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Nonparametric identification of dynamic decision processes
with discrete and continuous choices

Jason R. Blevins
The Ohio State University

This paper establishes conditions for nonparametric identification of dynamic
optimization models in which agents make both discrete and continuous choices.
We consider identification of both the payoff function and the distribution of un-
observables. Models of this kind are prevalent in applied microeconomics and
many of the required conditions are standard assumptions currently used in em-
pirical work. We focus on conditions on the model that can be implied by eco-
nomic theory and assumptions about the data generating process that are likely
to be satisfied in a typical application. Our analysis is intended to highlight the
identifying power of each assumption individually, where possible, and our proofs
are constructive in nature.
Keywords. Nonparametric identification, Markov decision processes, dynamic
decision processes, discrete choice, continuous choice.

JEL classification. C14, C23, C25, C51.

1. Introduction

This paper establishes conditions for nonparametric identification of both the payoff
function and the distribution of unobservables in dynamic decision processes in which
agents make both discrete and continuous choices. We focus on finding conditions on
the model that can be implied by economic theory and conditions on the data generat-
ing process that are likely to be satisfied in a typical application.

Models of this kind are routinely estimated in applied microeconomics, particularly
in empirical studies in industrial organization and labor economics. Examples include
dynamic investment models with discrete entry and exit decisions, and continuous in-
vestment choices and models with discrete labor force participation decisions and a
continuous choice over hours of work. See Ackerberg, Benkard, Berry, and Pakes (2007)
and Keane, Todd, and Wolpin (2011) for surveys of related models in industrial organi-
zation and labor economics, respectively.
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Although our proofs are constructive in nature, this paper does not consider non-
parametric estimation of the model, which is often prohibitive in applications due to
both data limitations and the curse of dimensionality. Still, formally establishing con-
ditions for nonparametric identification allows us to better understand the identifying
power of various model assumptions and sources of variation in the data, and provides
a benchmark for practitioners when specifying and estimating parametric models. Fi-
nally, since the period utility function is the nonparametric object of interest, the results
herein may be useful as a basis for welfare analysis or for considering identification of
counterfactual model predictions.

There is an extensive body of work on identification and estimation of dynamic dis-
crete choice models that has largely focused on models with discrete states and where
the distribution of unobservables is known, following the framework of Rust (1994).
Magnac and Thesmar (2002) provided several nonparametric identification results un-
der the assumption that the distribution of unobservables is known, but without fur-
ther restricting the payoffs. The nested fixed point estimator of Rust (1987), conditional
choice probability estimator of Hotz and Miller (1993), and the nested pseudo-likelihood
estimator of Aguirregabiria and Mira (2002) have all been widely used in applied work. In
a related model, Jofre-Bonet and Pesendorfer (2003) considered nonparametric identi-
fication of the cost distribution in a dynamic auction game with continuous choices.
Heckman and Navarro (2007) and Aguirregabiria (2010) studied identification of dy-
namic discrete choice models with continuous state variables. Hong and Shum (2010)
considered a dynamic continuous choice model with continuous states and parametric
payoffs.

Our results on nonparametric identification of the distribution of unobservables
extend a long line of research on semiparametric and nonparametric identification of
static discrete choice and continuous outcome models including Manski (1975, 1985),
Matzkin (1991, 1992, 1993, 2003), Dubin and McFadden (1984), and Newey (2007). Our
conditions are most closely related to Matzkin (2003), who used monotonicity to non-
parametrically identify nonlinear, nonseparable models, and Matzkin (1993), who used
shape restrictions on the subutility functions to nonparametrically identify static dis-
crete choice models.

Our work is also related to the literature on identification and estimation of dy-
namic discrete choice games (Aguirregabiria and Mira (2007), Pesendorfer and Schmidt-
Dengler (2008), Pakes, Ostrovsky, and Berry (2007), Bajari, Benkard, and Levin (2007),
Bajari, Chernozhukov, Hong, and Nekipelov (2007), Srisuma and Linton (2012)) and con-
tinuous or monotone choice games (Shrimpf (2011), Srisuma (2013)). See Aguirregabiria
and Mira (2010) for a recent survey. Although our focus is on single-agent models, rather
than games, our results should be a useful starting point for studying identification of
games with both discrete and continuous choices.1

The contributions of this paper are to establish conditions for the nonparametric
identification of models in which agents make a dynamic continuous choice in addi-
tion to the usual discrete choice. Existing work on identification of pure discrete choice

1A previous version of this paper includes results for dynamic games with discrete and continuous
choices under a completeness assumption and an exclusion restriction (Blevins (2010)).
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models provides a useful starting point for analyzing the models we consider, but given
the continuous choice, additional consideration is needed to find conditions for iden-
tifying the primitives of interest, which are infinite-dimensional functions rather than
finite-dimensional vectors. Thus, even though the observable distributions are richer in
this setting, it is unclear whether such models are nonparametrically identified because
the unknown primitives are themselves more complex.

This paper proceeds as follows. Section 2 introduces the model and basic assump-
tions. We then work toward our nonparametric identification results in two steps. First,
we suppose that the distribution of unobservables is known or identified and consider
semi-nonparametric identification of the policy and payoff functions in Section 3. Then
we consider nonparametric identification of the distribution of unobservables in Sec-
tion 4. This sequential approach allows us to highlight the identifying power of each as-
sumption individually. If the corresponding conditions from both sections are satisfied,
then the model is nonparametrically identified. Finally, Section 5 concludes.

2. Framework and basic assumptions

Consider a discrete-time dynamic optimization model with an infinite time horizon in-
dexed by t = 1�2� � � � �∞. Suppose the state of the market at time t that is observable
by the researcher can be summarized by random vector St ∈ S ⊆ R

L. Additionally, let
εt ∈ E ⊆ R

K+1 and ηt ∈ H ⊆ R denote the remaining state variables that are not ob-
servable by the researcher but affect, respectively, the discrete and continuous choices
made by the agent. The joint state (St� εt�ηt) evolves according to a controlled, time-
homogeneous, first-order Markov process that we describe below.

The timing of actions and information revelation within each period is as follows:

1. At the beginning of the period, the agent observes the realization of St and
the random vector εt . Given St and εt , the agent makes a discrete choice Dt ∈ D =
{0�1� � � � �K}.

2. After making the discrete choiceDt , the agent observes the realization of the ran-
dom variableηt . Given St , εt ,Dt , andηt , the agent makes a continuous choiceCt ∈ C ⊆ R

and receives a payoff U(Dt�Ct� St� εt�ηt).

The state St and the choices Dt and Ct are observed by the researcher, but εt and ηt
are only observed by the agent. The agent is forward-looking and discounts future pay-
offs using the discount factor β. The agent has rational expectations about the evolution
of St , εt , and ηt and chooses the actions Dt and Ct in each period so as to maximize
expected discounted future utility.

