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Partial identification of finite mixtures in econometric models

Marc Henry
Economics Department, The Pennsylvania State University

Yuichi Kitamura
Economics Department, Yale University

Bernard Salanié
Economics Department, Columbia University

We consider partial identification of finite mixture models in the presence of an
observable source of variation in the mixture weights that leaves component dis-
tributions unchanged, as is the case in large classes of econometric models. We
first show that when the number J of component distributions is known a priori,
the family of mixture models compatible with the data is a subset of a J(J − 1)-
dimensional space. When the outcome variable is continuous, this subset is de-
fined by linear constraints, which we characterize exactly. Our identifying as-
sumption has testable implications, which we spell out for J = 2. We also extend
our results to the case when the analyst does not know the true number of com-
ponent distributions and to models with discrete outcomes.

Keywords. Partial identification, finite mixture models.

JEL classification. C24.

Introduction

Finite mixture models feature prominently in many areas of econometrics. When indi-
vidual heterogeneity in labor markets is characterized by a finite number of types, as
in Eckstein and Wolpin (1990) and Keane and Wolpin (1997), structural parameters of
interest are recovered from a finite mixture. In measurement error models, including
data contamination and misclassification of treatment or other observed discrete re-
gressors (see Chen, Hong, and Nekipelov (2011)), observed outcomes are drawn from
a finite mixture of distributions. The very large class of dynamic models with hidden
discrete state variables, such as regime switching, also falls into the category of finite
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mixtures (see Kim and Nelson (1999) for an extensive treatment). Finally, social inter-
actions, imperfect competition, or complementarities in discrete choice models often
generate multiple equilibria, hence finite mixture models, where the components are
outcome distributions conditional on a realized equilibrium and the equilibrium selec-
tion mechanism characterizes the mixture weights.

The statistical literature on parametric estimation of finite mixtures and determina-
tion of the number of components in mixtures is vast, as evidenced in a recent account
by Frühwirth-Schnatter (2006). Recently, however, attention was drawn to the empirical
content of structural economic models with unobserved types or states short of para-
metric assumptions on component distributions and mixture weights. Several strate-
gies for the nonparametric identification of finite mixtures have emerged as a result.
Mahajan (2006), Lewbel (2007), and Hu (2008) relied on instrumental variables to iden-
tify models with misclassified discrete regressors. Chen, Hong, and Tamer (2005) relied
on auxiliary data and Chen, Hu, and Lewbel (2008, 2009) used shape and moment re-
strictions to identify several types of measurement error models. Kitamura (2003) relied
on shape invariance to identify finite mixture models nonparametrically.

Many of the studies mentioned above1 impose an exclusion restriction: the data
contain a variable that shifts the mixture weights without affecting component distri-
butions. This exclusion restriction has much larger appeal than the data combination
and misclassification framework. It can be derived from the widely maintained Markov
assumption in regime-switching and other hidden state models. We also show how it
can be substantiated in models of unobserved heterogeneity, where geographical vari-
ables, for instance, may shift type proportions without affecting utility, and in models
with multiple equilibria, where specific interventions may increase the likelihood of one
equilibrium being selected without affecting outcomes conditional on equilibrium.

This exclusion restriction is generically insufficient for nonparametric identifica-
tion of the component distributions and the mixture weights. However, it has a non-
trivial empirical content, which we characterize through a constructive description of
the identified set. Our bounds are sharp and our identifying restriction implies testable
implications, which are quite simple for two-component mixtures at least.

Ours is not the first attempt at partial identification of mixture models. Some of the
recent work on partial identification studied particular mixture models and/or identify-
ing restrictions. Thus, Horowitz and Manski (1995) derived sharp bounds on the distri-
bution of contaminated variables, but they assumed an upper bound on the probabil-
ity of contamination, while we do not restrict mixture weights. Bollinger (1996) derived
sharp bounds on E[Y |X] when X is a mismeasured binary regressor; our results apply
to regressors of any form in any kind of mixture. Hall and Zhou (2003) studied non-
parametric identification in models with repeated measurements. More precisely, they
derived bounds for the distribution of a T -dimensional mixture when T ≥ 2 and each
component has independent marginals. Kasahara and Shimotsu (2009) built on similar
ideas to identify finite mixtures of persistent types in dynamic discrete choice models.
Bonhomme, Jochmans, and Robin (2012) showed point identification when T ≥ 3 under
a rank condition and they proposed a convenient estimation method.

1Namely Mahajan (2006), Lewbel (2007), Hu (2008), and Chen, Hu, and Lewbel (2008, 2009).
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Molinari (2008) gave general partial identification results for the distribution of a
misclassified categorical variable. She proposed a direct misclassification approach to
the treatment of data errors that fully exploits all known restrictions on the matrix of
data misclassification probabilities. In the model Pw = Pw|xPx, Molinari derived sharp
bounds on the vector of true frequencies Px based on the distribution of misclassified
data Pw and a very comprehensive class of restrictions on the matrix of misclassifica-
tion probabilities Pw|x. In contrast to Molinari (2008), we consider unrestricted outcome
variables (continuous and discrete) and we rely on an exclusion restriction rather than
on assumptions on the misclassification process.

In the case of a two-component mixture, we show that the identified set can be char-
acterized as a two-parameter family of component distributions and mixture weights.
Hence, the mixture model is nonparametrically identified up to location and scale. Go-
ing beyond the two-component mixture case, we characterize the identified set for a
J-component mixture as a J(J − 1)-parameter family. As a J-factor model, the mixture
model is nonparametrically identified up to a translation and change of basis. The ex-
tension bears resemblance to the work of Cross and Manski (2002) (and Molinari and
Peski (2006)), especially as in both cases the construction requires computation of the
extreme points of a convex polytope. But the problem Cross and Manski (2002) studied
is “ecological inference”: the mixture weights are known.

