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Inference in dynamic stochastic general equilibrium models
with possible weak identification

Zhongjun Qu
Department of Economics, Boston University

This paper considers inference in log-linearized dynamic stochastic general equi-
librium (DSGE) models with weakly (including un-) identified parameters. The
framework allows for analysis using only part of the spectrum, say at the busi-
ness cycle frequencies. First, we characterize weak identification from a frequency
domain perspective and propose a score test for the structural parameter vec-
tor based on the frequency domain approximation to the Gaussian likelihood.
The construction heavily exploits the structures of the DSGE solution, the score
function, and the information matrix. In particular, we show that the test statis-
tic can be represented as the explained sum of squares from a complex-valued
Gauss–Newton regression, where weak identification surfaces as (imperfect) mul-
ticollinearity. Second, we prove that asymptotically valid confidence sets can
be obtained by inverting this test statistic and using chi-squared critical values.
Third, we provide procedures to construct uniform confidence bands for the im-
pulse response function, the time path of the variance decomposition, the indi-
vidual spectrum, and the absolute coherency. Finally, a simulation experiment
suggests that the test has adequate size even with relatively small sample sizes.
It also suggests it is possible to have informative confidence sets in DSGE models
with unidentified parameters, particularly regarding the impulse response func-
tions. Although the paper focuses on DSGE models, the methods are applicable
to other dynamic models with well defined spectra, such as stationary (factor-
augmented) vector autoregressions.

Keywords. Business cycle, frequency domain, likelihood, impulse response, in-
ference, rational expectations models, weak identification.

JEL classification. C12, C32, E1, E3.

1. Introduction

Dynamic stochastic general equilibrium (DSGE) models play an important role in quan-
titative macroeconomics. Frequentist inference in such models is challenging. The like-

Zhongjun Qu: qu@bu.edu
I would like to thank the editor Frank Schorfheide and three anonymous referees for detailed and valu-
able suggestions. I also thank Mingli Chen, Adam McCloskey, Marcelo Moreira, Serena Ng, Pierre Perron,
seminar participates at BC, Columbia, MIT/Harvard, NC State, Queen’s, Rutgers, UCSD, and Yale for useful
comments and suggestions. The simulation analysis builds upon the GAUSS code of An and Schorfheide
(2007). I thank the authors for making their code available. A previous version of this paper circulated under
the title “Inference and specification testing in DSGE models with possible weak identification.”

Copyright © 2014 Zhongjun Qu. Licensed under the Creative Commons Attribution-NonCommercial Li-
cense 3.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE287

http://www.qeconomics.org/
mailto:qu@bu.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE287
http://creativecommons.org/licenses/by-nc/3.0/


458 Zhongjun Qu Quantitative Economics 5 (2014)

lihood surface can be flat or display near ridges over a large portion of the parameter
space (Canova and Sala (2009)), mirroring the weak identification problem studied in
the instrumental variable (IV) and generalized method of moments (GMM) literature
(Staiger and Stock (1997) and Stock and Wright (2000)). For example, Del Negro and
Schorfheide (2008) considered a New Keynesian DSGE model and showed that the data
provide similar support for a model with moderate price and trivial wage rigidity, and
one in which both rigidities are high. In the extreme case, varying the structural pa-
rameter vector in certain directions may leave the likelihood unchanged, leading to so-
called lack of identification. Such an example is provided in Qu and Tkachenko (2012),
concerning the parameters in a Taylor rule equation. The above features imply that the
conventional framework for conducting inference, which relies on a

√
T -convergent,

asymptotically normal estimator, can be very inadequate.
Recently, several studies have considered developing inferential procedures robust

to weak identification. Guerron-Quintana, Inoue, and Kilian (2013) obtained confidence
sets by inverting the likelihood ratio test and the Bayes factor. Dufour, Khalaf, and
Kichian (2013) suggested inverting moment based tests. In ongoing work, Andrews and
Mikusheva (2013) studied two Lagrange multiplier (LM) tests (differing in how the in-
formation matrix is calculated) from a time domain perspective. An comparison with
the latter is included in Section 7. In related literature, Iskrev (2010), Komunjer and Ng
(2011), and Qu and Tkachenko (2012) proposed rank conditions for local identification.
They did not consider weak identification.

This paper develops identification robust confidence sets for the structural param-
eters and confidence bands for impulse response functions from a frequency domain
perspective, using a maximum likelihood (Whittle (1951)) approach. Working in the fre-
quency domain has two advantages. First, the information matrix is particularly simple
to calculate in the frequency domain. This leads to a simple and transparent test with
a regression interpretation. Second, the researcher can choose desired frequencies for
inference. This is valuable because DSGE models are designed to explain business cycle
movements, not very long-run or very short-run fluctuations; see Del Negro, Diebold,
and Schorfheide (2008). The latter flexibility is difficult, if at all possible, to achieve in a
time domain framework. Because of these two features, we obtain a unique test that is
robust to both weak identification and frequency specific misspecifications.

We start by characterizing weak identification from a frequency domain perspective.
The characterizing condition involves the eigenvalues of the information matrix, some
of which converge to zero as the sample size approaches infinity. A subset of eigenval-
ues is allowed to be exactly zero, permitting some parameters to be unidentified for any
sample size. The condition is motivated by Rothenberg (1971) and can be viewed as a
generalization of Corollary 1 in Qu and Tkachenko (2012). The latter shows that the pa-
rameters are identified from the population if and only if the information matrix (ex-
pressed as a function of the spectral density) has full rank.

We then propose a score test for the structural parameter vector. Two features un-
derlie its robustness to weak identification. First, its normalization matrix (i.e., the in-
formation matrix) is computed directly from the model’s solution by exploiting its vector
linear structure. In fact, if this matrix was estimated from a finite sample, then it would
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lead to size distortions because its dimension is typically high relative to the sample
size. Second, the test statistic is related to the explained sum of squares in a complex-
valued multivariate Gauss–Newton regression, where the regressors are nonrandom and
are governed by the derivatives mentioned above. Irrespective of the strength of identi-
fication, the rank of the regressors matrix is always bounded by the dimension of the
structural parameter vector. This provides intuition for why the test statistic has a chi-
squared limiting distribution with the degrees of freedom bounded by the dimension of
the same vector; see Section 5. This is the only test with such a regression structure in
the weak identification literature.

A confidence set for the structural parameter vector can be obtained by inverting
this statistic. For implementation, we suggest a Metropolis algorithm. It mainly involves
solving the model, and computing the spectral density and its first-order derivatives at
different parameter values.

Impulse response function plays a central role for assessing the implications of a
DSGE model. Building on the confidence set for the structural parameter vector, we
propose a confidence band that covers this function with desired probability (i.e., a uni-
form band) even under weak identification. This is done by considering the envelope
of the impulse response functions associated with all the parameter values contained
in the joint confidence set. The same idea can be applied to obtain confidence bands
for the time path of the variance decomposition, the individual spectrum, and the ab-
solute coherency. It can also be used to study certain low frequency hypotheses as those
in Sargent and Surico (2011). These examples showcase the empirical importance of the
joint confidence set, whose value is sometimes underappreciated in the frequentist lit-
erature.

We evaluate the finite sample properties of the proposed procedures using a model
studied in An and Schorfheide (2007). The test shows good size properties even with
relatively small sample sizes. The results show that even unidentified parameters can
have tight confidence intervals. This appears to be a new finding in the DSGE literature.
The confidence bands for impulse response functions can also be tight with uniden-
tified parameters. Intuitively, because observationally equivalent parameter values may
generate the same set of response functions, uncertainty about the former does not nec-
essarily translate into uncertainty about the latter. Canova and Sala (2009) also observed
that wide confidence intervals for parameters can be accompanied by narrow bands for
impulse responses for the minimum distance estimator they consider.

We also consider the test’s properties when low frequency misspecifications are
present (caused by an unmodeled structural change in the steady state growth rate
and/or a smoothly varying inflation target). The results show that using the business
cycle frequencies can lead to valid inference even when using the full spectrum erro-
neously rejects the null hypothesis 100% of the time. In practice, this offers researchers
a choice. If the model is well specified at all frequencies, then all the frequencies should
be used and the inference will be more precise. If the model is misspecified over some
frequencies, then using parts of the spectrum is preferable.

This paper contributes to the literature that analyzes dynamic equilibrium models
from a frequency domain perspective. Altug (1989) applied the frequency domain likeli-
hood to estimate models with additive measurement errors. Hansen and Sargent (1993)
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considered the effect of seasonal adjustment on parameter estimation. Diebold, Oha-
nian, and Berkowitz (1998) discussed a general framework for loss function based esti-
mation and model evaluation. Christiano and Vigfusson (2003) applied frequency do-
main likelihood to study a model with time-to-plan in the investment technology. Del
Negro, Diebold, and Schorfheide (2008) emphasized that the misspecification of DSGE
models is more prevalent at some frequencies than at others. They developed a frame-
work in which DSGE models are used to derive restrictions for vector autoregressions,
but only over selected frequencies of interest. Tkachenko and Qu (2012) and Sala (2013)
analyzed medium-scale DSGE models in the frequency domain. The current paper is the
first to study identification robust inference from the frequency domain perspective.

The paper is structured as follows. Section 2 illustrates how to compute the spectral
density. Section 3 presents the framework and the assumptions. Section 4 character-
izes weak identification from a frequency domain perspective. Section 5 proposes the
score test and studies its asymptotic properties. Section 6 discusses how to obtain ro-
bust confidence sets. It also considers uniform confidence bands for impulse response
functions and some other objects. Section 7 considers an illustrative model and Sec-
tion 8 concludes. Additional information is provided in supplementary files on the jour-
nal website, http://qeconomics.org/supp/287/supplement.pdf and http://qeconomics.
org/supp/287/code_and_data.zip.

2. Preliminaries: The spectrum of a log-linearized DSGE model

Suppose a DSGE model has been log-linearized around the steady state. Assume it has
a unique stable solution. Then the solution can be computed and represented in a vari-
ety of ways using the algorithms of Uhlig (1999), Klein (2000), King and Watson (2002),
and Sims (2002). The methods developed in this paper can work with any of these repre-
sentations. Given that the spectral density plays a central role in the analysis, below we
illustrate how to compute it from Sims (2002).