Regarding the sequential nature of decisions within a period, we assume that the
distribution of ηt is in the agent’s information set when the discrete choice Dt is made,
although the realization of ηt is not yet known. Therefore, the agent can make forecasts
and evaluate expectations involving ηt . In particular, agents chooseDt to maximize the
expected present discounted value of payoffs.

We make the following additional assumptions, most of which are standard assump-
tions used in the dynamic discrete choice literature (see Rust (1994), Aguirregabiria and
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Figure 1. State variable evolution.

Mira (2010)), with slight modifications in some cases to allow for the additional con-
tinuous choice. We discuss each assumption in detail below. The relationships between
the state variables and the decision variables for two full periods are also summarized
graphically in Figure 1. Direct relationships that are prohibited by the assumptions are
indicated by dotted lines.

Assumption 1 (Additive Separability). Let U = D × S × C × H. There exists a function
u :U → R such that for all (dt� ct� st�ηt) ∈ U and all εt ∈ E ,

U(dt� ct� st� εt�ηt)= u(dt� ct� st�ηt)+ εdt�t �

Assumption 2 (Conditional Independence). For all st ∈ S , et ∈ E , and ht ∈ H, the con-
ditional cumulative distribution function (c.d.f.) of the controlled Markov process can be
factored, almost surely, as

FSt�εt �ηt |St−1�εt−1�ηt−1�Dt−1�Ct−1(st� et�ht)= FSt |St−1�Dt−1�Ct−1(st) · Fεt�ηt |St=st (et�ht)�

Assumption 3 (Continuous Choice Unobservables). For all t andh ∈ H,Fηt |Dt�St �εt(h)=
Fηt |Dt�St (h) almost surely.

Assumption 4 (Discrete Choice Unobservables). The distribution of εt = (ε0�t � � � � � εK�t)

has support E =R
K+1 and E[εd�t]<∞ for all d ∈ D and all t.

Both Assumptions 1 and 2 have been widely used in dynamic discrete choice mod-
els since Rust (1987, 1988) demonstrated their role in generating empirically tractable
structural models of dynamic discrete choice (see Rust (1994), Aguirregabiria and Mira
(2010)). Assumption 1 is an additive separability condition of the sort used in both static
and dynamic discrete choice analysis (e.g. McFadden (1974), Rust (1994)). Note that in
our context, although it requires εt to affect payoffs additively, ηt may still affect payoffs
in a nonseparable manner. Assumption 2 is the conditional independence assumption
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of Rust (1987, 1988, 1994), which limits the serial dependence of the unobservables.2 Un-
der this assumption, the random variables εt and ηt are independent of εt−1 and ηt−1

conditional on St . Furthermore, St is independent of εt−1 and ηt−1 conditional on St−1,
Dt−1, and Ct−1.

In light of the continuous choice, we employ Assumption 3 so as to maintain the
same additive separability in εt for the dynamic payoffs that Assumptions 1 and 2 yield
for pure dynamic discrete choice models.3 Under this assumption, ηt , the unobserv-
able associated with the continuous choice, may depend on the discrete choice,Dt , and
the state, St , but not directly on the vector of discrete-choice-specific unobservables, εt .
Importantly though, Dt is itself determined by St and εt , so this allows for selection ef-
fects and heterogeneity in the distribution of ηt following the discrete choice. Finally,
Assumption 4 is a regularity condition on the distribution of the discrete-choice-specific
unobservables. Given the Markov assumption and the time invariance of both the pe-
riod utility function and state transition kernel, the agent’s optimal decision rules are
stationary. As such, we will omit the time subscript from variables when the context is
clear.

The timing of the model is such that the discrete choiceD is made at the beginning of
the period, prior to learning the value of η and prior to making the continuous choiceC.
Under the assumptions above, the value function from the perspective of the beginning
of the period can be expressed recursively as

V (s�ε)= max
d∈D

{
v(d� s)+ εd

}
� (1)

where v(d� s) is defined as

v(d� s)≡ E
[
max
c∈C

{
u(d� c� s�η)+βE

[
V

(
s′� ε′)|d� c� s]}∣∣d� s]� (2)

We call v the discrete-choice-specific value function. This function gives the expected dis-
counted utility obtained by choosing alternative d when the current state is s, net of
εd , assuming continued optimal behavior in future periods. This function is similar to
the choice-specific value function in dynamic discrete choice models (Rust (1994)), but
v(d� s) here represents an expected valuation at an intermediate point in the period, be-
fore the continuous-choice-specific shock is known.

As can be seen in (1) and (2), Assumptions 1–3 allow us to express this problem in an
analytically and empirically tractable form that resembles a static discrete choice prob-
lem, with the discrete-choice-specific value function playing the role of the period utility
function. First, Assumption 1 allowed us to write (1). Then Assumption 2 allowed us to

2In light of recent work by Hu and Shum (2012), our results can also be applied to models with serially
correlated unobserved state variables. Under their assumptions, the joint Markov kernel of the observed
and unobserved states is nonparametrically identified and can be treated as known for our subsequent
analysis.

3Maintaining this structure is important for preserving desirable computational properties, such as
the possibility of using well known integration methods such as Geweke–Hajivassiliou–Ruud (GHK) (see
Hajivassiliou and Ruud (1994)) and widely used closed forms for choice probabilities under the type I ex-
treme value distribution.
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omit ε and η from the conditioning set in the inner expectation over s′ and ε′ in (2). Sim-
ilarly, Assumption 3 allowed us to omit ε from the conditioning set of the outer expec-
tation over η. Therefore, as we alluded to earlier, Assumption 3 is needed here to ensure
that the discrete choice problem is effectively additively separable in ε, as is typically
assumed in pure dynamic discrete choice models. Otherwise, if η could be arbitrarily
correlated with ε, the discrete-choice-specific value function could depend on ε in a
nonseparable manner even under the additive separability condition in Assumption 1.

We will also make use of the ex ante value function

V̄ (s)≡ E
[
V (s�ε)|s] = E

[
max
d∈D

{
v(d� s)+ εd

}∣∣s]�
Using this function and the law of iterated expectations, we can rewrite (2) as

v(d� s)= E
[
max
c∈C

{
u(d� c� s�η)+βE

[
V̄

(
s′

)|d� c� s]}∣∣d� s]� (3)

The structural primitive of interest here is the payoff function u.

Example 1. Timmins (2002) considers the problem of a municipal water utility admin-
istrator who must choose the price of water each period. The marginal price may either
be zero or be some positive value. Consider a stylized version of the model in which
D ∈ D = {0�1} represents the decision of whether to use flat rate pricing or metered,
per unit pricing. Then, conditional on a pricing regime, C ∈ C = [0�∞) represents the
choice of the price. If D= 0, then C is the flat rate price (e.g., a monthly service charge).
IfD= 1, thenC is the marginal price (e.g., price per hundred cubic feet). These decisions
are functions of the demand for water, the groundwater stock, extraction costs, and so
on.

