal as BP (DP = Diag(BP)),

ω+
P (φ)=

{
0 ifωP(φ)= 0,
ω−1
P (φ) ifωP(φ) �= 0,
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and (D1/2
P (φ))+ is the Moore–Penrose inverse of the square root ofDP(φ).4 Now I define

the sequences of DGPs along which I derive the asymptotic distribution of T̂n.

Definition 3.3. Let Seq(σ2�A�B�ρ) be the set of sequences {Pn}∞n=1 such that Pn ∈ P
for every n, nω2

Pn
→ σ2, APn(φ

∗
Pn
) → A, BPn(φ

∗
Pn
) → B, and ρPn(φ

∗
Pn
) → ρ as n → ∞,

whereσ ∈ [0�∞],A is a block diagonal matrix with the upper-left block being dθ×dθ and
negative semidefinite and the lower-right block being dβ×dβ and positive semidefinite,
B is (dθ+dβ)×(dθ+dβ) and positive semidefinite, and ρ is a dθ+dβ vector of correlation
coefficients.

Remark. Notice that σ is allowed to take values in the extended half real space [0�∞] ≡
R+ ∪ {∞}. The point ∞ is important for covering the cases whereω2

Pn
does not converge

to zero or converges slowly to zero.

LetD= Diag(B) and letB1/2 denote the unique symmetric positive semidefinite ma-
trix square root of B. Let eig(A) denote the diagonal matrix formed by the eigenvalues
of A.5 The following theorem establishes the asymptotic distributions of n1/2L̂Rn and
nω̂2

n under each sequence in Seq(σ2�A�B�ρ).

Theorem 3.1. Suppose Assumption 3.1 holds. Under a sequence {Pn}∞n=1 ∈ Seq(σ2�A�

B�ρ) for some (σ2�A�B�ρ)with Pn ∈ P0 for every n, the following statements hold:

(a) If σ ∈ [0�∞), then(
nL̂Rn
nω̂2

n

)
→d

(
JΛ
Jω

)
:=
(

σZΛ − 2−1Z′
φA

−1Zφ

σ2 − 2σρ′D1/2A−1Zφ +Z′
φA

−1BA−1Zφ

)
�

where (
ZΛ
Zφ

)
∼N

(
0�
(

1 ρ′D1/2

D1/2ρ B

))
�

(b) If σ = ∞, then

ω−1
Pn
n1/2L̂Rn →d N(0�1) and ω−2

Pn
ω̂2
n →p 1�

(c) The random vector (JΛ� Jω)′ has the same distribution as(
JΛ(σ�ρ

∗� V )
Jω(σ�ρ

∗� V )

)
=
(

σZΛ − 2−1Z∗′
φV Z

∗
φ

σ2 − 2σρ∗′V Z∗
φ +Z∗′

φV
2Z∗

φ

)
�

where V = eig(B1/2A−1B1/2), (ZΛ�Z∗′
φ)

′ ∼N(0� [1�ρ∗′;ρ∗� Idθ+dβ]), and ρ∗ is a solution to

the equation B1/2Qρ∗ =D1/2ρ, where Q is an orthonormal matrix that satisfies QV Q′ =
B1/2AB1/2.

4We allowDP to be singular to facilitate the extension to moment-based models in Section 6. In moment-
based models, the correspondingDP matrices are always singular if one of the models is correctly specified.

5The order in which each eigenvalue appears is not important.
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Remark. Note that under the hypothesis H00 : ω2
P = 0, we have σ = 0. Part (c) im-

plies nω̂2
n →d Z

∗′
φV

2Z∗
φ, which is consistent with Vuong’s (1989) derivation reviewed

in (2.8). The matrix V can be consistently estimated by the plug-in estimator V̂n =
eig(B̂1/2

n Â−1
n B̂

1/2
n ), where Ân = Ân(φ̂n) and B̂n = B̂n(φ̂n) with

Ân(φ)= n−1
n∑
i=1

∂2Λi(φ)

∂φ∂φ′ and B̂n(φ)= n−1
n∑
i=1

∂Λi(φ)

∂φ

∂Λi(φ)

∂φ′ � (3.6)

This V̂n is the one in the pretest critical value cω(V̂ 2
n �1 − α) of the two-step Vuong test.

The theorem gives the local asymptotic distribution of T̂n = √
nL̂Rn/ω̂n:

T̂n →d J
(
σ�ρ∗� V

) := JΛ(σ�ρ
∗� V )

J
1/2
ω (σ�ρ∗� V )

= σZΛ − 2−1Z∗′
φV Z

∗
φ√

σ2 − 2σρ∗′V Z∗
φ +Z∗′

φV
2Z∗

φ

� (3.7)

This result shows that T̂n can be distributed quite differently from N(0�1) under H0.
Next I would like to show the extent to which the quantiles of its distribution can be
larger than the standard normal quantiles because that determines the size distortion
of the classical Vuong tests. For this purpose, I examine the new asymptotic distribution
closely in the next two subsections.

3.2 Bias in the numerator

The random variable on the right-hand side (r.h.s.) of (3.7) is complicated because it is a
ratio of two functions of generalized chi-squared random variables and both functions
depend on the unknown parameters (σ�ρ∗� V ). To study its distribution, let us first focus
on the numerator.

The numerator is the local asymptotic limit of nL̂Rn, which is a sample-analogue
estimator of nLRPn . In the local aymptotic framework of Theorem 3.1, we see that
the estimator nL̂Rn is a biased estimator because when nLRPn = 0 (i.e., Pn ∈ P0),
E[JΛ(σ�ρ∗� V )] = − trace(V )/2, which typically is nonzero. If we treat the denomina-
tor as deterministic for a moment, we see that the bias in nL̂Rn causes a nonzero mean

in the null distribution of T̂n ≡ nL̂Rn/
√
nω̂2

n. This is exactly the situation depicted in Fig-
ure 1. In some cases − trace(V )/2 can be very large in magnitude, making the two curves
in Figure 1 very far apart and making the null rejection probability of the classical Vuong
tests arbitrarily close to 1. Theorem 3.2 below illustrates such extreme size distortion.6

In the theorem, tr(A) stands for the trace of the matrixA.

6Notice that Theorem 3.2 uses sequential asymptotics, where I let n go to infinity and then let k go to
infinity. Because of this, the theorem does not describe the situation where k is almost as large as n; rather,
it describes the situation where k is moderately large, but n is much larger. With additional effort, the same
statement can be shown to hold with k and n going to infinity simultaneously, but k at some slower rate
than n. But since the additional effort does not add new insights to the discussion, it is omitted for brevity.
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Theorem 3.2. For k = dθ + dβ, let the sequence (σk�Vk) be such that
√

tr(V 4
k )/

tr(V 2
k ) → 0, σk/

√
tr(V 2

k ) → ∞, and tr(Vk)/σk → −∞ as k → ∞. For each k, let

{Pn�k ∈ P0}∞n=1 be a sequence in Seq(σ2
k�Ak�Bk�ρk) for some (σ2

k�Ak�Bk�ρk) satisfying

Vk = eig(B1/2
k A−1

k B
1/2
k ). Suppose Assumption 3.1 holds. Then (a) the size of the two-step

classical Vuong test size approaches 100%,

lim
k→∞

lim
n→∞ PrPn�k

(
nω̂2

n > cω
(
V̂ 2
n �1 − α)& n1/2L̂Rn/ω̂n > zα/2

)= 1�

and (b) the size of the one-step classical Vuong test approaches 100%,

lim
k→∞

lim
n→∞ PrPn�k

(
n1/2L̂Rn/ω̂n > zα/2

)= 1�

Remark. (a) In finite samples, the theorem describes the situation in which nω2
P is small

relative to | tr(V )|, which arises when the best-fitting p.d.f.s of the two models are close
for a given | tr(V )|. This may occur either when the models are overlapping or when
they are strictly nonnested but have elements that are close. Therefore, the extreme size
distortion is possible even for strictly nonnested models.

(b) The condition tr(Vk)/σk → −∞ is important for the rejection probability to go
to 1 as k→ ∞. Observe that tr(V )= tr(A−1B)= tr(A−1

f Bf )− tr(A−1
g Bg), where Af and

Bf are the limits of the Hessian and the gradient version of the Fisher information matri-
ces of model F , respectively, andAg and Bg are those of model G. For models for which
the information identify holds or approximately holds, we have tr(V )≈ −dθ + dβ. That
is, for such models, the extreme overrejection occurs when one model is much less par-
simonious than the other. And the overrejecting classical Vuong tests are biased in favor
of the more complex model. In this sense, the classical Vuong tests reward model com-
plexity. However, it is worth noting that in the Vuong null hypothesis,H0, the models are
compared purely based on the KL distance, and model complexity is neither rewarded
nor penalized. This impartiality is fully respected by the new nondegenerate test that I
propose below.

3.3 Random denominator

The previous subsection treats the denominator J1/2
ω (σ�ρ∗� V ) as if it is deterministic,

but, in fact, it is random, especially when k is small. Rewrite Jω(σ�ρ∗� V ) as

Jω
(
σ�ρ∗� V

)= σ2(1 − ρ∗′ρ∗)+ (V Z∗
φ − σρ∗)′(V Z∗

φ − σρ∗)� (3.8)

Although it is clear that Jω(σ�ρ∗� V ) is always nonnegative, it can take values close to
zero with significant probability when (1 − ρ∗′ρ∗) is small and at the same time σV +ρ∗
lies in an area where the probability density of Z∗

φ is high. If it takes values close to zero

at the time that JΛ(σ�ρ∗� V ) is nonzero, the ratio JΛ(σ�ρ∗� V )/J1/2
ω (σ�ρ∗� V ) can be large,

creating a fat tail for its distribution.
It is difficult to study the fat tail feature of JΛ(σ�ρ∗� V )/J1/2

ω (σ�ρ∗� V ) for general
σ , ρ∗, and V . Here, I study JΛ(σ�ρ∗� V )/J1/2

ω (σ�ρ∗� V ) for a specific choice of σ , ρ∗,
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Figure 2. Fat-tailed local asymptotic distribution againstN(0�1).

and V . I plot its p.d.f. by simulating the normal random vectorsZ∗
φ andZΛ, and compute

its tail probabilities using numerical tools. The parameters I consider are ρ∗ = (1�0),
V = diag((1�0)′), and σ = 1�5.7 Then simple algebra shows

JΛ(σ�ρ
∗� V )

J
1/2
ω (σ�ρ∗� V )

= 3ZΛ −Z2
Λ

2|1�5 −ZΛ| � (3.9)

where ZΛ ∼N(0�1). In this specification, the denominator is close to zero and the nu-
merator is a large positive constant when ZΛ is close to 1�5, and the probability density
ofZΛ at 1�5 is not very small. Thus, we can expect a fat tail in the distribution of the ratio.
This is confirmed in Figure 2, which shows the p.d.f. of the ratio.

