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Frequentist inference in weakly identified dynamic stochastic
general equilibrium models

Pablo Guerron-Quintana
Federal Reserve Bank of Philadelphia

Atsushi Inoue
North Carolina State University

Lutz Kilian
University of Michigan and CEPR

A common problem in estimating dynamic stochastic general equilibrium models
is that the structural parameters of economic interest are only weakly identified.
As a result, classical confidence sets and Bayesian credible sets will not coincide
even asymptotically, and the mean, mode, or median of the posterior distribution
of the structural parameters can no longer be viewed as a consistent estimator. We
propose two methods of constructing confidence intervals for structural model
parameters that are asymptotically valid from a frequentist point of view regard-
less of the strength of identification. One involves inverting a likelihood ratio test
statistic, whereas the other involves inverting a Bayes factor statistic. A simula-
tion study shows that both methods have more accurate coverage than alternative
methods of inference. An empirical study of the degree of wage and price rigidi-
ties in the U.S. economy illustrates that the data may contain useful information
about structural model parameters even when these parameters are only weakly
identified.
Keywords. DSGE models, identification, inference, confidence sets, Bayes factor,
likelihood ratio.

JEL classification. C32, C52, E30, E50.

1. Introduction

In recent years, there has been growing interest in the estimation of dynamic stochastic
general equilibrium (DSGE) models by Bayesian methods. One of the chief advantages
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of the Bayesian approach compared to the frequentist approach is that the use of prior
information allows the researcher to estimate structural models that otherwise would
be computationally intractable or would produce economically implausible estimates.
This feature has made these methods popular even among researchers who think of
these methods merely as a convenient device for obtaining model estimates, but would
not consider themselves Bayesians otherwise.

There is growing evidence, however, that many DSGE models used in empirical
macroeconomics are only weakly identified (see, e.g., Canova and Sala (2009)). Weak
identification manifests itself in a likelihood that is nearly flat across the parameter
space. As a result, the posterior of the structural model parameters becomes highly de-
pendent on the priors used by the researcher.1 The weak identification of the structural
parameters of DSGE models causes the usual asymptotic equivalence between Bayesian
and frequentist estimation and inference to break down.2 Given that the effect of the
prior on the posterior does not die out asymptotically, it can be shown that the posterior
mode will not be a consistent estimator of the true parameter vector, and that Bayesian
credible sets and frequentist confidence sets based on Gaussian approximations will not
coincide even asymptotically, removing the rationale for constructing confidence inter-
vals from the quantiles of the posterior distribution or by adding multiples of posterior
standard deviations to the posterior mean.3

In this paper, we develop alternative methods of constructing confidence sets for the
structural parameters of DSGE models that remain valid asymptotically from a frequen-
tist point of view, regardless of the strength of the identification. Lack of identification
manifests itself in a likelihood function that lacks curvature. Our approach allows the
structural parameters of the model to be weakly identified in the sense that the (scaled)
slope of the log-likelihood function is local to zero. As in the weak-instruments literature,
we think of the local-to-zero model as a device that reflects our inability to determine
the strength of the identification from the data (see, e.g., Canova and Sala (2009), Iskrev
(2010), Koop, Pesaran, and Smith (2011)). The proposed confidence set is obtained by
inverting either a suitably defined likelihood ratio (LR) statistic or a Bayes factor (BF)
statistic. The implied LR confidence set can be constructed using classical estimation
methods and has 1 − α coverage probability asymptotically, regardless of the strength
of identification, whereas the implied BF confidence set is conservative in that a 1 − α

1For example, Smets and Wouters (2007, p. 594) noted that for their main behavioral model parameters,
“the mean of the posterior distribution is typically relatively close to the mean of the prior.” A similar find-
ing is reported in Del Negro and Schorfheide (2008), who documented that DSGE models that have very
different policy implications may fit the data equally well. In particular, a New Keynesian model with low
price rigidities and low wage rigidities is observationally equivalent to a model with high wage rigidities and
high price rigidities.

2See Le Cam and Yang (2000, Chapter 8) and the references therein for the large-sample correspondence
between Bayesian and frequentist approaches. For more recent results in the econometrics literature, see
Andrews (1994) and Chernozhukov and Hong (2003), for example, as well as Kim (1998) and Phillips and
Ploberger (1996).

3Our results are reminiscent of Moon and Schorfheide’s (2012) recent finding that Bayesian credible sets
and conventional frequentist confidence sets differ asymptotically in set-identified (as opposed to weakly
identified) models. The key difference is that our analysis does not deal with set identification.
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confidence set has at least 1 − α coverage probability asymptotically. Both methods al-
low the construction of confidence intervals for individual structural parameters by the
projection method.

The BF confidence set is asymptotically invariant to the prior in the case of weak
identification. One advantage of the BF interval is that it may be computed from the
output produced by existing Bayesian code for DSGE model estimation. No additional
numerical estimation is required. This feature facilitates its adoption by applied users of
Bayesian methods of estimating DSGE models. In contrast, construction of the LR confi-
dence set dispenses with Bayesian estimation methods altogether. It requires instead the
explicit derivation of the state-space representation of the unrestricted reduced form of
the DSGE model on a case-by-case basis and the numerical estimation of its parameters.
Our theoretical analysis shows that the asymptotic distribution of the BF test statistic is
first-order stochastically dominated by that of the LR test statistic. Moreover, the BF test
statistic does not have power against local alternatives when the model contains some
strongly identified structural parameters, whereas the LR test has local power even in
that case.

Related work includes Komunjer and Ng (2009), who established conditions for
identifying structural parameters in DSGE models from autocovariance structures, and
Fukač, Waggoner, and Zha (2007), who contrasted local and global identification. While
these procedures are helpful in assessing the identifiability of structural model parame-
ters, they are not informative about the strength of identification, suggesting that there
remains a need for approaches such as ours that are robust to weak identification. Our
approach builds on a large literature that exploits the observation that one can invert an
asymptotically pivotal statistic to construct confidence intervals that remain asymptot-
ically valid under weak identification.4 The key difference is that we consider a different
class of models and estimators, and that we invert a different type of statistic than previ-
ous studies. Our approach relies on inverting an LR test statistic or a BF statistic. In sub-
sequent work, Qu (2011) developed an alternative frequency-domain approach to con-
structing confidence sets for structural parameters of DSGE models, and Andrews and
Mikusheva (2012) developed an identification-robust LM test. The simulation evidence
in the latter paper for a small-scale DSGE model suggests that our methods have power
comparable to the alternative methods proposed in Qu (2011) and in Andrews and
Mikusheva (2012). Finally, in closely related work, Dufour, Khalaf, and Kichian (2009)
proposed a multivariate extension of the Anderson–Rubin (AR) test statistic for mul-
tiequation macroeconomic models with weakly identified structural parameters. The
key difference from our paper is that their approach is limited to DSGE models with
a finite-order vector autoregressive (VAR) representation in the observables (which is
the exception rather than the rule), whereas our approach is more widely applicable.
Moreover, Andrews and Mikusheva’s simulation study shows that the Dufour, Khalaf,
and Kichian (2009) AR-type test statistic has lower power for joint inference than alter-
native test statistics including the LR test.

4Examples include Stock and Wright (2000), Kleibergen and Mavroeidis (2009), and Andrews and Cheng
(2012).
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The remainder of the paper is organized as follows. In Section 2, we investigate the
asymptotic behavior of the posterior distribution in weakly identified models. We illus-
trate the failure of the conventional frequentist interpretation of Bayesian posterior es-
timates. We propose the LR and BF confidence sets, establish their asymptotic valid-
ity from a frequentist point of view, and compare the asymptotic power of the LR and
BF tests. Section 3 focuses on implementation issues. We discuss the derivation of the
degrees-of-freedom parameter in the asymptotic distribution of the proposed test statis-
tics and we show how the projection method can be used to construct confidence inter-
vals for individual structural parameters from the joint confidence set.

In Section 4, we investigate the finite-sample accuracy of the proposed procedures
in the context of two small-scale New Keynesian macroeconomic models. We show by
simulation that the joint LR confidence set has between 86% and 91% coverage for re-
alistic sample sizes, whereas the joint BF confidence set for the same sample sizes has
coverage rates ranging from 79% to 99%, depending on the model and the choice of
prior, highlighting that the accuracy of the BF method can be sensitive to the choice of
the prior in small samples. We also demonstrate that the practice of constructing con-
fidence intervals from the posterior distribution of individual structural parameters by
adding +/−1�645 posterior standard deviations to the posterior mode (or mean) or by
computing posterior percentiles may result in intervals with serious coverage deficien-
cies. In some cases, the coverage rate of nominal 90% intervals drops as low as 8%. In
contrast, the LR interval has coverage rates of at least 94% for commonly used sample
sizes, while the BF interval has corresponding coverage rates of at least 97%.

An empirical illustration in Section 5 focuses on the question of the importance
of wage and price rigidities in the U.S. economy. This empirical example involves
a medium-scale DSGE model widely used in the literature (see, e.g., Del Negro and
Schorfheide (2008)). We provide evidence that wage rigidities are much smaller than
price rigidities. We also show that estimates of the aggregate degree of price rigidity are
consistent with microeconomic evidence on price rigidities when using the LR inter-
val, but not when using pseudo-Bayesian interval estimates of the type that a frequen-
tist user may construct from the posterior distribution produced by Bayesian estimation
procedures for DSGE models. This example demonstrates that the LR test approach may
have enough power to be practically useful. The BF interval estimates, in contrast, are
sensitive to the choice of the prior, consistent with the simulation evidence. The con-
cluding remarks are in the Appendix.