Associated with each discrete choice d ∈ D is a random variable εd that captures
costs associated with each pricing regime in the current period that are observed by
the agent but not observed by the researcher. Similarly, the continuous-choice-specific
variable η represents the unobserved costs of extracting water in the current period that
are observed by the agent but not the researcher.

In this example, the researcher is interested in learning about the administrator’s
payoffs as a function of state variables and the discrete and continuous choice variables.
For example, Timmins (2002) cites evidence that administrators price water significantly
below marginal cost, which would result in an inefficient allocation of potable water, a
very scarce resource in arid regions of the world.

The timing assumptions of our model reflect that the administrator faces uncer-
tainty about the costs of extracting water (η) when the preliminary pricing regime deci-
sion is made. Furthermore, these costs may be correlated with unobserved factors that
influence the regime choice (ε).

Example 2. Consider a dynamic model in which each period a firm first chooses
whether or not to operate or idle a plant in the current period, D ∈ D = {0�1}, after ob-
serving choice-specific shocks ε0 and ε1. Then, conditional on operating the plant and
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observing the realization of a cost shock η, the firm chooses a quantity of output to
produce, C ∈ C = [0�∞). At the time the operation decisionD is made, the firm may still
have some remaining uncertainty about what it’s actual realized costs would be should it
choose to operate. The unknown component of costs is represented by the cost shock η.
However, the firm knows the distribution of η and chooses D to maximize the expecta-
tion of its present discounted profits before η is realized.

Suppose that there is learning-by-doing in the sense that the marginal cost is de-
creasing in past cumulative production. Suppose further that the state vector is S =
(Q�X), whereQ is the past cumulative production at the plant, which evolves asQt+1 =
Qt +Ct , andX is the vector of other state variables.

The main focus of the paper is on nonparametric identification of the payoff func-
tion. However, for the sake of concreteness, consider a model with known inverse de-
mand p(c�x) and linear marginal cost α−γQ−η, where α is the baseline marginal cost,
γ is the amount by which an additional unit of past cumulative production decreases the
marginal cost, and η captures unobservable factors that influence costs. The resulting
period payoff forD= 1 is

π(c� s�η)= c[p(c�x)− (α− γQ−η)]� (4)

Suppose that the firm must pay a fixed cost φ to maintain the plant while idle, so the
payoff for D = 0 is −φ. No continuous choice is made following the decision to idle.
Then the full period payoff for the firm is

U(d� c� s� ε�η)=
{−φ+ ε0� if d = 0,
π(c� s�η)+ ε1� if d = 1.

In this example, additive separability (Assumption 1) is satisfied by construction. Con-
ditional independence (Assumption 2) limits the persistence of both the discrete- and
continuous-choice-specific unobservables: current values of these unobservables may
influence future values, but only through the choices themselves and the effects of those
choices on the observable state variables.

Before proceeding to our identification results, we discuss our results in light of the
well known underidentification results of Rust (1994) and Magnac and Thesmar (2002).
Namely, under certain assumptions, models of dynamic discrete decision processes are
nonparametrically unidentified unless the following components are all known: the dis-
count factor, the distribution of unobservables, and current and future preferences rela-
tive to one alternative. In light of the result of Magnac and Thesmar (2002) that a partic-
ular exclusion restriction can be used to identify the discount factor, we do not consider
identification of the discount factor (β) in this paper. Although we do provide conditions
for nonparametric identification of the payoff function and the distribution of unob-
servables, our results do not contradict the aforementioned underidentification results
due to differences in our model and assumptions. We show that with continuous varia-
tion in certain state variables, it is possible to identify the distribution of unobservables.
In contrast, Rust (1994) and Magnac and Thesmar (2002) considered a model with only
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discrete state variables. We also establish identification of the payoff function subject
to a location restriction, which is weaker than assuming that the payoff for one discrete
choice is identically zero, as previous authors have done. On the other hand, Rust (1994)
did not consider such a condition. We will discuss each of our assumptions in more de-
tail below after stating them formally.

3. Identification of the payoff function

In this section, we focus on nonparametric identification of the continuous choice pol-
icy function σ and the payoff function u given that the distribution of unobservables is
known or identified. We then consider nonparametric identification of the distribution
of unobservables in the following section.

3.1 Identification of σ

For given values of d, s, and η, let σ(d� s�η) be the value of the continuous choice that
solves the maximization problem inside the expectation in (2). We maintain the follow-
ing monotonicity assumption on σ .

Assumption 5 (Monotone Choice). For all d and s, σ(d� s�η) is strictly increasing in η.

Under Assumption 5, σ(d� s� ·) is a one-to-one4 mapping from the space of private
shocks H to the space of continuous choices C for all d and s. Similar monotonicity con-
ditions have been widely used both in empirical work and in identification analysis in re-
lated models, including, but not limited to, Matzkin (2003), Chesher (2003), Benkard and
Bajari (2005), Bajari, Benkard, and Levin (2007), Hong and Shum (2010), and Srisuma
(2013). Lemmas 2 and 3, which are stated in Appendix B, provide two more primitive,
sufficient conditions on u for this monotonicity assumption.

Example 1 (Continued). In the context of Example 1, the monotone choice assumption
requires that the optimal price of water, in both pricing regimes d and in all states s, is
monotonically increasing in the unobserved costs of extraction. Indeed, in the actual
parametric specification Timmins (2002) used for his application, the policy function is
monotonically increasing in the unobservable.

Example 2 (Continued). In the dynamic production model of Example 2, the monotone
choice assumption requires that the output quantity is strictly increasing in the produc-

tivity shock. As shown in Lemma 3 (Appendix B), if ∂
2u(d�c�s�η)
∂c ∂η > 0, then Assumption 5

holds. Since the example model is parametric, this can be verified directly: ∂2π
∂c ∂η = 1> 0.

4Because the payoff function depends on η in a nonseparable manner, the sign of η is not identified.
Strict monotonicity of σ in η is the key requirement. The assumption that σ is strictly increasing in η (as
opposed to strictly decreasing ) is a normalization: if σ is strictly decreasing in η, then it is strictly increasing
in −η.
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The following theorem establishes identification of σ under Assumption 5 given
Fη|D�S . We consider identification of Fη|D�S in the following section.

Theorem 1. Let Assumptions 1–5 hold. If Fη|D�S is known or identified, then σ is identi-
fied.

Proof. Let d ∈ D and s ∈ S be given. Under Assumption 5, the inverse policy function
is related to the conditional c.d.f. of the observed continuous choice as

FC|D=d�S=s(c) = Pr(C ≤ c|D= d�S = s)= Pr
(
σ(d� s�η)≤ c|D= d�S = s)

= Pr
(
η≤ σ−1(d� s� c)|D= d�S = s) = Fη|D=d�S=s

(
σ−1(d� s� c)

)
�

The first equality follows by definition of the conditional c.d.f., the second follows by
definition ofC, the third follows by monotonicity, and the fourth follows again by defini-
tion of the conditional c.d.f. Then σ−1(d� s� c)= F−1

η|D=d�S=s(FC|D=d�S=s(c)) is identified.