In general, misspecification of finite mixture models in the form of an erroneous
maintained number of component distributions is a serious concern, as it may invali-
date inference. This is one of the major themes in the statistical literature on parametric
mixtures. In econometrics, some recent papers have, therefore, taken up testing for the
true number of components (in Kasahara and Shimotsu (2011), for instance). Our anal-
ysis addresses the identification aspect of this concern: we show that the construction of
the identified set can be embedded in an iterative procedure that determines the small-
est number of components that could have generated the data.

The paper is organized as follows. Section 1 presents the analytical framework and
discusses the exclusion restriction that underlies our partial identification results. To
convey the intuition, we first study, in Section 2, mixtures with two components; Sec-
tion 3 then gives general results in the J-component case. These two sections mainly
focus on continuously distributed outcomes; Section 4 extends our results to discrete
outcomes. We also present in Section 4 an iterative procedure to determine the smallest
number of components that could have generated the data when the true number of
components is not known a priori. Most proofs are given in Appendix B.

1. Finite mixtures with exclusion restrictions

1.1 Analytical framework

Let Y be a random variable and let Z = (X�W ) be a random vector defined on the
same probability space. In all that follows, F denotes conditional cumulative distribu-
tion functions, and lowercase letters w, x, y, and z are used to denote realizations of the
random elementsW ,X , Y , and Z. We assume that observed outcomes Y are generated
from a finite mixture of at most J ≥ 1 component distributions.
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Assumption 1 (Mixture). There exists a finite integer J such that the conditional distri-
bution of y given x is given by

F(y|z)=
J−1∑
j=0

λj(z)Fj(y|z)� (1.1)

where the λj(z) are nonnegative numbers and the Fj(·|z) are cumulative distribution
functions.

Note that since we assume that both F and the Fj ’s are cumulative distribution func-
tions (c.d.f.’s), (1.1) implies that

∑J−1
j=0 λj(z) ≡ 1. In particular, the nonnegativity of the

weights implies that none of them can be larger than 1. On the other hand, we allow for
the possibility that some of them are actually zero, so that the model has fewer than J
components for some or all values of z.

We assume that an infinite sample from the distribution of (Y�Z) is available, so
that we can recover the distribution function F(y|z) of Y conditional on Z. The objects
of interest are the latent component distributions Fj(y|z) and the mixture weights λj(z)
for j = 0� � � � � J − 1. Without further assumptions, the components of the mixture are
clearly not identifiable; the observed distribution function F(y|z) could be rationalized
as F(y|z)= ∑J−1

j=0 λj(z)Fj(y|z) with λj = 1 for j = 0, say, and zero otherwise.
The identifying restriction we consider is a source W of variation in the mixture

weights that leaves each of the component distributions unchanged. Our whole anal-
ysis is conditional onX , and our identification results apply for any value of x for which
the following assumption holds.

Assumption 2 (Exclusion Restriction). We have Fj(y|x�w) = Fj(y|x), for all j = 0� � � � �
J − 1 and all (y�w).

For simplicity, we drop x from the notation from now on; all quantities considered
are implicitly functions of x.

We are concerned in this paper with the characterization of the empirical content
of Assumptions 1 and 2. This takes the form of a constructive characterization of the
identified set, which is defined as follows.

Definition 1 (Identified Set). The identified set is the set of distributions Fj(y|x) and
mixture weights z �→ λj(z), j = 0� � � � � J − 1, that satisfy Assumptions 1 and 2.

Under Assumptions 1 and 2, the mixture can be written, for any pair w, w′ in the
support ofW , as

F(y|w) = F
(
y|w′) +

J−1∑
j=0

(
λj(w)− λj

(
w′))Fj(y)

= F
(
y|w′) +

J−1∑
j=1

(
λj(w)− λj

(
w′))(Fj(y)− F0(y)

)
�
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where the first equation results from the exclusion restriction and the second equation
results from the mixture specification with λ0(w)= 1 − ∑J−1

j=1 λj(w) for all w. Hence the
observable F(y|w)− F(y|w′) is a J − 1-dimensional scalar product. The first term

(
Fj(y)− F0(y)

)J−1
j=1

is a function of y only. The second term

(
λj(w)− λj

(
w′))J−1

j=1

is an additively separable, antisymmetric function ofw andw′ only. This decomposition
is key to our partial identification results; it also allows us to construct overidentification
tests of Assumptions 1 and 2.

1.2 Discussion of the exclusion restriction

The variables in W function as traditional (nonparametric) instruments: their identify-
ing power stems from their validity and their relevance. Assumption 2 makes a variable
W valid, and it is relevant if the weights λ(W ) depend on it. These conditions are satis-
fied in important classes of applications.

In Markov switching models (surveyed in Kim and Nelson (1999)),Yt is usually taken
to be an autoregressive process of order m conditionally on a state variable St that fol-
lows a Markov chain. Then Assumptions 1 and 2 are automatically satisfied with Y = Yt
and W = Yt−m−1. Moreover, it is easy to see that λj(W )= Pr(St = j|Yt−m−1 =W ) gener-
ically depends on W . Special cases include regime switching and stochastic volatility
models.

The assumption imposed in most of the recent literature on misclassified treatment
surveyed in Chen, Hong, and Nekipelov (2011) posits independence of observed classi-
fication T and outcome Y conditional on the true treatment T ∗, which can take val-
ues t1� � � � � tJ . In this case, Assumptions 1 and 2 are again satisfied with W = T and
λj(W )= Pr(T ∗ = tj|T =W ). The weights λj depend onW insofar as the measurement T
is informative about true treatment T ∗.