Let θ denote the structural parameter vector. For a log-linearized system, Sims (2002)
considered the representation

Γ0(θ)St = Γ1(θ)St−1 +Ψ(θ)εt +Π(θ)ηt�

where Γ0(θ), Γ1(θ), Ψ(θ), and Π(θ) are coefficient matrices, St includes endogenous
variables (both observed and latent), conditional expectations, and exogenous shocks (if
they are serially correlated), εt is a vector of serially uncorrelated structural disturbances,
and ηt contains expectation errors. Under determinacy, its solution can be represented
as St =Φ1(θ)St−1 +Φ0(θ)εt or, equivalently,

St = (I −Φ1(θ)L
)−1

Φ0(θ)εt 


Let A(L) be a matrix of finite-order lag polynomials to specify the observables

Yd
t (θ)=A(L)St =A(L)

(
I −Φ1(θ)L

)−1
Φ0(θ)εt 
 (1)

http://qeconomics.org/supp/287/supplement.pdf
http://qeconomics.org/supp/287/code_and_data.zip
http://qeconomics.org/supp/287/code_and_data.zip
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Its spectral density is given by

fθ(ω)= 1
2π

H
(
exp(−iω);θ)Σ(θ)H(exp(−iω);θ)∗� (2)

where the asterisk (∗) stands for the conjugate transpose, Σ(θ)= Var(εt), and

H(L;θ)=A(L)
(
I −Φ1(θ)L

)−1
Φ0(θ)
 (3)

As in the time domain, the above framework can easily handle models with latent
endogenous variables and measurement errors. In the former, we simply assign zero
entries in A(L) to exclude the latent variables. For the latter, suppose ζt(θ) are serially
uncorrelated measurement errors independent of Yd

t (θ) with covariance Σζ(θ). Then
the spectral density of Yd

t (θ)+ ζt(θ) is given by

1
2π

H
(
exp(−iω);θ)Σ(θ)H(exp(−iω);θ)∗ + 1

2π
Σζ(θ)�

where H(·) is defined by (3).

3. Setup and assumptions

Let {Yt}Tt=1 be a sample of random vectors. Assume there exists some (not necessarily
unique) θ0 such that

Yt = μ(θ0)+Yd
t (θ0)�

where Yd
t (θ0) denotes the solution (1) when θ = θ0 and μ(θ0) is the mean of Yt implied

by the model’s steady state. We require four assumptions. Let ‖x‖ be the Euclidean norm
of a vector x and let ‖X‖ be the vector induced norm of a matrix X . For a square matrix,
let eig(X) denote its eigenvalues as a vector. For a differentiable function fθ ∈ Rk of θ ∈
Rq, let ∂fθ0/∂θ

′ be the k-by-q matrix of partial derivatives evaluated at θ0.

Assumption 1. We have θ0 ∈Θ⊂ R
q with Θ being compact.

Assumption 2. The solution is unique and is representable as

Yd
t (θ)=H(L;θ)εt(θ) with H(L;θ)=

∞∑
j=0

hj(θ)L
j� (4)

where hj(θ) (j = 0� 
 
 
 �∞) are real-valued matrices and εt(θ) are serially uncorrelated
structural disturbances with a nonsingular covariance matrix Σ(θ).

Assumption 3. There exists 0 <CL ≤ CU <∞ such that for allω ∈ [−π�π] and all θ ∈Θ,
the following statements hold:

(i) We have CL ≤ eig(fθ(ω))≤ CU .
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(ii) The elements of fθ(ω) belong to Lip(β) with β> 1
2 with respect to ω.1

(iii) We have ‖ ∂vecfθ(ω)
∂θ′ ‖ ≤ CU and the elements of ∂vec fθ(ω)

∂θ′ belong to Lip(β) with β>
1
2 with respect to ω.

(iv) We have ‖∂μ(θ)/∂θ′‖ ≤ CU .

Assumption 4. The observable random variables {Yt}Tt=1 form a sequence of multivari-
ate normal random vectors.

Assumption 1 imposes restrictions on the parameter space. The boundedness as-
sumption is unrestrictive, as economic theory often provides natural bounds on DSGE
parameters. The requirement for closedness is to ensure that the procedure for com-
puting the confidence sets, which involves searching over the parameter space, is well
defined.

In Assumption 2, the dimensions of the variables and parameters are

Yd
t (θ) :nY × 1� εt :nε × 1� hj(θ) :nY × nε� θ :q× 1


This assumption allows for noninvertibility and is weaker than assuming Yd
t (θ) follows

a vector autoregression (VAR).
Assumption 2 encompasses models with measurement errors. To see this, sup-

pose we observe Yt = μ(θ0) + Yd
t (θ0) + ζt(θ0), where ζt(θ) are serially uncorrelated

measurement errors with a nonsingular covariance matrix Σζ(θ), and E(ζt(θ)ε
′
s(θ)) =

0 for all t and s. Define εat (θ) = (εt(θ)
′� ζt(θ)′)′ and Ha(L;θ) = ∑∞

j=0 h
a
j (θ)L

j with
ha0(θ) = [h0(θ)� InY ] and haj (θ) = [hj(θ)�0nY ] for j > 0. Then Yt − μ(θ0) satisfies (4) with
H(L;θ)εt(θ) replaced by Ha(L;θ)εat (θ). Therefore, the subsequent results apply auto-
matically to models with measurement errors.

Assumption 3(i) requires the spectral density matrix to be finite and nonsingular. If
unit roots are present in the DSGE model, then it requires appropriately differencing
the series prior to applying the methods. Assumptions 3(ii) and (iii) assume the spec-
tral density and its first derivatives are smooth in ω. They can be verified under more
primitive conditions. Specifically, Assumption 3(ii) is satisfied if

∑∞
j=0 j

β‖hj(θ)‖ ≤ ∞
(Hannan (1970, pp. 311–312)). The latter holds because (1) implies hj(θ) decays expo-
nentially. Assumption 3(iii) is satisfied if

∑∞
j=0 j

β‖∂vechj(θ)/∂θ′‖ ≤ ∞, which holds if
‖∂vecΦ1(θ)/∂θ

′‖ ≤M and ‖∂vecΦ0(θ)/∂θ
′‖ ≤M for some M > 0 and all θ ∈Θ.

Assumption 4 requires normality. If it is violated, then the distribution of the pro-
posed test will depend on nuisance parameters. This is because non-Gaussian features
such as skewness or excess kurtosis will alter the information matrix. The possibility of
relaxing this assumption is discussed in Section 5. Note that this assumption is common
in the DSGE literature.

In the next three sections, we consider inference on θ0 based on the mean and the
spectrum. The inference on the dynamic parameters (i.e., excluding the parameters that
affect only the mean of Yt ) based on the full or parts of the spectrum is treated as a
special case.

1Let g(ω) be a scalar-valued function defined on an interval B. We say g belongs to Lip(β) if there exists
a finite constant M such that |g(ω1)− g(ω2)| ≤M|ω1 −ω2|β for all ω1�ω2 ∈ B.
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4. Weak identification from a frequency domain perspective

Weak identification reflects both the model structure and the criterion function used for
inference. The inference here is based on the frequency domain maximum likelihood.
We start with a brief review of the basic ideas underlying it.

4.1 The frequency domain maximum likelihood

Let ωj denote the Fourier frequencies, that is, ωj = 2πj/T (j = 1�2� 
 
 
 �T − 1). The dis-
crete Fourier transforms and periodograms of Yt at such frequencies are

wT (ωj)= 1√
2πT

T∑
t=1

Yt exp(−iωjt) and IT (ωj)=wT (ωj)wT (ωj)
∗


At the zero frequency, let

wθ�T (0)= 1√
2πT

T∑
t=1

(
Yt −μ(θ)

)
and Iθ�T (0)=wθ�T (0)wθ�T (0)∗


Under Assumption 2, asymptotically wT (ωj) (j = 1�2� 
 
 
 �T − 1) have complex-valued
multivariate normal distributions with densities (Hannan (1970, pp. 223–225))

1
πnY det fθ0(ωj)

exp
[− tr

{
f−1
θ0

(ωj)wT (ωj)wT (ωj)
∗}]�

while wθ�T (0) ∼ N(0� fθ0(0)). Because the Fourier transforms are asymptotically inde-
pendent for ωj +ωk �= 2π, an approximate log-likelihood function for θ, up to a constant
addition, is given by

−1
2

T−1∑
j=1

[
log det

(
fθ(ωj)

)+ tr
{
f−1
θ (ωj)IT (ωj)

}]
(5)

− 1
2
[
log det

(
fθ(0)

)+ tr
{
f−1
θ (0)Iθ�T (0)

}]



Hansen and Sargent (1993) originally derived (5) as an approximation to the time do-
main Gaussian likelihood and used it to understand the effect of seasonal adjustment
on parameter estimation.

In this paper, we consider the generalized version of (5),

LT (θ) = −1
2

T−1∑
j=1

W (ωj)
[
log det

(
fθ(ωj)

)+ tr
{
f−1
θ (ωj)IT (ωj)

}]
(6)

− 1
2
W (0)

[
log det

(
fθ(0)

)+ tr
{
f−1
θ (0)Iθ�T (0)

}]
�

where W (ω) is an indicator function that selects the desired frequencies for inference.
In particular, to conduct inference using the second- but not the first-order properties,
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we set W (0)= 0 and W (ωj)= 1 for all ωj �= 0. To conduct inference using only the busi-
ness cycle frequencies (with periods of 6–32 quarters; see King and Watson (1996)), with
quarterly observations, we set W (ωj)= 1 if ωj ∈ [π/16�π/3] ∪ [5π/3�31π/16] and 0 oth-
erwise. The latter allows us to assess the model’s business cycle implications without
first filtering the data. The above flexibility is difficult, if at all possible, to achieve in the
time domain.

4.2 Weak identification

This section characterizes weak identification from a frequency domain perspective.
The characterizing condition is motivated by Rothenberg (1971) and Qu and Tkachenko
(2012), and is stated using the eigenvalues of the information matrix. Some eigenvalues
approach zero as T → ∞, such that the local curvature of the likelihood remains small
in some directions in the presence of a large sample size.

Let the superscript prime denote the transpose without taking the conjugate. The
score of (6) is

DT(θ0) = 1

2
√
T

T−1∑
j=0

W (ωj)

(
∂vec fθ0(ωj)

∂θ′

)∗

× (f−1
θ0

(ωj)
′ ⊗ f−1

θ0
(ωj)

)
vec
(
IT (ωj)− fθ0(ωj)

)
(7)

+ 1

2π
√
T
W (0)

T∑
t=1

∂μ(θ0)
′

∂θ
f−1
θ0

(0)
(
Yt −μ(θ0)

)
�

where IT (0)= Iθ0�T (0). Under normality, the information matrix is

MT(θ0) = 1
2T

T−1∑
j=0

W (ωj)

(
∂vec fθ0(ωj)

∂θ′

)∗(
f−1
θ0

(ωj)
′ ⊗ f−1

θ0
(ωj)

)∂vec fθ0(ωj)

∂θ′
(8)

+ 1
2π

W (0)
∂μ(θ0)

′

∂θ
f−1
θ0

(0)
∂μ(θ0)

∂θ′ 


Here, the information matrix has a simple expression because, although {Yt}Tt=1 can have
a complex dependence structure, their Fourier transforms are asymptotically indepen-
dent with mean zero and known variances. Expressions (7) and (8) further simplify if
the goal is to conduct inference on dynamic parameters based on the full spectrum or
the business cycle frequencies. The involved derivatives only need to be taken with re-
spect to the dynamic parameters. The second term in the expressions will no longer be
present. Also, the summations should start at j = 1 instead of j = 0.