Finally, for all d and s, since σ−1(d� s� ·) is strictly increasing, then σ(d� s� ·) is identified.
Since d and s were arbitrary, σ is identified on D × S ×H. �

Remark. Note that Fη|D�S can be obtained if the joint conditional distribution Fε�η|S
and the function v are known. The former may be specified parametrically in some
cases, while the latter can often be obtained from the (observable) conditional choice
probabilities (Hotz and Miller (1993), Rust (1994)). Let Ed�s be the region of E correspond-
ing to the optimal choice5 ofD= d given that the state is S = s:

Ed�s = {
ε ∈ E : v(d� s)+ εd > v(k� s)+ εk ∀k 
= d}�

If the function v is identified, then so are the regions Ed�s for all d and s. Then the c.d.f.
in question is identified since

Fη|D=d�S=s(h)= Pr(η≤ h�D= d|S = s)
Pr(D= d|S = s) = Pr(η≤ h�ε ∈ Ed�s|S = s)

Pr(D= d|S = s)
and since FD�S and Fε�η|S are both known.

3.2 Identification of u

Let U = D × C × S × H be the domain of u. Theorem 2, stated below, establishes condi-
tions under which the payoff function u is identified on a particular subset of its domain,
Ũ ⊆ U , which corresponds to potentially observable optimal behavior by the agent. The
two corollaries that follow provide additional conditions—an additive separability con-
dition and an exclusion restriction—either of which suffices for the utility function to be
nonparametrically identified on the entire domain U .

Assumption 6 (Discount Factor). The discount factor β ∈ [0�1) is known.

5We ignore ties here, which happen with probability 0 under Assumption 4.
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Assumption 7 (Regularity Conditions). u is continuous, bounded, and differentiable.
For all d, s, and η, u is such that ∂u(d� s� c�η)/∂c > 0, limc→infC ∂u(d� s� c�η)/∂c = ∞,
and limc→supC ∂u(d� s� c�η)/∂c = 0. For all continuous, bounded functions g :S → R,
E[g(S′)|D= d�C = c�S = s]<∞ for all d, c, and s.

Assumption 8 (Period Utility). For some d ∈ D, u(d� c� s�η) is known for all c, s, and η.
For some c, u(d� c� s�η) is known for all d, s, and η= σ−1(d� s� c).

Assumption 6 requires that the discount factor is known by the researcher or that it
has been otherwise identified since, as discussed previously, we do not consider iden-
tification of β. Assumption 7 contains several regularity conditions that will be used to
guarantee an interior solution for the continuous choice.6 This assumption is invoked
because we use the first-order condition from the agent’s optimization problem and re-
quire the existence of a fixed point to a certain functional operator used in the proofs.

Assumption 8 is needed because, unlike in the static discrete choice case, not even
differences in the period utility function are identified. We maintain the focus on non-
parametric identification of u with the caveat that this assumption requires some prior
information about u. However, this assumption is weaker than assuming that either the
parametric family of functions in which u lies is known or that the payoff for one alterna-
tive is identically zero, both of which are assumptions that have been invoked previously
in the literature. As in Aguirregabiria (2010), it may be possible to directly identify cer-
tain counterfactual implications without first identifying the level of u, in which case
this assumption may be unnecessary.

Theorem 2. If Assumptions 1–8 are satisfied and Fη|D�S and Fε|S are known or identified,
then u is identified on a subset of the domain Ũ ⊆ U , where

Ũ = {
(d� c� s�η) :d ∈ D� c ∈ C� s ∈ S�η= σ−1(d� s� c)

}
�

Remark. The conclusion of this theorem is equivalent to showing that the function ũ is
nonparametrically identified where ũ(d� c� s) ≡ u(d� c� s�σ−1(d� s� c)) for all d, c, and s.
Intuitively, without additional assumptions, the domain of identification is limited be-
cause we never observe suboptimal behavior by the agent and so the observables do not
contain information about u over regions where c 
= σ(d� s�η).

We reserve the proof of this theorem for the Appendix, but provide a brief out-
line here. The structure of discrete and continuous choice models can be complex, but
our main result exploits the particularly tractable structure that follows from Assump-
tions 1–3. This allows us to build on the insights of Hotz and Miller (1993) for discrete
choice models to establish a one-to-one mapping between the (potentially observable)
conditional choice probabilities and differences in the discrete-choice-specific value
function. We then identify the level of v for the normalizing choice d by showing that
it is the unique fixed point of a particular functional mapping that depends only on

6Although this assumption limits our analysis to interior solutions, this is mitigated by the existence of
the preliminary discrete choice, since one of the choices can serve to indicate a corner solution.
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identified quantities. Finally, the payoff function itself is identified by using the first-
order condition for optimality of the agent’s continuous choice and the monotonicity
assumption, which relates the observable continuous choices to the unobservable pri-
vate shocks in a tractable manner.

We now state and prove two corollaries for extending identification of u from Ũ to the
entire domain U . The first corollary provides an additive separability condition, which
allows for interactions between the observables (d� c� s) and the unobservable η as long
as the functional form of the interaction is known. This is a generalization of the type
of additive separability assumption used for ε (Assumption 1) and is analogous to as-
suming the partial derivative of u with respect to η is known. As we illustrate below, this
assumption is satisfied in many applications. For example, it holds when c is quantity
and η is a marginal cost shock.

Corollary. In addition to the assumptions of Theorem 2, suppose that for all (d� s�
c�η) ∈ U ,

u(d� c� s�η)= u1(d� c� s)+ u2(d� c� s) ·η� (5)

where the function u2 is known. Then u is identified on U .

Proof. Suppose u is known on the set Ũ and that for each (d� c� s�η) ∈ U , we can write
u(d� c� s�η)= u1(d� c� s)+ u2(d� c� s) ·η, where u2 is known. Note that

u1(d� c� s)= u(d� c� s�η)− u2(d� c� s) ·η (6)

for any η ∈ H. Let (d� s� c) ∈ U1 and choose η = σ−1(d� s� c). Then (d� s� c�η) ∈ Ũ , so
u(d� c� s�η) is known. Then u1(d� s� c) is identified from (6) and u(d� s� c�η) is in turn
identified from (5). �

Example 2 (Continued). Note that the payoff function of Example 2 satisfies the neces-
sary multiplicative separability condition as seen in (4). Since η is a marginal cost shock,
it enters the payoff function multiplicatively with the continuous choice c. Hence, the
payoff function has the form required by (6) with u2(d� c� s) = c. The remainder of the
payoff function, denoted u1, would then be nonparametrically identified on its entire
domain.

The second corollary provides a different condition under which it is possible to ex-
trapolate the shape of the payoff function to the entire domain. This additional condi-
tion is a simple exclusion restriction that does not presume additional knowledge about
the functional form of u. Again, as the example below illustrates, this condition is not
difficult to satisfy in practice.

