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The persistent–transitory representation for earnings processes

Mette Ejrnæs
Copenhagen University

Martin Browning
Oxford University

We consider the decomposition of shocks to a dynamic process into a persistent
and a transitory component. Without additional assumptions (such as zero cor-
relation) the decomposition of shocks into a persistent and transitory component
is indeterminate. The assumption that is conventional in the earnings literature is
that there is no correlation. The Beveridge–Nelson decomposition that is widely
used in time series analysis assumes a perfect correlation. Without restrictions
on the correlation, the persistent-transitory decomposition is only set-identified.
For reasonable autoregressive moving average (ARMA) parameters the bounds for
widely used objects of interest are very wide. We illustrate that these disquieting
findings are of considerable practical importance, using a sample of male workers
drawn from the Panel Study of Income Dynamics (PSID).

Keywords. Earnings process, persistent-transitory shocks, ARMA model, perma-
nent-transitory shocks.

JEL classification. C23, D31, J31.

In the literature on income processes, we often seek to decompose shocks into a
“persistent” component, which evolves slowly over time, and a “transitory” compo-
nent, which dies away quickly. This scheme is originally due to Friedman and Kuznets
(1954) and has been widely used ever since; recent examples include Blundell, Pistaferri,
and Preston (2008), Guvenen (2007), Jappelli and Pistaferri (2010), Meghir and Pistaferri
(2004), and Moffitt and Gottschalk (2002). In the panel data literature on dynamic pro-
cesses, the usual approach is to estimate an ARMA model. The permanent–transitory
model has a number of attractive features compared to the general ARMA model. First,
it provides a straightforward interpretation of the shocks. Second, it is possible to as-
sess how the variances of the persistent or transitory variance evolve over time (see, e.g.,
Moffitt and Gottschalk (2002)). Third, the permanent–transitory model make clear how
income shock should affect consumption (see Blundell, Pistaferri, and Preston (2008)).
In the earnings literature, it is almost universally assumed that the persistent and the
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transitory shocks are uncorrelated. This is a very strong assumption. Consider, for ex-
ample, the loss of a job. This is likely to induce both a persistent effect, if the wage in a
new job is lower than in the old job, and a transitory effect, arising from unemployment
and a temporary loss of earnings. This in turn gives a positive correlation between the
two shocks. This paper lays out the relationship between a generalized version of the
permanent–transitory representation and the ARMA approach, taking into account the
possibility that the persistent and transitory shocks may be correlated.

From the time series literature, it is known how the Beveridge–Nelson persistent–
transitory (PT) decomposition relates to a model similar to the standard PT model (see
Morley, Nelson, and Zivot (2003), Oh, Zivot, and Creal (2008), and Proietti (2006)). In
the time series literature, the permanent–transitory model is known as the unobserved
component decomposition, in which the permanent part is the trend and the transitory
component is named the cyclical innovation.

From the time series literature, it is known that for the permanent–transitory (unit
root) model, the following statements hold.

• Every permanent–transitory representation has an ARMA representation.

• Every ARMA representation has a permanent–transitory representation with corre-
lation of either −1 or +1 between the permanent and transitory shocks.

• The Beveridge–Nelson decomposition also achieves point identification of perma-
nent and transitory shocks by assuming a perfect correlation between the persistent and
transitory shocks.

Since evidence is accumulating that no one has an earnings process with a unit
root (see, for example, Baker (1997), Guvenen (2009), Browning, Ejrnæs, and Alvarez
(2010), and Gustavsson and Osterholm (2010)), we consider a generalization of the usual
permanent–transitory model to a persistent–transitory (PT) model. In this model, there
are two kinds of shocks: a persistent shock, which has an effect that persists forever (al-
beit with some possible decay if there is no unit root), and a transitory shock, which has
only a short run impact (typically one or two periods). For the PT representation, we
establish the following results.

• The PT representation with uncorrelated shocks implies restrictions on the param-
eters from an ARMA model.

• If these restrictions are not rejected, and it is assumed that the persistent and tran-
sitory shocks are uncorrelated, then the parameters of the PT representation are point-
identified.

• Without an assumption on the correlation, the parameters of the PT representation
are only set-identified. The identified set is usually quite wide and, for the leading case,
admits any correlation between the shocks.

• The ratio of the variances of the persistent and transitory shocks is not point-
identified if the shocks are correlated, even if we have a unit root.
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• Extra information is required to point-identify persistent and transitory compo-
nents. However, even if we can observe the reaction of household consumption to the
income shock, it requires strong assumptions to actually point-identify the parameters.

These results relate to the set identification for which we characterize the set and de-
rive the bounds on important statistics. Also, we discuss alternative strategies to point-
identify the parameters in a PT model.

In this paper, we focus on a ARMA(1�1), which is equivalent to assuming that the
transitory shocks are independent and identically distributed (i.i.d.). For this model,
we can derive analytical results. However, a number of the results can be generalized
to models that allow for transitory shocks that are (moving average) MA(1).1 In the
Appendix, we show the results for the ARMA(1�2) model. The paper is organized as
follows. Section 2 outlines the PT representation, and Section 3 discusses the identi-
fication of shocks for the uncorrelated PT representation and the Beveridge–Nelson
decomposition. In Section 3, we present the general case of a PT model with corre-
lated shocks and derive the identified sets for the correlation and for the ratio of vari-
ances. Section 4 discusses how additional information may help to point-identify the
parameters of the model. Section 5 contains an assessment of the empirical impor-
tance of the issues we raise. For a standard data set drawn from the PSID, we show
that the bounds on the parameters of interest are very wide. In Section 6, we present
our principal conclusion that the PT representation has to be used with extreme cau-
tion. Additional data are available in a supplementary file on the journal website,
http://qeconomics.org/supp/239/code_and_data.zip.

1. The persistent–transitory representation

Denote log net household income for a given household in period t by yt . The general-
ized model2 is given by the persistent–transitory (PT) representation

yt = μ+pt + τt�
(1)

pt = ρpt−1 +ηt�
where pt is the persistent element, ηt is an i.i.d., zero mean shock to the persistent el-
ement, and τt is an i.i.d., zero mean transitory shock.3 We shall assume that the joint
distribution of the shocks is characterized by the mean and covariance matrix, and we
denote the (time invariant) variances by σ2

η and σ2
τ , respectively. The covariance be-

tween the shocks is denoted σητ . If σητ = 0, we refer to the model as the uncorrelated
PT representation.4 The parameter ρ governs the persistence of the persistent shock; to
avoid excessive special cases, we shall assume ρ ∈ (0�1]. That is, we assume that there

1We acknowledge that the literature also contains more advanced models for the transitory shock, for
example, an ARMA(1�1).