Unobserved heterogeneity in structural microeconometric models is another source
of mixture specifications. Assumptions 1 and 2 hold if we consider outcomes Y of
agents’ decisions that are independent of instrumentsW conditional on a discrete agent
type and exogenous observed heterogeneity. Suitable candidates for W are variables
that affect type distributions without entering utility (such as geographical variables)
or without entering the agents’ information set at the time of decision. We develop in
Appendix A a simple oligopoly model to illustrate this last point.

Economic models of imperfect competition, social interactions, and joint invest-
ment with spillovers typically incorporate non-cooperative games in which multiple
equilibria are the norm rather than the exception. With a finite set of equilibria, real-
ized outcomes are generated as a mixture.2 Assumptions 1 and 2 hold if a variable W

2We thank Elie Tamer for pointing out this class of applications of the mixture model.



128 Henry, Kitamura, and Salanié Quantitative Economics 5 (2014)

affects the equilibrium selection mechanism without affecting outcomes conditional on
the realized equilibrium. We now discuss several frameworks in which Assumption 2 is
reasonable.

Policy interventions that affect the equilibrium selection are prime candidates as in-
struments W . In the oligopolistic competition analysis of Ciliberto and Tamer (2009),
policies aimed at reducing collusion among firms may affect equilibrium selection dif-
ferentially in regional markets. There is also a sizable literature on coordination fail-
ures in macroeconomics and development economics. In their theory of the Big Push,
Murphy, Shleifer, and Vishny (1989) proposed subsidizing fixed entry costs in joint in-
vestments with spillovers to prevent poverty traps. More generally, fixed cost shifters that
do not affect pricing conditional on entry are potential instruments in problems of joint
investment with spillovers (see, e.g., Hendricks and Kovenock (1989) for information
spillovers). Cooper and Corbae (2002) explained financial collapse through coordina-
tion failure in market participation. In this framework, Ennis and Keister (2006) argued
that lower tax rates are likely to increase the probability of the Pareto efficient equilib-
rium being selected, but other types of intervention, such as subsidies, are more likely
to be outcome neutral conditional on equilibrium and, hence, satisfy Assumption 2. In
Forbes and Rigobon (2002), financial contagion is defined as a jump from a low corre-
lation equilibrium to a high correlation equilibrium. Similarly, Pesaran and Pick (2007)
argued that policy interventions are more likely to be effective if “the cause of a crisis
is a random jump between equilibria, i.e., contagion” than if “a crisis spreads to other
markets because the fundamentals are correlated.” This is exactly the spirit of our As-
sumption 2.

When social interactions are prevalent, the regional heterogeneity of outcomes
across time and space is often attributed to multiple equilibria. The “tipping point” the-
ory of segregation in Schelling (1971) is an early example. The model of wage discrimina-
tion through negative stereotypes of Coate and Loury (1993) and the model of criminal
activities of Calvó-Armengol and Zenou (2004) also exhibit such multiple equilibria. In
all of these cases, history dependence and variations in social norms induce variation in
the equilibrium selection mechanism, but they are typically excluded from utility and,
hence, leave outcomes conditional on equilibrium unchanged. Any such source of vari-
ation can serve as an identifying W .

2. Partial identification of two-component mixtures

From now on, we maintain Assumptions 1 and 2, and characterize their empirical con-
tent with a constructive characterization of the identified set of Definition 1. Start with
the case where the mixture is known to involve exactly two component distributions. We
denote λ1(w) simply by λ(w), and λ0(w)= 1 − λ(w).

As discussed in Section 1, to complement the exclusion restriction of Assumption 2,
we need minimal variation in the mixture weights. Also, the existence of exactly two
components implies restrictions. We posit the following assumption.
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Assumption 3.

(i) We have Pr(0< λ(W ))Pr(λ(W ) < 1) > 0 and Pr(F0(Y)= F1(Y)) < 1.

(ii) There exist w0 and w1 in the support ofW such that λ(w0) �= λ(w1).

Assumption 3(i) implies that the mixture does not degenerate to one component and
Assumption 3(ii) ensures that w has identifying power. Note that under Assumptions 1
and 2, Assumption 3 could only fail if F(·|w) were independent of w, which is clearly
testable.

Since

F(y|w1)− F(y|w0)= (
λ(w1)− λ(w0)

)(
F1(y)− F0(y)

)
�

the left-hand side is nonzero at any y where F0 and F1 do not coincide. This factoriza-
tion suggests that we can only identify variation in weights up to a scale factor; therefore,
weights are only identified up to (restricted) location–scale transforms. As we see in Sec-
tion 3, this intuition carries over to mixtures with J > 2 components.

At any such y, for any w, we have

F(y|w)− F(y|w0)

F(y|w1)− F(y|w0)
= λ(w)− λ(w0)

λ(w1)− λ(w0)
� (2.1)

Therefore, the left-hand side of this equation is a function of w only, which we denote
Λ(w). It is identified from the data, and by construction, Λ(w0)= 0 and Λ(w1)= 1.

From (2.1), we obtain a two-parameter characterization of the mixture weights that
are compatible with the data,

λ(w)=φ+ψΛ(w)� (2.2)

where φ = λ(w0) and ψ = λ(w1) − λ(w0). Once the parameters φ and ψ are fixed, the
component distributions are also identified. Defining δ= F1 − F0, we have

δ(y)= F1(y)− F0(y)= F(y|w1)− F(y|w0)

λ(w1)− λ(w0)
= 1
ψ

[
F(y|w1)− F(y|w0)

]
� (2.3)

By construction,

F0(y)= F(y|w0)− λ(w0)δ(y)�

F1(y)= 	(y)+ F0(y)

= F(y|w0)+ [
1 − λ(w0)

]
δ(y)�

Since ψ �= 0 by Assumption 3, we obtain the two-parameter family characterization for
the component distributions:

F0(y)= F(y|w0)− φ

ψ

[
F(y|w1)− F(y|w0)

]
� (2.4)

F1(y)= F(y|w0)+ 1 −φ
ψ

[
F(y|w1)− F(y|w0)

]
� (2.5)



130 Henry, Kitamura, and Salanié Quantitative Economics 5 (2014)

The identified set for the mixture under Assumptions 1–3 is, therefore, determined by
the set of admissible values for the pair (φ�ψ). Such a pair is admissible if and only if
λ(w) is a probability and the two component distributions F0(y) and F1(y) are c.d.f.’s.