Numerical computation yields Pr(J−1/2
ω JΛ > z0�05/2) ≈ 14%. This suggests that a

nominal level 5% one-step Vuong test can pick one model with probability close
to 14% when applied to models with ρ∗, and V /

√
tr(V 2) close to (1�0� � � � �0) and

diag((1�0� � � � �0)′), respectively, while this probability should only be 2�5% according to
the pointwise asymptotic theory. 8

4. New nondegenerate test

The previous section shows that the null distribution of T̂n can be rather different from
N(0�1) because of an asymptotic bias in the numerator nL̂Rn and because of the ran-
domness in the denominator n1/2ω̂n. Here I propose corrections to address both issues.
The corrected test statistic combined with a simulated critical value forms my new non-
degenerate Vuong test.

7This set of parameters is motivated by the discussion in the above paragraph and by simulation exper-
iments. By simulating the quantiles of the ratio with many sets of parameters, I find that this set yields the
worst (largest) tail probability for the ratio JΛ(σ�ρ∗� V )/J1/2

ω (σ�ρ∗� V ).
8On the other hand, in this specification, the two-step Vuong test has no overrejection because the vari-

ance test tends not to reject when |J−1/2
ω JΛ| has a large quantile. However, using the variance test to control

the size results in large power loss, as illustrated in Example 2 in Section 7.
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4.1 The new test and its asymptotic size

The first correction is the bias correction to the numerator. Section 3.2 shows that L̂Rn as
an estimator of EP0Λi(φ

∗
P0
) has a O(1/n) bias tr(V )/(2n). I use the consistent estimator

V̂n of V to correct the bias. The bias corrected numerator is defined as

L̂R
mod
n = L̂Rn + tr(V̂n)/(2n)� (4.1)

where mod stands for modified.
The second correction is the adjustment to the denominator. In Section 3.3, I show

that the random denominator can take values close to zero with nonnegligible prob-
ablity, creating a fat tail for T̂n. I counteract the effect of the randomness by adding a
positive constant term to it,(

ω̂mod
n (c)

)2 = ω̂2
n + c · tr

(
V̂ 2
n

)
/n� (4.2)

where c is a positive constant. We discuss a data-dependent method to choose c below.
Then the new test statistic is

T̂mod
n (c)= n1/2L̂R

mod
n

ω̂mod
n (c)

� (4.3)

Under the DGP sequence in Theorem 3.1, one can show that

T̂mod
n (c)→d J

(
σ�ρ∗� V � c

) := JΛ(σ�ρ
∗� V )+ tr(V )/2√

Jω(σ�ρ∗� V )+ c · tr(V 2)
� (4.4)

The random variable on the r.h.s. has tails that are close to those of N(0�1), but still not
the same as those ofN(0�1). Thus, if we use theN(0�1) critical values, the new test might
still have some size distortion, even though it is not as bad as the classical Vuong tests.

To completely remove the asymptotic size distortion, I propose a simulation-based
critical value cv(1 − α� V̂n� c), where

cv(1 − α�V � c)= sup
σ∈[0�∞]�ρ∗:‖ρ∗‖≤1

F−1
|J(σ�ρ∗�V �c)|(1 − α)� (4.5)

where F−1
X (τ) denotes the τ-quantile of X . The reason that we take the supremum over

σ and ρ∗ is that these parameters cannot be consistently estimated.9 The supremum
gives us a consistent upper bound for the quantile of J(σ�ρ∗� V � c). Note that the critical
value is weakly larger than zα/2 because J(∞�ρ∗� V � c)∼N(0�1) for any (ρ∗� V � c).

With the modified test statistic and the critical value, the new nondegenerate test
rejectsH0 if |T̂mod

n (c)|> cv(1 −α� V̂n� c). Theorem 4.1 below shows that this test has well
controlled asymptotic size.

9The parameterσ2 cannot be consistently estimated because it is the limit of nω2
Pn

, andω2
Pn

cannot be es-

timated n−1-consistently. The parameter ρ∗ cannot be estimated because ρPn(φ
∗
Pn
) cannot be consistently

estimated when ω2
Pn

drifts to zero.



98 Xiaoxia Shi Quantitative Economics 6 (2015)

Theorem 4.1. Suppose Assumption 3.1 holds. Then, for any c ≥ 0,

lim sup
n→∞

sup
P∈P0

PrP
(∣∣T̂mod

n (c)
∣∣> cv(1 − α� V̂n� c)

)≤ α�
4.2 Implementation of the test

I provide MATLAB and STATA codes that implement the new nondegenerate test.
The codes implement the following steps, which summarize the procedure introduced
above.

• Step 1. Compute the maximum likelihood estimators θ̂n and β̂n. From the max-
imum likelihood procedure, also obtain the Hessian matrices of the two models re-
spectively denoted Ân�f and Ân�g, as well as the first derivatives of the log densities,
{∂ log fi(θ̂n)/∂θ}ni=1 and {∂ loggi(β̂n)/∂β}ni=1.

• Step 2. Let Ân = ( Ân�f 0

0 −Ân�g
)

and let B̂n be the sample covariance matrix of the vec-

tor [∂ log fi(θ̂n)/∂θ′� ∂ loggi(β̂n)/∂β′]′. Let V̂n = eig(B̂1/2
n Â−1

n B̂
1/2
n ).

• Step 3. Choose a c (see the choice of c below), and obtain T̂mod
n (c) according to (4.3).

• Step 4. Draw an independent sample {(ZΛ�s�Z∗′
φ�s)

′}Ss=1 fromN(0� [1�ρ∗′;ρ∗′� V̂n]) for
a large number S.

• Step 5. For a fixed σ , ρ∗, and V̂n obtained in Step 2 and c chosen in Step 3, perform
the following substeps:

– For each s, plug (ZΛ�s�Z∗′
φ�s)

′ into (4.4) to obtain Js := Js(σ�ρ∗� V � c).

– Then let F−1
|J(σ�ρ∗�V̂n�c)|(1 − α) be the 1 − α quantile of the sample {J1� � � � � JS}.

• Step 6. Use the recommended procedure for computing the supremum below to
obtain cv(1 −α� V̂n� c). Make sure not to redo Step 4 when an F−1

|J(σ�ρ∗�V̂n�c)|(1 −α) is com-

puted for each (σ�ρ∗� c).
• Step 7. Compare T̂mod

n (c) to cv(1 − α� V̂n� c) and perform the following substeps:

– RejectH0 and pick model F if T̂mod
n (c) > cv(1 − α� V̂n� c).

– RejectH0 and pick model G if T̂mod
n (c) <−cv(1 − α� V̂n� c).

– Do not rejectH0 otherwise.

Next, I discuss two important implementation details of the new test: the choice of
c and the computation of the supremum. I recommend detailed procedures for both
based on experience from the Monte Carlo experiments and the empirical application.
I discuss the general case first and then discuss the nested case in which things simplify.

Choice of c The constant c trades off the power of the test in different areas of the DGP
space. Larger c leads to smaller cv(1 −α� V̂n� c), and, thus, increases the power of the test
against the alternatives under which ω2

P0
is large and decreases the power against alter-

natives under which ω2
P0

is small. I propose a data-dependent procedure that balances
the power across the DGP space. The procedure is as follows:



Quantitative Economics 6 (2015) A nondegenerate Vuong test 99

• Start with c = 0 and obtain cv(1 − α� V̂n�0). If cv(1 − α� V̂n�0)− zα/2 is smaller than a
tolerance level, say 0�1, stop here and use c = 0. Otherwise, proceed to the next step.

• Increase c until it reaches a point c∗ such that cv(1 − α� V̂n� c
∗) − zα/2 ≈ 0�1. Use

c = c∗. To find this c∗, one can either use a grid search or a simplex-based method. Find-
ing c∗ numerically is easy due to the monotonicity of cv(1 − α� V̂n� ·).
Computation of the supremum The critical value cv(1 − α� V̂n� c) is defined as a supre-
mum over a k+ 1-dimensional parameter, which can be time-consuming to compute.
My experience with the Monte Carlo examples suggests two simplifications.

• In my experience, the supremum over ρ∗ is always achieved at extremum points
of the space {ρ∗ ≥ 0 : ‖ρ∗‖ ≤ 1}. In particular, it is always achieved at ρ∗ = (0� � � � �0�1�0�
� � � �0)′, where the value 1 occurs at the same location as the largest element (in absolute
value) of V̂n on the diagonal of V̂n. For example, if diag(V̂n)= (−0�99�0�1�0�5)′, then the
supremum over ρ∗ is always achieved at ρ∗ = (1�0�0)′. Thus I recommend focusing on
this single point of ρ∗.