2. Asymptotic theory

2.1 Asymptotic behavior of the posterior distribution when parameters are weakly
identified

When parameters are strongly identified, the posterior distribution is degenerate about
the true parameter value in the limit and asymptotically normal after suitable scaling.
The latter result is called the Bernstein–von Mises theorem in the Bayesian literature
(see, e.g., Bickel and Doksum (2006), Le Cam and Yang (2000)). The Bernstein–von Mises
theorem allows a classical interpretation of Bayesian confidence sets. In other words,
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Bayesian credible sets can be viewed as asymptotically valid classical confidence sets
for the parameter of interest. This fact is important because it allows econometricians
who are not Bayesians to use the Bayesian apparatus to estimate DSGE models, tak-
ing advantage of its superior convergence properties, while interpreting the results in a
classical fashion. Under weak identification, however, the Bernstein–von Mises theorem
does not apply. The following proposition illustrates that the classical interpretation of
Bayesian credible sets breaks down when the model is not strongly identified.

Proposition 1 (Posterior Distributions in Normal Linear Regression Models Under
Weak Identification). Suppose that yt = γxt + ut , where {xt} is an independent and iden-
tically distributed (i.i.d.) scalar random variable with E(x2

t ) <∞ and is independent of

the scalar random variable {ut}, ut
i�i�d�∼ N(0�1), and T−1/2∑T

t=1 xtut
d→ N(0�E(x2

t )). In
addition, suppose that θ is the parameter of interest such that γ = θT−1/2. Consider the
prior distribution π(θ) ∝ exp(−(θ − θ̄)2/2σ̄2), where θ̄ is the prior mean and σ̄2 is the
prior variance. Then the posterior distribution of θ is given by

p
(
θ|{xt}Tt=1

)=
√√√√T−1

T∑
t=1

x2
t + 1/σ̄2φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ−
T−1/2

T∑
t=1

xtyt + θ̄/σ̄2

T−1
T∑
t=1

x2
t + 1/σ̄2

1√√√√T−1
T∑
t=1

x2
t + 1/σ̄2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

where φ(·) denotes the probability density function (p.d.f.) of a standard normal random
variable. Taking the limit as T → ∞, the right-hand side converges in probability to

√
E
(
x2
t

)+ 1/σ̄2φ

⎛⎜⎜⎜⎜⎜⎝
θ−

√
E(x2

t )z+ θ̄/σ̄2

E(x2
t )+ 1/σ̄2√

1
E(x2

t )+ 1/σ̄2

⎞⎟⎟⎟⎟⎟⎠ �

where z satisfies T−1/2∑T
t=1 xtyt/

√
E(x2

t )
d→ z.

Proposition 1 illustrates that (i) the posterior distribution is not degenerate in the
limit about the true parameter value when the parameter is weakly identified; (ii) that,
unconditionally, the asymptotic limit of the posterior distribution is a mixture of nor-
mals; (iii) that the posterior mean is unconditionally random even in the asymptotic
limit; and (iv) that the limit of the posterior distribution depends on the prior. In other
words, the effect of the prior on the posterior will not die out asymptotically, invalidat-
ing the usual classical interpretation of Bayesian credible sets. This result is intuitive



202 Guerron-Quintana, Inoue, and Kilian Quantitative Economics 4 (2013)

because information does not accumulate, even as the sample size grows, if parameters
are weakly identified. Hence, the posterior mode no longer coincides with the mean or
median. This also means that the mean (or median or mode) of the posterior distribu-
tion is not a consistent estimator of the true parameter value.

Although this section focuses on Bayesian estimation methods, it is worth stressing
that analogous problems arise if one uses frequentist maximum likelihood methods of
estimating the parameter of interest. It can be shown that under these conditions, the
unrestricted maximum likelihood estimator (MLE) of θ is inconsistent and has a non-
standard limiting distribution. Intuitively, this problem arises because there is insuffi-
cient curvature in the likelihood function.

It is useful to contrast our notion of weak identification in Proposition 1 to the lim-
iting cases of strong identification and no identification. Suppose that γ = g(θ). Strong
identification requires not only that the true parameter value θ0 uniquely maximizes the
population objective function

−1
2

ln(2π)− 1
2
E
(
x2
t

)(
g(θ)− g(θ0)

)2 − 1
2
� (1)

but that the curvature of the likelihood is strong enough for the rank condition for iden-
tification,

rank
(
E
(
x2
t

)[
g′(θ0)

]2)= dim(θ0)= 1� (2)

to be satisfied. In contrast, lack of identification, as discussed in Kadane (1975) and
Poirier (1998), would correspond to g(θ)= γ0 for all θ ∈Θ such that the likelihood func-
tion does not depend on θ even in finite samples. In that case, the likelihood is perfectly
flat in θ.

Of particular interest in empirical work is the intermediate case in which the likeli-
hood is nearly flat. A natural way to allow for this situation in the example above is to
model the slope of the log-likelihood function with respect to θ as local to zero,

−1
2

ln(2π)− 1
2T
E
(
x2
t

)
(θ− θ0)

2 − 1
2
� (3)

where we imposed the assumption in Proposition 1 that γ = θT−1/2 on the population
objective function.

This approach is designed to represent our inability in finite samples to determine
with a reasonable degree of accuracy which of the two limiting cases is a better approx-
imation of reality. By analogy to the problems of weak instruments and weak identifica-
tion in the generalized method of moments (GMM) literature, modelling the slope of the
log likelihood as local to zero may be viewed as a statistical device for obtaining a more
accurate asymptotic approximation to the distribution of θ.

2.2 Likelihood ratio tests

In this paper, we propose two frequentist confidence sets for parameters in DSGE mod-
els that are asymptotically valid regardless of the strength of identification. One is based
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on the likelihood ratio test statistic and the other is based on the Bayes factor. Our start-
ing point is the reduced-form representation of the DSGE model. Let γ denote a vector
of reduced-form parameters of the state-space model

xt+1 =Axt +Bwt� (4)

yt = Cxt +Dwt� (5)

where xt is a vector of possibly unobserved state variables, yt is a vector of observed

variables, and wt
i�i�d�∼ N(0� I). Whereas C is a matrix of known constants, the reduced-

form parameters A, B, and D are typically functions of structural parameters θ (see
Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson (2007)).5 Denote such re-
lationships between the reduced-form and the structural parameters by fT (γ�θ)= 0r×1.
The dimension of fT , r, can be smaller than the dimension of γ if some reduced-form
parameters are not tied to the structural parameter vector θ.

Consider the likelihood ratio statistic for testing

H0 : fT (γ�θ0)= 0r×1 for some θ0 ∈Θ
and denote it by LRT (θ0) = 2(�T (γ̂T ) − �T (γ̃(θ0))), where �T (γ) is the log-likelihood
function for γ, γ̂T is the unconstrained MLE of γ, and γ̃T is the constrained MLE of γ
subject to the restriction fT (γ�θ0)= 0. We assume that the reduced-form parameter γ is
strongly identified, while allowing some or all of the elements of the structural parame-
ter vector θ not to be strongly identified. Weak identification of all structural parameters
in this model would imply that the constraint function is local to zero for all γ and θ� that
is, fT (γ�θ0)= T−1f2(γ�θ). In other words, even when the reduced-form parameters are
strongly identified, the structural parameters θ cannot be inferred from the restrictions.
Our analysis is similar to Stock and Wright (2000) and Antoine and Renault (2009) in that
we do not require prior knowledge of which structural parameters in θ are strongly iden-
tified or weakly identified. In fact, our results hold even when all structural parameters
are weakly identified or all structural parameters are strongly identified.

On the other hand, the assumption that the reduced-form parameter γ in the min-
imal state-space representation is strongly identified is essential to our approach. In
many DSGE models some elements of the reduced-form parameter vector γ are uniden-
tified. If the likelihood function is a function of γ1/γ2 only, for example, γ1 and γ2 are not
jointly identified, only the ratio γ1/γ2 is identified. Analogously to Komunjer and Ng’s
(2009) analysis of structural DSGE model parameters, we assume that in such situations
the state-space model has been reparameterized such that γ is strongly identified. More-
over, our assumption that the reduced-form parameters are strongly identified rules out
situations in which some reduced-form parameters are unidentified because of a near
root cancellation in the vector autoregressive moving average (VARMA) representation
of the DSGE model (see, e.g., Schorfheide (2011) and Andrews and Cheng (2012)). Since
our paper was written, alternative methods of inference for DSGE models that do not

5By redefining the variables and coefficient matrices, (4) and (5) can be written in the form used in
Fernández-Villaverde et al. (2007): x∗

t+1 =A∗x∗
t +Bw∗

t+1 and yt+1 = C∗x∗
t +D∗w∗

t+1.
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require the assumption of strongly identified reduced-form parameters have been de-
veloped by Qu (2011) and Andrews and Mikusheva (2012). How practically important
this assumption is remains an open question.

Proposition 2 (Asymptotic Distribution of the LR Test Statistic). Suppose the following
stipulations.

(a) The log-likelihood function �T (γ) is correctly specified and twice continuously dif-
ferentiable in γ.