• First consider the constraints on the weight: 0 ≤ λ(w)≤ 1 for all w. Defining

Λ= sup
w
Λ(w) and Λ= inf

w
Λ(w)� (2.6)

these result in two necessary and sufficient conditions on the pair (φ�ψ):

0 ≤φ+ψΛ≤ 1 and 0 ≤φ+ψΛ≤ 1�

These conditions (which imply φ> 0 but do not restrict the sign of ψ) are equivalent to
−ψΛ≤φ≤ 1 −ψΛ and −ψΛ≤φ≤ 1 −ψΛ, and finally to

−min(ψΛ�ψΛ)≤φ≤ 1 − max(ψΛ�ψΛ)� (2.7)

The inequalities above can be expressed in terms of the reparametrization (−φ/ψ�
(1 −φ)/ψ) as

min
(

1 −φ
ψ

�
−φ
ψ

)
≤Λ≤ 0 ≤ 1 ≤Λ≤ max

(
1 −φ
ψ

�
−φ
ψ

)
�

• Let us proceed to the constraints on the component distributions: F0 and F1 should
be nondecreasing, right-continuous, and have left and right limits 0 and 1. It follows
directly from equations (2.4) and (2.5) that the left and right limits of F0 and F1 are 0 and
1, and that they are right-continuous. Now consider the monotonicity constraints. For
two realizations y ′ > y of Y , denote Dk(y� y ′) = F(y ′|wk)− F(y|wk) ≥ 0 for k = 0�1. We
must have

D0
(
y� y ′) + ζ(D1

(
y� y ′) −D0

(
y� y ′)) ≥ 0

for both ζ = −φ/ψ and ζ = (1 −φ)/ψ. This is equivalent to the two conditions

sup
y ′>y;D1(y�y ′)>D0(y�y ′)

−D0(y� y
′)

D1(y� y ′)−D0(y� y ′)
≤ min

(
−φ
ψ
�

1 −φ
ψ

)

and

max
(

−φ
ψ
�

1 −φ
ψ

)
≤ inf
y ′>y;D1(y�y ′)<D0(y�y ′)

D0(y� y
′)

D0(y� y ′)−D1(y� y ′)
�

These two conditions, along with (2.7), give the sharp bounds on (φ�ψ) and, there-
fore, on (λ�F0�F1). When outcomes y are continuously distributed, the analysis is sim-
pler, since the monotonicity constraints become constraints on the densities.

Assumption 4. The variable Y is continuously distributed conditional onW .
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Under Assumption 4, the monotonicity of F0 and F1 is equivalent to the non-
negativity of their densities:

f∗ := sup
f (y|w1)>f(y|w0)

−f (y|w0)

f (y|w1)− f (y|w0)
≤ min

(
−φ
ψ
�

1 −φ
ψ

)
≤ 0

(2.8)

≤ max
(

−φ
ψ
�

1 −φ
ψ

)
≤ inf
f (y|w0)>f(y|w1)

f (y|w0)

f (y|w0)− f (y|w1)
:= f ∗�

Denote the likelihood ratio

r(y) := f (y|w1)

f (y|w0)
�

Since densities have total mass 1,
∫ (
r(y)− 1

)
f (y|w0)dy = 0

and so

r := inf
y∈Y

r(y) < 1< sup
y∈Y

r(y) := r�

Then

f∗ = − 1
r − 1

and f ∗ = 1
1 − r � (2.9)

We therefore have the following characterization of the identified set in the case of
two-component mixtures with continuous outcomes; we treat the case of discrete out-
comes y separately in Section 4.2.

Theorem 1 (Two-Component Identified Set With Continuous Outcomes). Under As-
sumptions 1, 2, 3, and 4, the component mixtures and mixture weights are identified as
a two-parameter family according to (2.2), (2.4), and (2.5), and the identified set for the
parameter pair (φ�ψ) is

{
(φ�ψ) : f∗ ≤ min

(
(1 −φ)/ψ�−φ/ψ) ≤Λ and

Λ≤ max
(
(1 −φ)/ψ�−φ/ψ) ≤ f ∗}�

where the identified parametersΛ andΛ are defined in (2.6), and f∗ and f ∗ are defined in
(2.8).

The bounds can be equivalently written in terms of (ψ�φ) as

max
(−Λψ�−Λψ�min

(
1 −ψf∗�1 −ψf ∗))

≤φ≤ min
(
1 −Λψ�1 −Λψ�max

(−ψf∗�−ψf ∗))�
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Figure 1. The shaded area is the identified region for the pair (ψ�φ) in the half-plane ψ> 0.

While these inequalities look complex, note that this is in great part due to the “la-
beling problem”: if we decide, for instance, to call “component 1” the component whose
weight is larger in w1 than in w0, then ψ= λ(w1)− λ(w0) > 0 and the bounds on (ψ�φ)
simplify to

max
(−Λψ�1 −ψf ∗) ≤φ≤ min(1 −Λψ�−ψf∗)�

Figures 1 and 2 represent the identified region for the pair (ψ�φ) and the corresponding
region for (−φ/ψ�(1 − φ)/ψ), restricted to ψ > 0. The identified region with ψ < 0 is
symmetric with respect to the ψ = 0 axis in Figure 1 and is obtained by a rotation of
angle −π/2 around the origin in Figure 2.