Assumption 9. The state vector can be written as S = (S0� S1), where S1 does not af-
fect the period payoff directly, but affects the optimal continuous choice. That is, where
u(d� c� s�η) = u(d� c� s′�η) for all d ∈ D, c ∈ C, and s� s′ ∈ S such that s = (s0� s1) and
s′ = (s0� s

′
1) for some s0, s1, and s′1. Furthermore, for any d, c, η, and s0, σ(d� s�η) = c

for some value of s1.
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Corollary. In addition to the assumptions of Theorem 2, if Assumption 9 holds, then
the function u is nonparametrically identified on its entire domain U .

Proof. Let (d� c� s�η) ∈ U with s = (s0� s1) and recall that σ is identified by Theorem 1
under the maintained assumptions. Since this is an arbitrary element of U , it may be
such that c 
= σ(d� s�η) and, hence, it may not be an element of Ũ . We proceed by
constructing a corresponding element of Ũ for which the utility is identified (by The-
orem 2) and known to be equal to that for the arbitrary chosen point in U . Under
Assumption 9, there exists an s̃1 ∈ S1 such that σ(d� c� s̃�η) = c for s̃ = (s0� s̃1). Then
u(d� c� s�η) = u(d� c� s̃�η), also by Assumption 9. By construction, (d� c� s̃�η) ∈ Ũ , and
u(d� c� s̃�η) is identified by Theorem 2. It follows that u(d� c� s�η) is identified. �

Example 1 (Continued). In the context of Example 1, the exclusion restriction is satis-
fied by variables that act as demand shifters. For example, Timmins (2002) estimates a
demand function for water that controls for income and the number of service connec-
tions in the municipality. So S0 would include variables that do affect payoffs, such as
the lift height (the distance water from the aquifer must be lifted to the surface), and S1
would include variables that are excluded from the payoff function, but affect the pricing
decision because they determine the demand for water, such as income and the number
of connections.

4. Identification of the distribution of unobservables

The previous section considered nonparametric identification of u given that Fε�η|S was
known or identified. In this section, we take a brief look at nonparametric identification
of Fε�η|S itself. Our work here follows a rich literature on identification and estimation
of static discrete choice models, which spans the range of parametric, semiparametric,
and nonparametric models. McFadden (1974) initially considered a parametric model
where the distribution of ε was known. A literature on semiparametric estimation of
binary choice models and related models ensued, including the estimators of Manski
(1975, 1985), Cosslett (1983), Stoker (1986), Han (1987), Horowitz (1992, 1996), Ichimura
(1993), and Klein and Spady (1993), among many others. Manski (1988) compared the
identifying power of many types of assumptions in semiparametric binary choice mod-
els more generally. Dubin and McFadden (1984) estimated a parametric, static model
with both discrete and continuous outcomes, and Newey (2007) studied nonparametric
identification of the model in the binary choice, however, the timing and informational
assumptions are different in our model.

Below, we will consider the identifying power of conditions that are most closely
related to those used by Matzkin in work on semiparametric identification of discrete
choice models (Matzkin (1991)), nonparametric identification of the distribution of un-
observables for binary and multinomial choice models (Matzkin (1992, 1993)), and non-
parametric identification in nonseparable models with continuous outcomes (Matzkin
(2003)). Her findings will prove useful in the dynamic model we consider, but as we illus-
trate below they are not directly applicable due to the recursive structure of the dynamic
payoff functions in the model we consider.
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There have also been promising recent developments on nonparametric identifi-
cation of the distribution of unobservables in dynamic discrete choice models. Norets
and Tang (2012) developed a semiparametric estimator for dynamic binary choice mod-
els that does not require the distribution of unobservables to be known, but they do
not consider nonparametric identification of this distribution. In another line of work,
Heckman and Navarro (2007) and Aguirregabiria (2010) established nonparametric
identification of the distribution of discrete-choice-specific unobservables when ob-
servations on a continuous outcome variable are available (e.g., when revenues are
observed in the dynamic production example) and certain restrictions on the unobserv-
ables are satisfied. Although we consider models for which the only observable contin-
uous outcome is the continuous choice variable, which is a decision variable, if another
continuous outcome variable is available, then identification may be possible under dif-
ferent assumptions than those we consider below. The location restriction of Assump-
tion 8 plays a similar role in the proofs for the present model.

4.1 Identification of Fη|D�S
We first consider identification of Fη|D�S and then turn to identification of Fε|S . Our re-
sults on identification of Fη|D�S rely on the following conditional independence assump-
tion.

Assumption 10. S = (S0� S1) and η⊥⊥ S1|D�S0. That is, for all h, Fη|D�S(h)= Fη|D�S0(h)

almost surely.

Under Assumption 10, for all d, s0, and s1, we have

Fη|D=d�S0=s0(h) = Pr(η≤ h|D= d�S0 = s0)= Pr(η≤ h|D= d�S = s)
= Pr

(
σ(d� s�η)≤ σ(d� s�h)|D= d�S = s) (7)

= FC|D=d�S=s
(
σ(d� s�h)

)
for all h ∈ H. The first equality follows by definition of the conditional c.d.f., the second
follows by conditional independence (Assumption 10), the third follows by monotonic-
ity of σ (Assumption 5), and the fourth follows by definition of C.

Since FC|D�S is identified, the relationship in (7) suggests that if there are a priori
restrictions on σ suggested by economic theory, then we may be able to identify Fη|D�S .
One such restriction is homogeneity of degree 0.

Assumption 11. Suppose that for each choice d ∈ D, there exist values h ∈ H, α ∈R, and
s1 ∈ S1 such that for all s0 ∈ S0 and λ ∈ R, we have σ(d� s0� s1�h)= σ(d� s0�λs1�λh)= α.

Theorem 3 requires homogeneity of degree 0 along a given ray in some subset of the
arguments. If σ is an output supply function and η is a marginal cost shock, as is the
case in Example 2, then economic theory would suggest that σ should be homogeneous
of degree 0 in some arguments, such as input and output prices and η. Identification of
Fη|D�S is also possible under different conditions, when applicable, such as those con-
sidered by Matzkin (2003), including homogeneity of degree 1.
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Theorem 3. If Assumptions 1–5, 10, and 11 hold, then Fη|D�S is identified.