Because MT(θ0) is real and symmetric, its eigendecomposition always exists,

MT(θ0)=QT(θ0)ΛT (θ0)QT (θ0)
−1� (9)
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where the columns of QT(θ0) are the orthonormal eigenvectors and ΛT (θ0) contains the
eigenvalues in a nonincreasing order. Partition ΛT(θ0) as

ΛT(θ0)=
⎡⎢⎣Λ1T (θ0) 0 0

0 Λ2T (θ0) 0
0 0 Λ3T (θ0)

⎤⎥⎦ �
where Λ1T (θ0), Λ2T (θ0), and Λ3T (θ0) are q1, q2, and q3 dimensional diagonal matrices,
respectively.

Assumption W. (i) The diagonal elements of TΛ1T (θ0) diverge to ∞. (ii) The diagonal
elements of TΛ2T (θ0) converge to positive constants. (iii) We have Λ3T (θ0)= 0 for any T .
(iv) The elements of[

∂vec fθ0(ω)/∂θ
′]QT(θ0)Λ

+
T (θ0)

1/2 (10)

are finite and belong to Lip(β) with β > 1/2 with respect to ω, where Λ+
T (θ0)

1/2 is the
square root of the Moore–Penrose pseudoinverse of ΛT (θ0).

Assumptions W(i)–(iii) allow for different degrees of identification. The component
Λ1T (θ0) corresponds to parameter directions that are strongly or semistrongly identi-
fied (the latter notion follows Andrews and Cheng (2012)). The component Λ2T (θ0) im-
plies directions that are weakly identified, whileΛ3T (θ0) corresponds to directions along
which the parameter values are observationally equivalent for any sample size. The con-
dition is related to Corollary 1 in Qu and Tkachenko (2012), which shows that θ0 is lo-
cally identified if and only if the information matrix has full rank. (They allowed fθ0(ω)

to be singular. In the nonsingular special case, the above statement applies.) Here, the
eigenvalues are sample size-dependent; therefore, identification is no longer a zero–one
phenomenon.

Assumptions W(i)–(iii) are related to the characterizing conditions in the IV and
GMM literature (Staiger and Stock (1997), Stock and Wright (2000), and Kleibergen
(2005)). This is illustrated along two dimensions in a supplementary file on the journal
website, http://qeconomics.org/supp/287/supplement.pdf. First, it is shown that the
latter conditions can also be stated using the eigenvalues that measure the local cur-
vature of the criterion functions. Next, it is shown, using a two-equation model, that the
conditions in Staiger and Stock (1997) translate into Assumption W(i)–(iii). Prior to our
work, Guerron-Quintana, Inoue, and Kilian (2013) also suggested using the local curva-
ture of the likelihood to characterize weak identification. The key differences are that we
work in the frequency domain and that we make no identifying assumptions about the
reduced form parameters.

Assumption W(iv) strengthens Assumption 3(iii) by requiring sufficient smoothness
of ∂vec fθ0(ω)/∂θ

′ in ω. The effect of QT(θ0) is to map the row vectors of ∂vec fθ0(ω)/∂θ
′

into a new coordinate system common to all ω ∈ [−π�π]. The assumption thus requires
∂vec fθ0(ω)/∂θ

′ to be well behaved in this new coordinate system. If θ0 is strongly identi-

http://qeconomics.org/supp/287/supplement.pdf
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fied, the assumption is trivially satisfied. Under weak identification, it is less transparent
because some entries in Λ+

T (θ0)
1/2 diverge to infinity. In the supplementary files, it is

shown that this assumption is satisfied in the simple dynamic model. In more general
models, when a formal justification is not possible, the assumption can still be inspected
using a graphical procedure. Specifically, because the matrix (10) is nonrandom and is
fully determined by the DSGE model, its components can be plotted as a function of the
frequency index under any given θ. Although this is not a formal test, it can be quite in-
formative about the smoothness and magnitudes of the elements of (10). This point will
be further illustrated in Section 7.

5. A frequency domain score test

This section proposes a score test and studies its properties under weak identification.
It also discusses its flexibility for allowing for low frequency misspecifications.

Define

ST (θ0)=DT(θ0)
′M+

T (θ0)DT (θ0)�

where M+
T (θ) denotes the Moore–Penrose pseudoinverse of MT(θ).

To better understand the properties of ST (θ0) under weak identification, we show
that it can be given a regression interpretation. Consider the complex-valued multivari-
ate regression

Yj =Xjβ+Uj� j = 0�1� 
 
 
 �T − 1� (11)

where Yj is a vector andXj is a matrix whose values are specified below,β is an unknown
parameter vector, and Uj is a vector of regression errors. The least squares estimator
is

β̂=
(
T−1∑
j=0

X∗
j Xj

)+(T−1∑
j=0

X∗
j Yj

)

and the explained sum of squares (ESS) is

ESS =
T−1∑
j=0

Ŷ∗
j Ŷj =

(
T−1∑
j=0

Y∗
j Xj

)(
T−1∑
j=0

X∗
j Xj

)+(T−1∑
j=0

X∗
j Yj

)

 (12)

To establish the relationship between ESS and ST (θ0), we need the following nota-
tion. Let H be a positive definite Hermitian matrix (e.g., H = fθ0(ω)). Then H has the
eigendecomposition (Horn and Johnson (2005, Theorem 4.1.5)) H = UΛU∗, where Λ

is a real-valued diagonal matrix and U is unitary. Define H1/2 = UΛ1/2U∗ and H−1/2 =
UΛ−1/2U∗. ThenH1/2,H−1/2,H ′⊗H, (H1/2)′⊗H1/2, and (H−1/2)′⊗H−1/2 are Hermitian
(Horn and Johnson (2006, p. 243)).
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Lemma 1. Under Assumption 3, we have ST (θ0)= (1/2)ESS with

Xj =
⎡⎢⎣W (ωj)

(
f

−1/2
θ0

(ωj)
′ ⊗ f

−1/2
θ0

(ωj)
)∂vec fθ0(ωj)

∂θ′
W (0)

(
πfθ0(0)

)−1/2 ∂μ(θ0)

∂θ′

⎤⎥⎦ �
(13)

Yj =

⎡⎢⎢⎣
W (ωj)

(
f

−1/2
θ0

(ωj)
′ ⊗ f

−1/2
θ0

(ωj)
)

vec
(
IT (ωj)− fθ0(ωj)

)
W (0)

(
πfθ0(0)

)−1/2
T−1

T∑
t=1

(
Yt −μ(θ0)

)
⎤⎥⎥⎦

for j = 0�1� 
 
 
 �T − 1, where IT (0)= Iθ0�T (0).

In the lemma, the matrix Xj is nonrandom and of dimension (n2
Y + nY ) × q. Its

components (f
−1/2
θ0

(ωj)
′ ⊗ f

−1/2
θ0

(ωj)) and (πfθ0(0))
−1/2 are scaling factors. They are

invariant to the strength of identification. The identification strength is embedded in
∂vec fθ0(ωj)/∂θ

′ and ∂μ(θ0)/∂θ
′. If some parameters are weakly identified, then, by As-

sumption W, there exists a vector c(θ0) such that [∂μ(θ0)/∂θ
′]c(θ0) = O(T−1/2) and

[∂vec fθ0(ωj)/∂θ
′]c(θ0) = O(T−1/2) for all j = 0� 
 
 
 �T − 1. The columns of Xj are thus

(imperfectly) multicollinear. In the extreme case when some parameters are unidenti-
fied, we have [∂μ(θ0)/∂θ

′]c(θ0)= 0 and [∂vec fθ0(ωj)/∂θ
′]c(θ0)= 0 for all j = 0� 
 
 
 �T −1.

Consequently, Xj exhibits perfect multicollinearity.
Asymptotically, Yj has mean zero with an identity covariance matrix. It is uncorre-

lated with Xj because the latter is nonrandom. Therefore, the explained sum of squares
ESS is naturally expected to be related to a chi-squared limiting distribution with the
degrees of freedom determined by the column rank of Xj , which can be smaller than q

if some parameters are unidentified. Here, ST (θ0) equals (1/2)ESS but not ESS because
I(2π −ω) = I(ω). Note that Xj being nonrandom plays an important role in achieving
the robustness to weak identification.

The insight that score tests can, on some occasions, be expressed using projected
values from linear regressions dates back to Breusch and Pagan (1980), where the rela-
tionship was considered as a computational device. Under the above specifications of
Xj and Yj , (11) is a complex-valued Gauss–Newton regression. Davidson and MacKin-
non (1993, Chapter 6) provided a detailed discussion of Gauss–Newton regressions ap-
plied to estimation and hypothesis testing. The current paper is the first to use such a
relationship to understand testing procedures under weak identification.

Theorem 1. Let Assumptions 1–4 and W hold. Then

lim
T→∞

Pr
(
ST (θ0)≤ c

)→ Pr
(
χ2
r ≤ c

)
�

where χ2
r is a chi-squared variable with r degrees of freedom, r = q− q3, q= dim(θ0), and

q3 = dim(Λ3T (θ0)).

Normality is a key assumption for Theorem 1 to hold. If it is violated, the distribution
of ST (θ0) will depend on nuisance parameters. This is because the variance of the score
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DT(θ0) is no longer MT(θ0), but rather is dependent on the third and fourth moments
of the structural shocks. Specifically, its (j� l)th element equals

[
MT(θ0)

]
jl

+
(

1
4π

)2 nε∑
a�b�c�d=1

κabcd

×
[

1
2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0

(ω)

∂θj
H(ω)dw

]
ab

(14)

×
[

1
2π

∫ π

−π
W (ω)H∗(ω)

∂f−1
θ0

(ω)

∂θl
H(ω)dw

]
cd

+ 1
8π2 (Ajl +Alj)�

where [·]ab denotes the (a�b)th element of the matrix, [·]c denotes the cth element of
the vector, MT(θ0) is given by (8), κabcd is the fourth cross-cumulant of εta, εtb, εtc , and
εtd , H(ω)=H(exp(−iω);θ0)=∑∞

j=0 hj(θ0)exp(−iωj), H∗(ω) is its conjugate transpose,

∂f−1
θ0

(ω)/∂θj is the derivative of f−1
θ0

(ω) with respect to the jth element of θ, and

Ajl =
nε∑

a�b�c=1

ξabc

{∫ π

−π
W (ω)

[
H∗(ω)

∂f−1
θ0

(ω)

∂θj
H(ω)

]
ab

dω

}

×
[
W (0)

∂μ(θ0)
′

∂θl
f−1
θ0

(0)H(0)
]
c

with ξabc = E(εtaεtbεtc). Note that the term (Ajl +Alj) is absent when the inference con-
cerns only the dynamic parameters.

If the DSGE model fully specifies the distributions of the shocks, then κabcd and ξabc
can be calculated as functions of the structural parameters. For example, if the shocks
follow t distributions, then κabcd can be expressed as a function of the degrees of free-
dom parameters and Ajl = Alj = 0. In such a situation, a modified test statistic can be
constructed as

S̃T (θ0)=DT(θ0)
′M̃+

T (θ0)DT (θ0)� (15)

where M̃T (θ0) is given by (14). Its limiting distribution is the same and can be established
using similar arguments as in Theorem 1. Its size and power properties are illustrated in
Section 7.