It follows from (2.7) and (2.8) that the projection of the identified set on the ψ axis is
a symmetric pair of intervals,

(
f ∗ − f∗

)−1 ≤ |ψ| ≤ (Λ−Λ)−1� (2.10)

which shows the impact of variation in W and in Y on the size of the identified region.
If W induces a large variation in the distribution of Y , then, by the definition of Λ(w),
the bounds Λ and Λ will be farther apart and the identified set for (ψ�φ) will shrink.
Similarly, a large variation in the density of Y conditional on W will pull the bounds
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Figure 2. The shaded area is the identified region for the pair (−φ/ψ� (1 − φ)/ψ) that
parametrizes the two component distributions F1 and F0, restricted to ψ> 0.

f ∗ and f∗ closer together and shrink the identified set. This can be seen from Figures 1

and 2: a larger support for W leads to an increase in Λ − Λ and, hence, to a smaller

identification region.

Note that the model is point-identified when f∗ =Λ and f ∗ =Λ; again this is testable.

Theorem 1 also shows that the model is rejected when f∗ >Λ or f ∗ <Λ. This provides a

test of specification of the model, which involves testing jointly the exclusion restriction

and the hypothesis that there are two component distributions in the mixture. We build

on this idea in Section 4.1 when we describe our iterative procedure to determine the

smallest number of components J that could have generated the data.

Using equation (2.9), it is easy to see that the following statements hold:

• The model is rejected if and only if

r < 1 − 1

Λ
or r > 1 − 1

Λ
�

• The model is point-identified if both of these inequalities are replaced with equali-

ties.

• The model is partially identified otherwise.
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Point-identification may seem like a rare case, but there are useful classes of models for
which the two conditions are binding. If, for instance, the range of the true likelihood
ratio R(y)= f1(y)/f0(y) includes 0 and +∞, then

r = min
(
λ(w1)

λ(w0)
�

1 − λ(w1)

1 − λ(w0)

)
and r = max

(
λ(w1)

λ(w0)
�

1 − λ(w1)

1 − λ(w0)

)
�

and the model is point-identified whenever λ(w0) �= λ(w1), as it does under Assump-
tion 3(ii). Additional a priori restrictions, such as a monotone likelihood ratio assump-
tion on R(y), would allow the analyst to relax these conditions.

Note from (2.3) that any linear functional of (F1 −F0) is identified up to scale. Denote
Ei the expectation operator with respect to Fi. Then for any function h of y, we can test
whether E1h(Y)−E0h(Y) is zero simply by testing that E(h(Y)|W =w) depends on w.
If it does, then for any other function g of y, the ratio

E1g(Y)−E0g(Y)

E1h(Y)−E0h(Y)

is point-identified.
In the context of a model with randomized assignment and mismeasured treatment,

this ratio is simply a relative average treatment effect. Take h to be the identity function,
for instance, while g(y)= 1(y ≥ a). Then if the average treatment effect on Y is nonzero,
the relative quantile treatment effects

Pr1(Y ≥ a)− Pr0(Y ≥ a)
E1Y −E0Y

are point-identified for all values of a.

3. Finite mixtures of arbitrary order

We now turn to general partial identification results. We first assume that the true num-
ber of mixture components is known and equal to J. The next section extends the iden-
tification results to the case of an unknown number of mixture components. Under As-
sumptions 1 and 2, we recall that for any (y�w�w0),

F(y|w)− F(y|w0)=
J−1∑
j=1

(
λj(w)− λj(w0)

)(
Fj(y)− F0(y)

) =ψ(w)tδ(y)�

where (dropping the dependence onw0 from the notation) we defineψ(w) as the (J−1)
vector with jth componentψj(w) := λj(w)−λj(w0) and define δ(y) as the (J− 1) vector
with jth component δj(y) := Fj(y)− F0(y). Take the (J − 1) factor model

1(Y < y|W =w)− 1(Y < y|W =w0)=ψ(w)δ(y)+ ε(w�y)�

where ε(w�y) has zero expectation conditional onW =w. Factors and their loadings are
only identified up to a change-of-basis transform, which corresponds to the scale factor
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λ(w1) − λ(w0) in Section 2. And just as in Section 2, only variations in weights can be
identified, up to a change of basis.

As in the case of two components, we need sufficient variability of mixture weights to
complement the exclusion restriction of Assumption 2. We therefore state the analogue
of Assumption 3 in the case of J component distributions.

Assumption 5 (Relevance). There exist (w0�w1� � � � �wJ−1) in the support ofW such that
the (J − 1)× (J − 1)matrixΨ with jth column ψ(wj) is invertible.

Note that Assumption 5 immediately implies an order condition: the support of W
must contain at least J distinct points. Under Assumption 5, let hc(y) denote the (J − 1)
vector with jth component F(y|wj)− F(y|w0). Then

hc(y)=Ψ tδ(y)�

so that δ(y)= (Ψ t )−1hc(y). This translates immediately into the identification of com-
ponent distributions as a J(J − 1) parameter family,

for all j = 0� � � � � J − 1� Fj(y)= F(y|w0)+ (ej −φ)t(Ψ t
)−1

hc(y)� (3.1)

where ej is the unit vector with a 1 in the jth row, with the convention that e0 is the
zero vector and [ ]j denotes the jth component of the vector inside the brackets. The
component distributions are identified in equation (3.1) up to the J(J − 1) unknown
parameters that define φ and Ψ , since all other quantities involved, namely F(y|w0)

and hc(y), are point-identified.
Now assume that there is sufficient variation in δ(y).

Assumption 6 (Rank). There exist (y1� � � � � yJ−1) in the support of Y such that the
(J − 1)× (J − 1)matrix Δwith jth column δ(yj) is invertible.

Again, an order condition immediately arises: under Assumption 6, Y must have at
least J distinct points of support. Note that if the number of distinct component distri-
butions is assumed to be exactly equal to J, this order condition is automatically satis-
fied.