2In almost any model of earnings we would want to allow for nonlinear trends. We do not take account
of them here to simplify the exposition.

3This transitory shock could also include transitory measurement error.
4Guvenen (2009) had a similar formulation of the uncorrelated PT model.

http://qeconomics.org/supp/239/code_and_data.zip
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is some positive persistence. The upper bound, ρ= 1, gives the widely used permanent–
transitory representation

yt = μ+pt + τt�
(2)

pt = pt−1 +ηt�
where the parameter μ can, without loss of generality, be suppressed.

2. The identification of persistent and transitory shocks

2.1 The uncorrelated PT representation

To derive the relation between the ARMA model and the persistent–transitory model, we
consider an ARMA(1�1)model

yt = μ(1 − ρ)+ ρyt−1 + ξt + θξt−1� (3)

where ξt is a zero mean shock with variance ν2. If ρ= 1, this reduces to a unit root with
a MA(1) stochastic component

Δyt = ξt + θξt−1�

The PT model (1) always has an ARMA representation, which is given by

yt = μ+ (ρpt−1 +ηt)+ τt
= μ+ ρ(yt−1 −μ− τt−1)+ηt + τt (4)

= μ(1 − ρ)+ ρyt−1 +ηt + τt − ρτt−1�

Comparing (3) and (4), we see that they have the same deterministic components and
only differ in the residual term. We can always point-identify ρ and will in the following
discussion treat ρ as known.5 If (3) and (4) are to be equal, then

ξt + θξt−1 = τt − ρτt−1 +ηt� (5)

Most researchers who are using the PT representation assume that the shocks are un-
correlated (σητ = 0); we make that assumption in this section. Taking the variance and
the first autocovariance gives two equations for the mapping between the two sets of
parameters:6

(
1 + θ2)ν2 = (

1 + ρ2)σ2
τ + σ2

η� (6)

θν2 = −ρσ2
τ � (7)

Suppose now that we have estimates of the ARMA parameters (ρ�θ� ν2) (with 0 <
ρ ≤ 1). The following proposition shows the restrictions on these estimates that allow
a PT representation.

5The parameter ρ is identified from the moment restriction: E((Δyt − ρΔyt−1)(Δyt−3 − ρΔyt−4))= 0.
6Meghir and Pistaferri (2004) used moments based on a linear combination of variances and first order

covariances: E((Δyt+1 +Δyt +Δyt−1)Δyt).
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Proposition 1. The ARMA estimates admit an uncorrelated PT representation if and
only if

−ρ≤ θ≤ 0� (8)

Proof. Since ρ �= 0, equations (6) and (7) can be solved to give

σ2
η = (θ+ ρ)

(
θ+ 1

ρ

)
ν2� (9)

σ2
τ = −

(
θ

ρ

)
ν2� (10)

To ensure σ2
τ ≥ 0, we require θ≤ 0. For σ2

η ≥ 0, we have θ≥ max(−ρ�−1/ρ)= −ρ. �

Corollary 2. If the parameter restriction is satisfied, then the PT parameters are given
by (9) and (10).

Given the parameter restrictions, we have three important special cases:

Case 1. The permanent–transitory model: The ARMA model with ρ= 1, in which case
we require −1 ≤ θ≤ 0.

Case 2. There are no persistent shocks if θ = −ρ, in which case the ARMA(1�1) model
is given by

yt = (1 − ρ)μ+ ρyt−1 + ξt − ρξt−1

�⇒ yt = μ+ ρt(y0 −μ− ξ0)+ ξt�
Case 3. There are no transitory shocks if θ= 0, in which case the ARMA(1�1) reduces to
an autoregressive (AR(1)) model.

Many users of the PT model assume that the transitory component is itself a MA(1)
process for which the corresponding ARMA model is an ARMA(1�2) process. The restric-
tions on the three ARMA parameters that allow us to infer a corresponding PT represen-
tation are given in Appendix A.

2.2 The Beveridge–Nelson decomposition

In time series analysis, a Beveridge–Nelson (BN) decomposition is used to decompose a
nonstationary process ξt into a stationary part and a random walk. In this paper, we use
the spirit of the BN decomposition to decompose the shock into a transitory and a per-
sistent component; see, for example, Hamilton (1994, Section 17.5). For an ARMA(1�1),
the BN decomposition is

τt = −θ
ρ
ξt�

(11)

ηt =
(

1 + θ

ρ

)
ξt
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(see Appendix B for the derivation for the more general ARMA(1�2) case). This decom-
position has two notable features. First, it does not impose any restrictions on the ARMA
parameters since the implied variances will always be nonnegative:

σ2
τ =

(
θ

ρ

)2

ν2�

(12)

σ2
η =

(
1 + θ

ρ

)2

ν2�

The other notable feature of this decomposition is that it does not impose a zero covari-
ance between the shocks. Instead, we have

σητ = −θ
ρ

(
1 + θ

ρ

)
ν2� (13)

which implies a correlation coefficient of +1 if θ ∈ (−ρ�0) and −1 if θ > 0 or θ < −ρ.7

Thus, the identification of the four BN parameters {ρ�σ2
τ �σ

2
η�σητ} from the three ARMA

parameters {ρ�θ� ν2} is achieved by implicitly assuming a perfect correlation between τt
and ηt (as long as θ �= 0 or θ �= −ρ).

Given that the two procedures for identifying the permanent and transitory shocks
from a ARMA process differ in their treatment of the covariance between the shocks, we
turn now to the general case.

3. The PT representation with correlated shocks

For earnings processes, the conventional assumption that the transitory and persistent
shocks are uncorrelated is very restrictive. Often, unemployment is considered to be an
important shock to the income process. The change in hours of work is often assumed to
be a transitory shock, while the changes in hourly wage could be seen as the persistent
part of the shock; this clearly induces a positive correlation between the two shocks.
Conversely, the correlation would be negative if, for example, a layoff yields a severance
pay that is recorded as a temporary increase in earnings. As another example, Hryshko
(2013) suggested a negative correlation if being promoted entails losing a bonus. This
would be important if the income process is to be used in a consumption simulation
model with liquidity constraints.