5.1 Implementing the test

Theorem 1 suggests the following procedure for inference.

• Apply an eigenvalue decomposition to MT(θ0) to determine dim(Λ3T (θ0)). We sug-
gest using the MATLAB default tolerance level tol = dim(MT (θ0))eps(‖MT(θ0)‖), where
eps(‖MT(θ0)‖) equals the machine precision (2−52) times the maximum eigenvalue of
MT(θ0).
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• Set the eigenvalues below tol to exact zeros, and use the new ΛT (θ0) and the orig-
inal QT(θ0) to recompute MT(θ0); see (9). Use this MT(θ0) and the original DT(θ0) to
compute ST (θ0).

• Reject the null hypothesis of θ = θ0 if ST (θ0) exceeds the critical value of the χ2
r

distribution.

It is desirable to let the tolerance level depend on MT(θ0), say its maximum eigen-
value or the average of its eigenvalues. Also, it is important to set the eigenvalues below
tol to exact zero. This ensures that the column rank of Xj will be exactly r. Otherwise,
overrejection may occur when the χ2

r distribution is used for inference. The above pro-
cedure exploits the feature that MT(θ0) is nonrandom. Without this feature, the eigen-
values would be sample-dependent and the rank estimation, in general, would not work.

The procedure involves choosing a tolerance level for deciding the rank of MT(θ0).
This introduces some arbitrariness. The following two-step method, due to Qu and
Tkachenko (2012, p. 120), can be used to reduce the arbitrariness and to improve the
robustness of the rank estimator.

Step 1. Compute the ranks of MT(θ0) using a range of tolerance levels. Locate the out-
comes with the smallest rank.

Step 2. Derive the nonidentification curves by conditioning on the smallest rank re-
ported. (Under correct rank estimation, the curves consist of parameter values that
are observationally equivalent to θ0, i.e., with μ(θ) = μ(θ0) and fθ(ω) = fθ0(ω) for all
ω ∈ [−π�π]; see Section 3.1 in Qu and Tkachenko (2012) for the definition and com-
putation of nonidentification curves.) Compute μ(θ) and fθ(ω) using the values on the
curves and measure their differences from μ(θ0) and fθ0(ω) over ω ∈ [−π�π].

The purpose of Step 1 is to avoid overestimating the rank. It may result in underes-
timation, which is further addressed in Step 2. The idea is that if this has occurred, then
some curves reported in Step 2 will in fact correspond to parameter subsets that are
locally identifiable. Consequently, noticeable discrepancies should emerge as we move
along such curves away from θ0. There the discrepancies can be interpreted in light of
the magnitude of fθ0(ω) and the distance of θ from θ0. This is typically more straightfor-
ward than interpreting the magnitudes of the eigenvalues of MT(θ0). In the application
in Section 7.1, we consider tolerance levels between 10−10 × tol and 1010 × tol. The results
show consistently that the Taylor rule parameters are not identified.

On some occasions, the result might be inclusive even after implementing the above
method. Then we can set the degrees of freedom to dim(θ0). This leads to a conserva-
tive test without affecting its asymptotic validity because of the regression interpreta-
tion (11).

As an additional feature, the test continues to have correct size if the rank is un-
derestimated. Intuitively, this is because the test behaves asymptotically as the sum of
independent χ2

1 variables. Setting a nonzero eigenvalue to zero is equivalent to remov-
ing a variable from the sum. This does not alter the chi-squared distribution except that
the degrees of freedom is reduced by 1. Some power might be lost if the eigenvector cor-
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responds to a major deviation from the null hypothesis. Such issues are illustrated in
Section 7 (see Tables 3, 4, 6, and 7).

5.2 Robustness to low frequency misspecification

DSGE models are often designed to explain business cycle movements, not very long-
run or very short-run fluctuations. At the latter frequencies, such models can be severely
misspecified. Schorfheide (2013) emphasized that “many time series exhibit low fre-
quency behavior that is difficult, if not impossible, to reconcile with the model being
estimated. This low frequency misspecification contaminates the estimation of shocks
and thereby inference about the sources of business cycle.” Therefore, it is valuable to be
able to conduct inference by excluding the very low frequencies, and, more generally, to
compare inferential results when different sets of frequencies are allowed to enter. The
proposed procedure allows for such investigations through the specification of W (ω).
Later in Section 7.7, we explicitly consider two types of low frequency misspecifications.
In one case, the growth rate of productivity is affected by a structural change at an un-
known date. In the other, the inflation target has an unmodeled smoothly varying trend.
The results show that using the business cycle frequencies can lead to valid inference
even when using the full spectrum erroneously rejects the null hypothesis 100% of the
time.

Recently, several studies have analyzed the effect of low frequency misspecifications
on parameter estimation from a frequency domain perspective. Perron and Qu (2010)
considered a weakly stationary process (e.g., autoregressive moving average (ARMA)
models) affected by occasional level shifts. They showed in Proposition 3 that the level
shift component affects the periodogram only up to j = O(T 1/2). Thus, out of a total of
T − 1 Fourier frequencies, only an asymptotically negligible fraction of O(T−1/2) is dis-
torted. Qu (2011, Lemma 1) obtained a similar result for a stationary process affected
by a smoothly varying trend. These results suggest that consistent parameter estima-
tion is possible under such misspecifications by judiciously excluding a number of fre-
quency components. McCloskey and Hill (2013) obtained such estimators for ARMA,
generalized autoregressive conditional heteroscedasticity, and stochastic volatility mod-
els. Tkachenko and Qu (2012) analyzed Smets and Wouters’ (2007) model using only the
business cycle frequencies and compared with results obtained using the full spectrum.
They found notably different parameter values and impulse response functions. The
work here further develops this literature by simultaneously allowing for the selection
of frequencies and weak identification.

6. Confidence sets robust to weak identification

Because of the duality between confidence sets and hypothesis tests, a valid confidence
set for θ can be constructed by inverting ST (θ). Specifically, applying Theorem 1, an
asymptotically valid 100(1 − α)% confidence set is given by

Cθ(1 − α)= {θ ∈Θ :ST (θ)≤ χ2
q−q3

(1 − α)
}
�
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where χ2
s (1 − α) denotes the 100(1 − α)th percentile of a chi-squared variable with s

degrees of freedom. Because this set contains the minimizers of the likelihood function,
it is always nonempty.

To obtain this set, a direct grid search is computationally infeasible even for small
scale DSGE models. We suggest using a Metropolis algorithm. The idea is to use
Metropolis steps to generate frequent draws from regions of Θ, where the values of
ST (θ) are small, and infrequent draws where ST (θ) are large. This delivers a grid over
Θ that adapts to the shape of ST (θ), being dense at the desired areas (i.e., where ST (θ)

takes values near or below χ2
q−q3

(1−α)) and sparse at the unimportant areas (i.e., where

ST (θ) is far above χ2
q−q3

(1 −α)). The confidence set can then be approximated using the

values of θ for which ST (θ) do not exceed χ2
q−q3

(1 − α).
Let π(θ) be an indicator that equals 1 over Θ and 0 otherwise. Because of Assump-

tion 1, π(θ) acts as a uniform prior with a compact support. This ensures that the result-
ing quasiposterior will be proper even if ST (θ) is flat. The basic steps for constructing
the confidence set are the following.

Step 1. Choose a starting value θ(0) and set j = 0.

Step 2. Draw θ∗ from some proposal distribution q(·|θ(j)).

Step 3. Calculate the ratio

s = min
{
π(θ∗)e−(1/2)ST (θ∗)

π(θ(j))e−(1/2)ST (θj)

q(θ(j)|θ∗)
q(θ∗|θ(j)) �1

}
and set

θ(j+1) =
{
θ∗ with probability s�
θ(j) with probability 1 − s


Step 4. Increase j by 1 and then repeat Steps 2 and 3. Continue until j = B for some
large B.

Step 5. Sort the draws according to the values of ST (θ) and keep those that satisfy
ST (θ

(j))≤ χ2
q−q3

(1 −α) (j = 1� 
 
 
 �B). Use the envelope of these draws to form the confi-
dence set.

The above procedure is motivated by Chernozhukov and Hong (2003) in which
Markov chain Monte Carlo (MCMC) is used as a computational device for classical es-
timation. Because the goal here is not to obtain a point estimate for θ, the assumptions
for asymptotic distributions (Assumptions 2–4 in Chernozhukov and Hong (2003)) are
not required.

Steps 1–5 cover only the basic aspects. In practice, it is important to fine tune them
to better account for the potential ridges or local minima in the surface of ST (θ). For
example, we incorporate the following elements when we analyze the model of An and
Schorfheide (2007) in Section 7. First, in Steps 2 and 3, two different proposal distribu-
tions are applied iteratively to generate new parameter values. More specifically, write
the new draw in Step 2 as θ∗ = θ(j) + ε. The first distribution gives ε ∼ N(0�MT (θ

(j)))
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with c being a tuning constant, while the second draw gives ε = cVT (θ
(j)) or −cVT (θ

(j))

with VT (θ
(j)) being the eigenvector that corresponds to the smallest eigenvalue of

MT(θ
(j)). These two distributions produce draws that travel across and along the ridges

of ST (θ). Second, for each proposal distribution, we let the tuning parameter c take on
multiple values. This prevents the sampling process from getting locked in some small
neighborhood of a local minimum. Finally, multiple Markov chains are run with differ-
ent initial values. The confidence set is then obtained by merging the accepted values
from all the chains.

Once the joint confidence set is obtained, confidence sets for parameter subvectors
can be obtained using the projection method, that is, we use the first k Cartesian coor-
dinates of the MCMC draws in Step 5 to form a confidence set for the first k parame-
ters in θ. Such a method is implemented in Guerron-Quintana, Inoue, and Kilian (2013).
A discussion of this method in the IV context can be found in Dufour and Taamouti
(2005).

6.1 Extensions

Below, we propose procedures to construct uniform confidence bands for the impulse
response function and some other objects.

Let IRjl(k�θ0) be the impulse response of the jth variable in Yt to the lth orthogonal
shock in εt at the horizon k when the true parameter value is θ0. The next definition
specifies a uniform confidence band for IRjl(k�θ0).

Definition 1. Let CIR(k;T) be a confidence band for IRjl(k�θ0) indexed by k ∈ [0�∞).
We say it is uniform at the level 1 − α if

lim inf
T→∞

Pr
(
IRjl(k�θ0) ∈ CIR(k;T) for all k ∈ [0�∞)

)≥ 1 − α


The band can be constructed by considering the envelope of the impulse response
functions associated with all the parameter values contained in the joint confidence set
obtained in the previous subsection. Without loss of generality, consider the impulse re-
sponse function of the jth variable inYt to the lth orthogonal shock. This function, when
evaluated at horizon k, equals the (j� l)th element of IR(k�θ) = hk(θ)Σ

1/2(θ), where
hk(θ) is the kth coefficient matrix in the vector moving average representation (4). This
is easily computed using the output from Sims (2002), because (see (1); without loss of
generality, assume A(L)=A)

IR(k�θ)=AΦk
1 (θ)Φ0(θ)Σ

1/2(θ)


The band can be obtained in three steps.