Proof. Let d, s0, and λ be given and let s1, h, and α satisfy Assumption 11. Let s1 = λs1
and h= λh. Then

Fη|D=d�S0=s0(λh) = FC|D=d�S0=s0�S1=λs1
(
σ(d� s0�λs1�λh)

)
= FC|D=d�S0=s0�S1=λs1(α)�

The first equality follows from (7) and the second holds by Assumption 11, under which
σ(d� s0�λs1�λh)= α. It follows that for any h ∈ H,

Fη|D=d�S0=s0(h)= FC|D=d�S0=s0�S1=s̃1(α)�

where s̃1 = (h/h)s1 and where we have chosen λ= h/h. Therefore, since FC|D�S is iden-
tified, so is Fη|D=d�S0=s0(h). Since d and s0 were arbitrary and since η is conditionally
independent of S1, it follows that Fη|D�S is identified. �

4.2 Identification of Fε|S

Now we turn to identification of Fε|S . Because only differences in payoffs are relevant, at
best we will be able to identify the distribution of ε given S. Previous authors have con-
sidered semiparametric or nonparametric identification in related finite horizon models
(Taber (2000), Heckman and Navarro (2007), Aguirregabiria (2010)), but as illustrated by
the nonidentification result of Rust (1994), establishing nonparametric identification in
the infinite-horizon case presents additional challenges. Abstracting from the contin-
uous choice, the results below also constitute a new identification result for the distri-
bution of discrete-choice-specific unobservables in infinite-horizon dynamic discrete
choice models.

We note that our assumptions are different from those of Rust (1994) in two key ways.
First, we will assume that ε is independent of some components of S, while Rust (1994)
allowed the distribution of ε to depend on the entire state vector S. Additionally, in the
model of Rust (1994) and Magnac and Thesmar (2002), the observable state variables
have discrete support. On the other hand, to identify the entire distribution, we require a
variable with continuous support for each choice that can be excluded from the payoffs
of the remaining choices.

To motivate our identification result, first note that since both D and S are observ-
able, the conditional choice probabilities are identified. Note further that these choice
probabilities are related to Fε|S as

Pr(D= 0|S)= Fε|S
(−v(1� S)� � � � �−v(K�S))� (8)

This relationship provides the basis for our identification result.
The identification conditions we consider are choice-specific exclusion restrictions.

Suppose that there existK+1 choice-specific variablesZ0�Z1� � � � �ZK such that for each
choice d, one of these variables affects the payoff for choice d, but not the other choices.
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There may be other choice-specific variables, but they need not satisfy the exclusion
restriction, so they can be included in a common state vector X . More specifically, sup-
pose that the mean payoff for choice d in state s = (x� z0� z1� � � � � zK) can be written as
u(d� c� s�η) = u(d� c�x� zd�η) for some choice-specific variable zd and common vari-
ables x. Furthermore, we assume that ε and η are independent of Z0�Z1� � � � �ZK , but
may depend onX .

Our identification strategy is to use these exclusion restrictions to vary Z0�Z1� � � � �

ZK in such a way as to vary the K arguments of the c.d.f. Fε|S in a manner that will al-
low us to recover the value of the c.d.f. by relating it to the observable conditional choice
probabilities using (8). Recall that we can separately identify σ using, for example, The-
orem 1, so we may take it as given if the relevant assumptions are satisfied. Focusing on
the arguments of the c.d.f., note that for each d and s, we can decompose v(d� s) as

v(d� s) = E
[
max
c∈C

{
u(d� c�x� zd�η)

+βE
[
V̄

(
s′

)|D= d�C = c�S = s]}∣∣D= d�S = s
]

− E
[
max
c∈C

{
u(0� c�x� z0�η)

+βE
[
V̄

(
s′

)|D= 0�C = c�S = s]}∣∣D= 0� S = s
]

= E
[
u
(
d�σ(d� s�η)�x� zd�η

)|D= d�S = s]
− E

[
u
(
0�σ(0� s�η)�x� z0�η

)|D= 0� S = s]
+βE

[
E
[
V̄

(
s′

)|D= d�C = σ(d� s�η)�S = s]∣∣D= d�S = s]
−βE

[
E
[
V̄

(
s′

)|D= 0�C = σ(0� s�η)�S = s]∣∣D= 0� S = s]�
Choice-specific exclusion restrictions can be used for identification in the static case

(Matzkin (1993)); however, from the above decomposition, one can see that the situation
in the dynamic case requires that we address the future value terms. Taken alone, such
restrictions do not have the same identifying power in the dynamic case because the
agent is forward-looking. In the static case, with β= 0, one could change zd and change
only the period payoff function for choice d. However, in the dynamic case, changing zd
in the current period may influence future realizations of zd or even zk for alternatives
k 
= d. Hence, even though the period payoff for choice d only depends on x and zd , for
each choice d, the differenced value function v(d� s) still varies with all components
of s. This confounds attempts to vary the arguments of the c.d.f. Fε|S in (8) in a tractable
manner, a common identification strategy in static models.

For simplicity, we will focus on the case of a binary choice model with K = 1 and
D = {0�1}, and now dropping the choice argument, we define v(s) ≡ v(1� s) − v(0� s)
and ε≡ ε0 − ε1. In this case, for any state s, the choice probability forD= 1 is

P(s)≡ Pr(D= 1|X = x�Z0 = z0�Z1 = z1)= Fε|X=x
(
v(x�z0� z1)

)
�

We show that it is possible to identify Fε|X in our model using the exclusion restrictions
discussed above provided that the persistence of the excluded variables is limited.
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Table 1. Summary of assumptions and theorems.

Given Identified
Theorem Assumptions Primitives Primitive

Theorem 3 1–5, 10–11 – Fη|D�S
Theorem 1 1–5 Fη|D�S σ

Theorem 4 1–5, 6–8, 12–14 Fη|D�S , σ Fε|S
Theorem 2 1–5, 6–8 Fη|D�S , σ , Fε|S u

Assumption 12. S = (X�Z0�Z1), where ε�η ⊥⊥ Z0�Z1|X and Med(ε|X)= 0 almost
surely.

Assumption 13. For all c ∈ C, x ∈ X , z0 ∈ Z0, z1 ∈ Z1, and h ∈ H, the payoff function is
such that u(0� c�x� z0� z1�h) = u(0� c�x� z0� z̃1�h) for all z̃1 ∈ Z1 and u(1� c�x� z0� z1�h) =
u(1� c�x� z̃0� z1�h) for all z̃0 ∈ Z0.

Assumption 14. Z′
0�Z

′
1 ⊥⊥Z0�Z1|X�D�C.

Assumption 12 requires that the distribution of ε and η conditional on X be iden-
tical for all Z0 and Z1, and that the conditional median of ε given X is 0. Under As-
sumption 12, for all s = (x� z0� z1), the choice probability forD= 1 can be written as

P(x�z0� z1)= Fε|X=x�Z0=z0�Z1=z1

(
v(x�z0� z1)

) = Fε|X=x
(
v(x�z0� z1)

)
�

Assumption 13 formalizes the previously mentioned payoff exclusion restrictions. As-
sumption 14 requires two choice-specific variables that are serially independent condi-
tional on the common variablesX and the choice variablesD and C.

Theorem 4. Let Assumptions 1–8 and 12–14 hold, and let K = 1. Suppose Fη|D�S and
σ are known or identified. Then, for each s = (x� z0� z1) ∈ S = X × Z0 × Z1, Fε|S=s(e) is
identified for all e ∈ v(x�Z0�Z1).