(b) The unconstrained and constrained MLE are consistent, that is, γ̂T − γ0�T = op(1)

and γ̃T (θ0)− γ0�T = op(1), and T−1/2∇γ�T (γ0�T )
d→N(0dim(γ)×1� Vγ), where γ0�T satisfies

fT (γ0�T � θ0)= 0r×1 and Vγ = −plimT→∞[(1/T)∇γγ�T (γ0�T )]−1 is positive definite.

(c) The function fT (γ�θ0) is continuously differentiable in γ and rank(DγfT (γ0�T �

θ0))= dim(fT )= r.
Then

LRT (θ0)
d→ χ2

r � (6)

Remarks.

1. It should be noted that there is a close link between our LR approach and the
Anderson–Rubin approach in the weak-instrument literature. Suppose that the reduced
form is given by

yi = γ′
1zi + v1i�

xi = γ′
2zi + v2i�

whereas the structural equation of interest is

yi = θxi + ui�

Then the structural parameter θ and the reduced-form parameters γ are subject to the
restriction f (γ�θ)= γ1 −θγ2. The Wald test based on

√
Tf(γ̂� θ0) is the Anderson–Rubin

statistic with the degrees of freedom given by the number of instruments.

2. Proposition 2 shows that the LR test statistic can be used to construct confidence
intervals with 1 − ϑ coverage probability asymptotically, regardless of the strength of
identification. In practice, we proceed in four steps.

Step 1. Estimate the reduced-form parameters γ in the state-space model (6) and (7)
by Gaussian MLE using the Kalman filter.

Step 2. Define a set of points in the space of structural parameters, θ. This may be
accomplished, for example, by defining a grid of points in the parameter space or by
drawing at random from a suitable distribution such as a truncated uniform distribu-
tion, the prior distribution, or the posterior distribution.
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Step 3. For each of these points, compute LRT (θ)= 2(�T (γ̂T )− �T (γ̃T (θ))) and check
the inequality{

θ ∈Θ : LRT (θ)≤ χ2
r�1−ϑ

}
�

Step 4. The set of the points that satisfy this inequality is the level 1 − ϑ confidence
set.

3. It should be noted that we do not establish that

lim
T→∞

sup
θ∈Θ

Pr[θ ∈ CST ] → 1 −ϑ

as in Mikusheva (2007) or Andrews and Cheng (2012), where CST stands for confidence
set. Rather, the proposed confidence set for θ will be valid only over the subset of Θ
for which there are no weak identification issues in γ. Establishing the uniform valid-
ity of these confidence intervals rather than their pointwise validity is difficult, loosely
speaking, because

√
T(γ̂ − g(θ)), where γ ≡ g(θ), may not be asymptotically normally

distributed for all possible values of θ. It can be shown that our inference problem is not
a special case of the framework studied in Andrews and Cheng (2012). Their proof of
uniform asymptotic validity relies on assumptions that do not apply in our context.

4. Proposition 2 does not take a stand on the strength of the identification of θ. If
one knew which structural parameters are strongly identified, one could partition the
parameter vector θ into the vector β of strongly identified parameters and the vec-
tor α of weakly identified parameters. Weak identification here refers to the likelihood
being nearly flat with respect to α, which may be modelled as fT (γ�θ) = f1(γ�β) +
T−1/2f2(γ�θ). This means that the rank condition for identification is nearly violated.
This additional information could be used to obtain a tighter confidence set for the
weakly identified parameters based on the likelihood obtained by concentrating out β,
given a hypothesized value of α, as shown in Proposition 3a below. The power of the test
is increased in this case because the degrees of freedom only depend on dim(α) rather
than r.

This approach differs from the common practice among DSGE users of imposing con-
sistent estimates of structural parameters that can be recovered from long-run averages
of the data (such as the aggregate depreciation rate or the share of labor income) when
estimating the remaining model parameters. The difference is that this conventional
procedure ignores the estimation uncertainty of the first-stage estimate in deriving the
asymptotic distribution, whereas the proposition below incorporates that uncertainty.

Proposition 3a (Asymptotic Distribution of the LR Test Statistic When Some Structural
Parameters Are Known to Be Strongly Identified). Let γ̃T (α0) and β̃T (α0) denote the con-
strained MLE of γ and β, respectively, given α0. Suppose that assumptions (a), (b), and (c)
of Proposition 2 hold with γ̃T (θ0) replaced by γ̃T (α0). Further suppose that β̃T (α0) is con-
sistent for β0 and thatDβf(γ0�T � θ0) has rank k2. Then

LRT (θ0)
d→ χ2

r−k2
� (7)
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Although Propositions 2 and 3a are not surprising from a technical point of view,
they provide a powerful tool for dealing with problems of weak identification of struc-
tural parameters in DSGE models. Our analysis shows that inference on these parame-
ters may be conducted without ever estimating the structural model. Only estimates of
the reduced form are required. As a result, we can dispense with Bayesian methods of
estimating the structural parameters altogether. The construction of the LR confidence
set requires instead the explicit derivation of the state-space representation of the unre-
stricted reduced form of the DSGE model on a case-by-case basis and numerical maxi-
mum likelihood estimation of its parameters. Next, we consider an alternative approach
based on the inversion of the Bayes factor. Although the Bayes factor statistic can be con-
structed from the output of commonly used Bayesian estimation routines, we evaluate
this statistic from a frequentist point of view.

2.3 Bayes factors

Consider testing H0 :θ ∈ BδT (θ0) against H1 :θ /∈ BδT (θ0), where BδT (θ0) = {θ ∈ Θ : |θ −
θ0| ≤ δT�j for j = 1�2� � � � �p}, Θ ⊂ �p, and δT = [δT�1� � � � � δT�k]′ → 0k×1 as T → ∞. We
define the Bayes factor in favor ofH1 by

Bayes factor(θ0)= π(H0)p(H1|X)
π(H1)p(H0|X)� (8)

where π(Hi) and p(Hi|X) are the prior and posterior probabilities of Hi, respectively.
The evaluation of the posterior probabilities requires specification of the likelihood
function. For consistency with the analysis of the LR statistic, we impose the same re-
strictions on γ under the null hypothesis as before. If fT (γ�θ)= γ− g(θ)= 0 as is typical
for DSGE models, the log-likelihood function for θ can be written as �T (g(θ)). Otherwise,
the analysis must be based on the concentrated log-likelihood function �T (γ̃T (θ)).

Theorem 1 states the asymptotic distribution of the BF statistic, again under the
premise that all elements of γ are fully identified, but that it is not known which ele-
ments of θ are strongly identified or weakly identified.

Theorem 1 (Asymptotic Distribution of the Bayes Factor). In addition to assumptions
(a)–(c) in Proposition 2, suppose the following assumptions:

(a) The prior density π :Θ→ �+ is continuous onΘ⊂ �k.

(b) γ̃T (θ) is continuous in a neighborhood of θ0.

(c) δT = o(1).
Then

lim
T→∞

Pr
(
Bayes factor(θ0)≤ ez′

T PT zT /2
)= 1� (9)

where

PT = [∇γγ�T (γ0�T )
]−1/2

R′
T

{
RT
[∇γγ�T (γ0�T )

]−1
R′
T

}−1
RT
[∇γγ�T (γ0�T )

]−1/2
�

zT = [∇γγ�T (γ0�T )
]−1/2∇γ�T (γ0�T )�
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and RT = DγfT (γ0�T � θ0). In other words, the distribution of 2 ln[Bayes factor(θ0)] is
asymptotically first-order stochastically dominated by χ2

r .6

Remarks.

1. To build intuition for Theorem 1, consider the normal linear regression model
example of Section 2.1. In that case, PT = 1 and zT = −(∑T

t=1 x
2
t )

−1/2∑T
t=1 xtut .

The latter converges in distribution to a standard normal random variable. Thus
2 ln[Bayes factor(θ0)] is asymptotically bounded by χ2

1.

2. Theorem 1 requires only the existence of an asymptotically normally distributed
MLE of a transformation of the reduced-form parameters. We do not need to compute
the MLE of γ to obtain the Bayes factor.

3. If dim(f ) = dim(γ) and fT is continuously differentiable in γ and θ with
rank(DγfT (γ0�T � θ0)) = dim(γ), then assumption (b) can be shown to be satisfied us-
ing the implicit function theorem.

4. Theorem 1 implies that by inverting the Bayes factor, one can obtain a level (1 −ϑ)
confidence set

Θ0 = {θ ∈Θ : Bayes factor(θ)≤ eχ2
r�1−ϑ/2

}
� (10)

This set satisfies

lim
T→∞

Pr(θ0 ∈Θ0)≥ 1 −ϑ� (11)

where 1 −ϑ is the coverage probability.

5. The fact that we focus on the Bayes factor in favor of the alternative hypothesis (as
opposed to the Bayes factor in favor of the null hypothesis) is not innocuous. If we re-
verse the numerator and denominator in (10), under strong identification, an additional
log(T) term will emerge in (10) that makes it impossible to derive the asymptotic bounds
on the distribution of the Bayes factor.

As in the case of the LR test statistic, tighter confidence intervals can be obtained,
if we know which structural parameters are strongly identified, as shown in Proposi-
tion 3b.