Step 1. Apply the Metropolis–Hastings algorithm described above to construct
Cθ(1 − α).

Step 2. Compute the impulse response function using all parameter values inCθ(1−α).
This step can be approximated using the MCMC draws from Step 1 that satisfy ST (θ) ≤
χ2
q−q3

(1 − α).
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Step 3. Sort the resulting values at each horizon of interest. Use their maxima and min-
ima to form a confidence band.

Because IR(k�θ) is a deterministic function of θ and k, this band covers the impulse
response function with probability at least (1 −α) asymptotically. (A proof for this claim
is provided in the supplementary file.) It is important to note that the band can be nar-
row even if some parameters are unidentified. This is because if two different parameter
values produce the same spectral density over ω ∈ [−π�π] (therefore unidentified), they
may also lead to the same set of impulse response functions.2 This feature will be illus-
trated in Section 7.

The same idea can be applied to construct confidence sets for the time path of the
variance decomposition or other objects that are deterministic functions of the struc-
tural parameter vector. Below we discuss two such examples. As a matter of notation, let
ej be the jth column of an identity matrix whose dimension depends on the context.

Individual spectrum and coherency The spectrum of the jth variable in Yt is given by
e′
jfθ(ω)ej . The absolute coherency, which measures the strength of correlation between

the jth and lth variables at a particular frequency ω, is given by

|e′
jfθ(ω)el|√

e′
jfθ(ω)eje′

lfθ(ω)el



It is useful to contrast the model implied confidence bands for these two quantities with
some model-free (i.e., nonparametric) estimates computed directly from the data. This
can potentially reveal the frequencies at which the model captures or misses important
dynamic features in the data. Because the quantities are deterministic functions of θ,
their confidence bands uniform in ω can again be computed using the three-step pro-
cedure outlined above.

Low frequency hypotheses Lucas (1980) used the slopes of univariate regressions of
moving averages of inflation (πt ) and interest rates (rt ) on money growth (�mt ) to illus-
trate the two central implications of the quantity theory of money: that a given change
in the rate of money growth induces (i) an equal change in the rate of price inflation
and (ii) an equal change in nominal rates of interest. Whiteman (1984) observed that the
slopes are related to the coherency between the respective variables at frequency zero.
In our notation, the estimated slope approximates

e′
jfθ(0)el

e′
jfθ(0)ej

� (16)

where j corresponds to �mt and l is either πt or rt . Sargent and Surico (2011) used
DSGE models to show that the slopes are policy-dependent. They tackled this issue from

2Having the same spectrum is necessary but not sufficient for having the same impulse response func-
tion. For example, for any noninvertible (moving average) MA(1) process, there always exists an invertible
MA(1) with the same spectrum but a different impulse response function.
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a Bayesian perspective. The methods developed in this paper can be used to construct
frequentist confidence intervals for (16), and, therefore, to evaluate whether a unit slope
is consistent with the model and the data.

7. Finite sample properties

This section first examines the finite sample properties of the proposed tests, the con-
fidence intervals, and the confidence bands for the impulse response functions. Then
it considers the performance of the tests under non-Gaussian innovations and low fre-
quency misspecifications.

The model, taken from An and Schorfheide (2007), is

yt = Etyt+1 + gt −Etgt+1 − 1
τ
(rt −Etπt+1 −Etzt+1)�

πt = βEtπt+1 + κ(yt − gt)�

rt = ρrrt−1 + (1 − ρr)ψ1πt + (1 − ρr)ψ2(yt − gt)+ εrt� (17)

gt = ρggt−1 + εgt�

zt = ρzzt−1 + εzt�

where εrt ∼ N(0�σ2
r ), εgt ∼ N(0�σ2

g), and εzt ∼ N(0�σ2
z ) are serially and mutually in-

dependent shocks. The observables are gross domestic product (GDP) growth (YGRt ),
inflation (INFLt ) and interest rate (INTt ),

YGRt = γ(Q) + 100(yt − yt−1 + zt)�

INFLt = π(A) + 400πt� (18)

INTt = π(A) + r(A) + 4γ(Q) + 400rt�

where γ(Q) = 100(γ− 1), π(A) = 400(π − 1), and r(A) = 400(1/β− 1), with γ being a con-
stant in the technological shock equation and π being the steady state inflation rate. The
parameter vector is

θ= (τ�κ�ψ1�ψ2�ρr�ρg�ρz�100σr�100σg�100σz� r(A)�π(A)�γ(Q)
)



The first 11 parameters are dynamic parameters (r(A) depends on β, which appears in
the log-linearized equations). The parameter values are taken from Table 2 in An and
Schorfheide (2007):

θ0 = (2�0
15�1
5�1
00�0
60�0
95�0
65�0
2�0
8�0
45�0
40�4
00�0
50)
 (19)

We consider three designs that correspond to different treatments of the mean and
the spectrum.

Design 1 (Business cycle frequencies). Inference on the 11 dynamic parameters based
on business cycle (BC) frequencies (i.e., periods of 6–32 quarters): ω ∈ [π/16�π/3] ∪
[5π/3�31π/16].
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Design 2 (Full spectrum). Inference on the dynamic parameters based on the full spec-
trum.

Design 3 (Mean and full spectrum). Inference on θ based on the mean and the full
spectrum.

When implementing the tests, ∂μ(θ)/∂θ′ is computed analytically while ∂vec fθ(ω)/
∂θ′ is computed using a two-point method with step size 10−6. We consider four
empirically relevant sample sizes to evaluate the size and power properties: T =
80�160�240�320. In each case, we report rejection frequencies based on 5000 replica-
tions.

7.1 The model’s identification properties

This subsection illustrates the model’s identification properties for a better understand-
ing of the simulation results. We focus on Design 2 with T = 80, although the findings
are quite similar under Designs 1 and 3. The MATLAB default tolerance level yields
rank(MT (θ0)) = 10 < 11. The method of Qu and Tkachenko (2012, Section 3.1) shows
that there exists a unique nonidentification curve generated by (ψ1�ψ2�ρr�σr). The
curve extends in both the positive and negative directions around θ0. In Direction 1,
it is truncated before ψ2 turns negative. Along Direction 2, it reaches an indeterminacy
region before any natural bounds are violated, and is truncated at the last point that
yields a determinate solution. Table 1 reports 10 evenly spaced points along each direc-
tion. Two interesting patterns emerge. First, for ψ1 and ψ2, the curve extends over a fairly
large neighborhood: ψ1 varies between 0
99 and 4
87, while ψ2 varies between 0
00 and
1
15. Second, the corresponding neighborhoods for ρr and σr are relatively small: ρr can
only change between 0
58 and 0
60, while 100σr changes between 0
19 and 0
20. The lat-
ter feature suggests that the data can still be informative about ρr and σr even though
they are not separately identifiable from ψ1 and ψ2.

The rank estimate is insensitive to the sample size considered. The smallest eigen-
value equals 4
4E−15, 4
8E−15, 4
8E−15, and 5
4E−15 when T = 80, 160, 240, and 320.
They are well below the default tolerance level 3
6E−13. This insensitivity follows be-
cause the summands in MT(θ0) are deterministic and smooth functions of ω. This dif-
fers from usual score tests in which the normalization matrices are sample-dependent.

The rank result is reconfirmed after applying the two-step procedure discussed in
Section 5.1. Specifically, in Step 1, the minimal rank equals 9 when considering a wide
range of tolerance levels: 10j × dim(MT (θ0))eps(‖MT(θ0)‖) (j = −10�−9� 
 
 
 �10). Two
curves are obtained in Step 2, generated by (ψ1�ψ2�ρr�σr) and r(A) (or equivalently β).
The values on the first curve (i.e., those in Table 1) produce essentially the same spectral
density as fθ0(ω) with the maximum absolute difference being 1
4E−7. This confirms
that ψ1, ψ2, ρr , and σr are not separately identifiable. In contrast, noticeable discrepan-
cies emerge when increasing the value of r(A) from 0
4. When the value reaches 4
0 (i.e.,
whenβ changes from 0
999 to 0
990), the maximum difference between fθ(ω) and fθ0(ω)

reaches 0
002. Further increases lead to greater differences. This confirms that r(A) is lo-
cally identified, but only weakly, from the second-order properties of the observables.
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Table 1. Parameter values along the non-identification curve.

ψ1 ψ2 ρr 100σr

θ0 1
5 1
0 0
6 0
2

Direction 1
θ1 1
836868445 0
900004035 0
598458759 0
199486255
θ2 2
173736829 0
800008051 0
596905592 0
198968539
θ3 2
510605180 0
700012143 0
595340369 0
198446796
θ4 2
847473509 0
600016358 0
593762961 0
197920981
θ5 3
184341764 0
500020520 0
592173193 0
197391053
θ6 3
521209942 0
400024625 0
590570930 0
196856970
θ7 3
858078165 0
300029089 0
588956076 0
196318654
θ8 4
194946193 0
200033105 0
587328358 0
195776097
θ9 4
531814220 0
100037328 0
585687731 0
195229219
θ10 4
868682201 0
000041617 0
584034010 0
194677969

Direction 2
θ−1 1
449287583 1
015053453 0
600230997 0
200077000
θ−2 1
398575164 1
030106903 0
600461720 0
200153908
θ−3 1
347862753 1
045160386 0
600692186 0
200230727
θ−4 1
297150322 1
060213806 0
600922373 0
200307461
θ−5 1
246437899 1
075267255 0
601152303 0
200384106
θ−6 1
195725490 1
090320753 0
601381980 0
200460662
θ−7 1
145013063 1
105374198 0
601611380 0
200537132
θ−8 1
094300631 1
120427628 0
601840515 0
200613515
θ−9 1
043588191 1
135481038 0
602069376 0
200689808
θ−10 0
992875774 1
150534530 0
602297996 0
200766012

Note: θj represent equally spaced points taken from the non-identification curve extended from θ0 . Along Direction 1, the
curve is truncated at the closest point to zero where ψ2 is still positive. Along Direction 2, the curve is truncated at the last point
yielding a determinate solution.