We now illustrate how the restrictions on the parameters are affected if we allow for
correlated shocks. From equation (5), we have two equations that generalize (6) and (7):

(
1 + θ2)ν2 = (

1 + ρ2)σ2
τ + σ2

η + 2σητ� (14)

θν2 = −ρ(σ2
τ + σητ

)
� (15)

7This is immediate from (11), which gives a functional linear relationship between the shocks:

τt = −θ
θ+ ρηt �
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Allowing for correlated shocks removes the restrictions in Proposition 1, but this comes
at the cost of losing point identification. The following proposition gives the solutions
for the correlated PT model.

Proposition 3. The solutions for the correlated PT model are given by

σ2
τ ∈

[(
θ

ρ

)2

ν2�

(
1
ρ

)2

ν2
]
� (16)

σ2
η = (

1 + θ2)ν2 +
(

2θ
ρ

)
ν2 + (

1 − ρ2)σ2
τ � (17)

σητ =
(

− θ

ρ

)
ν2 − σ2

τ � (18)

Proof. The restrictions on σ2
τ are derived from the fact that the variance of σ2

η has to be
positive, and the correlation between η and τ has to lie between −1 and +1. �

Morley, Nelson, and Zivot (2003) and Oh, Zivot, and Creal (2008) also showed the lack
of (point) identification by showing how the unobserved components decomposition is
related to the BN decomposition. The bounds on the variance of the persistent shock
and the covariance are given by

σ2
η ∈

[(
1
ρ

+ θ
)2

ν2�

(
1 + θ

ρ

)2

ν2
]
� (19)

σητ ∈
[
− 1
ρ

(
1
ρ

+ θ
)
ν2�−θ

ρ

(
1 + θ

ρ

)
ν2

]
� (20)

Corollary 4. We can always find a PT representation.

This corollary follows since the intervals in (16), (19), and (20) are always nonempty if
θ ∈ [−1�1] and ρ ∈ (0�1]. If θ ∈ (−1�1), then point identification fails. For the end points,
we do have point identification.

Corollary 5. The PT parameters are all point-identified if and only if |θ| = 1.

The corollary follows since the interval in (16) is a point if and only if θ2 = 1. The final
corollary is that the ratio of variances is generally not point-identified.

Corollary 6. If θ �= 0, the bounds on the ratio of persistent variance to the transitory
variance are given by

σ2
η

σ2
τ

∈
[
(1 + θρ)2�

(
1 + ρ

θ

)2]
� (21)
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This follows since the ratio of the variances is given by

σ2
η

σ2
τ

= (1 + θ2)ν2

σ2
τ

+ 2θν2

ρσ2
τ

+ (
1 − ρ2)� (22)

The ratio is a decreasing function of σ2
τ and the bounds follow from the bounds on σ2

τ .
One implication of (21) is that the ratio if the correlation is set to zero (given by the

ratio of the variances in (9) and (10)) is the harmonic mean of the end points of the
identified set given in (22).

The fact that the ratio between the persistent variance to the transitory variance is
not point-identified has also been discussed intensively in the literature on the decom-
position of gross domestic product (see Morley, Nelson, and Zivot (2003)). Here they
found that the BN decomposition and an uncorrelated PT model give very different re-
sults in terms of characterizing the cyclical innovations and the trends.

For any solution, the correlation between the shocks is given by

χητ = σητ√
σ2
η

√
σ2
τ

�

This is not point-identified; the following proposition gives the bounds on the identified
set.

Proposition 7. If −ρ < θ < 0, then we can find a solution to (14) and (15) with χητ ∈
[−1�1].

If θ > 0 or θ <−ρ, then we have χητ ∈ [−1�λ], where

λ= −2

√
(θ/ρ)(θ+ ρ)(θ+ 1/ρ)

|1 + θ2 + (2θ)/ρ| � (23)

Proof. To show this, we assume, without loss of generality, that ν2 = 1. Suppose −ρ <
θ < 0. Taking the lower bound in (16), we have

σ2
τ =

(
θ

ρ

)2

�

σ2
η = (

1 + θ2) +
(

2θ
ρ

)
+ (

1 − ρ2)(θ
ρ

)2

=
(

1 + θ

ρ

)2

�

σητ = −θ
ρ

−
(
θ

ρ

)2

= −θ
ρ

(
1 + θ

ρ

)
�

χητ =
−θ
ρ

(
1 + θ

ρ

)
(

1 + θ

ρ

)(
−θ
ρ

) = 1�

Note that we take
√
σ2
τ = −θ/ρ to ensure that the standard deviation is nonnegative. If

we take the upper bound in (16), we can show that χητ = −1. The correlation coefficient
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is a continuous function of σ2
τ between these bounds and, hence, any value of σ2

τ corre-
sponding to an arbitrary χητ ∈ [−1�1] is a solution. To prove the second statement, both
the lower and the upper bound forσητ in (20) always give a correlation of −1. We can find
the upper bound for the correlation in the case where θ > 0 or θ <−ρ. The correlation is
given by

χητ = −(θ/ρ)− σ2
τ√

(1 + θ2)+ (2θ)/ρ+ (1 − ρ2)σ2
τ

√
σ2
τ

�

We can find the maximum correlation by solving the first order condition. The solution
to the first order condition is

σ2
τ = θ

ρ

(1 + θ2 + (2θ)/ρ)
1 + θ2 + 2θρ

�

The maximum correlation is

λ= χητ = −2

√
(θ/ρ)(θ+ ρ)(θ+ 1/ρ)

|1 + θ2 + (2θ)/ρ| � �

These are striking results. The first statement implies that if θ ∈ [−ρ�0], there are no
bounds on the correlation between shocks.8 The case with no correlation corresponds
to the usual PT identifying assumption, whereas the case with a correlation of +1 cor-
responds to the BN decomposition. The various cases are illustrated in the top panel
of Figure 1. The second statement also has significant implications: if θ is outside the
bounds given for the uncorrelated PT representation, then the covariance between the
two shocks is always negative, with perfect negative correlation (the BN case) always be-
ing a solution. However, having a negative correlation is exactly the case that we would
often wish to exclude. The bounds get tighter as θ approaches −1 or +1.9 In Figure 2, we
show the upper bound for four different values of ρ.