• Not all points on the space, [0�∞], of σ are equally relevant for the supremum. In
my experience, the supremum, if larger than zα/2, typically occurs at the σ such that

σ/
√

tr(V 2) ∈ [0�5]. Thus, I recommend searching for more points in this interval than
outside of it. If an optimization routine that requires a starting value is used, I rec-
ommend picking starting values from this interval. Sometimes, the supremum may be
achieved at σ = ∞. That is typically the case where the supremum is smaller than zα/2
up to the simulation error. In that case, when to stop the search should not make a
big difference. Furthermore, I recommend always considering σ = ∞, at which point
F−1

|J(σ�ρ∗�V̂n�c)|(1 − α)= zα/2.

Nested case If we know that F and G are nested, then σ can only take the value 0.
Moreover, in this case, a one-sided test is more useful than a two-sided test because
the nested model cannot be strictly closer to the truth than the nesting model according
to the Kullback–Leibler distance. Suppose without loss of generality that G ⊂ F . Then,
typically, one would like to test H0 : LRP0 = 0 versus H1 : LRP0 > 0. Then the test statistic
can stay unchanged, while the critical value should be changed to

cvnested(1 − α�V � c)= F−1
J(0�−�V �c)(1 − α)� (4.6)

where the dash (–) replaces the ρ∗ argument in J(0�−� V � c) because when σ = 0, that ar-
gument is redundant. The test rejectsH0 in favor ofH1 if T̂mod

n (c) > cvnested(1 −α�V � c).
Because nondegeneracy does not occur in the nested case, making the critical value
small is not as important as in the nonnested case. It is thus reasonable to simply set
c = 0. This test is a misspecification-robust alternative to the usual χ2 test for nested
models; that is, this test allows the nesting model (F ) to be misspecified.

5. Power properties of the nondegenerate Vuong test

The new nondegenerate Vuong test has power approaching 1 against all fixed alterna-
tives for the same reason that the classical Vuong tests do. This is because the modifica-
tions to both L̂Rn and ω̂2

n are of smaller order than L̂Rn and ω̂2
n under fixed alternatives,
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and, thus, vanish in the limit. The consistency of the classical Vuong tests is shown in
Theorems 5.1 and 6.3 in Vuong (1989). I do not repeat the work, but rather focus on the
local power of the new test.

Two types of local alternative sequences are defined by Assumption 5.1 and Assump-
tion 5.2, respectively. The former defines the n−1/2-local alternatives, whereas the latter
defines the local alternatives under which EPnΛi(φ

∗
Pn
) converges to zero at a rate faster

than n−1/2.

Assumption 5.1. The sequence of true DGPs {Pn ∈ P}∞n=1 weakly converges to a P0 ∈ P0,

and (a) n1/2LRPn → d ∈R/{0}, (b)ω2
Pn

→ω2
P0

∈ [0�∞), and (c) VPn := eig(B1/2
Pn
A−1
Pn
B

1/2
Pn
)→

VP0 .

Assumption 5.2. The sequence of true DGPs {Pn ∈ P}∞n=1 weakly converges to a P0 ∈ P0,
and (a) nLRPn → ∞ and (b) nω2

Pn
→ σ2∞ ∈ [0�∞).

Theorem 5.1 below shows that the modified test has nontrivial power against the
above-defined local alternatives.

Theorem 5.1. (a) Under Assumptions 3.1 and 5.1, for any c > 0,

lim
n→∞ PrPn

(
T̂mod
n (c) > cv(1 − α� V̂n� c)

)=Φ(d/ωP0 − cv(1 − α�VP0� c)
)

and

lim
n→∞ PrPn

(
T̂mod
n (c) <−cv(1 − α� V̂n� c)

)=Φ(−d/ωP0 − cv(1 − α�VP0� c)
)
�

(b) Under Assumptions 3.1 and 5.2, for any c > 0,

lim
n→∞ PrPn

(
T̂mod
n (c) > cv(1 − α� V̂n� c)

)= 1 and

lim
n→∞ PrPn

(
T̂mod
n (c) <−cv(1 − α� V̂n� c)

)= 0�

Remark. Part (a) shows the asymptotic power function of the new nondegenerate test
when ω2

P0
may or may not be small. This describes the power of the test to detect the

better model when both candidate models may be globally misspecified. Notice that the
n−1/2 is the standard rate when one considers EPΛi(φ∗

P) as a parameter and the test as
one based on the t-statistic of this parameter (except with preestimated parameter φ̂n).

Part (b) shows the local power of the new nondegenerate test whenω2
P0

is small. This
describes the power of the test to detect the better model when the candidate models are
correctly specified or mildly misspecified, which arguably are the more relevant situa-
tions in practice. The faster rate n−1 is rather encouraging as it implies that the new test
has the ability to discern very small deviations from the null in these empirically relevant
situations.

6. Moment-based models

In all of the discussions above, the fact that log fi(θ) and loggi(β) are logarithms of den-
sity functions is not essential; neither is the fact that θ̂n and β̂n are maximizers of log-
likelihoods. Once the maximum likelihood structure is relaxed, the new test proposed
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above can be adapted to a much broader class of problems. In particular, it can be used
to compare moment-based models by the generalized empirical likelihood (GEL; see
Smith (1997) or Kitamura (2006)) criteria. I describe the extended framework in this sec-
tion.

Still let F and G denote the two competing models, which are now moment-based
models,

F =
{
F :
∫
mf (x�ψf )dF(x)= 0 for some ψf ∈Ψf ⊂Rdψf

}
�

(6.1)

G =
{
F :
∫
mg(x�ψg)dF(x)= 0 for some ψg ∈Ψg ⊂Rdψg

}
�

where mf and mg are moment functions known up to the parameters ψf and ψg. The
GEL distance from the models to the true distribution P0 can be written into the general
form

d(F�P0)=EP0

[
Lf
(
Xi�ψ

∗
f�P0

�γ∗
f�P0

)]
and

(6.2)
d(G�P0)=EP0

[
Lg
(
Xi�ψ

∗
g�P0

�γ∗
g�P0

)]
�

where (ignoring the subscripts f and g indexing the models) L is a function known
up to the parameters θ := (ψ′�γ′)′, γ is the Lagrange multiplier introduced to write
the GEL distances into the form above, and θ∗

P := (ψ∗′
P0
�γ∗′
P0
)′ denotes the pseudo-true

value of the parameter under the data distribution P . Typically, θ∗
P is a saddle point of

EP [L(Xi�φ�γ)], that is,

ψ∗
P = arg max

ψ
EP
[
L
(
Xi�ψ�γ

∗
P(ψ)

)]
and γ∗

P = γ∗
P

(
ψ∗
P

)
� where

(6.3)
γ∗
P(ψ)= arg min

γ
EP
[
L(Xi�ψ�γ)

]
�

The GEL distance includes the following well known examples. Additional examples are
given in Kitamura (2006).

• Empirical Likelihood (EL): L(x�θ)= − log(1 − γ′m(x�ψ)).
• Exponential Tilting (ET): L(x�θ)= exp(γ′m(x�ψ)).
• Continuous Updating Generalized Method of Moments (GMM) (CUE): L(x�θ) =

(γ′m(x�ψ)+ 1)2/2.

The Vuong-type hypothesis for the moment models based on the GEL distance is

H0 : d(F�P0)= d(G�P0)� (6.4)

Now let φ denote (θ′
f � θ

′
g)

′ and

Λi(φ)= −Lf (Xi�θf )+Lg(Xi�θg)� (6.5)

ThenH0 can be rewritten exactly as (2.2).
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Let φ̂n be the GEL estimator of φ∗
P0

, that is, φ̂n = (ψ̂′
f�n� γ̂

′
f�n� ψ̂

′
g�n� γ̂

′
g�n)

′, where

ψ̂j�n = arg max
ψj
n−1

n∑
i=1

L
(
Xi�ψj� γ̂j�n(ψj)

)
and γ̂j�n = γ̂j�n(ψ̂j�n)� where

(6.6)

γ̂j�n(ψj)= arg min
γj
n−1

n∑
i=1

L(Xi�ψj�γj)� j ∈ {f�g}�

Let L̂Rn, ω̂2
n, cω(V �1−α),ω2

P ,AP(φ), BP(φ), and ρP(φ) be defined in the same way as in

Sections 2 and 3 but with the newΛi(φ) andφ. Let Ân, B̂n, V̂n, L̂R
mod
n , ω̂mod

n (c), T̂mod
n (c),

and cv(1 − α�V � c) be defined as in Section 4 but with the new Λi(φ) and φ. Below I
show that (i) both the one-step test and the two-step test analogous to those in Vuong
(1989) have size distortion, and (ii) the new nondegenerate test based on T̂mod

n (c) and
cv(1 − α� V̂n� c) is asymptotically uniformly valid and has good power properties.

To describe the results, we first introduce the assumptions. These assumptions are
similar to those used in previous sections for the parametric models, but some are
adapted to fit into the moment-based model framework. LetΘf and Θg be the parame-
ter spaces of models F and G, respectively. I first introduce the assumption on the mod-
els.

Assumption 6.1. (a) The functionsLf (x�θf ) andLg(x�θg) are three times continuously
differentiable in θf and θg, respectively, for all x ∈ X , and (b)Θf andΘg are compact.

Next, I define the space of DGPs and the subspace that satisfiesH0.

Definition 6.1. For positive constants δ and M , let P be the set of probability mea-
sures, P , on X such that the following statements hold:

(i) The pseudo-true parameters satisfy the first-order conditions ∃φ∗
P ≡ (θ∗′

f�P�

θ∗′
g�P)

′ ∈Θf ×Θg, such that

0 =
∂EP [Lf (Xi�θ∗

f�P)]
∂θf

=
∂EP [Lg(Xi�θ∗

g�P)]
∂θg

� (6.7)

(ii) The pseudo-true parameters lie uniformly in the interior of their space:
Nδ(θ

∗
f�P)⊆Θf andNδ(θ∗

g�P)⊆Θg.