The reduced form parameters in this model are not immune to identification prob-
lems. Specifically, a minimal state space representation of the model’s solution evalu-
ated at θ0 is given by⎛⎜⎝ zt+1

gt+1

rt+1

⎞⎟⎠=
⎛⎜⎝ 0
65 0 0

0 0
95 0
0
1548 0 0
4

⎞⎟⎠
︸ ︷︷ ︸

A

⎛⎜⎝ zt
gt
rt

⎞⎟⎠+
⎛⎜⎝ 1 0 0

0 1 0
0
2382 0 0
6667

⎞⎟⎠
︸ ︷︷ ︸

B

⎛⎜⎝εzt+1

εgt+1

εrt+1

⎞⎟⎠
︸ ︷︷ ︸

εt+1

�

⎛⎜⎝ rt+1

yt+1

πt+1

⎞⎟⎠=
⎛⎜⎝0
1548 0 0
4

0
2724 0
95 −0
3637
0
0764 0 −0
0909

⎞⎟⎠
︸ ︷︷ ︸

C

⎛⎜⎝ zt
gt
rt

⎞⎟⎠

+
⎛⎜⎝0
2382 0 0
6667

0
4191 1 −0
6061
0
1176 0 −0
1514

⎞⎟⎠
︸ ︷︷ ︸

D

⎛⎜⎝εzt+1

εgt+1

εrt+1

⎞⎟⎠ 
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The covariance of εt+1, Σ(θ0), is not separately identifiable from B and D without further
normalizations. We therefore fix Σ(θ0), and treat the nonzero elements in A, B, C, and
D as reduced form parameters. Denote the collection of these parameters as φ. Write
φ=φ0 when θ= θ0.

The rank condition in Qu and Tkachenko (2012, Theorem 1) shows thatφ0 is uniden-
tifiable based on the second-order properties of {rt� yt�πt}. The criterion function G(φ0)

has four zero eigenvalues, suggesting there are multiple sources that contribute to the
identification failure. In fact, for any invertible lower triangular 3-by-3 matrix U with
U21 = U32 = 0, replacing A, B, and C by UAU−1, UB, and CU−1 leaves the dynamic
properties of {rt� yt�πt} unchanged. This result confirms that the reduced form param-
eters in a minimal state space representation can be unidentifiable even after fixing the
covariance matrix of the structural shocks and imposing the knowledge about the zero
entries. Guerron-Quintana, Inoue, and Kilian (2013) found similar results in their appli-
cations. They suggested deducting the number of free parameters in U from the degrees
of freedom of the likelihood ratio test. This identification feature also poses computa-
tional challenges because the likelihood is flat in multiple dimensions and it has a con-
tinuum of global maximizers.

7.2 Size in finite samples

The test statistics are constructed by setting the smallest eigenvalue in the information
matrix to zero. The χ2

10 (for dynamic parameters) and χ2
12 (for the full parameter vector)

distributions are used to determine whether rejection occurs. The results are summa-
rized in the first panel of Table 2. The rejection rates are overall close to the nominal
levels. Some mild overrejections persist under Designs 2 and 3, with the maximum re-
jection frequencies being 9
5 and 14
4% at the 5 and 10% nominal levels, respectively.
This appears to be because the spectral density is close to being singular near the zero
frequency. When the lowest frequency component is excluded, the rejection frequencies
under Design 2 decrease to 7
3 and 11
9% at the 5 and 10% nominal levels when T = 320.
Therefore, the overrejection is not a problem with the test statistics, but rather the spec-
ification of the model and how it is applied to the data. In such a context, the adequacy
of the proposed procedures should be judged according to the results using the business
cycle frequencies.

The above experiment considers a particular parameter value. It remains to ver-
ify whether the size is controlled in a more general situation. We draw parameter val-
ues from a prior distribution given in An and Schorfheide (2007, Table 2). In addi-
tion to requiring determinacy, the following bounds are also imposed on the permis-
sible parameter values: τ ∼ [1E−5�5], κ ∼ [0�1], ψ1 ∼ [0�5], ψ2 ∼ [0�2], ρr ∼ [0�0
9],
ρg ∼ [0�0
99], ρz ∼ [0�0
99], 100σr ∼ [1E−5�2], 100σg ∼ [1E−5�2], 100σz ∼ [1E−5�2],
r(A) ∼ [0�5], π(A) ∼ [0�20], and γ(Q) ∼ [0�5]. The bounds are sufficiently wide to allow
for estimates reported in the DSGE literature. To avoid confounding the results with the
issue of near unit roots, the parameters ρr , ρg, and ρz are fixed at their original values
throughout the draws (their bounds are needed later when constructing confidence in-
tervals). The rejection frequencies are summarized in the second panel in Table 2. The
results are quite similar to the previous case.
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Table 2. Rejection frequencies under the null hypothesis.

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

θ0 taken from Table 2 in An and Schorfheide (2007)
80 0
084 0
130 0
086 0
125 0
095 0
135

160 0
073 0
117 0
073 0
115 0
078 0
127
240 0
065 0
109 0
073 0
138 0
078 0
140
320 0
060 0
108 0
087 0
143 0
085 0
144

θ0 drawn from a prior distribution
80 0
089 0
135 0
088 0
135 0
102 0
156

160 0
076 0
122 0
080 0
122 0
086 0
136
240 0
067 0
114 0
083 0
142 0
086 0
145
320 0
065 0
111 0
083 0
145 0
084 0
149

Note: The first panel: θ0 is specified in the last column of that table. The second panel: the prior distribution is specified in
the third and fourth columns of that table; the values of ρr , ρg , ρz are fixed at their original values.

Table 3. Null rejection frequencies under alternative computations of the test statistics. (All
eigenvalues are treated as nonzeros.)

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

θ0 taken from Table 2 in An and Schorfheide (2007)
80 0
067 0
102 0
061 0
097 0
079 0
109

160 0
055 0
089 0
055 0
085 0
061 0
100
240 0
051 0
085 0
066 0
107 0
060 0
111
320 0
045 0
079 0
068 0
108 0
067 0
113

θ0 drawn from a prior distribution
80 0
072 0
107 0
071 0
109 0
082 0
125

160 0
059 0
093 0
059 0
094 0
069 0
108
240 0
054 0
089 0
069 0
110 0
066 0
116
320 0
047 0
083 0
072 0
116 0
067 0
123

Note: See Table 2.

We now purposely misspecify the rank of the information matrix and examine the
tests’ size properties. In Table 3, all eigenvalues of the information matrix are treated as
nonzeros, and the distributions of χ2

11 and χ2
13 are used for inference. As expected, the

tests reject less frequently compared with Table 2. The rates are between 4
5 and 8
2%
and 7
9 and 12
5% at the two nominal levels. Table 4 reports the results when two eigen-
values are classified as zeros, and the distributions of χ2

9 and χ2
11 are used for inference.

There, the size continues to be adequate: the overall rejection rates are between 6
6 and
10
8% and 10
8 and 15
8% at the two nominal levels. In the above discussion, the rank
of the information matrix stayed fixed across parameter values. Yet another alternative



Quantitative Economics 5 (2014) Inference in DSGE models 479

Table 4. Null rejection frequencies under alternative computations of the test statistics. (The
two smallest eigenvalues are treated as zeros.)

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

θ0 taken from Table 2 in An and Schorfheide (2007)
80 0
084 0
130 0
071 0
115 0
093 0
140

160 0
071 0
116 0
072 0
121 0
070 0
115
240 0
068 0
112 0
083 0
131 0
080 0
130
320 0
082 0
108 0
084 0
137 0
090 0
142

θ0 drawn from a prior distribution
80 0
090 0
135 0
082 0
128 0
108 0
158

160 0
076 0
118 0
078 0
131 0
074 0
126
240 0
071 0
116 0
085 0
136 0
086 0
140
320 0
066 0
114 0
086 0
138 0
091 0
146

Note: See Table 2.

is to reestimate its rank with the MATLAB default each time a parameter is drawn, and
then use this rank for computing the test statistics and for inference. This led to virtually
the same results as in Table 2 and is omitted to save space. In summary, the size appears
fairly robust to the classification of the zero eigenvalues.

To put the above results into perspective, we note that in this model, the distribu-
tions of the conventional Wald and likelihood ratio (LR) tests are highly nonstandard.
For the Wald test, because the maximum likelihood estimator (MLE) θ̂ can lie close to a
point distant from θ0 on the nonidentification curve even in large samples,

√
T(θ̂− θ0)

can take on a very large value. Consequently, the test can diverge if a finite covariance
matrix is used to standardize the above difference. For the conventional LR test, because
the likelihood surface displays a ridge along the nonidentification curve, the standard
quadratic approximation is no longer adequate. Consequently, the chi-squared approx-
imation to the limiting distribution also breaks down. In contrast, the distribution of
the ST (θ) test is not established under an expansion around a point estimate; there-
fore, the inference is not affected by the above nonstandard features. Instead, the key as-
sumption that validates the asymptotic distribution is Assumption W(iv). In this model,
[∂vec fθ0(ω)/∂θ

′]QT(θ0)Λ
+
T (θ0)

1/2 is an n2
Y -by-q matrix. The elements in its first row are

plotted in Figure 1 as a function of ω to illustrate their magnitudes and smoothness in ω.
The remaining elements exhibit similar features and are omitted to save space. Figure 1
supports Assumption W(iv).

7.3 Finite sample power

We perturb the individual element of θ0 (only the dynamic parameters in Designs 1
and 2) given in (19) by a fixed percentage and then compute the rejection frequencies.
Specifically, we take a uniform random draw from the index set {1� 
 
 
 �13} (or {1� 
 
 
 �11}
in Designs 1 and 2) and change the corresponding element of the parameter vector by
κ% of its value (increasing or decreasing it with equal probability) without altering the
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Figure 1. A graphical illustration of Assumption W(iv).

Table 5. Size adjusted power.

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

Randomly perturb the elements of θ0 by 20%
80 0
166 0
224 0
290 0
374 0
282 0
384

160 0
230 0
319 0
418 0
519 0
451 0
548
240 0
279 0
356 0
546 0
637 0
593 0
675
320 0
337 0
414 0
632 0
697 0
661 0
721

Randomly perturb the elements of θ0 by 40%
80 0
288 0
360 0
593 0
689 0
637 0
730

160 0
445 0
536 0
747 0
782 0
785 0
821
240 0
556 0
660 0
791 0
831 0
835 0
874
320 0
671 0
729 0
815 0
847 0
859 0
894

Note: θ0 is taken from the last column of Table 2 in An and Schorfheide (2007).

others. This is repeated to generate 5000 parameter values that yield determinacy, which
are then used to simulate 5000 processes and to compute the test statistics. The size-
adjusted rejection frequencies are reported in Table 5.

The first panel is for κ = 20. Using the business cycle frequencies, the ST (θ0) test
achieves 51
1–61
4% of the power attainable using the full spectrum. The rejection rates
under Designs 2 and 3 are similar. Because Design 3 involves more parameters, the
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Table 6. Size adjusted power under alternative computations of the test statistics. (All eigenval-
ues are treated as nonzeros.)

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

Randomly perturb the elements of θ0 by 20%
80 0
157 0
223 0
283 0
368 0
287 0
387

160 0
223 0
309 0
418 0
519 0
446 0
546
240 0
301 0
381 0
541 0
634 0
572 0
666
320 0
340 0
416 0
610 0
687 0
643 0
716

Randomly perturb the elements of θ0 by 40%
80 0
293 0
365 0
607 0
698 0
625 0
729

160 0
439 0
533 0
750 0
787 0
791 0
822
240 0
571 0
664 0
780 0
822 0
817 0
859
320 0
669 0
720 0
802 0
835 0
860 0
902

Note: See Table 5.