Although not all of the parameters of the PT representation are point-identified for
the unit root model (ρ= 1), the variance of the permanent shock is point-identified with
σ2
η = (1 + θ)2ν2; see equation (17). However, the two remaining parameters σ2

τ and σητ
are only set identified. In the bottom panel of Figure 1, we show the set identification
for a unit root model (ρ= 1) with different values of θ and ν2 = 1. In many applications
of the unit root permanent–transitory model, the ratio of the variance of the transitory
shocks to the variance of the permanent shocks is of importance. These calculations
show that this ratio is not identified and can vary substantially; for example, if θ= −0�5,
the ratio can be between unity and 4.10

To illustrate the importance of the nonidentification, we have constructed two series
of transitory and permanent shocks (ρ= 1), which generate exactly the same y process.

8The coincidence of this with the parameter values that yield the uncorrelated PT representation (Propo-
sition 1) is particular to the ARMA(1�1) case. For example, it does not hold for the ARMA(1�2) case.

9This also follows from Corollary 5, which states that the parameters are point-identified if |θ| = 1.
10This follows from Corollary 6.
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Figure 1. Set identification for the ARMA model.

Both sets of transitory and permanent shocks satisfy the conditions stated in Section 1.11

The first set is with uncorrelated transitory and permanent shocks; this is shown in the
upper panel of Figure 3. The lower panel of Figure 3 corresponds to transitory and per-
manent shocks that are perfectly positively correlated (the BN decomposition). The fig-
ure shows that two very different set of shocks can generate with exactly the same time
series. Note that the variance of the transitory shocks is much lower when the shocks are
correlated. This also shows that the nonidentification cannot be resolved by including
additional moments of the y-process. If we want to obtain point identification, we need
additional assumptions on the process and in some cases also additional moments.

4. Alternative identification strategies

In the previous section, we showed that in the general PT model with correlated shocks,
the variances are only set-identified. Point identification requires either stronger as-
sumptions or additional information or data. In this section, we show how either addi-
tional structure imposed by the theory, consumption data, or applying higher order mo-
ments can help in point-identifying the parameters. However, all the alternative strate-
gies require strong additional assumptions.

11A description of how the figures are generated can be found in Appendix C.
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Figure 2. Bounds on the correlation for different values of ρ.

4.1 Identification using structural wage and labor supply models

One alternative way to identify the variances is to impose more structure on the earnings

process by using theory on labor supply, wages, and earnings. By using a (semi-) struc-

tural model on labor supply, wages, and earnings, one can decompose the shocks into

transitory and persistent shocks. Altonji, Smith, and Vidangos (2013) explicitly modelled

both labor supply and the accumulation of tenure together with wages and earnings. In

such a model, the event of losing a job will generate both a transitory and a persistent

effect on earnings. The transitory effect arises because of the reduction in labor sup-

ply, while the loss of tenure generates a persistent effect on the wage and thereby af-

fects earnings. By using the structure imposed by the wage and labor supply model, one

may be able to identify an observable event such as displacement that can be seen as

a transitory and/or persistent shock, and to pin down the correlation between the two

shocks. Other potentially observable events include promotion, a temporary layoff, a

health shock, occupational mobility, and geographical mobility.
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Figure 3. PT model with uncorrelated shock and positively correlated shock.

4.2 Information on expectations

An alternative route to point identification was given by Pistaferri (2001), who suggested
using additional information in a panel of income and wealth (the Survey of Italian
Households’ Income and Wealth (SHIW)). The extra information is a direct question,
asked in period t, about expected income growth between t and t+1. This is interpreted
as giving a direct measure of Et(Δyi�t+1), the conditional mean of income growth condi-
tional on information at time t. Applying this to the permanent–transitory model (2),12

we have

Et(Δyi�t+1) = Et(pt+1 + τt+1 −pt − τt)
(24)

= Et(ηt+1 + τt+1 − τt)= −τt�
Thus, the conditional mean of income growth yields an estimate of the (negative) tran-
sitory shock itself. Given this, the permanent shock can be recovered from

Δyit +Et(Δyi�t+1)−Et−1(Δyit) = (ηt + τt − τt−1)− τt + τt−1
(25)

= ηt�

12Similar manipulations can be carried out for the persistent–transitory model, but for clarity we here
take the model with ρ= 1.
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Two points arise. First, the informational requirement here is much higher than in
most income panels. Even in the SHIW, complications arise since the survey is run every
second year, but the expectations question only asks about the next year. Having only
(yi�t+2 −yit) requires supplemental assumptions to identify τt directly. More importantly,
the method requires that the expectations measure be free of measurement error. It can
be shown that measurement error in the expectations response will lead to a downward
bias in the estimate of the correlation between the two shocks.

Pistaferri (2001) used these data in a model of consumption and income but did not
present an estimate of the correlation between the shocks. Hryshko (2013) adopted the
Pistaferri method and used the Italian SHIW to calculate the correlation between the
persistent shock and the permanent shock. He found a strong negative correlation.

4.3 Identification using consumption data

If consumption data are available, they can be used to point-identify the parameters.
We assume a setup as in Blundell, Pistaferri, and Preston (2008), in which consumption
changes depend on the transitory and persistent shock. To simplify the exposition, we
assume ρ= 1 with a model for income and consumption growth given by

Δyt = ηt + τt − τt−1�
(26)

Δct = φηt +ψτt + υt�
Using the moment conditions given in the Appendix of Blundell, Pistaferri, and Preston
(2008), we have

E
(
(Δyit+1 +Δyit +Δyit−1)Δyit

) = σ2
η�

E(ΔyitΔyit−1)= −σ2
τ − σητ�

E
(
(Δyit+1 +Δyit +Δyit−1)Δcit

) =φσ2
η +ψστη� (27)

E(ΔcitΔyit+1)= −ψσ2
τ −φστη�

V (Δcit)=φ2σ2
η +ψ2σ2

τ + 2φψστη + V (υt)�
The equations show that the variance of the persistent shock, σ2

η, is point-identified (as
it is for any unit root model). Using second through fourth equation in (27), we cannot
point-identify (σ2

τ �σητ�φ�ψ).
13 To point-identify the remaining parameters, we need at

least one of the following conditions to be imposed:

στη = 0�

ψ= 0�

φ= 0�

13Where the consumption information is directly useful for estimating income processes is in identifying
measurement error in income. In a model with only income information, classical measurement error is
indistinguishable from the transitory shock.
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The first restriction is uncorrelated shocks (as assumed in Blundell, Pistaferri, and Pre-
ston (2008)). The second restriction states that there is no impact of transitory shocks on
consumption; this is the most natural assumption. The third restriction is the counter-
intuitive assumption that there is no impact of permanent shocks on consumption.