(iii) We have

EP sup
θj∈Θj

(∣∣Lj(Xi�θj)∣∣+ ∥∥∥∥∂Lj(Xi�θj)∂θj

∥∥∥∥+
∥∥∥∥∂2Lj(Xi�θj)

∂θj ∂θ
′
j

∥∥∥∥
+

dθj∑
r=1

∥∥∥∥∂3Lj(Xi�θj)

∂θj�r ∂θj ∂θ
′
j

∥∥∥∥)2+δ
≤M for j ∈ {f�g}�

(iv) We have EP [(Λi(φ∗
P)−EPΛi(φ∗

P))/ωP(φ
∗
P)]2+δ ≤M if ωP(φ∗

P) > 0.
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(v) The Hessians are bounded away from singularity: infφ∈Nδ(φ∗
P)

|eig|min(AP(φ))≥ δ.

(vi) The data set (X1� � � � �Xn) is an i.i.d. sample drawn from P .

Definition 6.2. We have P0 = {P ∈ P :EPΛi(φ∗
P)= 0}.

Because we replaced the unique-identifiability assumption (condition (i) of Defini-
tion 3.1) by the first-order condition (condition (i) of Definition 6.1), we need to supple-
ment it with the following additional assumption.

Assumption 6.2. (a) Under any sequence {Pn}∞n=1 ∈ Seq(σ2�A�B�ρ) for some (σ2�A�

B�ρ), we have ‖φ̂n − φ∗
Pn

‖ →p 0, and (b) the finite sample first-order condition holds:

0 =∑n
i=1

∂Lf (Xi�θ̂f�n)

∂θf
=∑n

i=1
∂Lg(Xi�θ̂g�n)

∂θg
.

Remark. Assumption 6.2(a) assumes the consistency of the estimator φ̂n under drifting
sequences of DGPs. For moment-based models, Kitamura (2000, Lemma 1) and Chen,
Hong, and Shum (2007, Theorem 3) give primitive sufficient conditions for such con-
sistency in the cases of exponential tilting (ET) and empirical likelihood (EL), respec-
tively. Consistency for the other GEL distances can be established similarly.10 Assump-
tion 6.2(b) is satisfied for GEL estimators defined above. In Assumption 6.2(b), the 0 can
be replaced with op(

√
n) without affecting any of the results below.

Now, we are ready to state the theorem for the moment-based models, which says
that all the results in the previous sections carry over to the moment-based models.

Theorem 6.1. With Assumption 3.1 replaced by Assumption 6.1, with P and P0 defined
in Definitions 6.1–6.2, with Assumption 6.2 added and with all symbols involved taking
their new meanings acquired in this section, Theorems 3.1–5.1 remain valid.

Proof. The proofs of the new theorem are the same as those for the old ones except
when Lemma A.1(a) and when the first-order conditions of the likelihood maximization
problem are used. In the former case, use Assumption 6.2(a) instead. In the latter case,
use condition (i) of Definition 6.1 and Assumption 6.2(b) instead. �

7. Simulation examples

In this section, I illustrate the performance of the classical Vuong tests and the new non-
degenerate test. Three examples are considered. The first example is a prototype of the
first source of size distortion: bias in the numerator. The second and third examples are
prototypes of the second source of size distortion: the random denominator. The third
example is reported in Appendix C in the supplement to save space. In all examples, the
number of Monte Carlo repetitions is 5000 and the number of random draws used to
obtain simulated critical values is 5001.

10The consistency results in these two papers are under fixed DGPs. Minor extensions to allow drifting
sequences of DGPs can be made similarly to Shi (2009).
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The main observations from the examples are (i) both the classical one-step and
two-step Vuong tests can generate serious size distortions at all sample sizes, and (ii) the
new nondegenerate test has little size distortion. The first example also shows that the
nondegenerate test has a substantial power advantage when the more parsimonious
competing model is the better one and it has good power when the opposite is true as
well. The second example also illustrates the trade-off of size and power between the
one-step and the two-step tests, and that the nondegenerate test is not subject to the
same trade-off. The third example neatly demonstrates the finite sample implications
of the theoretical local power results.

For comparison, I also report simulation results for Schennach and Wilhelm’s (2011)
split-sample test (SW test for short).11 The results show that the SW test with the robust
weighting recommended in the 2011 version of their paper has less power than my test
most of the time and significantly less some of the time. It is also oversized in several
scenarios.

To implement the nondegenerate test, I closely follow the steps in Section 4.2. To
implement Schennach and Wilhelm’s (2011) test, I use their robust weighting parameter.

7.1 Normal regression example

Now consider a setup similar to Example 1 introduced in Section 3:

F : Y = θ(0) +
Kf∑
j=1

θ(j)Zf�j + v� v|Zf �Zg ∼N(0�σ2
f

)
�

G : Y = β(0) +
Kg∑
j=1

β(j)Zg�j + u� u|Zf �Zg ∼N(0�σ2
g

)
�

The models now do not assume known error variance. Consider DGPs of the form

Y = 1 + a1√
Kf

( Kf∑
j=1

Zf�j

)
+ a2√

Kg

( Kg∑
j=1

Zg�j

)
+ ε�

(7.1)
(Zf�1� � � � �Zf�Kf �Zg�1� � � � �Zg�Kg� ε)∼N(0� IKf+Kg+1)�

Under this DGP, E[Λi(φ∗)] = (log(1 + a2
1)− log(1 + a2

2))/2 and ω2 is determined by the
magnitude of both a1 and a2.

I consider a base case with n = 250, Kf = 1, and Kg = 9.12 I also consider four vari-
ants of the base case. Each variant differs from the base case in one and only one aspect.
The first and the second variants have a larger (19) and a smaller (4)Kg, respectively. The

11Because the paper by Schennach and Wilhelm (2011) is not publicly available at this point, a brief de-
scription of their test is given in Appendix D in the supplement. I thank them for sending their manuscript
and checking my description.

12The variablesKf andKg are set so that model F and model G have 2 and 10 regressors, respectively.
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Table 1. Rejection probabilities of different tests for the normal regression example.

n
250EΛi(φ

∗) Cases 1-Step T 2-Step T Var. T ND Test SW Test

0 Base (0�00�0�08)∗ (0�00�0�08) 0�95 (0�02�0�01) (0�01�0�06)
Kg = 19 (0�00�0�28) (0�00�0�19) 0�67 (0�01�0�01) (0�00�0�19)
Kg = 4 (0�01�0�04) (0�01�0�04) 0�99 (0�01�0�01) (0�02�0�04)
n= 100 (0�00�0�13) (0�00�0�05) 0�27 (0�01�0�01) (0�00�0�12)
n= 500 (0�00�0�07) (0�00�0�07) 1�00 (0�02�0�02) (0�01�0�05)

log 1�09 Base (0�17�0�00) (0�16�0�00) 0�82 (0�43�0�00) (0�12�0�00)
Kg = 19 (0�02�0�00) (0�02�0�00) 0�44 (0�34�0�00) (0�03�0�01)
Kg = 4 (0�44�0�00) (0�44�0�00) 0�95 (0�51�0�00) (0�22�0�00)
n= 100 (0�22�0�00) (0�16�0�00) 0�58 (0�42�0�00) (0�20�0�00)
n= 500 (0�17�0�00) (0�17�0�00) 0�87 (0�45�0�00) (0�09�0�01)

− log 1�09 Base (0�00�0�90) (0�00�0�79) 0�82 (0�00�0�40) (0�00�0�45)
Kg = 19 (0�00�0�99) (0�00�0�43) 0�43 (0�00�0�34) (0�00�0�70)
Kg = 4 (0�00�0�79) (0�00�0�79) 0�95 (0�00�0�48) (0�00�0�34)
n= 100 (0�00�0�93) (0�00�0�57) 0�58 (0�00�0�44) (0�00�0�78)
n= 500 (0�00�0�90) (0�00�0�83) 0�87 (0�00�0�39) (0�00�0�27)

∗ The pair (p1�p2)= (Pr(rejectingH0 and selecting F)�Pr(rejectingH0 and selecting G)).

third and the fourth variants use a larger (500) and a smaller (100) sample size, respec-
tively.

For all variants and the base case, I consider a null and two local alternative DGPs.
The null DGP is obtained by setting a1 = a2 = 0�25. The first alternative DGP sets a1 =√

1�09250/n − 1, a2 = 0. Under this DGP, model F is the true model, model G is not, and
EPn[Λi(φ∗)] = log(1�09)× (250/n). The second alternative DGP is the opposite and sets

a1 = 0, a2 =
√

1�09250/n − 1, and under this DGP, EPn[Λi(φ∗)] = − log(1�09)× (250/n).
Table 1 shows the rejection probabilities of the classical Vuong tests (1-Step T,

2-Step T), my new nondegenerate test (ND test), and the SW test. The nominal size of
all tests is 5%. The rejection probabilities are reported as pairs (p1�p2), where p1 is the
probability of rejecting H0 and choosing F , and p2 is that of choosing G. The sum of p1

and p2 is the rejection probability. In Table 1, I also report the rejection probabilities of
the variance test (that is, the first step of the two-step classical Vuong test, labelled Var. T
in the table).

The first panel of Table 1 shows the null rejection probabilities. As can be seen from
this panel, the one-step Vuong test overrejects (8% vs. 5%) in the base case. The overre-
jection becomes more severe as Kg increases to 19 (28% vs. 5%) as predicted by Theo-
rem 3.2. Overrejection is evident in the variant with n= 100 as well. The two-step Vuong
test and the SW test have less overrejection in all cases, though their overrejection is ap-
parent in some cases. On the contrary, my nondegenerate test does not overreject in any
of the cases considered.

The second panel of Table 1 shows the rejection probabilities when the more par-
simonious model F is the true model and model G is wrong. The probabilities that the
classical Vuong tests or the SW test picks the correct model are lower than those for the
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nondegenerate test, and a lot lower in all the cases except when the dimensions of the
two models are close (Kg = 6).