Finally, combining the results of Theorems 1–4 yields full nonparametric identifica-
tion of the model. Table 1 summarizes the assumptions and primitives required for each
step. Using Theorem 3, we can first identify Fη|D�S , which can in turn be used to iden-
tify σ using Theorem 1. Then, given Fη|D�S and σ , we can identify Fε|S using Theorem 4
and u using Theorem 2. Naturally, one also has the option of substituting parametric
distributional assumptions for either Fη|D�S or Fε|S and the associated assumptions to
achieve semi-nonparametric identification.

5. Conclusion

We have established conditions for nonparametric identification of the payoff functions
and distributions of unobservables in dynamic decision processes in which agents make
both discrete and continuous choices. Such models are widely used in applied work in
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economics, and one goal of our analysis is to provide a point of reference for practition-
ers in specifying and estimating parametric instances of the model considered. To this
end, we have examined the identifying power of several assumptions and attempted to
find conditions that are based on either commonly available sources of variation in the
observables or structural restrictions suggested by economic theory or currently used in
applied work.

Identification analysis involves trade-offs among various assumptions, and our dis-
cussion of nonparametric identification of the distribution of unobservables highlights
the importance of continuous variation in the excluded variables and addresses diffi-
culties faced when extending existing identification conditions from static models to
infinite-horizon dynamic models. Our results on identification of the distribution of
discrete-choice-specific unobservables also constitute a new result for dynamic, pure
discrete choice models.

Our work also suggests a number of interesting extensions for future research. This
includes considering identification of various counterfactual implications without nor-
malizing the payoff function and studying identification of Fε|S in cases that allow for
more general forms of serial correlation in the excluded variables.

Appendix A: Proofs

Lemma 1. Suppose the assumptions of Theorem 2 hold. Let C(S) denote the Banach
space of all continuous, bounded functions w : S → R under the supremum norm, ‖w‖ =
sups∈S |w(s)|. Let Γ : C(S)→ C(S) be the functional operator defined as

Γ w(s)≡ E
[
max
c∈C

{
u(d� c� s�η)+βE

[
H

(
S′) +w(

S′)|d� c� s]}∣∣d� s]�
Then Γ is a contraction with modulus β.

Proof. We will show that for any two functionsw� w̃ ∈ C(S), ‖Γ w−Γ w̃‖ ≤ κ‖w− w̃‖ for
some κ ∈ (0�1). For notational brevity, defineψ(c� s�η)= u(d� c� s�η)+βE[H(S′)|d� c� s].
We have

‖Γ w− Γ w̃‖ = sup
s∈S

∣∣∣E[
max
c∈C

{
ψ(c� s�η)+βE

[
w

(
S′)|d� c� s]}∣∣d� s]

− E
[
max
c∈C

{
ψ(c� s�η)+βE

[
w̃

(
S′)|d� c� s]}∣∣d� s]∣∣∣

≤ sup
s∈S

E
[∣∣∣max
c∈C

{
ψ(c� s�η)+βE

[
w

(
S′)|d� c� s]}

− max
c∈C

{
ψ(c� s�η)+βE

[
w̃

(
S′)|d� c� s]}∣∣∣∣∣d� s]

≤ β sup
s∈S

∣∣∣max
c∈C

E
[
w

(
S′) − w̃(

S′)|d� c� s]∣∣∣
≤ β sup

s′∈S

∣∣w(
s′

) − w̃(
s′

)∣∣
= β‖w− w̃‖�
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The first equality follows from the definitions of the norm and the functional opera-
tor. The second line follows from the linearity of the conditional expectation operator
and a property of absolute values of integrals: | ∫ f | ≤ ∫ |f |. The third line follows from
a property of the max operator, |max f − maxg| ≤ max |f − g|, from linearity of the (in-
ner) conditional expectation, and by noting that the outer expectation was over η and
all terms involving η cancel out. The fourth line follows from Assumption 7. The final
equality holds by definition of the norm. �

Proof of Theorem 2. Without loss of generality, suppose that Assumption 8 holds for
d = 0.

Step 1: Identification of v. First, note that we can write the discrete choice probabil-
ities in terms of the discrete-choice-specific value function as

Pr(D= k|S = s)= E
[
1
{
k= arg max

d∈D
[
v(d� s)+ εd

]}∣∣S = s
]
�

Under Assumption 4, there exists a one-to-one mapping Ψ(·; s) from the conditional
choice probabilities to differences in the discrete-choice-specific value function in
state s, (

v(1� s)� � � � �v(K� s)
) =Ψ (

Pr(D= 1|S = s)� � � � �Pr(D=K|S = s); s)�
which follows from Lemma 3.1 of Rust (1994), a result of Hotz and Miller (1993). Also
see Corollary 1 of Norets and Takahashi (2013) for the stronger result that Ψ(·; s) is a
surjection. This mapping identifies the differences v(k� s) for each k = 1� � � � �K and
s ∈ S .

Step 2: Identification of v. Define the function H̃ :RK+1 →R as

H̃(r0� r1� � � � � rK; s)≡ E
[
max
d∈D

[rd + εd]
∣∣S = s

]
� (9)

Then H̃(v(0� s)� � � � � v(K� s); s) gives the ex ante expected utility from making the optimal
discrete choice in state s. Under Assumption 4, this function exists and has the additivity
property (Rust (1994, Theorem 3.1)) H̃(r0 + α� � � � � rK + α; s) = H̃(r0� � � � � rK; s) + α. In
particular,

H̃
(
v(0� s)� � � � � v(K� s); s) = H̃

(
0�v(1� s)� � � � �v(K� s); s) + v(0� s)

≡H(s)+ v(0� s)�

where the function

H(s)≡ H̃(
0�v(1� s)� � � � �v(K� s); s) (10)

is identified since v is identified and Fε|S is known. The dependence ofH(s) on v(·� s)
is implicit.

We now show that v(0� s) is identified as the unique fixed point of a functional equa-
tion, which we show to be a contraction. Hence, the proof strategy for this step is in
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the spirit of Bajari et al. (2007), but the functional operator in this case is quite dif-
ferent than in their case. First, by definition of V̄ (s) and H, E[V̄ (s′)|d� c� s] = E[H(s′) +
v(0� s′)|d� c� s] ≡ φ(d� c� s). Using this identity in (3) and evaluating v at d = 0 yields a
functional equation for v(0� ·):

v(0� s)= E
[
max
c∈C

{
u(0� c� s�η)+βE

[
H

(
s′

) + v(0� s′
)|D= 0� c� s

]}∣∣D= 0� s
]
�

The payoff above is identified by Assumption 8, so everything in this expression is identi-
fied except for v(0� ·). Lemma 1 establishes that this functional mapping is a contraction
and, therefore, v(0� ·) is identified as the unique fixed point by the contraction mapping
theorem (e.g. Stokey, Lucas, and Prescott (1989, Theorem 3.2)). Since the functions v
and v(0� ·) are both identified, and since we have the identity v(d� s)= v(d� s)+ v(0� s),
it follows that v itself is identified.