Hryshko (2013) showed what happens in a consumption model such as (26) if we
mistakenly assume zero correlation (as in most studies of income and consumption).
In the case where there is a negative correlation (στη < 0), this will lead to a downward
bias in φ and ψ. In this case, one will find “excess smoothness of consumption.” On the
other hand, if the correlation is positive, the estimates of φ and ψ are upward biased.
Furthermore, Hryshko (2013) argued that a consumption–income model that allows for
negatively correlated permanent and transitory shocks in the income process better ex-
plains the “excess smoothness” that is often found in consumption data. Hryshko (2013)
used a structural model of income and consumption (with assumption imposed by the
structural relation) and was thereby able to point-identify the parameters. He estimated
the correlation between the transitory and the permanent income shock to be −0�6.

4.4 Identification from higher order moments

Finally, we show how assumptions on higher order moments can help to pin down the
correlation between the transitory and the persistent shock. Assume that we have a cor-
related PT model. We can write the persistent and the transitory shocks as

ηt = zt + vt�
τt = azt + ut�

where zt is the common part of the shock. The parameters of the shocks are given by a,
σ2
z , σ2

u, and σ2
τ , where a identifies the covariance. For known ρ, we have

yt − ρyt−1 = ηt + τt − ρτt−1

= (1 + a)zt + vt + ut − ρazt−1 − ρut−1�

If zt is drawn from an asymmetric distribution but u and v are symmetric, we can identify
the a (and thereby the covariance). Assuming

E
(
z3
t

) �= 0�

E
(
u3
t

) =E(
v3
t

) = 0�

we have

E
(
(yt − ρyt−1)

3) = (
(1 + a)3 − ρ3a3)E(

z3
t

)
�

and we can then identify a if E(z3) is a known or a function of first and second order
moments. Similarly we can identify the covariance if either E(u3

t ) or E(v3
t ) was different

from zero. Higher order moments such as fourth order moments can also be used, but
again it requires that E(z4) is known or at least a known function of first and second
order moments.
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5. Quantitative implications

5.1 Empirical specification

The analysis above shows that for given values of the ARMA parameters, the bounds on
the estimates of the ratio of the persistent and the transitory variances can be quite wide.
In this section, we consider whether the possibility of wide bounds is actually realized
for a given sample of workers. To quantify the implications, we follow closely Browning,
Ejrnæs, and Alvarez (2010) (BEA); readers are referred to that paper for a detailed ratio-
nale of the empirical approach we use here. BEA estimated an ARMA(1�2)model with a
quadratic trend and an allowance that the reversion to the trend (the autoregressive pa-
rameter) is time dependent. To make our point cleanly, we here take a simplified version
of this model with an ARMA(1�1) process with a linear trend and a time independent AR
parameter. For household i (= 1� � � � �H) in time t (= 2� � � � �T ), log earnings, yit , are given
by

yit =
[
μi(1 − ρi)+ ρiαi

] + ρiyi�t−1 + [
αi(1 − ρi)

]
(t − 1)+ νiξit + θiνiξi�t−1� (28)

where the ξit ’s are independent standard normals. If ρi = 1, this reduces to a unit root
model with a drift equal to αi. The important element of this specification is that we
allow that there is pervasive heterogeneity; that is, all of the parameters (μ�α�ρ�θ� ν)
are allowed to vary across workers. Apart from the gain in the fit to the data, this is par-
ticularly useful in the current context since it allows us to examine the cross-section
distribution of the identified sets we are interested in.

To start the process, we model the initial condition by

yi1 = a0 + a1di + c0ξi1 + c1ξi0� (29)

where di is the year of birth of worker i to allow for age/cohort effects in the starting
value; again, see BEA.

To model the heterogeneity, we adopt a two factor structure for the parameters in
(28).14 Letting ηki be independent standard normals for k = 1�2 and i = 1� � � � �H, we
take

μi =φ1 + exp(ψ11)η1i�

νi = exp
(
φ2 +ψ21η1i + exp(ψ22)η2i

)
�

αi =φ3 +ψ31η1i +ψ32η2i� (30)

ρi = �(φ4 +ψ41η1i +ψ42η2i)�

θi = 2�(φ5 +ψ51η1i +ψ52η2i)− 1�

14This specification is the end result of a specification search that began with a five factor model. The
χ2(6) test statistic for dropping three factors was 3�6.
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where �(x)= exp(x)/(1+exp(x)) so that ρ ∈ (0�1) and θ ∈ (−1�1).15 This structure allows
for a good deal of heterogeneity with dependence across parameters. In all, we have 18
parameters to estimate: (a0� a1� c0� c1) from (29) and (φ1� � � � �φ5�ψ11� � � � �ψ52).

5.2 Estimation method

We use indirect inference to estimate the parameters that govern the distribution of pa-
rameters. Gouriéroux, Phillips, and Yu (2010) provided a strong defense for using indi-
rect inference to estimate the parameters of a parametric dynamic panel model. The
main motivation is that this method provides a bias reduction estimation method to
allow for the well known bias in dynamic panel data estimation.

Indirect inference requires us to specify auxiliary parameters (a.p.’s) that can be cal-
culated on the data at hand and on simulated data that purport to model the empirical
generating process. Indirect inference chooses parameter estimates to minimize the dis-
tance between the two sets of auxiliary parameters. In our estimation procedure, we rely
heavily on auxiliary parameters that are based on regressions for each worker; this fol-
lows the literature on testing for unit roots in panel data (see Levin, Lin, and Chu (2002)
or Im, Pesaran, and Shin (2003)). Of course, the estimates from individual regressions
based on short time series do not give unbiased estimates of anything of interest. How-
ever, the use of the same auxiliary process for the data sample and the simulated sample
introduces similar biases in both; it is in this sense that Gouriéroux, Phillips, and Yu
(2010) saw indirect inference as a bias reduction method. As well as auxiliary parame-
ters based on individual regressions, we also use moments that have been widely used
in the earnings process literature. Details of the construction of the auxiliary parameters
are given in Appendix D. These statistics provide a rich description of the time series and
cross-section features of the original data. In all, we have 42 auxiliary parameters for the
24 distribution parameters to be estimated.

So as to estimate, we have to simulate from the model in (28) and (29). To reduce the
impact of the misspecification in the initial value, we start the process at t = −3 (using
(29)) and then recursively generate yi�t−2� � � � � yiT . We then discard the first three observa-
tions for each worker. Additionally, we have to allow that the panel we use is unbalanced,
with some workers not in the first observation period and some dropping out before the
final observation period. To take account of this, we replicate the actual data with the
values not observed for each replicated household masked out as in the data. For exam-
ple, if household i is only observed for periods 4–16, then for each replicated household
for that particular household, we simulate from 1 to T and set the periods 1–3 and 17–T
as missing. Thus the simulated data have the same imbalance as the original data.