Table 7. Size adjusted power under alternative computations of the test statistics. (The two
smallest eigenvalues are set to exact zeros.)

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

Randomly perturb the elements of θ0 by 20%
80 0
186 0
253 0
328 0
416 0
322 0
411

160 0
254 0
350 0
460 0
573 0
496 0
600
240 0
318 0
414 0
579 0
666 0
599 0
689
320 0
371 0
467 0
629 0
705 0
693 0
765

Randomly perturb the elements of θ0 by 40%
80 0
328 0
413 0
658 0
737 0
670 0
752

160 0
474 0
577 0
752 0
795 0
791 0
827
240 0
612 0
712 0
803 0
837 0
829 0
875
320 0
699 0
756 0
812 0
853 0
865 0
905

Note: See Table 5.

power is not necessarily higher than under Design 2. The second panel corresponds to
κ = 40. There the ratios are between 48
5 and 86
1%. Designs 2 and 3 continue to show
similar rejection frequencies.

We misspecify the rank of the information matrix and compute the size-adjusted
rejection frequencies. In Table 6, all eigenvalues are treated as nonzeros. In Table 7, the
two smallest eigenvalues are treated as zeros. In both tables, the power is very similar
to that in Table 5. Intuitively, a small eigenvalue implies that the likelihood surface lacks
curvature in the corresponding direction. There is little to lose, or even something to
gain, from treating it as zero.
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Table 8. Andrews and Mikusheva’s (2013) tests.

LMe LMo

T 5% 10% 5% 10%

A: Size
80 0
079 0
121 0
198 0
289

160 0
070 0
113 0
138 0
211
240 0
071 0
118 0
115 0
182
320 0
069 0
114 0
098 0
162

B: Size adjusted power
Randomly perturb the elements of θ0 by 20%

80 0
329 0
413 0
305 0
376
160 0
474 0
580 0
482 0
559
240 0
642 0
726 0
577 0
668
320 0
751 0
805 0
686 0
761

Randomly perturb the elements of θ0 by 40%
80 0
660 0
751 0
514 0
581

160 0
823 0
855 0
708 0
797
240 0
887 0
916 0
901 0
944
320 0
929 0
948 0
955 0
967

Note: θ0 is taken from the last column of Table 2 in An and Schorfheide (2007).
The tests are computed by setting the smallest eigenvalue of the information ma-
trix to zero.

In summary, the results from Designs 1 and 2 suggest that the tests using only busi-
ness cycle frequencies can be informative. Meanwhile, although the above analysis al-
lows us to compare power across different designs, it is not ideal because the alternatives
are limited to some particular parameter directions. If the alternative parameter values
were instead on the nonidentification curve, then the power of the tests would be the
same as their size. The informativeness of the different procedures will be further stud-
ied in the next two subsections through the lenses of confidence intervals and impulse
responses. Prior to that, we first report a comparison with Andrews and Mikusheva’s
(2013) tests using the current model.

Andrews and Mikusheva (2013) studied two LM tests, LMo and LMe, from a time do-
main perspective. Given that they cannot be applied to Designs 1 and 2, below we only
consider their finite sample properties under Design 3. Panel A in Table 8 summarizes
their rejection frequencies under the null hypothesis. The two tests perform quite dif-
ferently. The LMo test exhibits substantial size distortions, while the LMe test performs
similarly to ST (θ0). The difference follows from the handling of the information matrix.
The LMo test tries to estimate it from a finite sample. This involves estimating q(q+ 1)/2
unknown parameters with q being the dimension of θ0. The noise in this estimate can
significantly affect the test’s size, especially under weak identification. The LMe test, sim-
ilarly as ST (θ0), computes the information matrix directly from the model, and, there-
fore, is unaffected by this problem. In the frequency domain, there is a simple formula
available for computing the information matrix, while in the time domain, one needs to
use some tailored procedures or simulations. Andrews and Mikusheva (2013) suggested
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using the method of Iskrev (2008) along with the MATLAB toolbox E4. Panel B in Table 8
summarizes their rejection frequencies under the alternative hypothesis. Overall, the
values are similar to those reported in the last two columns in Table 5. Specifically, the
differences between LMe and ST (θ0) are within 0
02–0
09, and between LMo and ST (θ0)

are within −0
17–0
10. These results are consistent with those reported in Andrews and
Mikusheva (2013) using a different model.

7.4 Confidence intervals for structural parameters

Table 9 summarizes the length of the 90% confidence intervals when θ equals (19) and
T = 240. The fourth column corresponds to the business cycle case. First, the intervals
reveal little information about τ, ψ1, ψ2, and r(A) (or equivalently β). This is consis-
tent with findings reported elsewhere in the literature. For example, An and Schorfheide
(2007, pp. 133–134) documented similar results about τ, ψ1, and ψ2 from a Bayesian
perspective. It is also well known that β is difficult to estimate with data on aggregate
quantities. Second, the intervals reveal limited information about ρr and κ. Third, the
intervals related to the exogenous disturbances (ρg, ρz , 100σr , 100σg, and 100σz) are
relatively informative. This is again consistent with the findings of An and Schorfheide
(2007, pp. 133–134).

The fifth column corresponds to the full spectrum case. The intervals for τ, ψ1, ψ2,
and r(A) are little changed; the others narrow substantially. The efficiency gain from us-
ing the full spectrum is clearly parameter specific. The sixth column incorporates the

Table 9. Lengths of the 90% confidence intervals.

Mean and
Parameter θ0 Bounds BC Frequencies Full Spectrum Full Spectrum

(1) (2) (3) (4) (5) (6)

τ 2 [1E−5�5] 4
92� [0
05�5
00] 4
17� [0
74�4
99] 4
10� [0
85�5
00]
κ 0
15 [0�1] 0
63� [0
03�0
66] 0
26� [0
08�0
33] 0
27� [0
08�0
34]
ψ1 1
5 [0�5] 4
16� [0
84�5
00] 4
11� [0
89�5
00] 4
03� [0
96�5
00]
ψ2 1
00 [0�2] 2
00� [0
00�2
00] 2
00� [0
00�2
00] 2
00� [0
00�2
00]
ρr 0
60 [0�0
9] 0
74� [0
11�0
89] 0
32� [0
46�0
78] 0
34� [0
46�0
79]
ρg 0
95 [0�0
99] 0
44� [0
55�0
99] 0
11� [0
88�0
99] 0
10� [0
89�0
99]
ρz 0
65 [0�0
99] 0
49� [0
43�0
93] 0
25� [0
56�0
81] 0
26� [0
57�0
82]
100σr 0
2 [1E−5�2] 0
34� [0
14�0
48] 0
08� [0
17�0
26] 0
08� [0
17�0
25]
100σg 0
8 [1E−5�2] 0
66� [0
66�1
32] 0
24� [0
71�0
94] 0
24� [0
71�0
94]
100σz 0
45 [1E−5�2] 0
63� [0
23�0
87] 0
30� [0
32�0
63] 0
31� [0
32�0
64]
r(A) 0
4 [0�5] 5
00� [0
00�5
00] 5
00� [0
00�5
00] 2
16� [0
00�2
16]
π(A) 4
00 [0�20] – – 2
13� [3
23�5
32]
γ(Q) 0
50 [0�5] – – 0
76� [0
00�0
76]
Coverage – – 0
96 0
98 0
98

Note: The sample size is 240. Column (2): true parameter values. Column (3): bounds for permissible parameter values.
Columns (4) to (6): lengths of the confidence intervals over 100 replications. In each cell, the first value is the median length of
the intervals. The remaining two values are the medians of their lower and upper limits. The last row gives the frequencies that
the confidence set contains the true parameter vector.
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steady state parameters. There the intervals remain roughly the same except for r(A).
The latter interval narrows because r(A) is tied to the steady state of the interest rate.

The above comparison shows that inference using only business cycle frequencies
can be informative (see ρg, ρz , 100σr , 100σg, and 100σz), while using the full spectrum
can bring substantial gain in efficiency. In practice, this offers researchers a choice. If the
model is reasonably specified at all frequencies, then the full spectrum should be used
and the inference will be more precise. If the model is misspecified over some frequen-
cies, then using parts of the spectrum is preferable.

Importantly, the results suggest that it is possible to have informative confidence
intervals in DSGE models with unidentified parameters. Furthermore, even unidentified
parameters themselves can have tight confidence intervals; see ρr and σr in the fifth and
sixth columns. To see why the latter has happened in this model, note that ρr and σr
are elements of the Taylor rule parameters (ψ1�ψ2�ρr�σr) that lie on a nonidentification
curve depicted in Table 1. The likelihood function is completely flat along this curve, but
has curvature in all other directions. For ρr and σr , the curve occupies only a relatively
small neighborhood. Consequently, the effect of the identification failure is relatively
mild. The confidence intervals can still be tight. More generally, such a feature can arise
if identification failure involves multiple parameters, but the nonidentified directions
are limited relative to the number of such parameters.

7.5 Confidence bands for impulse responses

We illustrate the properties of the 90% uniform confidence bands using a simulated pro-
cess with θ0 equal to (19) and T = 240. The maximum horizon equals 20. The bands
are computed using merged outcomes from 20 independent Markov chains, with each
chain producing 2000 valid draws.

Figure 2 contains confidence bands using only business cycle frequencies. In each
plot, the shaded area is the 90% uniform confidence band. The solid line is the true
impulse response function. The bands are, in general, fairly wide, but can be informa-
tive. They show that the three shocks have significant immediate effects on all the vari-
ables, with the exception of εgt on inflation and interest rate, which are identically zero
as dictated by the structure of the model. They correctly estimate the signs of the re-
sponses and are indicative of the possible magnitudes. Figure 3 corresponds to the full
spectrum. All bands narrow substantially and are now fairly informative. This is an in-
teresting finding, given that the model has unidentified parameters. Figure 4 contains
results using the mean and the spectrum. The bands are similar to those in Figure 3.
They are not necessarily narrower than those in Figure 3 because additional parameters
are present.

Therefore, it is possible to have informative interval estimates of the impulse re-
sponse functions in DSGE models with unidentified parameters. Because observation-
ally equivalent parameter values may correspond to the same response functions, un-
certainty about parameter values does not necessarily translate into uncertainty about
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Figure 2. Uniform confidence bands for impulse response functions (90%, BC frequencies).
Note: R, G, and Z: shocks to monetary policy, exogenous spending and technology. Gray area: the
uniform band. Solid line: the true impulse response. Y-axis: percent. X-axis: horizon.

the latter. For a further illustration, we computed the impulse response functions using
the 20 points reported in Table 1. The maximum difference between them is of order
1E−7. This confirms that in this model, the parameters on the identification curve do
deliver the same impulse responses.