Proposition 3b (Asymptotic Distribution of the BF Test Statistic When Some Struc-
tural Parameters Are Known to Be Strongly Identified). In addition to assumptions (a),
(b), and (c) of Proposition 2, and assumptions (a), (b), and (c) of Theorem 1 with γ̃T (θ0)

replaced by γ̃T (α0), suppose that β̃T (α0) is consistent for β0 and that Dβf(γ0�T � θ0) has
rank k2. Then, conditional on the strongly identified parameters,

lim
T→∞

Pr
(
Bayes factor(α0)≤ ez′

TQT zT /2
)= 1� (12)

6The idea of deriving bounds for the asymptotic distribution of the Bayes factor is not without prece-
dent. Similar ideas can be found in Edwards, Lindman, and Savage (1963) and Berger and Sellke (1987), for
example.
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where

QT =H
−1/2
T R′(RH−1

T R′)−1
RH

−1/2
T

−H−1/2
T R′(RH−1

T R′)−1
Rβ
[
R′
β

(
RH−1

T R′)−1
Rβ
]−1

(13)

×R′
β

(
RH−1

T R′)−1
RH

−1/2
T

is idempotent and has rank r − k2,HT = ∇γγ�T (γ0�T ), and Rβ =DβfT (γ0�T � θ0).

2.4 A power comparison of the LR and BF tests

It is useful to compare the asymptotic properties of the LR and BF intervals. The LR con-
fidence set has 1 −ϑ coverage probability asymptotically. The BF interval is more con-
servative in that a 1 −ϑ confidence set has at least a 1 −ϑ coverage probability asymp-
totically. This difference arises because, unlike the LR statistic, 2 ln(Bayes factor(θ0)) in
(10) is merely bounded by a random variable with a χ2

r distribution. Therefore, asymp-
totically, we would expect the LR interval to be tighter.

To formally analyze the asymptotic power of the LR and BF tests, we partitionΘ into
A and B, where α ∈ A denotes the weakly identified elements in the parameter vector θ ∈
Θ and β ∈ B denotes the strongly identified elements. Suppose that the true parameter
value is θ1�T = [α′

1 β
′
1�T ]′ and that β1�T = β0 + T−1/2c, where c ∈ �k2 and θ0 = [α′

0 β
′
0]′ is

the hypothesized parameter value.

Theorem 2 (Asymptotic Power of the LR and BF Tests). Suppose that assumptions (a)
and (b) in Proposition 2 hold, with γ0�T in assumption (b) replaced by γT (θ), and that
assumption (a) in Theorem 1 holds. In addition, make the following assumptions:

(a) fT (γ�θ) = f1(γ�β)+ T−1/2f2(γ�θ), f1 : B → �dim(γ) and f2 : Θ→ �dim(γ) are con-
tinuously differentiable, Θ = A × B ⊂ �k1 × �k2 , A and B are compact in �k1 and �k2 ,
respectively, andDγf1(γ�β0) is nonsingular for all γ.

(b) Let

δT�j =
{
o(1)� j = 1� � � � �k1,
o
(
T−1/2)� j = k1 + 1� � � � �k.

A practical method for choosing δT�j subject to these constraints will be discussed later
in this section.

(c) If k2 > 0, then

Tk2/2 sup
β∈B:¬∃c̄∈C̄T such that β=β0+c̄T−1/2

exp
(
�T
(
γ̃T (θ)

)− �T (γ̂T )) p→ 0�

where C̄T = {c̄ ∈ �k2 :−cminT
η ≤ c ≤ cmaxT

η}, cmax > 0, cmin > 0, and η ∈ (0�1/2).

Then we have

LRT (θ0)
d→ (
d(α0�α1�β0� c)+ z)′P(d(α0�α1�β0� c)+ z) (14)
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and

Tk2/2 Bayes factor(θ0)

d→
∫

A×�k2
π(α�β0)

(15)

× exp
(

−1
2
(
d(α�α1�β0� c)+ z)′P(d(α�α1�β0� c)+ z))d[α′ c′

]′
/

exp
(

−1
2
(
d(α0�α1�β0�0)+ z)′P(d(α0�α1�β0�0)+ z))�

where z ∼ N(0r×1� Ir), d(α�α1�β0� c) = V
−1/2
γ G(α�α1�β)[c′ (α − α1)

′]′, G(α�α1�β0) =
limT→∞{[Dγf1(γ1�T �β0)]−1Dβf1(γ1�T �β0) [Dγf1(γ1�T �β0)]−1Dαf2(γ1�T � ᾱ)}, [γ̄′

T θ̄′
T ]′ =

[γ̄′
T ᾱ′

T β̄′
T ]′ is a point between [γ′

1�T α′
1 β

′
0 + T−1/2c′]′ and [γ′

0�T α′
0 β

′
0]′, and P =

V
1/2
γ R′(RVγR′)−1RV

1/2
γ .

Remarks.

1. It is useful to relate Theorem 2 to the normal linear regression model example of
Section 2.1. In that example, there is no strongly identified structural parameter (θ = α

and k2 = 0). Because d(α�α1)= −
√
E(x2

t )(α− α1) and P = 1, by Theorem 2,

LRT (α0)
d→
(
−
√
E
(
x2
t

)
(α0 − α1)+ z

)2
� (16)

2 ln
(
Bayes factor(α0)

)
d→
(
−
√
E
(
x2
t

)
(α0 − α1)+ z

)2

+ 2 ln
{∫

�
1√

2πσ̄2
exp

(
−(α− ᾱ)2

2σ̄2

)
(17)

× exp
[
−1

2

(
−
√
E
(
x2
t

)
(α− α1)+ z

)2
]}
dα

d≡
(
−
√
E
(
x2
t

)
(α0 − α1)+ z

)2 − ln
(
1 + σ̄2E

(
x2
t

))
− 1

1 + σ̄2E(x2
t )

(
−
√
E
(
x2
t

)
(ᾱ− α1)+ z

)2
�

The last two terms explain the power loss of the BF relative to the LR test. The relative
power loss is increasing in the distance between the prior mean and the true parameter
value. The effect of the prior variance on the power of the test is mixed. When the prior
variance is larger, the effect of prior beliefs on the last term in (19) is smaller, increasing
the power, but increased uncertainty also reduces the power by lowering the second-to-
last term. Note that even under the null hypothesis (α1 = α0), the last two terms in (19)
are still present, which explains the conservative nature of the BF test.
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2. In assumption (a) of Theorem 2, we model fT such that the part of fT that depends
on weakly identified parameters vanishes asymptotically and the number of restrictions
is the same as the number of reduced-form parameters. By the implicit function theo-
rem, [

∂γ0�T

∂α′
∂γ0�T

∂β′

]
(18)

= [DγfT (γ0�T � θ0)
]−1
[
T−1/2 ∂f2(γ0�T � θ0)

∂α′
∂fT (γ0�T � θ0)

∂β′

]
�

which allows us to model the scaled slope of the log likelihood with respect to α as local
to zero.

3. Assumption (a) allows for the case in which the parameters are all weakly identified
such that θ= α and fT (θ)= T−1/2g2(α), and the case of k= k1 such that 0< k2 < k and
f2(θ)≡ 0 for all θ, and the case in which they are all strongly identified such that θ= β,
fT (θ)= f2(β), and k= k2.

4. The assumption that the Jacobian is nonsingular on the space of reduced-form pa-
rameters is trivially satisfied if fT (γ�θ) equals γ − gT (θ), as in the conventional repre-
sentation of theA, B, C,Dmatrices.

5. Assumption (c) says that if the value of strongly identified parameters is not in a
neighborhood of the true parameter value, the difference between the value of the like-
lihood at that parameter value and the maximized value of the likelihood diverges at
rate Tc for some c > 0. A sufficient condition is that the MLE of the strongly identified
parameters converges at rate T 1/2.

6. Expression (15) implies that

2 ln
(
Bayes factor(θ0)

)− k2 ln(T)

d→ (
d(α0�α1�β0�0)+ Pz)′(d(α0�α1�β0�0)+ Pz)

(19)

+ 2 ln
(∫

A×�k2
π(α�β0)

× exp
(

−1
2
(
d(α�α1�β0� c)+ Pz)′(d(α�α1�β0� c)+ Pz))d[α′ c′

]′)
�

Note that the first term of (19) is the asymptotic noncentral chi-squared distribution of
the LR test statistic and that the second term is negative with probability 1 because it is
the log of a number that is less than 1 with probability 1. Thus, even if k2 is known, the
LR test is more powerful than the BF test when the chi-squared critical values are used,
generalizing the intuition provided by the example of Section 2.1.

To summarize, the LR test has power against local alternatives for strongly identi-
fied parameters and against global alternatives for weakly identified parameters. The BF
test has power against global alternatives for weakly identified parameters only in the
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absence of strongly identified parameters. The BF test also lacks power against local al-
ternatives for the strongly identified structural parameters, but both the LR test and the
BF test are consistent against global alternatives for the strongly identified parameters,
as shown in Proposition 4.