5.3 Sample

We estimate using a subsample of the sample drawn from the PSID as used in Meghir
and Pistaferri (2004) (MP). This is an unbalanced sample of male workers followed from

15The restriction on ρ explicitly rules out that anyone has a unit root. Guvenen (2009) and Browning,
Ejrnæs, and Alvarez (2010) provided evidence that this is not rejected if we allow for heterogeneous deter-
ministic trends (the αi’s).
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(survey years) 1968 to 1993. We select on being aged between 25 and 57, and being in
the sample for at least 9 years. The original MP sample consists of 2069 individuals, with
31,631 observations. The earnings variable includes all income from labor, deflated to
the year 1992. For individuals in this sample, the variables we use to control for observ-
able heterogeneity are education, race, age, and birth cohort. We deal with some of the
observable heterogeneity by stratifying on education and working by selecting whites
who have a high school education. This gives a sample size of 749, with workers being
observed between 9 and 26 years, which gives in total 11,503 observations. Following MP,
we run a first round regression of log earnings on year dummies and age dummies, and
treat the residuals from this regression as earnings in (28).

5.4 Empirical estimates

The χ2(24) test statistic for the overidentifying restrictions has a value of 38�3 with an
associated p-value of 2�9%. Although marginal, the fit is quite good and we deem it un-
likely that a marginal improvement in the fit from generalizing the model would change
the qualitative implications below. The χ2(4) test statistic for shutting down the hetero-
geneity in (ρ�θ) (that is, imposing ψ41 = ψ42 = ψ51 = ψ52) is 24�0, which indicates that
there is significant heterogeneity in the ARMA parameters. Table 1 presents the marginal
distributions of the heterogeneous model parameters.16 As can be seen, all of the param-
eters are quite dispersed. Since these distributions are similar to those in BEA, we only
discuss the ARMA parameters that are the focus of this study. The AR parameter is quite
dispersed, with no significant bunching near unity (see BEA for details of how this re-
lates to a test for any one having a unit root). The MA parameters are mostly negative,
but a considerable proportion have a positive value.

Table 2 presents the correlations of the heterogeneous model parameters. This
shows that there is considerable dependence between the model parameters; this is to
be expected in a low dimensional factor model. Of particular interest for us, the ARMA
parameters ρ and θ are strongly negatively correlated; this is also clear from the scatter
plot of the estimates in Figure 4. Most of the estimates have −ρ < θ < 0, so that for a ma-
jority of the population, any correlation between −1 and +1 is admissible. However, for
a significant proportion (mostly with θ > 0), the PT representation only allows a negative
correlation or no representation if we impose zero correlation.

Table 1. Marginal distributions of model parameters.

Parameter 10% 25% 50% 75% 90%

μ −0�31 −0�20 −0�09 0�02 0�13
α −0�10 −0�07 −0�03 0�00 0�04
ρ 0�48 0�66 0�82 0�91 0�96
θ −0�48 −0�37 −0�22 −0�07 0�07
ν 0�08 0�11 0�16 0�22 0�31

16Estimates of the parameters in (29) and (30) are given in Appendix D.2.
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Table 2. Correlations of model parameters.

μ α ρ θ ν

μ 1 – – – –
α −0�95 1 – – –
ρ −0�6 0�39 1 – –
θ 0�26 −0�15 −0�57 1 –
ν 0�93 −0�88 −0�58 0�24 1

Figure 4. The joint distribution of the ARMA parameters.

5.5 Implications

Finally we can turn to the implications of these estimates for the identification issues
we are primarily concerned with. We first present the implications for the mean of the
ARMA parameters, which are ρ= 0�69 and θ= −0�17. These estimates are unremarkable
for (stationary) models that assume no heterogeneity in the ARMA coefficients. The re-
strictions from Proposition 1 require −ρ ≤ θ ≤ 0 so that at the mean, the ARMA model
admits a PT representation with zero correlation between the shocks. It thus follows that
the identified set for the correlation between the persistent shock and the transitory
shock is [−1�1]. With these mean values, the identified set for the ratio of the variance
of the persistent shock to the variance of the transitory shock is [0�70�6�96] so that the
highest possible ratio is 10 times the lowest possible. If we set the correlation to zero, we
have a point estimate of 2�21 (the harmonic mean of the end points of the identified set).
Comparing to the literature, which all assume zero correlation, Gottschalk and Moffitt
(1994) and Guvenen (2009) also found the ratio of the variances close to 2, while Meghir
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Table 3. The distribution of identified sets.

10% 25% 50% 75% 90%

σ2
η/σ

2
τ 1�2 3�1 8�5 38�0 219�6

Upper bound for correlation −0�91 −0�82 −0�65 −0�48 −0�34

and Pistaferri (2004), Blundell, Pistaferri, and Preston (2008), and Hryshko (2012) found
the ratio in the range 0�5–1.17

Having allowed for heterogeneous ARMA parameters, we can also display the distri-
butions of the identified sets. For all values of (ρ�θ), we can construct the ratio of the
variance of the persistent shock to the variance of the transitory shock from (21). The
first row of Table 3 shows the distribution of the ratio of the upper bound to the lower
bound for the ratio of variances. The median value is 8�5, which is slightly lower than the
ratio given above at the mean of the estimates, but still very high. Since the upper bound
is unbounded above (σ2

η/σ
2
τ → ∞ as θ→ 0), we see very high values for the upper tail.

The second row of Table 3 shows the upper bound on the correlation for the 17�7% of
the sample who do not satisfy the condition that −ρ≤ θ≤ 0 (as shown above, the lower
bound is always −1). Even in the tail of this distribution, the identified set is quite wide.

6. Conclusion

This paper has derived the relationship between ARMA estimates of a dynamic model
and the representation that allows us to identify a transitory and a persistent compo-
nent for shocks. The main result is that the decomposition is critically dependent on the
assumed correlation between the two shocks. In the absence of such an assumption,
the parameters of the PT representation are only set-identified. Moreover, there are no
bounds on the correlation between the shocks if we have a moderate negative MA pa-
rameter. A quantitative assessment of the seriousness of this lack of point identification
suggests that it is very serious with very wide bounds for both the correlation and the
ratio of the variances of the shocks.