7.6 Non-Gaussian innovations

This subsection studies the finite sample properties of the modified test (15) when the
shocks follow Student-t distributions. Specifically, we let

εrt
i
i
d
∼ t
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r � λr
)
� εgt
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Figure 3. Uniform confidence bands for impulse response functions (90%, the full spectrum).
Note: R, G, and Z: shocks to monetary policy, exogenous spending and technology. Gray area: the
uniform band. Solid line: the true impulse response. Y-axis: percent. X-axis: horizon.

where t(0�σ2�λ) denotes a Student-t distribution with location parameter 0, scale pa-
rameter σ2, and λ degrees of freedom. The values λr , λg, and λz are taken from the last
three columns in Table 2 in Cúrdia, Del Negro, and Greenwald (2013). They are treated
as additional structural parameters when constructing the tests. All other specifications
are the same as in (17).

The rejection frequencies are summarized in Table 10. Panel A corresponds to the
null hypothesis. The values are fairly close to the nominal levels. Panel B corresponds to
the alternative hypothesis. There the power is overall lower than that reported in Table 5;
however, the overall pattern is similar. In particular, using the business cycle frequen-
cies, the test achieves 65
0–75
0% and 59
8–84
9% of the power attainable using the full
spectrum when κ= 20 and 40.
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Figure 4. Uniform confidence bands for impulse response functions (90%, the mean and full
spectrum). Note: R, G, and Z: shocks to monetary policy, exogenous spending and technology.
Gray area: the uniform band. Solid line: the true impulse response. Y-axis: percent. X-axis: hori-
zon.

7.7 Robustness to low frequency misspecification

This subsection studies the tests’ size properties when the data exhibit certain unmod-
eled low frequency variations. First, we suppose the growth rate of technology, and,
therefore, the means of YGRt and INTt , are affected by a structural change at Tb:

γ(Q)(t)= γ(Q) + δ ∗ 1(t ≥ Tb)
 (20)

Second, we suppose the inflation target, and, therefore, the means of INFLt and INTt ,
are time varying:

π(A)(t)= π(A) + ξ(t)
 (21)
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Table 10. Finite sample properties with Student-t innovations.

Mean and
BC Frequencies Full Spectrum Full Spectrum

T 5% 10% 5% 10% 5% 10%

A: Size
df = (8
2�11
4�7
5)

80 0
061 0
084 0
061 0
088 0
070 0
100
160 0
040 0
062 0
046 0
073 0
052 0
078
240 0
034 0
058 0
050 0
077 0
054 0
084
320 0
030 0
053 0
046 0
075 0
052 0
078

df = (5
9�8
3�5
5)
80 0
070 0
096 0
077 0
104 0
084 0
115

160 0
048 0
071 0
062 0
087 0
067 0
096
240 0
043 0
067 0
062 0
094 0
070 0
102
320 0
038 0
061 0
066 0
097 0
067 0
097

df = (8
1�7
6�5
6)
80 0
068 0
092 0
073 0
102 0
081 0
112

160 0
045 0
068 0
057 0
083 0
063 0
091
240 0
040 0
065 0
060 0
090 0
065 0
096
320 0
035 0
060 0
058 0
089 0
061 0
091

B: Size adjusted power
df = (8
1�7
6�5
6); randomly perturb the elements of θ0 by 20%

80 0
124 0
192 0
179 0
256 0
168 0
252
160 0
165 0
246 0
254 0
346 0
289 0
371
240 0
206 0
286 0
315 0
438 0
348 0
443
320 0
272 0
349 0
393 0
498 0
430 0
548

df = (8
1�7
6�5
6); randomly perturb the elements of θ0 by 40%
80 0
207 0
276 0
328 0
447 0
392 0
488

160 0
331 0
415 0
554 0
629 0
598 0
662
240 0
428 0
524 0
631 0
686 0
668 0
727
320 0
520 0
600 0
652 0
707 0
693 0
745

Note: The degrees of freedom parameters are taken from Cúrdia, Del Negro and Greenwald (2013); the other parameters
are from the last column of Table 2 in An and Schorfheide (2007).

In both cases, the log-linearized solution still satisfies (17) if we abstract from the ef-
fect of learning and assume that the change in the inflation target is sufficiently smooth.
Misspecification arises only when relating the observables to their log deviations using
the time invariant relationship (18). Frequency domain methods provide a simple way
to account for such misspecifications without requiring specifying the location of the
change or the time path of the policy target. This is possible because such variations
mainly affect the very low frequencies, which simply can be excluded or downweighted
when conducting inference. Note that the above two misspecifications are different from
Cogley (2001). In the latter, the degree of integration (i.e., unit root versus stationarity)
for the technology process is misspecified. This affects the model’s dynamics at all fre-
quencies and, as shown in Cogley (2001), removing the low frequencies offers little help.
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Table 11. Robustness to low frequency misspecifications.

A: Structural Change in B: Smoothly Varying
Technology Growth Inflation Target C: Combined Changes

T BC BC+High Full BC BC+High Full BC BC+High Full

5% 80 0
084 0
076 0
079 0
086 0
080 0
124 0
086 0
080 0
124
160 0
082 0
087 0
319 0
069 0
071 0
968 0
081 0
087 0
943
240 0
070 0
079 0
527 0
063 0
068 0
990 0
073 0
080 0
988
320 0
067 0
072 0
625 0
062 0
067 1
000 0
070 0
074 1
000

10% 80 0
128 0
123 0
123 0
129 0
126 0
179 0
129 0
126 0
179
160 0
131 0
139 0
412 0
113 0
122 0
979 0
131 0
140 0
958
240 0
119 0
132 0
615 0
108 0
122 0
993 0
122 0
135 0
992
320 0
118 0
121 0
701 0
109 0
114 1
000 0
118 0
129 1
000

Note: θ0 is taken from the last column of Table 2 in An and Schorfheide (2007). BC, BC+High, and Full correspond to
inference using business cycle frequencies, business cycle and higher frequencies, and the full spectrum.

To make the analysis empirically relevant, we calibrate the values of δ, Tb, and ξ(t)

using U.S. quarterly time series over the period 1947:Q1–2012:Q3 (263 observations). For
δ and Tb, we regress GDP growth rates (series GDPC1 obtained from the St. Louis Fed-
eral Reserve website) on a constant and a break in the intercept. The sum of squared
residuals is minimized at Tb = 105, which corresponds to 1973:Q1. The estimated break
magnitude equals −0
23. Because the series in the model and the actual data have dif-
ferent standard deviations, we multiply −0
23 by their ratio to make the magnitude more
comparable. Such calculations lead to δ = −0
26. To obtain ξ(t), we apply local regres-
sion to the inflation series (CPIAUCSL_PCH), using the loess command in R with the
bandwidth parameter set to 0
5T . We then set ξ(t) to be the fitted smooth curve adjusted
by the relative standard deviations. The resulting γ(Q)(t) and ξ(t) each contain 263 val-
ues. The first 80, 160, and 240 values are used to simulate samples of corresponding sizes,
and the 263 values are linearly interpolated to generate samples of 320 observations.

Table 11 reports the rejection frequencies when the test statistics are constructed
using business cycle frequencies only (BC), business cycle and all the higher frequencies
(BC+High), and the full spectrum (Full). Columns A correspond to (20). The test based
on business cycle frequencies performs quite well for all the sample sizes considered. Its
rejection rates are only mildly inflated, falling between 6
7 and 8
4% and 11
8 and 13
1%
at 5 and 10% nominal levels, respectively. In contrast, the test using the full spectrum
suffers from serious size distortions. Its rejection frequencies reach 62
5 and 70
1% when
T = 320. The test using all but the very low frequencies (BC+High) performs similarly to
using only the business cycle frequencies. This confirms that the difference between
BC and Full is indeed due to the low frequencies. Columns B correspond to (21). The BC
based test continues to perform well even when the full spectrum based test rejects close
to 100% of the time. Columns C correspond to the situation where both (20) and (21) are
present. There the difference is even more pronounced. Overall, the results suggest that
substantial robustness can be achieved by excluding a relatively small number of low
frequency components.
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8. Conclusion

This paper has developed asymptotically valid confidence sets for parameters in log-
linearized DSGE models allowing an unknown subset to be weakly (including un-) iden-
tified. It also developed uniform confidence bands for impulse response functions and
other objects that are functions of the structural parameters. The framework is fairly
general, permitting latent endogenous variables, measurement errors, and also infer-
ence using only part of the spectrum. The simulation experiment using a calibrated
model suggests that the tests have decent sizes in relatively small samples. It also sug-
gests that it is possible to obtain informative results in DSGE models with unidentified
parameters. Although the paper has focused on DSGE models, the methods developed
are applicable to other dynamic models satisfying Assumptions 1–4 and W such as the
factor augmented vector autoregression (FAVAR).

Joint confidence sets are sometimes considered as not useful in the frequentist lit-
erature because they can be quite conservative about individual parameters. This pa-
per suggests that this need not be the case. They can be useful for a wide range of pur-
poses, including (i) constructing uniform confidence bands for the impulse response
functions, the time path of the variance decomposition, the individual spectrum, and
absolute coherency, and (ii) examining certain low frequency hypotheses. Parameters in
DSGE models are often highly correlated. This can be seen from the nonidentification
curve reported in Table 1, and is also emphasized in the literature, for example, by Del
Negro and Schorfheide (2008). Such dependence is captured by joint confidence sets,
but not by individual confidence intervals. It is, therefore, desirable to develop methods
that can facilitate the visualization and characterization of such sets in a high dimen-
sional setting. We view this as a challenging task that deserves further investigation.

Appendix A

The following lemma is needed for proving Theorem 1. Its proof, along with some other
intermediate results, are in the supplementary file.

Lemma 2. Suppose Assumptions 1–4 and W hold. Let Λc
T (θ0) denote the upper-left

nonzero corner of ΛT(θ0) (i.e., the submatrix containing Λ1T (θ0) and Λ2T (θ0)) and let
Qc
T (θ0) be the corresponding orthonormal eigenvectors. Define

ξ1T = 1
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Then

ξ1T + ξ2T
d→N(0� Iq1+q2)�

where Iq1+q2 is a (q1 + q2) dimensional identity matrix.

Proof of Theorem 1. Consider the first result. Because MT(θ0) is real and positive
semidefinite, by the property of the Moore–Penrose pseudoinverse (p. 35 in Magnus and
Neudecker (2002)),

M+
T (θ0)=Qc

T (θ0)Λ
c
T (θ0)

−1Qc
T (θ0)

′�

where Λc
T (θ0) and Qc

T (θ0) are defined as in the previous lemma. Thus,

ST (θ0) = DT(θ0)
′Qc

T (θ0)Λ
c
T (θ0)

−1Qc
T (θ0)

′DT(θ0)

= [Λc
T (θ0)

−1/2Qc
T (θ0)

′DT(θ0)
]′[
Λc
T (θ0)

−1/2Qc
T (θ0)

′DT(θ0)
]



Let ξT = Λc
T (θ0)

−1/2Qc
T (θ0)

′DT(θ0). From the previous lemma, ξT
d→N(0� Iq1+q2). This

implies ST (θ0)
d→χ2

q1+q2
. �
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