Assumptions 5 and 6 both relate to unobservable quantities. We could alternatively
have used the following Assumption 7, which is directly testable from the data.

Assumption 7. There exist (w0� � � � �wJ−1) in the support of W and (y1� � � � � yJ−1) in the
support of Y such that the (J− 1)× (J− 1)matrix H with jth column hc(yj) is invertible.

The (J − 1)× (J − 1)matrix H is the product of the two (J − 1)× (J − 1)matrices,Ψ
and Δ. The following lemma follows immediately.

Lemma 1 (Testability of Rank Conditions). Under Assumptions 1 and 2, Assumptions 5
and 6 are equivalent to Assumption 7.
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Under Assumptions 5 and 6 (or Assumption 7), we can now identify the mixture
weights as a J(J − 1) family. Indeed, for all y�w, we have

F(y|w)− F(y|w0) = ψ(w)tδ(y)
= ψ(w)t(Ψ t

)−1
hc(y)�

so that, denoting hr(w) the identified (J − 1) vector with jth component F(yj|w) −
F(yj|w0), we have

hr(w)
t =ψ(w)t(Ψ t

)−1
H�

and we finally obtain identification of the mixture weights as a two-parameter family.
More precisely, call λ(w) the (unknown) vector of mixture weights with jth compo-

nent λj(w),

λ(w)=φ+ψ(w)=φ+Ψ(
Ht

)−1
hr(w)� (3.2)

where Λ(w) = (Ht )−1hr(w) is the analogue of the identified Λ(w) function of the two-
component case. To characterize the identified set, we only need to derive sharp bounds
for (φ�Ψ). As in the case of the two-component mixture, we obtain these bounds by im-
posing probability constraints onλ(w) and monotonicity constraints on the component
distributions Fj(y), j = 0�1� � � � � J − 1.

• Probability constraints: We need 0 ≤ λ(w) and 1tλ(w) ≤ 1 on the mixture weights.
Hence, we require

0 ≤φ+Ψ(
Ht

)−1
hr(w) and 1t

(
φ+Ψ(

H t
)−1

hr(w)
)
< 1

for all w in the support of W . These are linear inequalities in (Φ�Ψ); as such, they only
need to be imposed at the extreme points of the convex hull of the range of w �→Λ(w)=
(Ht )−1hr(w).

• Monotonicity constraints: As with the case of two components, equation (3.1) im-
plies directly that the Fj ’s range from 0 to 1. We again treat the case of discrete supports
separately; here we assume that outcomes are continuously distributed, as in Assump-
tion 4. Denote f (y|w) the density of outcomes conditional on w and denote h′

c(y) the
derivative of hc(y); the monotonicity constraints on the component distributions are

for all j = 0�1� � � � � J − 1� f (y|w0)+ (ej −φ)t(Ψ t
)−1

h′
c(y)≥ 0

for all y in the domain ofY . These inequalities are no longer linear in (φ�Ψ), but they are
linear in the transformed parametersΩj = (ej−φ)t(Ψ t )−1. Therefore, they only need to
be checked at the extreme points of the range of the function F(y) := −h′

c(y)/f (y|w0).

The previous discussion is summarized in the following theorem, which we prove in
Appendix B.
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Theorem 2 (Identified Set). The identified set for the component distributions and the
mixture weights under Assumptions 1, 2, 4, and 7 is the J(J−1) parameter family defined
by equations (3.1) and (3.2) along with the following constraints on (φ�Ψ):

• The linear constraintsφ+Ψe> 0 and 1t (φ+Ψe) < 1 for all extreme points e of the
convex hull of the range of the identified function w �→Λ(w)= (Ht )−1hr(w).

• The quadratic constraints ftΨ−1(ej − φ) ≤ 1 for j = 0� � � � � J − 1 and for all ex-
treme points f of the convex hull of the range of the identified function y �→ F(y) :=
−h′

c(y)/f (y|w0).

The hypotheses of Theorem 2 preclude discrete outcomes and require a priori
knowledge of the true number of component distributions. The next section shows that
these limitations are superficial, as the same reasoning can be applied to discrete out-
comes and unknown mixture order. Section 4.2 also shows how to considerably reduce
the computational burden associated with the construction of the identified set, with a
view to form confidence regions with traditional partial identification inference proce-
dures.

4. Extensions

We now move beyond the assumptions of Theorem 2 to consider the determination of
the order J of the mixture, and the case of discrete-valued outcomes.

4.1 Determining J

Theorem 2 assumes that the analyst knows the exact number of distinct component
distributions. In fact, a simple iterative procedure allows us to determine the number
of components, and the identified set for the component distributions and mixture
weights.3

Start with J = 2. Note that the true number of components is at least 2 under As-
sumption 3.

1. Construct the identified set according to the procedure in Section 3.

2. If step 1 yields a nonempty identified set, the mixture model with at most J com-
ponents cannot be rejected. The J identifies the smallest number of components that
could have generated the data.

3. If the identified set in step 1 is empty, the mixture model with a maximum of J
components is rejected. Then make J ← J + 1 and return to step 1.

4.2 Discrete outcomes: Latent class analysis

The identification results of Theorem 2 rely on Assumption 4, which rules out discrete
outcomes. However, most of the analysis carries over with simple changes in notation.

3We thank Ismael Mourifié for suggesting this iterative procedure.
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To emphasize it, we retain the same notation for slightly different objects, with proba-
bility mass functions replacing probability distribution functions.

One substantial difference is that the true number of mixture component distribu-
tions is directly identified from the matrix of conditional probabilities. Let the support
of Y be {y1� � � � � yN} and let that of W be {w0�w1� � � � �wM−1}. Write Pr(y|w) for the prob-
ability Pr(Y = y|W = w) of outcome y conditional on W = w. First, note that under As-
sumption 1, there cannot be more than min(M�N) components. The following lemma
identifies the true number of component distributions.