The nonidentification has important implications for analyses made on earnings dy-
namics. For example, analyses that examine how the variance of transitory and persis-
tent shocks have changed over time are only valid under the assumption that the cor-
relation remains unchanged. Thus, a finding on a time varying ratio of variances (see
Moffitt and Gottschalk (2012)) could be generated by constant variances and time vary-
ing covariances. An apparent increase in the transitory variance in an uncorrelated PT
model could instead have been induced by a decrease in the correlation. Also analyses
that examine the ability of households to smooth consumption are heavily influenced
by the assumption on the correlation with wildly varying values for the variance of the
persistent shock relative to the transitory shock. Given this, it is advisable for future re-

17The ratio when we assume zero correlation is very sensitive to the value taken for ρ.
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searchers to present identified sets for outcomes of interest that explicitly take into ac-
count the nonidentification of the correlation between the shocks.

Appendix A: The ARMA(1�2) case with zero covariance

In this appendix, we consider the ARMA(1�2)model. For simplicity, we assume a process
with mean zero and no trend, and again we assume that 0 < ρ ≤ 1. The ARMA(1�2) is
given by

yt = ρyt−1 + ξt + θ1ξt−1 + θ2ξt−2� (31)

This model can, under certain parameter restrictions, be written as a PT model with un-
correlated shocks, where the transitory shock τt is an MA(1) process with parameter λ:

ξt + θ1ξt−1 + θ2ξt−2 = εt + λεt−1 − ρ(εt−1 + λεt−2)+ηt
= εt + (λ− ρ)εt−1 − ρλεt−2 +ηt�

Taking covariances gives three equations that give the mapping between the two sets of
parameters:

(
1 + θ2

1 + θ2
2
)
ν2 = (

1 + (λ− ρ)2 + (ρλ)2)σ2
ε + σ2

η�

θ1(1 + θ2)ν
2 = (λ− ρ)(1 − λρ)σ2

ε�

θ2ν
2 = −λρσ2

ε �

We consider the unit root case, ρ= 1, and we restrict θ1, θ2, and λ to lie within −1 and 1.
The equations are given by

(
1 + θ2

1 + θ2
2
)
ν2 = 2

(
1 + λ2 − λ)σ2

ε + σ2
η�

θ1(1 + θ2)ν
2 = −(λ− 1)2σ2

ε�

θ2ν
2 = −λσ2

ε �

From the middle equation, we can immediately see that θ1 has to be negative; θ2 can be
positive, zero, and negative depending on the sign of λ. We now consider three cases:

λ < 0 λ= 0 λ > 0

θ1 < 0 < 0 < 0
θ2 > 0 = 0 < 0

Proposition 8. The ARMA(1�2) model with ρ = 1 has an uncorrelated PT representa-
tion if the parameters θ1 and θ2 satisfy the restrictions

−1 ≤ θ1 ≤ −4θ2

(1 + θ2)
� θ2 > 0�

θ1 ≤ 0� θ2 ≤ 0�
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Figure 5. The restrictions of the ARMA(1�2) parameters when ρ= 1.

The PT parameters are given, if θ2 �= 0, by

σ2
η = (1 + θ1 + θ2)

2ν2�

λ= 1
2θ2

(
θ1 + 2θ2 + θ1θ2 ± √

θ1(θ2 + 1)(θ1 + 4θ2 + θ1θ2)
)
�

σ2
ε = θ2ν

2

−λ = − 2θ2
2ν

2

(θ1 + 2θ2 + θ1θ2 ± √
θ1(θ2 + 1)(θ1 + 4θ2 + θ1θ2))

�

If θ2 = 0, then λ= 0 and σ2
ε = −θ1ν

2.

In Figure 5, we show the parameter space of ARMA(1�2)with ρ= 1 that is consistent

with a PT representation. On the figure, we also show the ARMA(1�2) parameter implied

by the Meghir and Pistaferri (2004) estimation.

Corollary 9. In the unit root model ρ= 1, there are no transitory shocks if θ1 = θ2 = 0.

If θ1 + θ2 = −1, there are no permanent shocks.

Moving on to the more general case with ρ ∈ (0�1), and θ1, θ2, and λ ∈ (−1�1), we

now consider the different cases.

From Table 4, one can conclude that if both θ1 and θ2 are positive, then the earnings

process cannot be represented with a standard (uncorrelated) PT model.
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Table 4. The parameter space of the ARMA model.

λ < ρ λ= ρ λ > ρ

λ< 0 θ1 < 0
θ2 > 0

λ= 0 θ1 < 0
θ2 = 0

λ > 0 θ1 < 0 θ1 = 0 θ1 > 0
θ2 < 0 θ2 < 0 θ2 < 0

Appendix B: The Beveridge–Nelson approach

We also use the Beveridge–Nelson approach to decompose the ARMA(1�2) into a per-
sistent shock and a transitory shock.18 However, it turns out that this decomposition is
different than the PT model with uncorrelated shock. For simplicity, we assume a pro-
cess with mean zero and no trend, and again we assume that 0< ρ≤ 1. The ARMA(1�2)
is given by

yt = ρyt−1 + ξt + θ1ξt−1 + θ2ξh−2� (32)

By using the time series representation, we can write the ARMA model as

A(L)yt = θ(L)ξt�

where

A(L)= 1 − ρL and θ(L)= 1 + θ1L+ θ2L
2�

We use the BN decomposition of a general ARMA model into a persistent and a transi-
tory component. Under the condition that the A(L) and θ(L) have no common roots,
we can write yt = (A(L))−1θ(L)ξt . Since the root in theA(L) is r = 1/ρ, the condition of
no common roots implies that 1/ρ cannot be a root in θ(L):

θ(1/ρ)= 1 + θ1/ρ+ θ2/ρ
2 �= 0�

We then make the decomposition as

yt =
(
A(L)

)−1
θ(L)ξt = σ

(
A(L)

)−1
ξt +

(
A(L)

)−1(
θ(L)− σ)

ξt�

where σ is a scalar that indicates how much of the shock can be attributed to a persistent
shock. The first term σ(A(L))−1ξt is the persistent part of the process:

σ
(
A(L)

)−1
ξt = σ

∞∑
i=0

ρiξt−i�

18The decomposition is strictly speaking not a BN decomposition, but does use the same ideas.
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So as to make the second term a transitory shock, we require that this process is an
MA(q) process. To be this, we need that A(L) and (θ(L)− σ) have common roots; that
is, that 1/ρ should be a root in (θ(L)− σ):