The third panel shows rejection probabilities when the less parsimonious model G is
the true model and model F is wrong. Not surprisingly, the classical Vuong tests pick the
correct model with high probabilities, but as we see from the first panel, this is because
these tests tend to always pick the less parsimonious model, even when they should not.
My nondegenerate test has rejection rates comparable to the second panel, showing that
it has symmetric power under symmetric deviations from the null in both directions.
In other words, my test does not bias against either model.

One last thing worth noting is that the power of the nondegenerate Vuong test stays
roughly constant as we increase the sample size from 100 to 500 while keeping nLRP0

constant. This is consistent with the prediction of the n−1 local power result (Theo-
rem 5.1(b)). On the other hand, the power of the SW test decreases noticeably as n in-
creases.

7.2 Joint normal location example

Next, we consider an example designed to illustrate the size distortion effect of the ran-
domness in the denominator in the classical Vuong test statistic. As the numerical exam-
ple in Section 3.3 shows, such a size distortion effect is apparent in the ρ∗ = (1�0) case.
The example thus is designed to generate a ρ∗ close to (1�0), that is, a case where the
log density ratio is highly correlated with the ∂ log fi(θ∗

P0
)/∂θ, but nearly uncorrelated

with ∂ loggi(β∗
P0
)/∂β. To make the task easy, I consider a simple data structure, where

there is a two-dimensional observable Y = (Y1�Y2)
′ and each model contains only one

parameter.

Example 2 (Joint Normal Location). We have

F : (Y1�Y2)∼N((θ�0)� I2
)
� θ ∈R�

G : (Y1�Y2)∼N((0�β)� I2
)
� β ∈R�

To generate the data, I let
( Y1
Y2

) ∼ N
(( θ0
β0

)
�
( 25 0

0 1

))
. It is easy to calculate that the log-

likelihood ratio of the two models under such a DGP is E[Λi(φ∗)] = (θ2
0 − β2

0) and the
variance of the log-density ratioω2 = 25θ2

0 +β2
0. Thus, the null hypothesisH0 holds if and

only if θ2
0 = β2

0, and the asymptotic varianceω2 increases with both θ2
0 andβ2

0. UnderH0,
calculation shows that ρ∗ = (5/

√
26�−1/

√
26)′ ≈ (0�98�−0�20)′, which is relatively close

to the extreme value (1�0)′.
To gain a complete picture of the size of the different tests (of nominal size 5%),

I plot the rejection probabilities under DGPs with θ0 = β0 andβ0 ∈ [0�3]. These rejection
probabilities for four different tests and three sample sizes are plotted against β0 in the
three subplots on the left of Figure 3. It is easy to see that both my new nondenerate
test (solid line) and the SW test (dashed line) achieve good size control—their rejection
probabilities stay close to or below the nominal size 5%. On the other hand, the one-
step Vuong test (dash-dotted line) has large overrejection (about 12% as opposed to the
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Figure 3. Rejection probabilities of the one-step Vuong test (dash-dotted line), the two-step
Vuong test (dashed line), the SW test (dotted line), and my new nondegenerate test (solid line)
for Example 2. The horizontal dotted line indicates the nominal size 5%.

nominal size 5%) at all three sample sizes considered. The two-step Vuong test has much
smaller, but still some, overrejection. Increasing the sample size does not reduce the
maximum overrejection of either the one-step Vuong test or the two-step Vuong test,
but only changes where the maximum overrejection occurs.



108 Xiaoxia Shi Quantitative Economics 6 (2015)

To compare the power of different tests, I plot the rejection probabilities under DGPs
with θ0 = 0 and β0 ∈ [0�3]. As we can see, the two tests that have good size properties—
my nondegenerate test and the SW test—do not have the same power property. My test
outperforms the SW test for all the β0 values at which both tests have nontrivial power.
For example, to achieve a 50% rejection rate, β0 needs to be about 0�7 for the nondegen-
erate test, while it needs to be twice as large for the SW test. Among the four tests, the
two-step Vuong test has by far the poorest power.

8. Empirical application to voter turnout

In this section, I apply my new test to models of voter turnout using the Texas liquor
referenda data collected by Stephen Coate and Michael Conlin. The exercise aims to
illustrate the implementation of the new test in STATA and to investigate the extent to
which the new test yields conclusions different from those of the classical Vuong tests.

The question studied in Coate and Conlin (2004) is how people decide to vote or not
in an election. This is a central problem in political economy. Many theoretical models
can be built. When multiple theories are plausible, the Vuong test is a convenient tool to
evaluate them in real data. Coate and Conlin (2004) use the classical one-step Vuong test
to evaluate the relative fit of three models on the Texas liquor referenda data. The three
models evaluated are the linear probability reduced-form model, the intensity model,
and the group-rule utilitarian model. They find that the group-rule–utilitarian model
performs significantly better. That is, when testing the null hypothesis that the group-
rule utilitarian model and another model are equally distant to the true data distribu-
tion, the classical Vuong test of nominal level 5% rejects in favor of the former.

First, I briefly describe the Texas liquor referenda data. The data are collected from
363 local liquor elections in Texas between 1976 and 1996. The elections are on proposals
that, if passed, would have relaxed liquor regulation in the jurisdiction. Thus, supporting
the proposals represents a preference for less liquor regulation. The data set contains the
number of support votes, the number of opposing votes, the number of eligible voters
in the jurisdiction at election time, and demographic and economic information on the
jurisdiction as well as weather and other features of the election day. More details and
summary statistics are in Coate and Conlin (2004).

I consider all three models studied in Coate and Conlin (2004). To make this section
self-contained, I describe these models briefly here. Greater detail and background in-
formation can be found in Coate and Conlin (2004). The reduced-form model (RF for
short) is a seemingly unrelated regression model in which the fraction of the eligible
voters who voted to support the proposal and that of the eligible voters who voted to
oppose it are dependent variables, and all covariates mentioned above are explanatory
variables.

In the group-rule–utilitarian model (GRU for short), the eligible voters live on a con-
tinuum and incur a heterogeneous cost for voting. They are exogenously divided into
two groups: supporters and opposers. Each supporter derives a positive utility b from
having the proposal passed, while each opposer derives a positive utility x from hav-
ing the proposal blocked. Each group (supporters and opposers) collectively and simul-
taneously chooses a rule (that dictates which members vote and which stay home) to



Quantitative Economics 6 (2015) A nondegenerate Vuong test 109

maximize the aggregate utility of its members given the rule of the other group. The vot-
ing behavior will be a result of an equilibrium of the game between the two groups. The
group dictator here serves as an approximation to people’s rule–utilitarian behavior: in-
dividuals follow the rule that would maximize the aggregate expected utility of the group
they belong to if everybody in the group followed it. The election is won by the side that
sends more people to vote. Coate and Conlin (2004) estimated the model after param-
eterizing the winning benefits, the voting cost, and the distribution of supports in the
population of eligible voters.

In the intensity model (INT for short) all model primitives are assumed to be the
same as those of the GRU model. But instead of being rule–utilitarian, each individual
supporter simply chooses to vote if her voting cost is below αb and each individual op-
poser chooses to vote if his voting cost is below αx, where α is the intensity with which
the individuals care about the election outcome.

I first estimate the models in STATA using its official ml package and obtain the co-
variance of the scores (matrix B̂n) as well as the Hessian (matrix Ân) in the following
way.13 The scores are conveniently available from the ml score command, while the in-
verse of the Hessian is simply the variance–covariance matrix of the parameter estima-
tors reported in the STATA macro e(V) after ml estimation. Using this set of information,
I then compute the test statistic and the critical value of the new test following the pro-
cedures described in Section 4.2 using Mata.

I apply the classical Vuong test and the new nondegenerate Vuong test to the pair-
wise comparison of the three models described above. The results are reported in Ta-
ble 2. Because the nondegenerate test differs from the classical Vuong test both in test
statistic and in critical value, for a more informative comparison, I report the p-values
for both tests.14 The result of the nondegenerate test confirms Coate and Conlin’s (2004)
conclusion that the GRU model is significantly closer to the truth than the RF model at
levels lower than 1%. However, the evidence for the other model comparison becomes
weaker. While Coate and Conlin (2004) find that the GRU model is significantly closer

Table 2. Results of the nondegenerate Vuong test and the classical Vuong test.

p-Value of p-Value of
F(Log-Likelihood) G(Log-Likelihood) Nondegenerate Test Classical Vuong Test

GRU(748�59) INT(706�41) 0�136 0�037∗∗
GRU(748�59) RF(662�90) 0�002∗∗∗ 0�001∗∗∗
INT(706�41) RF(662�90) 0�073∗ 0�105

Note: GRU stands for group-rule–utilitarian model, INT stands for the intensity model, and RF stands for the reduced-form
model. The tests are for H0 : LL(F) = LL(G) against H1 : LL(F) �= LL(G). The ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

13For estimation, I use the STATA code of Coate and Conlin (2004), downloaded from the website of the
American Economic Review. The cleaned data set was from the same source. We were able to use their code
without modification and to replicate the tables in their paper with remarkable precision.

14To find the p-value of the nondegenerate test, I try different significance levels and find the lowest one
for which the test statistic still exceeds the critical value. The p-values reported are accurate to the third
digit.
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to the truth than the INT model using the classical Vuong test, the conclusion does not
hold even at the 10% level according to the new test.

It is worth noting that the nondegenerate Vuong test does not always yield weaker
significance: in the comparison between the intensity model and the linear probability
reduced model, thep-value of the nondegenerate Vuong test is, in fact, smaller than that
of the classical Vuong test. This suggests that the kind of difference that my proposed
bias correction and the variance adjustment make depends on the empirical context.

9. Conclusion

To sum up, this paper proposes a new nondegenerate test as an alternative and a modi-
fication of the classical Vuong tests, and extends it to moment-based models. The analy-
sis complements Vuong (1989) as well as Kitamura (2000) by making their tests rigorous
in a uniform sense, and opens the door for further research on uniform inference in
nonnested testing problems. The test is implemented on a voter turnout data set from
Coate and Conlin (2004).