Lemma 2 (Mixture Order for Finite Outcomes). Under Assumptions 1 and 2 with J =
min(M�N), the number of nonzero weights and distinct components is (K + 1), where K
is the rank of the (M − 1)×N matrix with (i� j)th entry Pr(yj|wi)− Pr(yj|w0).

With K defined as in Lemma 2 above, and suitable relabeling of the supports of Y
andW , we can assume that theK×K matrix H with (i� j)th entry Pr(yj|wi)−P(yj|w0) is
invertible. As before, call hr(wi) its ith row and call hc(yj) its jth column. Then, following
the same reasoning as in Section 3, we obtain identification of the component probabil-
ities Pj and mixture weights λj , j = 0�1� � � � � J − 1, as a J(J − 1) parameter family, with
the (J − 1) vector φ and the (J − 1)× (J − 1)matrixΨ as parameters,

Pj(yl)= P(yl|w0)+ (ej −φ)t(Ψ t
)−1

hc(yl)� (4.1)

λ(wk)=φ+Ψ(
Ht

)−1
hr(wk) (4.2)

for all l = 1� � � � �N , all k = 1� � � � �M , and all j = 0�1� � � � � J − 1, where for j ≥ 1, ej is the
unit vector with a 1 in the jth row and e0 is a (J − 1) vector of zeros.

Characterizing the identified set for the mixture requires identifying sharp bounds
for the parameter pair (φ�Ψ), which are, as before, (ej − φ)t(Ψ t )−1e ≤ 1 for e in the
union of the ranges of y �→ −hc(y)/P(y|w0) and y �→ hc(y)/(1 − P(y|w0)), and 0 ≤ φ +
Ψe and 1t (φ +Ψe) < 1 for all extreme points e of the convex hull of the range of the
identified function w �→Λ(w)= (Ht )−1hr(w).

Consider now the computational aspects of the problem of checking whether a par-
ticular choice of (φ�Ψ) belongs to the identified set, hence whether a particular choice
of mixture model is admissible. Call A the convex hull of the collection of points in
R
M with coordinates hc(yl)/P(yl|w0) or hc(yl)/(1 − P(yl|w0)), l = 1� � � � �N , and call B

the convex hull of the collection of points in R
N with coordinates Λ(wk), k = 1� � � � �M .

Checking that a (φ�Ψ) pair is admissible is equivalent to checking the linear constraints
(ej −φ)t(Ψ t )−1e ≤ 1 for all extreme points e ofA and the linear constraintsφ+Ψe> 0
for all extreme points e of B. The problem of finding the extreme points of the convex
hull of a collection of points is a classical one and numerous algorithms exist (see, for
instance, Matoušek (2002)) for which off-the-shelf implementations abound. The Mat-
lab ConvexHull command is one of them. The advantages of the extreme points method
are both computational and statistical. First, the linear constraints are checked on a re-
duced number of points, producing computational efficiency gains. Second and more
importantly, it reduces the number of inequalities to check in the construction of a con-
fidence region for the identified set, thereby reducing the conservativeness of the region
as in Chernozhukov, Hong, and Tamer (2007).
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Concluding remarks

Finite mixtures are pervasive in econometrics, yet most of the literature has imposed
strong parametric restrictions so as to estimate them. We fully characterized the identi-
fied region under an exclusion restriction that is quite natural in some important classes
of models.

In the two-component case, point-identification can be obtained under two addi-
tional restrictions. One can, for instance, impose that one component dominates in the
left tail and the other one dominates in the right tail. In Henry, Jochmans, and Salanié
(2013), we explore the asymptotic properties of an estimator that relies on tail domi-
nance.

Although the case of two-component mixtures is very important in applications, in-
ference for partially identified finite mixtures of more than two components is a natu-
ral next step in this research program. We are currently working to adapt the literature
on estimation of partially identified models defined by moment inequalities. Finally,
one could combine our exclusion restriction with others to achieve tighter identifica-
tion. The repeated measurement literature is a case in point: the results of Bonhomme,
Jochmans, and Robin (2012), for instance, can be integrated with ours.

Appendix A: Oligopoly model

Consider an oligopoly with N firms. Each firm i operates with costs of production Ci(·)
and faces demandDi(pi�p−i� s), where the demand parameter s can take on two values
s > s.

The timing of the game and the information structure are as the follows.

• Cost functions Ci are realized.

• Each firm observes its own cost along with a private signal si that is informative on
other firm’s costs and on the state s.

• Firms simultaneously choose prices pi to maximize their expected profits.

• Then s is realized and sales are made.

• The econometrician later observes noisy measurements of costs, prices, sales, and
profits of all firms, which we collect in fourN-vectors, D̃, p̃, C̃, and π̃.

We focus on the distribution of observed sales conditional on observed profits, prices,
and costs:

F(D̃|π̃� p̃� C̃) = F(D̃|π̃� p̃� C̃� s = s)Pr(s = s|π̃� p̃� C̃)

+ F(D̃|π̃� p̃� C̃� s = s)Pr(s = s|π̃� p̃� C̃)�

Now assume that

(i) prices are observed by the econometrician without measurement error, p̃ = p,

(ii) observed demand and profits are conditionally independent,

D̃ ⊥⊥ π̃|(p� C̃� s)�
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When these conditions hold, observed profits π̃ no longer appear in the conditional
distributions F(D̃|π̃�p� C̃� s), so that Assumption 2 applies with y = D̃ as the outcome
and w= π̃ as the instrument, and with covariates x that contain (p� C̃� s).