1 − σ + θ1/ρ+ θ2/ρ
2 = 0�

1 + θ1/ρ+ θ2/ρ
2 = σ�

Using the factorization of (θ(L)− σ), we get

(
θ(L)− σ) = (L− 1/ρ)

(
θ1 + θ2(L+ 1/ρ)

)
�

The transitory shock is given by

(
A(L)

)−1(
θ(L)− σ)

ξt = (1 − ρL)−1(L− 1/ρ)
(
θ1 + θ2(L+ 1/ρ)

)
ξt

= −1/ρ
(
θ1 + θ2(L+ 1/ρ)

)
ξt

= −1/ρ ∗ (θ1 + θ2/ρ)ξt − 1/ρ ∗ θ2ξt−1�

The persistent shock is given by

ηt =
(
1 + θ1/ρ+ θ2/ρ

2)ξt�
The decomposition is given by

yt =
(
1 + θ1/ρ+ θ2/ρ

2) ∞∑
i=0

ρiξt−i − 1/ρ ∗ (θ1 + θ2/ρ)ξt − 1/ρ ∗ θ2ξt−1�

If we restrict the scalar to 0 ≤ σ ≤ 1, which implies that σ can be interpreted as the part
of the shock that is the persistent part, we can derive the restrictions on the ARMA pa-
rameters:

0< 1 + θ1/ρ+ θ2/ρ
2 < 1�

(33)
−1< θ1/ρ+ θ2/ρ

2 < 0�

If 1 + θ1/ρ+ θ2/ρ
2 = 0, we have no persistent shock, and if 1 + θ1/ρ+ θ2/ρ

2 = 1, we have
no transitory shocks.

The main difference between the time series approach and the PT model is that the
time series approach does not require that the persistent and the transitory shocks are
uncorrelated. In the time series approach, the covariance of the shocks is given by

Cov
(
ηt�1/ρ ∗ (θ1 + θ2/ρ)ξt − 1/ρ ∗ θ2ξt−1

)
= −1/ρ ∗ (θ1 + θ2/ρ) ∗ (

1 + θ1/ρ+ θ2/ρ
2) ∗ ν2�

Given the restrictions (33), the covariance will always be positive, but otherwise the co-
variance will be negative.
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Appendix C: Decomposition of shocks

We start by simulating a PT model with uncorrelated shocks. The parameters of this
model is given by (ρ�σ2

η�σ
2
τ ). We simulate a sequence of independent transitory and

persistent shocks, (τ0
1� � � � � τ

0
T ) and (η0

1� � � � �η
0
T ), and the process is given by

yt = pt + τ0
t �

pt = ρpt−1 +η0
t � t > 1�

p1 = η0
1� τ0

1 = 0�

We know that we can write this process as

yt − ρyt−1 = ξt + θξt−1� t > 1�

y1 = ξ1�

where the parameters in the model are ρ, θ, and ν2 can be found as

θ= 1
2ρσ2

τ

[
−(

1 + ρ2)σ2
τ − σ2

η +
√(

1 − ρ2
)2
σ4
τ + σ4

η + 2
(
1 + ρ2

)
σ2
τσ

2
η

]
�

ν2 = (−ρ/θ) ∗ σ2
τ �

We can then recursively determine the shocks in the ARMA(1�1)model:

ξ1 = y1�

ξt = yt − ρyt−1 − θξt−1� t > 1�

We can then define the transitory and the persistent shock by using the BN decomposi-
tion:

ηP1 = y1� τP1 = 0�

τPt = −θ
ρ
ξt� t > 1�

ηPt =
(

1 + θ

ρ

)
ξt� t > 1�

Figure 3 is generated for ρ= 1, σ2
τ = σ2

η = 1.

Appendix D: Empirical details

D.1 The auxiliary parameters

We have five heterogeneous model parameters (μ�α�ρ�θ� ν). We wish to define Individ-
ual Regression Based (IRB) a.p.’s that are “bound” to these.

The original data are denoted yit for i= 1� � � � �H and t = t1i� � � � � tT i, where the latter
values are the first and last periods for i.
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Step 1. Take deviations about the mean: xit = yit − ȳi.

Step 2. Detrend by regressing the deviations about the mean on a trend,

xit = b1i ∗ t + u1it � (34)

and record the estimated residuals û1it = xit − b̂1it for t = t1i� � � � � tT i.

Step 3. Regress these residuals on their lagged values,

û1it = b2iû1i�t−1 + u2it � (35)

and record the estimated residuals û2it = û1it − b̂2iû1i�t−1 for t = t1i + 1� � � � � tT i. The esti-

mated b2i is bound to the autoregressive parameter.

Step 4. Perform the regression

xit − b2ixit−1 = b3i ∗ t + u3it � (36)

The estimated b̂3i’s are bound to the trend parameter.

Step 5. Calculate

b̂4i = (1 − b̂2i)ȳi − b̂3i ∗ t� (37)

The parameters are bound to the intercept of the process.

Step 6. Calculate residuals for t = t = t1i + 1� � � � � tT i,

û3it = yit − b̂4i − b2i ∗ yi�t−1 − b̂3i ∗ t� (38)

and record the standard deviation and autocorrelation (denoted b̂5i and b̂6i, respec-

tively). These are for the variance and the MA parameters.

The a.p.’s for the five model parameters (μ�α�ρ�θ� ν) are, respectively, (b̂4i� b̂3i� b̂2i�

b̂6i� b̂5i). We also record the initial value yi1, and take means, standard deviations, and

correlations of the six values for each worker.
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D.2 Parameter estimates

Table 5. Parameter estimates.

Estimate Std. Error t-Value

φ1 −0�089 0�314 0�283
φ2 −1�844 0�033 55�668
φ3 −0�033 0�063 0�517
φ4 1�518 0�402 3�772
φ5 −0�448 0�110 4�088

c0 −3�581 0�997 3�590
c1 0�010 6�372 0�002

ψ11 −1�776 1�084 1�639
ψ21 0�488 0�105 4�649
ψ22 −1�620 1�217 1�331
ψ31 −0�051 0�029 1�771
ψ32 −0�017 0�032 0�523
ψ41 −1�096 0�504 2�176
ψ42 −0�610 0�710 0�860
ψ51 0�367 0�179 2�050
ψ52 −0�303 0�212 1�428

a0 −0�026 0�442 0�059
a1 0�313 0�850 0�369
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