Appendix A: Notation and auxiliary lemmas

Let LLN denote the weak law of large numbers for rowwise i.i.d. triangular arrays. I use
Theorem 2 in Andrews (1988). This theorem is a law of large numbers for L1-mixingale
triangular arrays, which includes rowwise i.i.d. triangular arrays as a special case. The
uniform integrability condition in that theorem is guaranteed by moment conditions in
this paper. Let ULLN denote the uniform weak law of large numbers. I use Theorem 4
in Andrews (1992). This theorem covers the case of independent and nonidentically dis-
tributed (i.n.i.d.) sequences instead of rowwise i.i.d. triangular arrays of random vectors,
but all relevant proofs in that paper go through for the latter. Let CLT denote the Lya-
pounov central limit theorem. Let Λ∗

i�n = Λi(φ
∗
Pn
). Let wp → 1 denote with probability

approaching 1. Let f.o.c. stand for first-order condition.
Lemma A.1 below shows the consistency of the estimators of matrices A and B.

Lemma A.2 gives the asymptotics of the main components in L̂Rn and ω̂2
n, and is used in

the proof of Theorem 3.1.

Lemma A.1. Suppose Assumption 3.1 holds. Under a sequence {Pn}∞n=1 ∈ Seq(σ2�A�B�ρ)

for some (σ2�A�B�ρ), for any random sequence φ̃n that satisfies ‖φ̃n − φ∗
Pn

‖ →p 0, we
have (

n−1
n∑
i=1

∂2Λi(φ̃n)

∂φ∂φ′ � n
−1

n∑
i=1

∂Λi(φ̃n)

∂φ

∂Λi(φ̃n)

∂φ′

)
→p (A�B)�

Proof. I focus on n−1∑n
i=1

∂2Λi(φ̃n)
∂φ∂φ′ because the other part of the lemma follows from

similar arguments.
First, by the ULLN, we have

sup
φ∈Θ×B

∥∥∥∥∥n−1
n∑
i=1

∂2Λi(φ)/∂φ∂φ
′ −APn(φ)

∥∥∥∥∥→p 0� (A.1)
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where the ULLN applies because the four sufficient conditions in it are satisfied. In par-
ticular, the total boundedness condition (BD) in the ULLN holds by Assumption 3.1(b),
the pointwise convergence condition (P-WLLN) is guaranteed by the LLN, the domina-
tion condition (DM) is guaranteed by condition (iii) of Definition 3.1, and the termwise
stochastic equicontinuity (TSE) condition holds because

EPn sup
φ�φ∗∈Θ×B:‖φ−φ∗‖<d

∥∥∂2Λi(φ)/∂φ∂φ
′ − ∂2Λi

(
φ∗)/∂φ∂φ′∥∥

(A.2)

≤EPn sup
φ∈Θ×B

dθ+dβ∑
j=1

∥∥∂3Λi(φ)/∂φj ∂φ∂φ
′∥∥ · d ≤M · d�

where the first inequality holds by a mean-value expansion and the second holds by
condition (iii) of Definition 3.1. (See Andrews (1992, Theorem 4) for the details of the
ULLN conditions.)

In addition to guaranteeing TSE, equation (A.2) also shows the uniform continuity of
{APn(φ)}∞n=1 inΘ×B. This, ‖φ̃n−φPn‖ →p 0, equation (A.1), and Definition 3.3 together
show the desired result. �

Lemma A.2. Suppose Assumption 3.1 holds. Under a drifting sequence {Pn}∞n=1 ∈
Seq(σ2�A�B�ρ) for some (σ2�A�B�ρ), (a) ‖φ̂n − φ∗

Pn
‖ →p 0, (b) n1/2(φ̂n − φ∗

Pn
) →d

N(0�A−1BA−1), (c) if σ ∈ [0�∞),(∑n
i=1(Λ

∗
i�n −EPnΛ∗

i�n)

n1/2(φ̂n −φ∗
Pn
)

)
→d

(
σZΛ

−A−1Zφ

)
�

and (d) if σ = ∞, n−1/2ω−1
Pn

∑n
i=1(Λ

∗
i�n −EPnΛ∗

i�n)→d N(0�1).

Proof. (a) I only show the consistency of θ̂n because that of β̂n follows by analogous
arguments. Let llf�n stand for llf�Pn . Let the sample log-likelihood function be denoted

l̂lf�n(θ)= n−1
n∑
i=1

log fi(θ)� (A.3)

The consistency of θ̂n is implied by the following derivation. For any ε > 0 and δ(ε) in
Definition 3.1,

PrPn
(∥∥θ̂n − θ∗

Pn

∥∥> ε)
≤ PrPn

(
llf�n
(
θ∗
Pn

)− llf�n(θ̂n) > δ(ε)
)

= PrPn
(
llf�n
(
θ∗
Pn

)− l̂lf�n
(
θ∗
Pn

)+ l̂lf�n
(
θ∗
Pn

)− l̂lf�n(θ̂n) (A.4)

+ l̂lf�n(θ̂n)− llf�n(θ̂n) > δ(ε)
)

≤ PrPn
(

sup
θ∈Θ

∣∣llf�n(θ)− l̂lf�n(θ)
∣∣> δ(ε)/2)→ 0�
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where the first inequality holds by condition (i) of Definition 3.1, the second in-
equality holds because θ̂n maximizes l̂lf�n(θ), and the convergence holds because
supθ∈Θ |llf�n(θ) − l̂lf�n(θ)| →p 0, which holds by arguments similar to those for (A.1) in
the proof of Lemma A.1.

(b) By mean-value expansions of the f.o.c.s from log-likelihood maximization,

0 = n−1/2
n∑
i=1

∂Λi
(
φ∗
Pn

)
/∂φ+ (∂2Λi(φ̃n)/∂φ∂φ

′)n1/2(φ̂n −φ∗
Pn

)
(A.5)

= n−1/2
n∑
i=1

∂Λi
(
φ∗
Pn

)
/∂φ+ (A+ op(1)

)
n1/2(φ̂n −φ∗

Pn

)
�

where φ̃n is a point lying on the line segment joining φ̂n andφ∗
Pn

, and the second equality
holds by Lemma A.1 and Lemma A.2(a).

By conditions (i) and (ii) of Definition 3.1, we haveEPn∂Λi(φ
∗
Pn
)/∂φ= 0. Then we can

appeal to the CLT and get

n−1/2
n∑
i=1

∂Λi
(
φ∗
Pn

)
/∂φ→d N(0�B)� (A.6)

Equations (A.5) and (A.6), condition (v) of Definition 3.1, and the Δ-method combined
produce the desired result.

(c) I treat the two cases: (i) σ = 0 and (ii) σ ∈ (0�∞) separately. (i) σ = 0. Because
En(
∑n
i=1(Λ

∗
i�n − EPnΛ

∗
i�n))

2 = nω2
Pn

→ 0, we have
∑n
i=1(Λ

∗
i�n − EPnΛ

∗
i�n)→p 0. This com-

bined with part (b) shows part (c).
(ii) σ ∈ (0�∞). We have

EPn

(
n1/2(Λ∗

i�n −EPnΛ∗
i�n)

∂Λi(φ
∗
Pn
)/∂φ

)
= 0�

(A.7)

VarPn

(
n1/2Λ∗

i�n

∂Λi(φ
∗
Pn
)/∂φ

)
→
(

σ2 σρ′D1/2

σD1/2ρ B

)
�

where the first equality holds by Pn ∈ P0 and by the first-order conditions from maximiz-
ing the population log-likelihood, and the convergence holds by Definition 3.3.

Because σ > 0, we haveω2
Pn
> 0 for all large enough n. Given this, conditions (iii) and

(iv) of Definition 3.1 ensure that the Lyapounov condition holds. Thus, we can apply the
CLT and obtain( ∑n

i=1(Λ
∗
i�n −EPnΛ∗

i�n)

n−1/2∑n
i=1 ∂Λi(φ

∗
Pn
)/∂φ

)
→d

(
σZΛ
Zφ

)
∼N

(
0�
(

σ2 σρ′D1/2

σD1/2ρ B

))
� (A.8)

Then (A.5), (A.8), condition (v) of Definition 3.1, and the Δ-method conclude the proof.
(d) The proof is omitted because it is similar to and simpler than part (c). �
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Appendix B: Proof of main results

Proof of Theorem 3.1. (a) First, I derive the asymptotic distribution of nL̂Rn. A Taylor
expansion of Λi(φ∗

Pn
) around φ̂n gives

nL̂Rn =
n∑
i=1

[
Λ∗
i�n − ∂Λi(φ̂n)

∂φ′
(
φ̂n −φ∗

Pn

)]

− n(φ̂n −φ∗
Pn

)′[
n−1

n∑
i=1

∂2Λi(φ̃n)

∂φ∂φ′

](
φ̂n −φ∗

Pn

)
/2

(B.1)

=
n∑
i=1

Λ∗
i�n − 2−1n1/2(φ̂n −φ∗

Pn

)′[
n−1

n∑
i=1

∂2Λi(φ̃n)

∂φ∂φ′

]
n1/2(φ̂n −φ∗

Pn

)
≡ nL̂R1n + nL̂R2n�

where φ̃n lies on the line segment joining φ∗
Pn

and φ̂n, and the second equality holds
wp → 1 by the f.o.c. from the likelihood maximization problem and condition (ii) of
Definition 3.1. The joint asymptotic distribution of nL̂R1n and n1/2(φ̂n − φ∗

Pn
) is given

in Lemma A.2(c). Lemma A.1 and Lemma A.2(a) together show that

n−1
n∑
i=1

∂2Λi(φ̃n)/∂φ∂φ
′ →p A� (B.2)

Combining (B.2) and Lemma A.2(c), we have nL̂Rn →d σ
1/2ZΛ − 2−1Z′

φA
−1Zφ.