Proposition 4 (Consistency of the LR and BF Tests). Suppose that assumptions (a) and
(b) in Proposition 2, assumption (a) in Theorem 1, and assumptions (a) and (b) in Theo-
rem 2 hold with the γ0�T in assumption (b) of Proposition 2 replaced by γT (θ). Then for
β1 �= β0,

LRT (β1)
p→ ∞� (20)

Bayes factor(β1)
p→ ∞� (21)

2.5 Implementation issues

2.5.1 Determining the degrees of freedom The construction of valid confidence sets re-
quires knowledge of the degrees-of-freedom parameter r in the asymptotic distribu-
tion of the LR and BF statistics. Our approach to determining the number of identi-
fied reduced-form parameters exploits the similarity transform, similar to the approach
taken in Komunjer and Ng (2009) in the context of evaluating the identifiability of struc-
tural DSGE model parameters. Recall that the linear approximation to the DSGE model
can be written in state-space format (6) and (7). If there is a nonsingular matrix T such
that C∗ = CT−1, x∗

t = Txt , A∗ = TAT−1, and B∗ = TB satisfy the same restrictions as C,
A, and B, then there exists another observationally equivalent state-space representa-
tion

x∗
t+1 =A∗x∗

t +B∗wt� (22)

yt = C∗x∗
t +Dwt� (23)

Our objective is to find the minimal state-space representation among the set of equiv-
alent representations. A state-space representation (A�B�C�D) is minimal if there is
no equivalent state-space representation involving fewer state variables. In practice,
finding the minimal state-space representation involves trial and error on a model-by-
model basis. This involves checking the rank conditions that (i) [C ′ A′C ′ · · · A(n−1)′C ′]
has rank n (observability) and (ii) that [B AB A2B · · · An−1B] has rank n (reachabil-
ity), where n is the number of state variables. For most models, these rank conditions
must be evaluated numerically at a large number of randomly chosen structural param-
eter values. The state-space representation is minimal if and only if it is observable and
reachable. If any one of the two rank conditions fails, we need to search for a minimal
representation with fewer state variables.

Conditional on having derived the minimal state-space representation, if⎡⎣A′ ⊗ In − In ⊗ Ā
B′ ⊗ In
−In ⊗ C̄

⎤⎦ (24)
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has rank n2 for any distinct feasible pairs (A�B�C) and (Ā� B̄� C̄) (see Proposition 1 of
Glover and Willems (1974, pp. 643–644) and Proposition 1 of Komunjer and Ng (2009)),
then the dimension of γ corresponds to the number of free elements in A, B, C, and D.
Further details on the derivation of the degrees-of-freedom parameter for each of our
simulation designs and for the empirical example are provided in the Online Appendix,
available in a supplementary file on the journal website, http://www.qeconomics.org/
supp/306/supplement.pdf.

2.5.2 The projection method Although our approach does not allow the construction
of point estimates of θ, the projection method can be used to construct confidence in-
tervals for individual elements of θ from the LR and BF joint confidence sets (see, e.g.,
Dufour and Taamouti (2005), Chaudhuri and Zivot (2011) for the use of the projection
method in linear instrumental variable (IV) and GMM models, respectively). Here we
focus on the BF approach without loss of generality. The level 1 −ϑ confidence interval
for the ith parameter θj is (¯θj� θ̄j), where the lower and upper confidence bounds are

¯θj = min
{
θj ∈Θj : max

θ−j∈Θ−j
Bayes factor

(
(θj� θ−j)

)≤ eχ2
γ�1−ϑ/2

}
� (25)

θ̄j = max
{
θj ∈Θj : max

θ−j∈Θ−j
Bayes factor

(
(θj� θ−j)

)≤ eχ2
γ�1−ϑ/2

}
� (26)

where θ−j is the parameter vector that excludes θj and Θ−j is the parameter space that
excludes the parameter space for θj . Because the Bayes factor is not differentiable in θ
when it is computed via simulation and because the number of parameters of a typi-
cal DSGE model is large, evaluation of (25) and (26) is computationally challenging. In
practice, we replaceΘ in (25) and (26) by the set of Monte Carlo realizations ofΘ, which
reduces the computational burden. This approach is justified because the set of Monte
Carlo realizations becomes dense in the parameter space, as the number of Monte Carlo
draws increases.

To implement the BF method, one has to choose the radius of the neighborhood
BδT (θ0). We suggest the following data-dependent method for choosing δT . Because
δT → 0p×1, we have π(H0)→ 0, π(H1)→ 1, P(H0|X)→ 0, and P(H1|X)→ 1. Thus,

Bayes factor(θ0)≈ π(H0)

P(H0|X) =
1

|δT |π(H0)

1
|δT |P(H0|X)

�

where |δT | =∏p
i=1 δT�i. We typically compute π(H0) and P(H0|X) by Monte Carlo sim-

ulation,

π̂(H0)= 1
M

M∑
j=1

I
(
θ(j) ∈ BδT (θ0)

)
�

P̂(H0|X)= 1
M

M∑
j=1

I
(
θ̃(j) ∈ BδT (θ0)

)
�

http://www.qeconomics.org/supp/306/supplement.pdf
http://www.qeconomics.org/supp/306/supplement.pdf
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where M is the number of Monte Carlo realizations, θ(j) is the jth Monte Carlo realiza-
tion from the prior distribution, and θ̃(j) is the jth realization from the posterior distri-
bution. Thus,

1
|δT | π̂(H0)= 1

|δT |M
M∑
j=1

I
(
θ(j) ∈ BδT (θ0)

)
� (27)

1
|δT | P̂(H0|X)= 1

|δT |M
M∑
j=1

I
(
θ̃(j) ∈ BδT (θ0)

)
� (28)

Note that the right-hand sides of (27) and (28) can be interpreted as a multivariate den-
sity estimator based on a uniform kernel with δT as the bandwidth. Let

δT�j = σ̂j
(

1
T

)1/(p+4)

� (29)

where σ̂j is the standard deviation of the posterior distribution of θj (see, e.g., Scott
(1992, p. 152)). Because the prior and posterior distributions are not necessarily nor-
mal and the kernel is not normal, (29) need not be optimal, but it nevertheless satis-
fies assumption (b) of Theorem 2. Note that if θj is strongly identified, σ̂j = op(1) and,
thus, δT�j = op(T−1/2); if θj is weakly identified, σ̂j =Op(1) and δT�j = op(1). Hence, this
choice for δT satisfies assumption (b) and does not affect the limiting distribution of the
BF test statistic.

3. Small-sample accuracy

We are interested in comparing the small-sample accuracy of the LR and BF methods
and of pseudo-Bayesian methods that reinterpret posterior estimates from a frequentist
point of view. We consider two data generating processes for this Monte Carlo study.
As an illustrative example, we first focus on a small-scale New Keynesian model similar
to Woodford (2003, p. 246) that has previously been used as an example in the related
literature (see, e.g., Canova and Sala (2009)).

3.1 Simulation design 1

The economy consists of a Phillips curve, a Taylor rule, an investment–savings relation-
ship, and the exogenous driving processes zt and ξt :

πt = κxt +βEtπt+1� (PC)

Rt = ρrRt−1 + (1 − ρr)φππt + (1 − ρr)φxxt + ξt� (TR)

xt = Etxt+1 − σ(Rt − Etπt+1 − zt)� (IS)

zt = ρzzt−1 + σzεzt �
ξt = σrεrt �
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where xt , πt , and Rt denote the output gap, the inflation rate, and the interest rate, re-
spectively. The shocks εzt and εrt are assumed to be distributed NID(0�1). The model
parameters are the discount factor β, the intertemporal elasticity of substitution σ , the
probability α of not adjusting prices for a given firm, the elasticity of substitution across
varieties of good, θ, and the parameter ω that controls the disutility of labor supply;
φπ and φx capture the central bank’s reaction to changes in inflation and the output
gap, respectively, and κ= (1−α)(1−αβ)

α
ω+σ
σ(ω+θ) . Clearly, the parameters contained in κ are

not separately identified. In particular, α and θ are at most partially identified. The pa-
rameters of this data generating process (DGP) are σ = 1, α = 0�75, β = 0�99, φπ = 1�5,
φx = 0�125, ω= 1, ρr = 0�75, ρz = 0�90, θ= 6, σz = 0�30, and σr = 0�20. These parameter
values are standard choices in the macroeconomics literature (see An and Schorfheide
(2007), Woodford (2003)). As shown in the Online Appendix, the degrees-of-freedom pa-
rameter of the LR statistic and of the BF statistic for this small-scale New Keynesian
model is 8.

Our Monte Carlo study consists of the following steps:

Step 1. We generate 1,000 synthetic data sets of length T for output and inflation us-
ing the New Keynesian model as the DGP. We consider two sample sizes: T = 96 and
T = 188. The smaller sample corresponds to the length of quarterly time series start-
ing with the Great Moderation period in 1984 (see Stock and Watson (2002)). The larger
sample corresponds to the period between 1960 and 2006. For each synthetic data set,
we treat output and inflation as our observables and estimate a total of eight parame-
ters:Φ= [α φπ φx θ ρr ρz σ

r σz]. The remaining parameters are treated as known in
the estimation.

Step 2. For each synthetic data set, we estimate the structural parameters of interest
and construct joint and pointwise confidence sets by the BF and LR methods.

Step 2a. For the BF method, estimation is carried out using Bayesian estimation meth-
ods for DSGE models. We characterize the posterior distribution of the parameters of
interest using the random-walk Metropolis–Hasting algorithm documented in An and
Schorfheide (2007). As the baseline, we consider two types of priors, which are sum-
marized in Table 1. For the uniform priors, we impose boundary restrictions to make
the priors proper and to avoid implausible values (e.g., negative variances, persistence
parameters outside the unit circle, and indeterminacy of the model). As an alternative,
we consider the informative priors proposed in An and Schorfheide that are centered
around the true values in our DGP with loose standard deviations (see Table 1). The al-
gorithm involves five steps:

(i) Let L(Φ|Y) and p(Φ) denote the likelihood of the data conditional on the
parameters and the prior probability, respectively. Obtain the posterior mode Φ̃ =
arg max[lnp(Φ) + lnL(Φ|Y)] using a suitable maximization routine. To ensure that we
find the maximum, we provide our maximization procedure with 10 randomly selected
starting points, which gives us a set of potential maxima {Φ̃i}10

i=1. The mode corresponds
to the candidate that achieves the highest value among the 10 potential candidates.
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Table 1. Prior specification for parameters of the small-scale
New Keynesian model.