A variety of more primitive assumptions imply condition (ii) above. If measurement
errors are classical (independent of all true values), then condition (ii) holds if the mea-
surement errors on demand are independent of those on profits and on costs. Both con-
ditions hold, for instance, in Hendricks, Pinkse, and Porter (2003), where ex post infor-
mation is obtained on the value of oil tracts in wildcat lease contracts.

Appendix B: Proofs

Proof of Theorem 1. Theorem 1 is a special case of Theorem 2. However, proving it
directly simplifies notation and helps gain intuition toward the proof of the more general
case.

We already showed in the main text that Assumptions 1–4 imply the set of inequali-
ties on the pair ((1 −φ)/ψ�−φ/ψ) that appears in Theorem 1. The set of inequalities on
(ψ�φ) follows immediately. We still need to prove that the implied bounds on (F0�F1�λ)

do not depend on the choice of w1 and w0.
To see this, take any choice (w1

0�w
1
1) of (w0�w1), along with any (φ1�ψ1). The corre-

sponding mixture weights and component functions λ1, F1
0 , and F1

1 are

λ1(w)=φ1 +ψ1 λ(w)− λ(w1
0)

λ(w1
1)− λ(w1

0)
�

F1
0 (y)= F(

y|w1
0
) − φ1

ψ1

(
F

(
y|w1

1
) − F(

y|w1
0
))
�

F1
1 (y)= F(

y|w1
0
) + 1 −φ1

ψ1

(
F

(
y|w1

1
) − F(

y|w1
0
))
�

The last two equations can also be rewritten as

F1
0 (y)= F0(y)+

(
λ
(
w1

0
) − φ1

ψ1

(
λ
(
w1

1
) − λ(w1

0
)))(

F1(y)− F0(y)
)
� (B.1)

F1
1 (y)− F1

0 (y)= λ(w1
1)− λ(w1

0)

ψ1 � (B.2)

For any other choice (w2
0�w

2
1), define (φ2�ψ2) such that the two functions λ1 and λ2

coincide. This is always possible: we only need

ψ2

λ(w2
1)− λ(w2

0)
= ψ1

λ(w1
1)− λ(w1

0)
�

φ2 − λ(w2
0
) ψ2

λ(w2
1)− λ(w2

0)
=φ1 − λ(w1

0
) ψ1

λ(w1
1)− λ(w1

0)
�
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Moreover, equation (B.2) shows that with this choice, F2
1 − F2

0 ≡ F1
1 − F1

0 ; and it easy to
check in equation (B.1) that F2

0 ≡ F1
0 .

We still need to check that if (φ1�ψ1) satisfies the inequalities in the theorem for
(w1

0�w
1
1), then (φ2�ψ2) also does for (w2

0�w
2
1). But since the former set of inequalities

comprises necessary and sufficient conditions for λ1 to be a probability and for (F1
0 �F

1
1 )

to be c.d.f.’s, and since (λ2�F2
0 �F

2
1 ) coincides with (λ1�F1

0 �F
1
1 ), this holds by construc-

tion. �

Proof of Theorem 2. Again, we only need to show that the constraints are not affected
by the choice of w0�w1� � � � �wJ−1 and y1� � � � � yJ−1.

We proceed as with the proof of Theorem 1. Consider any choices w1 = (w1
0� � � � �

w1
J−1) and y1 = (y1

1 � � � � � y
1
J−1) that satisfy Assumptions 5 and 6, and any (φ1�Ψ1). Then

we construct

λ1(w)=φ1 +Ψ1((H1)t)−1
h1

r(w)� (B.3)

F1
j (y)= F(

y|w1
0
) + (

ej −φ1)t((Ψ1)t)−1
h1

c(y)� (B.4)

where h1
c(y) is the (J − 1) vector with jth component F(y|w1

j ) − F(y|w1
0), h1

r(w) is the

(J − 1) vector with jth component F(yj|w)− F(yj|w1
0), and H is the matrix with (i� j)th

element F(yj|w1
i )− F(yj|w1

0).
Now take an alternative choice (w2�y2), and chooseφ2 andΨ2 so thatλ2 ≡ λ1. Since

[h1
r(w)]j = (δ(yj))t(λ(w)−λ(w1

0)), this boils down to

Ψ2((H2)t)−1(
Δ2)t =Ψ1((H1)t)−1(

Δ1)t � (B.5)

φ2 −Ψ2((H2)t)−1(
Δ2)tλ(

w2
0
) =φ1 −Ψ1((H1)t)−1(

Δ1)tλ(
w1

0
)
� (B.6)

which are the multidimensional analogues of equations (B.1) and (B.2). They clearly
have a unique solution in (φ2�Ψ2) under our assumptions.

Moreover, equation (B.5) implies

((
Ψ1)t)−1 = ((

Ψ2)t)−1
H2(Δ2)−1

Δ1(H1)−1

so that, using equation (B.4),

F1
j (y)− F1

0 (y) = (ej)t
((
Ψ1)t)−1

h1
c(y)

= (ej)t
((
Ψ2)t)−1

H2(Δ2)−1
Δ1(H1)−1

h1
c(y)�

Now [h1
c(y)]j = (δ(y))t(λ(w1

j )−λ(w1
0)), hence, rewriting (B.4) for j = 0 as

F2
0 (y)− F1

0 (y) = (
λ

(
w2

0
) −λ(

w1
0
))t
δ(y)

− (
φ2)t((Ψ2)t)−1

h2
c(y)+ (

φ1)t((Ψ1)t)−1
h1

c(y)�

we get F2
0 ≡ F1

0 .
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We conclude as in the proof of Theorem 1 by noting that (φ2�Ψ2) satisfies the con-
straints in Theorem 2 for (w2�y2) if (φ1�Ψ1) does for (w1�y1). As before, we have two
alternative expressions for the same weights and the same component distributions.
One of the expressions satisfies the constraints of Theorem 2, hence so must the other
by construction. �
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