Step 3: Identification of u. It remains to identify the payoff function u. In pure dis-
crete choice models, at this point we can recover u directly from the definition of the
choice-specific value function. However, matters are complicated by the addition of the
continuous choice due to the additional private shock η and the maxc∈C operator. The
monotone choice assumption allows us to overcome the first problem: the one-to-one
relationship between c and η allows us to infer the value of η given values of d, c, and s.
We address the second problem by working with the first-order condition (under As-
sumption 7) and using the payoff normalization (Assumption 8). The agent chooses c so
as to maximize u(d� c� s�η)+βφ(d� c� s), whereφ is the conditional expectation defined
above, which is now identified. Therefore, under Assumption 7, for given values of d, s,
and η, the optimal choice of c satisfies the first-order condition:

∂

∂c
u(d� c� s�η)+β ∂

∂c
φ(d� c� s)= 0�

Rearranging and using the identity η = σ−1(d� s� c) for the optimal choice of c given d
and s under Assumption 5,

∂

∂c
u
(
d� c� s�σ−1(d� s� c)

) = −β ∂
∂c
φ(d� c� s)�

Then u is identified on Ũ up to Assumption 8 since

u(d� c� s�η)= u(d� c� s�η)−β
∫ c

c

∂

∂c
φ(d�z� s)dz

for all d, c, s, and η such that η= σ−1(d� s� c). �

Proof of Theorem 4. Without loss of generality, suppose that d = 0. First, note that
we can express the discrete-choice-specific value function recursively as

v(d� s) = E
[
max
c∈C

{
u(d� c� s�η)+βE

[
H

(
s′

) + v(0� s′
)|d� c� s]}∣∣d� s]

= E
[
u
(
d�σ(d� s�η)� s�η

) +βE
[
H

(
s′

) + v(0� s′
)|d�σ(d� s�η)� s]∣∣d� s]�



550 Jason R. Blevins Quantitative Economics 5 (2014)

Furthermore, we can decompose v(d� s) into the three components

v(d� s)= u(d� s)+βφ(d� s)+βψ(d� s)�
where u(d� s)≡ ∫

u(d�σ(d� s�h)� s�h)dFη|D=d�S=s(h) is the expected utility from choos-
ing d in state s before η is realized, φ(d� s) is the expected discounted utility obtained
from choosing 0 in all future periods (i.e., the terms involving v(0� s)), and ψ(d� s) is the
expected discounted utility from choosing optimally in all future periods less the value
of choosing 0 (i.e., the terms involvingH(s)). The terms φ(d� s) and ψ(d� s) can, in turn,
be expressed recursively as

φ(d� s)=
∫ ∫ ∫ [

u
(
0�σ

(
0� s′�h′)� s′�h′) +βφ(

0� s′
)]
dFη′|D=0�S=s′

(
h′)

× dFS′|D=d�C=σ(d�s�h)�S=s
(
s′

)
dFη|D=d�S=s(h)�

ψ(d� s)=
∫ ∫ [

H
(
s′

) +βψ(
0� s′

)]
dFS′|D=d�C=σ(d�s�h)�S=s

(
s′

)
dFη|D=d�S=s(h)�

Importantly, φ(d� s) is identified for all d and s since β, Fη|D�S , FS′|D�C�S , and u(0� ·� ·� ·)
are all known or identified under the maintained assumptions.

Now, by continuity of the choice probability function in z0 and z1, for all x there
exists a path ζ0(x� z1) such that

P
(
x�ζ0(x� z1)� z1

) = Fε|X=x
(
v

(
x�ζ0(x� z1)� z1

)) = 0�5

for all z1. Under the conditional median assumption (Assumption 12), this implies
that v(x�ζ0(x� z1)� z1) = 0 for all x and z1. Applying the decomposition from above
and noting that u for d = 1 does not vary with z0 due to the exclusion restriction
(Assumption 13) implies that u(1�x� z1) = −u(0�x� ζ0(x� z1)) − βφ(x�ζ0(x� z1)� z1) −
βψ(x�ζ0(x� z1)� z1). Therefore, substituting for u(1�x� z1) for all s = (x� z0� z1), we can
write

v(x�z0� z1)=φ(x�z0� z1)+βψ(x�z0� z1)−βψ(
x�ζ0(x� z1)� z1

)
�

where

φ(x�z0� z1) = βφ(x�z0� z1)− u(0�x� z0)

−βφ(
x�ζ0(x� z1)� z1

) − u(0�x� ζ0(x� z1)
)

is an identified function.
Under Assumption 14, for all x, z0, and z1, ψ(x�z0� z1) = ψ(x�ζ0(x� z1)� z1) and

so v(x�z0� z1) is identified since v(x�z0� z1) = φ(x�z0� z1). Therefore, for any s =
(x� z1� z2), Fε|S=s is identified on v(x�Z0�Z1). �

Appendix B: Sufficient conditions for Assumption 5

The following two lemmas provide sufficient conditions for Assumption 5 to hold. One
sufficient condition is strict supermodularity (strictly increasing differences) of u in
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(c�η). Another sufficient condition is that the cross-partial derivative of u with respect
to c and η is positive.

Lemma 2. Let Assumptions 1–4 hold. If for all d and s,

u
(
d� c′� s�η′) − u(d� c� s�η′)> u(d� c′� s�η) − u(d� c� s�η)

for all c′ > c and η′ >η, then Assumption 5 holds.

Proof. The policy function for the continuous choice is defined as

σ(d� s�η)= arg max
c∈C

{
u(d� c� s�η)+βE

[
V

(
S′� ε′)|d� c� s]}�

By Topkis’s theorem (Topkis (1998)), if the objective function (the expression in braces
above) is strictly supermodular in (c�η), then the policy function will be strictly increas-
ing inη. Note that in our model, the future value term in this expression does not depend
onη, because of the conditional independence assumption. Therefore, it is sufficient for
the period payoff function to be strictly supermodular. �

Lemma 3. Let Assumptions 1–4 hold. If u is twice continuously differentiable in c and η,

and ∂2u(d�c�s�η)
∂c ∂η > 0 for all d, c, s, and η, then Assumption 5 holds.

Proof. We show that the cross-partial derivative condition above implies strict super-
modularity, which is sufficient for Assumption 5 by the previous lemma. Since the fol-
lowing arguments hold for all d and s, we omit all arguments other than c and η for

simplicity. Suppose that ∂2u(c�η)
∂c ∂η > 0. Then ∂u(c�η)

∂η > 0 is strictly increasing in c. Stated

differently, for c′ > c, ∂u(c
′�η)
∂η > ∂u(c�η)

∂η and, therefore, ∂[u(c
′�η)−u(c�η)]
∂η > 0. It follows that

u(c′�η)− u(c�η) is an increasing function of η. �
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