Uniform Priors

Parameters Distributions Lower Bound Upper Bound

φp Uniform 1 5
φx Uniform 0 5
α Uniform 0 1
θ Uniform 1 15
ρz Uniform 0 1
ρr Uniform 0 1
σz Uniform 0 1
σr Uniform 0 1

Informative Priors

Parameters Distributions Mean Standard Deviations

φp Gamma 1�5 0�25
φx Gamma 0�125 0�1
α Beta 0�75 0�2
θ Normal 6 2
ρz Beta 0�9 0�2
ρr Beta 0�75 0�2
σz Inverse gamma 0�3 0�2
σr Inverse gamma 0�2 0�2

(ii) Let Σ̃ be the inverse Hessian evaluated at the posterior mode. Draw Φ(0) from
a normal distribution with mean Φ̃ and covariance matrix κ

2Σ̃, where κ
2 is a scaling

parameter.

(iii) For k = 1� � � � �M , draw ϑ from the proposal density N(Φ(k−1)�κ2Σ̃). The new
drawΦ(k) =ϑ is accepted with probability min{1� q} and rejected otherwise. The proba-
bility r is given by

q= L(ϑ|Y)p(ϑ)
L(Φ(k−1)|Y)p(Φ(k−1))

�

The posterior distributions are characterized using M = 100,000 iterations after dis-
carding an initial burn-in phase of 1,000 draws. In light of the computational cost, the
confidence intervals discussed below are based on 5,000 draws randomly chosen from
these 100,000 draws. Selecting κ

2 is a delicate issue. Ideally, one should fine-tune that
parameter for each synthetic data set, so that the acceptance rate falls within the val-
ues suggested by Roberts, Gelman, and Gilks (1997). Given the scale of our experiment,
hand picking κ

2 for each synthetic data set is prohibitively expensive. Instead, we set
one common scaling parameter for our exercise. We obtain this value by fine-tuning κ

2

based on 10 separate Monte Carlo replications and then taking the average.

(iv) Finally, we use Gelfand and Smith’s (1990) approach to check the convergence of
the Metropolis–Hasting sampler for each synthetic data set.
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(v) On the basis of the posterior distribution, we construct the joint and pointwise
BF confidence sets forΦ.

Step 2b. For the LR method, we use the Kalman filter to estimate the reduced-form
representation of the New Keynesian model, we construct and invert the LR test statistic,
and we generate joint and pointwise LR confidence sets forΦ.

Step 3. For each method, we evaluate the coverage accuracy of the joint and pointwise
90% confidence sets in repeated sampling. We also report median interval lengths for
the pointwise intervals.

3.1.1 Coverage accuracy and median interval lengths Table 2 shows the finite-sample
coverage accuracy of the joint confidence sets obtained from the LR and BF approach.
The LR results do not depend on the prior of course. For the BF method, we focus on
the results for a uniform and for an informative prior for now. For a nominal 90% con-
fidence set, both sets should have at least 90% coverage asymptotically, with the BF in-
terval being more conservative. Table 2 shows that for T = 96, the coverage accuracy of
the BF confidence sets is between 97% and 99%, whereas that of the LR confidence set
is 87%. For T = 188, the BF confidence sets have coverage rates of about 99%, whereas
the coverage accuracy of the LR confidence set is 91%. Thus, both methods appear to
be accurate under the null hypothesis, but the LR method comes closer to attaining the
nominal coverage probability.

Table 3 shows the corresponding coverage rates and median interval lengths for in-
dividual structural parameters. The full results are shown in the Online Appendix. Ta-
ble 3(a) shows that, for T = 96, the LR coverage rates are between 94% and 97%. For
T = 188, the coverage accuracy of the LR test is between 95% and 98%. It is useful to
contrast these results with the coverage accuracy of pseudo-Bayesian intervals. The first
three entries in each panel of Table 3(b) and (c) focus on the traditional asymptotic con-
fidence interval that a frequentist user might construct from the posterior mode, mean,
or median by adding +/−1�645 posterior standard errors. Some of the effective coverage
rates are well below the nominal rates. For T = 96, the coverage probability may be as
low as 56%. Alternatively, a frequentist user may focus on the nominal 90% equal-tailed
percentile interval based on the posterior distribution, as in the fourth row (see, e.g.,
Balke, Brown, and Yücel (2008)). The coverage rate of this percentile interval may drop
as low as 42%. In contrast, if we construct the interval by inverting the Bayes factor (BF

Table 2. Effective coverage rates of nominal 90% confidence sets.

T = 96 T = 188

Small-Scale New Keynesian Model With Two Observables
LR Set 0�873 0�908
BF Set Uniform prior 0�965 0�985
BF Set Informative prior 0�988 0�986
BF Set Asymmetric prior 0�931 0�952
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Table 3. Coverage rates and median lengths of nominal 90% confidence intervals.

α θ σz σr

T Coverage Length Coverage Length Coverage Length Coverage Length

(a) Small-Scale New Keynesian Model With Two Observables: LR
96 LR 0�962 0�25 0�970 5�24 0�942 0�24 0�939 0�31

188 LR 0�973 0�25 0�976 5�80 0�953 0�22 0�960 0�30

(b) Small-Scale New Keynesian Model With Two Observables: Uniform Priors
96 Median ± 1�645SD 0�834 0�22 1�000 12�8 0�649 0�49 0�629 0�39

Mean ± 1�645SD 0�906 0�22 1�000 12�8 0�622 0�49 0�563 0�39
Mode ± 1�645SD 0�823 0�22 0�772 12�8 0�893 0�49 0�917 0�39
Percentile 0�975 0�21 1�000 12�3 0�548 0�49 0�416 0�39
BF 1�000 0�32 1�000 14�0 0�994 0�76 0�990 0�79

188 Median ± 1�645SD 0�927 0�21 1�000 12�8 0�728 0�34 0�735 0�26
Mean ± 1�645SD 0�965 0�21 1�000 12�8 0�694 0�34 0�681 0�26
Mode ± 1�645SD 0�878 0�21 0�795 12�8 0�922 0�34 0�947 0�26
Percentile 0�987 0�20 1�000 12�3 0�628 0�34 0�581 0�26
BF 1�000 0�30 1�000 14�0 0�997 0�74 0�998 0�69

(c) Small-Scale New Keynesian Model With Two Observables: Informative Priors
96 Median ± 1�645SD 0�997 0�12 1�000 6�41 0�895 0�21 0�909 0�14

Mean ± 1�645SD 0�996 0�12 1�000 6�41 0�916 0�21 0�921 0�14
Mode ± 1�645SD 0�946 0�12 1�000 6�41 0�636 0�21 0�708 0�14
Percentile 0�996 0�12 1�000 6�44 0�939 0�21 0�944 0�14
BF 1�000 0�25 1�000 12�5 0�999 0�38 1�000 0�18

188 Median ± 1�645SD 1�000 0�12 1�000 6�39 0�906 0�18 0�907 0�12
Mean ± 1�645SD 1�000 0�12 1�000 6�39 0�914 0�18 0�935 0�12
Mode ± 1�645SD 0�983 0�12 1�000 6�39 0�669 0�18 0�711 0�12
Percentile 1�000 0�12 1�000 6�41 0�932 0�18 0�952 0�12
BF 1�000 0�22 1�000 12�3 1�000 0�32 1�000 0�19

(d) Small-Scale New Keynesian Model With Two Observables: Asymmetric Priors
96 Median ± 1�645SD 0�103 0�14 0�400 8�96 0�636 0�49 0�619 0�41

Mean ± 1�645SD 0�109 0�14 0�713 8�96 0�592 0�49 0�542 0�41
Mode ± 1�645SD 0�521 0�14 0�504 8�96 0�874 0�49 0�919 0�41
Percentile 0�118 0�14 0�185 8�51 0�519 0�50 0�384 0�41
BF 0�968 0�24 1�000 9�49 0�994 0�78 0�981 0�79

188 Median ± 1�645SD 0�163 0�13 0�342 8�95 0�704 0�35 0�756 0�26
Mean ± 1�645SD 0�170 0�13 0�646 8�95 0�677 0�35 0�696 0�26
Mode ± 1�645SD 0�550 0�13 0�500 8�95 0�899 0�35 0�949 0�26
Percentile 0�176 0�13 0�145 8�51 0�599 0�35 0�566 0�26
BF 0�978 0�23 1�000 9�50 0�995 0�73 0�994 0�70

interval), as shown in the last row, all intervals for individual parameters have coverage
rates of at least 99%, well in excess of the required coverage accuracy. As the sample size
is increased, the accuracy of the pseudo-Bayesian delta method intervals improves, but
may remain as low as 67%, depending on the parameter. The corresponding percentile
intervals have coverage rates as low as 58%. The conservative intervals based on invert-
ing the Bayes factor in all cases have essentially 100% coverage probability.
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The results in Table 3(b) and (c) also indicate that the accuracy of some pseudo-
Bayesian intervals for the structural parameters α and θ can be quite good, even when
those parameters are weakly identified as in our experiment. The reason is as follows:
In the weakly identified case, the posterior distribution essentially replicates the prior
distribution. Thus, a natural conjecture is that the symmetry of the priors for α and θ
about their true values is responsible for the relatively high accuracy of the traditional
methods because it makes it more likely that the credible interval includes the true pa-
rameter value. To verify our conjecture, we repeated the Monte Carlo experiment with
uniform priors with bounds of [0�0�8] and of [5�5�15] for α and θ, respectively. Under
this alternative asymmetric prior, the true values are close to the boundary of the sup-
port of the priors. As Table 3(d) shows, in that case, the coverage rates for the traditional
confidence intervals for α decline to values as low as 10% for T = 96, and as low as 16%
for T = 188. For θ, the coverage rate may drop as lows as 19% for T = 96 and 15% for
T = 188. Even under the most optimistic scenario based on the mode, the accuracy for
those parameters is only about 50% and 50%, respectively. On the other hand, the BF
approach remains quite robust to the new priors, delivering coverage rates of at least
97% for the same parameters. We conclude that pseudo-Bayesian interval estimates of
the type a frequentist may construct from Bayesian posterior estimates for the param-
eters of Bayesian DSGE models are not reliable, and that LR and BF intervals have the
potential to achieve substantial improvements in coverage accuracy.