Now, I derive the asymptotic distribution of nω̂2
n. A mean-value expansion ofΛi(φ̂n)

around φ∗
Pn

gives, for some φ̃n lying on the line segment joining φ∗
Pn

and φ̂n,

nω̂2
n = −nL̂R

2
n +

n∑
i=1

(
Λ∗
i�n

)2 + 2
n∑
i=1

Λ∗
i�n · (∂Λi(φ̃n)/∂φ′)(φ̂n −φ∗

Pn

)
+ (φ̂n −φ∗

Pn

)′ n∑
i=1

(
∂Λi(φ̃n)/∂φ

)(
∂Λi(φ̃n)/∂φ

′)(φ̂n −φ∗
Pn

)
(B.3)

= op(1)+Wn�1 + 2Wn�2 · n1/2(φ̂n −φ∗
Pn

)
+ n1/2(φ̂n −φ∗

Pn

)′
Wn�3 · n1/2(φ̂n −φ∗

Pn

)
�

where the op(1) comes from nL̂Rn =Op(1) shown above. For theW terms, I treat the two
cases (i) σ = 0 and (ii) σ ∈ (0�∞) separately below.

(i) σ = 0. First, because EPn |Wn�1| = EPnWn�1 = nω2
Pn

→ 0, we have

Wn�1 ≡
n∑
i=1

(
Λ∗
i�n

)2 = op(1)� (B.4)
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Second, by the Cauchy–Schwarz inequality, we have

‖Wn�2‖ ≤W 1/2
n�1 ·

[
n−1

n∑
i=1

∥∥∂Λi(φ̃n)/∂φ′∥∥2
]1/2

= op(1) ·Op(1)= op(1)� (B.5)

where the first equality holds by (B.4) and the inequality EPnn
−1∑n

i=1 ‖∂Λi(φ̃n)/∂φ′‖2 ≤
En supφ ‖∂Λi(φ)/∂φ′‖2 < 2M , which holds by condition (iii) of Definition 3.1. Third,

Wn�3 ≡ n−1
n∑
i=1

∂Λi(φ̃n)

∂φ

∂Λi(φ̃n)

∂φ′ →p B (B.6)

by Lemmas A.1 and A.2(a). By (B.3)–(B.6) and Lemma A.2(b), we have

nω̂2
n →d Z

′
φA

−1BA−1Zφ� (B.7)

(ii) σ ∈ (0�∞). Because σ > 0, ω2
Pn
> 0 for n large enough. Thus, the triangular array

{(ω−1
Pn
Λ∗
i�n)

2}i≤n�n≥1 is uniformly integrable by condition (iv) of Definition 3.1. With the

uniform integrability and E(ω−1
n Λ

∗
i�n)

2 = 1, the LLN applies and gives

n−1ω−2
Pn
Wn�1 = n−1

n∑
i=1

(
ω−1
Pn
Λ∗
i�n

)2 →p 1� (B.8)

By similar arguments,

n−1ω−2
Pn
Wn�2 ≡ n−1ω−2

Pn
· n−1/2

n∑
i=1

Λ∗
i�n · ∂Λi(φ̃n)/∂φ′

= n−1/2ω−1
Pn

· n−1
n∑
i=1

ω−1
Pn
Λ∗
i�n∂Λi(φ̃n)/∂φ

′

(B.9)

= (σ−1 + o(1))n−1
n∑
i=1

ω−1
Pn
Λ∗
i�n∂Λi(φ̃n)/∂φ

′

= (σ−1 + o(1))(ρ′
nD

1/2
n + op(1)

)→p σ
−1ρ′D1/2�

where the third equality holds by Definition 3.3 and the last equality holds by the same
arguments as in the proof of Lemma A.1 except with condition (iii) supplemented with
condition (iv) of Definition 3.1 and the Cauchy–Schwarz inequality.

Equation (B.6) remains valid when σ ∈ (0�∞). Therefore, by (B.3), (B.6), (B.8), and
(B.9), we have

ω−2
Pn
ω̂2
n →d 1 − 2σ−1ρ′D1/2A−1Zφ + σ−2Z′

φA
−1BA−1Zφ� (B.10)

Equation (B.10) concludes the proof because nω2
Pn

→ σ2 ∈ (0�∞).
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(b) When σ = ∞, for L̂R2n in (B.1), n1/2ω−1
Pn

L̂R2n →p 0 because nL̂R2n = Op(1) and

nω2
Pn

→ ∞. For nL̂R1n in (B.1), we have

n1/2ω−1
Pn

L̂R1n = n−1/2
n∑
i=1

ω−1
Pn
Λ∗
i�n →d N(0�1) (B.11)

by the CLT. The CLT applies by (a) EPnω
−1
Pn
Λ∗
i�n = 0, (b) EPnω

−2
Pn
(Λ∗

i�n)
2 = 1, and also

(c) EPnω
−2−δ
Pn

|Λ∗
i�n|2+δ ≤M <∞, which holds by condition (iv) of Definition 3.1.

The derivation of the probability limits of ω−2
Pn
ω̂2
n when σ = ∞ is the same as when

σ ∈ (0�∞). Simply sending σ to infinity in equation (B.10) gives us the desired result.
(c) First, observe that

Z∗′
φV Z

∗
φ = (Z∗′

φQ
′B1/2)A−1(B1/2QZ∗

φ

)
�

Z∗′
φV

2Z∗
φ =Z∗′

φQ
′B1/2A−1B1/2QQ′B1/2A−1B1/2QZ∗

φ�

= (Z∗′
φQ

′B1/2)A−1BA−1(B1/2QZ∗
φ

)
� and (B.12)

ρ∗′V Z′
φ = ρ∗′Q′B1/2A−1B1/2QZ∗

φ

= ρ′D1/2A−1(B1/2QZ∗
φ

)
�

Let Zφ = B1/2QZ∗
φ. Then the equivalence (in distribution) between the expression in

part (c) and that in part (a) becomes apparent. �

Proof of Theorem 3.2. It suffices to show part (a) because part (b) is immediately
implied by part (a). For fixed k, we have Z∗

φV̂
2
n Z

∗
φ →d Z

∗
φV

2
k Z

∗
φ as n → ∞ because

V̂n ≡ eig(B̂1/2
n Â−1

n B̂
1/2
n )→p eig(B1/2

k A−1
k B

1/2
k )≡ Vk by Lemma A.1 and Lemma A.2(a). Be-

cause Z∗
φV

2
k Z

∗
φ has a continuous and strictly increasing cumulative distribution func-

tion (c.d.f.), cω(V̂ 2
n �1 − α)→p cω(V

2
k �1 − α). By this and Theorem 3.1(c), the left-hand

side (l.h.s.) of the equation in part (a) equals

lim
k→∞

Pr
(
Jω�k > cω

(
V 2
k �1 − α)& JΛ�k/J

1/2
ω�k > zα/2

)
� (B.13)

where JΛ�k = JΛ(σk�ρ∗
k�Vk) and Jω�k = Jω(σk�ρ∗

k�Vk). Now we simply need to study the

behavior of JΛ�k, JΛ�k/J
1/2
ω�k, and cω(V 2

k �1 − α) as k→ ∞.

Let tk stand for
√

tr(V 2
k ). Because cω(V 2

k �1 − α) is the 1 − α quantile of Z∗
φV

2
k Z

∗
φ,

Jω > cω(V
2
k �1 − α) is equivalent to Jω/t2k > cω(V

2
k /t

2
k�1 − α). Consider the derivation, as

k→ ∞,

t−2
k Z∗

φV
2
k Z

∗
φ = t−2

k

k∑
j=1

v2
k�jZ

∗2
φ�j →p 1� (B.14)
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where vk�j is the jth diagonal element of Vk and Z∗
φ�j is the jth element of Z∗

φ, and the

→p holds because E[t−2
k

∑k
j=1 v

2
k�jZ

∗2
φ�j − 1]2 = 2 tr(V 4

k )/t
4
k → 0. Thus,

cω
(
V 2
k /t

2
k�1 − α)=O(1)� (B.15)

Also consider the derivation

t−2
k Jω�k = t−2

k σ2
k − 2(σk/tk)t

−1
k

k∑
j=1

ρ∗
j vk�jZ

∗
φ�j + t−2

k Z∗
φV

2
k Z

∗
φ

(B.16)
= (σk/tk)

2 − 2(σk/tk) · op(1)+ 1 + op(1)→p ∞ as k→ ∞�

The second op(1) in the derivation is obtained by (B.14) and the first op(1) is obtained
by

E

[
t−1
k

k∑
j=1

ρ∗
j vk�jZ

∗
φ�j

]2

= t−2
k

k∑
j=1

ρ∗2
j v

2
k�j ≤ t−2

k max
j
v2
k�j

(B.17)
≤ [tr

(
V 4
k

)
/t4k
]1/2 → 0 as k→ ∞�

where the first inequality holds because ‖ρ∗‖ ≤ 1, which holds because
( 1 ρ∗′
ρ∗ Idθ+dβ

)
is a

correlation matrix. Equations (B.15) and (B.16) imply that the expression in (B.13) equals

lim
k→∞

Pr
(
JΛ�k/J

1/2
ω�k > zα/2

)
� (B.18)

That is, the pretest rejects wp → 1. Now observe that

JΛ�k/J
1/2
ω�k =

ZΛ − (σk/tk)−1(2tk)−1
k∑
j=1

vk�j(Z
∗2
φ�j − 1)− tr(Vk)/(2σk)√√√√√1 − 2(σk/tk)−1t−1

k

k∑
j=1

ρ∗
j vk�jZ

∗
φ�j + (σk/tk)−2t−2

k Z∗
φV

2
k Z

∗
φ

(B.19)
→p ∞ as k→ ∞�

where the convergence holds by (B.14), (B.17), σk/tk → ∞, and − tr(Vk)/(2σk)→ ∞, as
well as 2−1t−1

k

∑k
j=1 vk�j(Z

∗2
φ�j − 1)→d N(0�0�5), which holds by the Lyapounov CLT. This

implies that the expression in (B.18) equals one and in turn shows the desired result. �

Proof of Theorem 4.1. We derive the asymptotic size using subsequence arguments
similar to those in Andrews, Cheng, and Guggenberger (2009). First, we take a sequence
{Pn ∈ P0} and a subsequence {bn} of {n} such that

lim sup
n→∞

sup
P∈P0

PrP
(∣∣T̂mod

n (c)
∣∣> cv(1 − α� V̂n� c)

)
(B.20)

= lim
n→∞ PrPbn

(∣∣T̂mod
bn

(c)
∣∣> cv(1 − α� V̂bn� c)

)
�
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Such sequences and subsequences always exist. Condition (iii) of Definition 3.1 implies
that elements in the matrices AP and BP are uniformly bounded over P ∈ P . Also, ρPn ’s
elements are between −1 and 1. Thus, there exists a subsequence {an} of {bn} and some
(σ2�A�B�ρ) such that (anω2

Pan
�APan �BPan �ρPan )→ (σ2�A�B�ρ). It suffices to show that

lim
n→∞ PrPan

(∣∣T̂mod
an

(c)
∣∣> cv(1 − α� V̂an� c)

)≤ α� (B.21)

First, I derive the limiting distribution of T̂mod
an

(c). Lemmas A.1 and A.2(a) imply that

V̂an →p V ≡ eig(B1/2A−1B1/2). This combined with Theorem 3.1(c) gives us

T̂mod
an

(c)→d J
(
σ�ρ∗� V � c

)≡ JΛ(σ�ρ
∗� V )+ tr(V )/2√

Jω(σ�ρ∗� V )+ c · tr(V 2)
� (B.22)

where ρ∗ is defined in part (c) of Theorem 3.1.
Next, I show that cv(1 − α�V � c) is continuous in V . By visual inspection, we see that

J(σ�ρ∗� V � c) is continuous with probability 1 in (σ�ρ∗� V ) at any point with σ ∈ [0�∞],
ρ∗ ∈ {ρ∗ ∈ [0�1]k : ‖ρ∗‖ ≤ 1}, and V being a diagonal matrix with real entries. Let {Vm}∞m=1
be a sequence of diagonal matrices that converges to a real diagonal matrix V∞. Let {um}
be an arbitrary subsequence of {m}. Below we show that {um} has a subsequence {am}
such that

cv(1 − α�Vam� c)→ cv(1 − α�V∞� c) asm→ ∞� (B.23)

This shows that cv(1−α�Vm� c)→ cv(1−α�V∞� c) asm→ ∞ because {um} is an arbitrary
subsequence of {m}. Thus, cv(1 − α�V � c) is continuous in V .

Let {σm} and {ρ∗
m} be such that F−1

|J(σm�ρ∗
m�Vm�c)|(1 − α) = cv(1 − α�Vm� c) + o(1) as

m→ ∞. Such sequences always exist. By the completeness of [0�∞] and the com-
pactness of {ρ∗ ∈ [0�1]k : ‖ρ∗‖ ≤ 1}, there exists a subsequence {am} of {um} such that
σam → σ∞ and ρ∗

am
→ ρ∗∞ as m→ ∞ for some σ∞ ∈ [0�∞] and some ρ∗∞ ∈ {ρ∗ ∈ [0�1]k :

‖ρ∗‖ ≤ 1}. Then, by the continuity of J(σ�ρ∗� V � c), we have with probability 1,

J
(
σam�ρ

∗
am
�Vam� c

)→ J
(
σ∞�ρ∗∞� V∞� c

)
asm→ ∞� (B.24)

Because the c.d.f. of J(σ∞�ρ∗∞� V∞� c) is continuous and strictly increasing, we have

F−1
|J(σam�ρ∗

am�Vam�c)|(1 − α)→ F−1
|J(σ∞�ρ∗∞�V∞�c)|(1 − α)� (B.25)

Thus,

cv(1 − α�Vam� c)→ F−1
|J(σ∞�ρ∗∞�V∞�c)|(1 − α)≤ cv(1 − α�V∞� c)� (B.26)

On the other hand, let (σ†
m�ρ

∗�†
m ) be such that F−1

|J(σ†
m�ρ

∗�†
m �V∞�c)|

(1 − α)→ cv(1 − α�V∞� c)
asm→ ∞. Then

lim inf
m→∞ cv(1 − α�Vam� c) ≥ lim inf

m→∞ F−1
|J(σ†

am�ρ
∗�†
am�Vam�c)|

(1 − α)

= F−1
|J(σ†∞�ρ∗�†∞ �V∞�c)|

(1 − α) (B.27)

= cv(1 − α�V∞� c)�
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where (σ†∞�ρ∗�†∞ ) is a cluster point of the sequence {(σ†
am�ρ

∗�†
m )}∞m=1. Equations (B.26) and

(B.27) together show (B.23).
As argued above, V̂an →p V . By the continuity of cv(1 −α� ·� c) shown above, we have

cv(1 − α� V̂an� c)→p cv(1 − α�V � c)� (B.28)

Therefore,

lim
n→∞ PrPan

(∣∣T̂mod
an

(c)
∣∣> cv(1 − α� V̂an� c)

)
= Pr
(∣∣J(σ�ρ∗� V � c

)∣∣> cv(1 − α�V � c)) (B.29)

≤ Pr
(∣∣J(σ�ρ∗� V � c

)∣∣>F−1
|J(σ�ρ∗�V �c)|(1 − α))= α� �

Proof of Theorem 5.1. (a) Let L̂R1n and L̂R2n be the same as in (B.1). Then

n1/2L̂R1n = n1/2
n∑
i=1

(
Λi
(
φ∗
Pn

)−EPnΛi(φ∗
Pn

))+ n1/2EPnΛi
(
φ∗
Pn

)
(B.30)

→d ωP0ZΛ + d
by Lemma A.2(c) and Assumption 5.1(a). Also,

n1/2L̂R2n = 1√
n

(
n1/2(φ̂n −φ∗

Pn

))(1
n

n∑
i=1

∂2Λi(φ̃n)

∂φ∂φ′

)
n1/2(φ̂n −φ∗

Pn

)
(B.31)

= n−1/2 ·Op(1)→p 0

by Lemmas A.1 and A.2(a)–(c). Combining (B.30) and (B.31), we have

n1/2L̂Rn →d ωP0ZΛ + d� (B.32)

LetWn�1�Wn�2, andWn�3 be the same as in (B.3). Then

ω̂2
n = −L̂R

2
n + n−1Wn�1 + 2n−1Wn�2 · n1/2(φ̂n −φ∗

Pn

)
(B.33)

+ n1/2(φ̂n −φ∗
Pn

)′(
n−1Wn�3

)
n1/2(φ̂n −φ∗

Pn

)
�

Observe that, by the LLN, n−1Wn�1 = n−1∑n
i=1(Λ

∗
i�n)

2 →p ω
2
P0

. Also, similar to (B.5), we

have n−1Wn�2 = op(1), and similar to (B.6), we have n−1Wn�3 = op(1). Thus,

ω̂2
n →p ω

2
P0
� (B.34)

By Lemma A.1 and Lemma A.2(a), we have V̂n →p VP0 . Therefore,

T̂mod
n = n1/2L̂Rn + n−1/2 tr(V̂n)/2

[ω̂2
n + n−1c · tr(V̂ 2

n )]1/2
→d

ωP0ZΛ + d
ωP0

=ZΛ + d/ωP0� (B.35)

which immediately implies the result of Theorem 5.1(a).
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(b) The proof of part (b) follows the same steps as part (a) except L̂Rn is now scaled
by n instead of by

√
n and ω̂2

n is scaled by n instead of by 1. Let λn stand for nEPnΛ
∗
n�i.

First,

λ−1
n nL̂R1n = λ−1

n

n∑
i=1

(
Λ∗
n�i −EPnΛ∗

n�i

)+ 1 = op(1)+ 1 →p 1� (B.36)

where the second equality holds because

λ−2
n EPn

[
n∑
i=1

(
Λ∗
n�i −EPnΛ∗

n�i

)]2

= λ−2
n nω

2
Pn

→ 0 · σ2∞ = 0� (B.37)

Similar to (B.31), we have λ−1
n nL̂R2n = op(1). Thus,

λ−1
n nL̂Rn →p 1� (B.38)

Also, because λ−2
n E[∑n

i=1(Λ
∗
i�n)

2] = λ−2
n nω

2
Pn

+ n−1 → 0,

λ−2
n Wn�1 ≡ λ−2

n

n∑
i=1

(
Λ∗
i�n

)2 →p 0� (B.39)

Similar to (B.5)–(B.6), we can show that λ−2
n Wn�2 = op(1) and λ−2

n Wn�3 = op(1). Therefore,
by (B.3),

λ−2
n nω̂

2
n →p 0� (B.40)

By Lemma A.1 and Lemma A.2(a), we have V̂n →p VP0 . We have shown in the proof
of Theorem 4.1 that cv(1−α�V � c) is continuous in V . Thus, cv(1−α� V̂n� c)→p cv(1−α�
VP0� c). Then, by the continuous mapping theorem,

λ−1
n

[
nω̂2

n + c · tr
(
V̂ 2)]1/2 × cv(1 − α� V̂n� c)→p 0� (B.41)

This implies that,

PrPn
(
T̂mod
n (c) > cv(1 − α� V̂n� c)

)
= Pr
(
λ−1
n L̂Rn + λ−1

n tr(V̂n)/2
(B.42)

> λ−1
n

[
nω̂2

n + c · tr
(
V̂ 2
n

)]1/2 · cv(1 − α� V̂n� c)
)

→ Pr(1> 0)= 1�

Similarly, one can show that PrPn(T̂
mod
n (c) <−cv(1 − α� V̂n� c))→ Pr(1< 0)= 0. �
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