An obvious concern is that the higher coverage of the LR and BF intervals for individ-
ual parameters reflects a substantial increase in length. For example, in the limiting case
of no identification, one would expect appropriately sized intervals to cover the sup-
port of the structural parameter. A comparison of the median interval length for each
method and parameter in Table 3 shows, first, that robust LR and BF intervals are often
wide, but not necessarily excessively so. Second, there is no clear ranking between the
median length of BF and LR intervals. This is not surprising because prior information in
small samples may help reduce the interval length. Only asymptotically would one ex-
pect the power advantages of the LR intervals to be decisive. Third, although allowing for
weak identification tends to increase interval length, in some cases pointwise LR inter-
vals may be shorter than the corresponding pseudo-Bayesian intervals that a frequentist
user might have constructed.

3.2 Simulation design 2

Whereas the reduced form of the first simulation design can be expressed as a finite-
order VAR model, we now focus on a DGP that does not have a finite-order VAR repre-
sentation (see the Online Appendix). The model is obtained by including interest rates
as an additional observable. This modification requires the introduction of an additional
structural shock, mkt , in the Phillips curve to avoid a stochastic singularity. We allow all
shocks to follow AR(1) processes. The new DGP is

πt = κxt +βEtπt+1 + mkt �

Rt = ρrRt−1 + (1 − ρr)φππt + (1 − ρr)φxxt + ξt�
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xt = Etxt+1 − σ(Rt − Etπt+1 − zt)�
mkt = ρmkmkt−1 + σmkεmk

t �

zt = ρzzt−1 + σzεzt �
ξt = ρξξt−1 + σξεξt �

The DGP parameters for this design are the same as for the first design with the follow-
ing DGP parameters added: ρξ = 0�5, σξ = 0�2, ρmk = 0�9, and σmk = 0�14. The priors
are augmented as follows: For the case of uninformative priors, we postulate uniform
[0�1] distributions for ρmk, ρξ, and σmk. For the informative priors, we postulate beta
prior distributions B(0�9�0�2) for ρmk and B(0�5�0�2) for ρξ (the numbers in parentheses
are the mean and standard deviation), whereas for the scale parameter σmk and σξ , we
postulate an inverse gamma prior distribution with mean 0�14 and standard deviation
0�2, and with mean 0�2 and standard deviation 0�2, respectively. The model is estimated
directly in state-space form. As shown in the Online Appendix, the degrees-of-freedom
parameter for the LR and BF tests is 18 for this modified model.

3.2.1 Coverage accuracy and median interval lengths Tables C.4 and C.5 in Appendix C
show that, as in design 1, the coverage accuracy of the joint LR confidence set is some-
what lower than in the first example, with 86% for T = 96 and 87% with T = 188. Further
analysis showed that these small size distortions vanish for higher T . The corresponding
joint BF confidence sets are somewhat sensitive to the prior. For the uniform prior joint,
the coverage rates are 94% for T = 96 and 91% for T = 188. Likewise, the results for the
asymmetric prior yield acceptable coverage rates of 90% for T = 96 and 88% for T = 188.
On the other hand, for the informative prior, the corresponding rates are 83% and 79%.
This result illustrates that the joint coverage rates of the BF method in finite samples can
be somewhat sensitive to the choice of prior. This is not the case for the individual cov-
erage rates, however. The LR intervals have coverage rates between 94% and 99%; the
BF intervals have coverage rates of essentially 100% regardless of the choice of prior. In
contrast, the pseudo-Bayesian intervals have coverage rates anywhere between 8% and
100%. The results on median interval length are substantively identical to those for the
first simulation design. We conclude that both the LR and BF intervals can substantially
improve the accuracy of confidence sets for structural model parameters when one or
more parameters are weakly identified.

4. Empirical application: Quantifying wage and price rigidities

To illustrate the practical usefulness of our methodology, we now construct LR and BF
confidence intervals in a medium-scale state-of-the-art DSGE framework. Our model
specification follows very closely that of Del Negro and Schorfheide (2008), who in turn
build on Smets and Wouters (2007) and Christiano, Eichenbaum, and Evans (2005).
Since this type of environment has been extensively discussed in the literature, we omit a
discussion of the model. The main features of the model can be summarized as follows:
The economy grows along a stochastic path; prices and wages are assumed to be sticky à
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la Calvo; preferences display internal habit formation; investment is costly; and, finally,
there are five sources of uncertainty: neutral and capital embodied technology shocks,
preference shocks, government expenditure shocks, and monetary shocks. Additional
details on the formulation and estimation of DSGE models can be found in Fernández-
Villaverde, Guerron-Quintana, and Rubio-Ramírez (2010).

4.1 Data and estimation

We follow Del Negro and Schorfheide (2008) in estimating the model using five observ-
ables: real output growth, per capita hours worked, labor share, inflation (annualized),
and the nominal interest rate (annualized). We use their quarterly data set for the period
1982.Q1–2005.Q4. We set our priors alternatively to the agnostic prior, the low-rigidities
prior, and the high-rigidities priors employed in Del Negro and Schorfheide (see Tables
1–3 in their paper).

The parameter space is partitioned into two sets:

Θ1 = [α δ g L∗ ψ
]
�

which is not estimated, and

Θ2 = [ r∗ γ λf π∗ ζp ιp ζw ιw λw S′′ h a′′ vl ψ1 ψ2

ρr ρz σz ρφ σφ ρλ σλ ρg σg σr Ladj
]
�

which is. For definitions of these parameters, the reader is referred to Del Negro and
Schorfheide (2008). The following values are used for the first set of parameters: α= 0�33,
δ = 0�025, g = 0�22, L∗ = 1, and ψ = 0. Although these values are standard choices in
the DSGE literature, some clarifications are in order. As in Del Negro and Schorfheide
(2008), our parameterization imposes the constraint that firms make zero profits in the
steady state. We also assume that households work one unit of time in steady state. This
assumption in turn has two implications. First, the parameter φ is endogenously deter-
mined by the optimality conditions in the model. Second, because hours worked have
a mean different from that in the data, the measurement equation in the state-space
representation is

logLt(data)= logLt(model)+ logLadj�

Here, the term Ladj is required to match the mean observed in the data. Finally, rather
than imposing priors on the great ratios as in Del Negro and Schorfheide, we follow the
standard practice of fixing the capital share, α, the depreciation rate, δ, and the share of
government expenditure on production, g.

The posterior distributions of the parameters in the set Θ2 are characterized using
the random-walk Metropolis–Hasting algorithm outlined in Section 3.1. A total of three
independent chains, each of length 100,000, were run. We conducted standard tests to
check the convergence of each chain (see Gelman, Carlin, Stern, and Rubin (2004)). The
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degrees-of-freedom parameter in the limiting distribution of the LR and BF test statistics
is 99, as shown in the Online Appendix.

4.2 The relative importance of wage and price rigidities in the U.S. economy

Table 4(a) summarizes the posterior means, medians, and modes as well as the poste-
rior standard deviations of selected structural parameters, along with the 90% credible
interval (obtained from the percentiles of the posterior distribution) and the 90% con-
fidence interval based on inverting the Bayes factor (BF interval). For our purposes, the
parameters of greatest interest are ζp and ζw, which quantify the degree of price and
wage rigidities, respectively. These parameters represent the probabilities of not reop-
timizing prices and wages, respectively. The length of price contracts is defined as 1

1−ζp
quarters, where ζp is the probability of not reoptimizing prices today. By analogy, the
length of the wage contract is 1

1−ζw quarters. The remaining results can be found in the
Online Appendix.

Del Negro and Schorfheide found that the posterior of these parameters was heavily
influenced by their prior, so a researcher entering a prior favoring one of these rigidi-
ties would inevitably arrive at a posterior favoring that same rigidity. In situations such
as this, intervals that allow for weak identification are essential to protect the econo-
metrician from mischaracterizing the degree of stickiness in the economy, as illustrated
in Table 4. There is an active literature on measuring the degree of price rigidity at the
microlevel (see, e.g., Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008)). For
example, Klenow and Kryvtsov (2008) found that price contracts last, on average, about
2�3 quarters. Based on the percentile intervals in Table 4(a), a researcher would have
concluded that the length of those price spells is incompatible with the macroevidence.
The lower bound of the percentile interval corresponds to a price spell of 2�6 quarters,
which is inconsistent with the microevidence at the 10% significance level. In contrast,

Table 4. The 90% intervals for rigidity parameters in the medium-scale New Keynesian model.

Posterior
Percentile

Interval
BF

Interval
LR

IntervalMeans Medians Modes SD

(a) Agnostic Priors
ζp 0�692 0�693 0�695 0�047 [0�611�0�767] [0�512�0�833]
ζw 0�222 0�217 0�164 0�073 [0�113�0�350] [0�035�0�504]

(b) Low-Rigidity Priors
ζp 0�659 0�661 0�695 0�045 [0�581�0�729] [0�470�0�796]
ζw 0�266 0�264 0�269 0�057 [0�177�0�364] [0�080�0�515]

(c) High-Rigidity Priors
ζp 0�772 0�770 0�786 0�058 [0�676�0�855] [0�626�0�887]
ζw 0�446 0�428 0�391 0�114 [0�286�0�647] [0�239�0�714]

(d) LR Method
ζp [0�543�0�854]
ζw [0�017�0�470]
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a researcher relying on the BF interval in Table 4(a) would have viewed Klenow and
Kryvtsov’s findings as perfectly consistent with the results from the Bayesian estimation
exercise. The lower bound of the interval implies that prices are reset every 2�0 quar-
ters.

Table 4(b) and (c) provides additional evidence on the sensitivity of this conclu-
sion to the choice of prior. We replace the agnostic prior by the low-rigidity and high-
rigidity priors explored in Del Negro and Schorfheide (2008). The BF interval suggests
that Klenow and Kryvstov’s findings are plausible under priors that favor low price rigid-
ity (Table 4(b)), but no longer plausible under a prior that imposes substantial price
rigidity (Table 4(c)). In the latter case, the lower bound on the length of the price spell
is 2�7, which is higher than the microdata estimate of 2�3. This example illustrates once
again that in small samples the BF interval is not invariant to the choice of prior. This
fact suggests caution in interpreting the BF results.

It is useful to contrast these results with those for the LR interval, which does not
depend on any priors. The LR interval in Table 4(d) implies a lower bound on the length
of a price spell of 2�2 quarters, which is consistent with the microevidence. We conclude
that the macroevidence on price rigidities is compatible with the microevidence, con-
trary to what the percentile interval would have suggested under any of the three priors
we examined. Regarding the wage rigidity parameter, Table 4(d) shows that there is not
much divergence in the BF and LR estimates on the lower bound of the length of a wage
spell (with all estimates between 1 and 1�3 quarters), but there is greater dispersion in
the estimates of the upper bound (which range from 1�5 to 3�5 quarters). The LR method
implies that wage spells shorter than 1 quarter and longer than 1�9 quarters can be re-
jected at the 10% level. Finally, all BF and LR methods agree that there is much higher
price rigidity than wage rigidity in the U.S. economy, but these differences are most pro-
nounced when using the LR method.

5. Concluding remarks

This paper made five distinct contributions. First, we illustrated that the usual asymp-
totic equivalence between frequentist and Bayesian methods of estimation and infer-
ence breaks down if the structural parameters of the DSGE model are only weakly iden-
tified. This fact invalidates the interpretation of posterior modes, medians, or means as
point estimates and invalidates frequentist confidence sets constructed from the pos-
terior. Second, we proposed two alternative frequentist confidence sets that remain
asymptotically valid regardless of the strength of identification. One is constructed by
inverting an LR statistic; the other involves inverting the Bayes factor statistic. Third, we
contrasted the relative merits of these statistics from a theoretical point of view. In par-
ticular, we showed that the LR test statistic has power against local alternatives, whereas
the BF test statistic does not. Fourth, we provided simulation evidence that both LR and
BF intervals tend to be more accurate than pseudo-Bayesian confidence intervals, which
often have very poor coverage accuracy. Whereas the LR method produces reasonably
accurate confidence sets for realistic sample sizes, we found that the accuracy of the
corresponding BF confidence sets can be sensitive to the choice of the prior. Finally, we
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provided an empirical example that shows that weak identification does not necessarily
mean that there is no information in the data about the structural parameters of inter-
est.

Appendix: Proofs

The proofs of Propositions 1, 2, 3b, and 4 are omitted to conserve space. The remaining
proofs are sketched below. The full proofs of all propositions are available in the Online
Appendix.

Proof of Theorem 1. It follows from assumption (a) in Proposition 2 and assumptions
(a), (b), and (c) of Theorem 1, the Taylor theorem, the first-order condition for the un-
constrained MLE, and the result in Proposition 2 that [∇γγ�T (γ0�T )]1/2(γ̃T (θ0) − γ̂T ) =
PTzT + op(1), that

I3�T i ≡
∫
BδT (θ0)

π(θ)exp
(
�T
(
γ̃T (θ)

)− �T (γ̂T )
)
dθ

(30)

=
∫
BδT (θ0)

π(θ)dθexp
(

−1
2
z′
T zT

)
+ op(1)�

where γ̄T (θ) is a point between γ̃T (θ) and γ̂T . Let

I4�T =
∫
Θ\BδT (θ0)

π(θ)exp
(
�T
(
γ̃T (θ)

)− �T (γ̂T ))dθ� (31)

Since �T (γ̃T (θ))≤ �T (γ̂T ) by the definition of MLE, it follows from (31) that

I4�T ≤
∫
Θ\BδT (θ0)

π(θ)dθ� (32)

Combining these results, the Bayes factor in favor ofH1 can be written as

Bayes factor(θ0)=

∫
BδT (θ0)

π(θ)dθ∫
Θ\BδT (θ0)

π(θ)dθ

I4�T

I3�T
≤ exp

(
1
2
z′
T zT

)
+ op(1)� (33)

where the inequality follows from (32). �

Proof of Proposition 3a. By assumption (a) in Proposition 2, the constrained MLE
γ̃T (α0) satisfies the first-order conditions

∇�T
(
γ̃T (θ0)

)+Dγf (γ̃T (α0)�α0� β̃(α0)
)′
λ̃T (α0)= 0dim(γ)×1� (34)

Dβf
(
γ̃T (α0)�α0� β̃T (α0)

)= 0k2×1� (35)

f
(
γ̃T (α0)�α0� β̃T (α0)

)= 0r×1� (36)
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where λ̃T (α0) is the r × 1 vector of Lagrange multipliers. A Taylor series expansion of
these first-order conditions about [γ′

0�T β′
0 01×r]′ yields⎡⎣ ∇γγ�T (γ0�T ) 0dim(γ)×k2 Dγf(γ0�T � θ0)

′
0k2×dim(γ) 0k2×k2 Dβf(γ0�T � θ0)

′
Dγf(γ0�T � θ0) Dβf(γ0�T � θ0�T ) 0r×r

⎤⎦⎡⎣ γ̃T (α0)− γ0�T

β̃T (α0)−β0

λ̃T (α0)

⎤⎦
=
⎡⎣−∇�T (γ0�T )

0k2×1
0r×1

⎤⎦+ op
(
T−1/2)�

After solving these equations and some further manipulations, we obtain

γ̃T (α0)− γ̂T
=H−1

T R′(RH−1
T R′)−1

RH−1
T ∇�T (γ0�T )

−H−1
T R′(RH−1

T R′)−1
Rβ
[
R′
β

(
RH−1

T R′)−1
Rβ
]−1

(37)

×R′
β

(
RH−1

T R′)−1
RH−1

T ∇γ�T (γ0�T )

+ op(1)�

whereHT = ∇γγ�T (γ0�T ) and Rβ =DβfT (γ0�T � θ0). Hence, we can write

LRT (α0) = (
γ̃T (α0)− γ̂T

)′[∇γγ�T (γ0�T )
](
γ̃T (α0)− γ̂T

)+ op(1)
(38)

= z′
TQTzT + op(1)�

BecauseQT is idempotent and has rank r − k2, we obtain the desired result. �

Proof of Theorem 2. First we prove (14). An application of the implicit function the-
orem to fT (γ�α)= 0 yields

∂γ

∂α′ = −T−1/2[Dγf1(γ�β)
]−1
Dαf2(γ�θ)+ o(T−1/2)� (39)

∂γ

∂β′ = −[DγfT (γ�θ)]−1
DβfT (γ�θ)� (40)

Thus, the mean value theorem implies

γ1�T − γ0�T = −T−1/2[Dγf1(γ̄T � β̄T )
]−1
Dβf1(γ̄T � β̄T )c

− T−1/2[Dγf1(γ̄T �β1)
]−1
Dαf2(γ̄T � ᾱ)(α1 − α0) (41)

+ o(T−1/2)�
where [γ̄′

T θ̄′
T ]′ = [γ̄′

T ᾱ′
T β̄′

T ]′ is a point between [γ′
1�T α′

1 β
′
0 + T−1/2c′]′ and

[γ′
0�T α′

0 β
′
0]′. Because γ1�T − γ0�T = O(T−1/2), and f1 and f2 are continuously differ-
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entiable, we can write (41) as

γ1�T − γ0�T = T−1/2G(α0�α1�β0)
[
c′ (α1 − α0)

′ ]′ + o(T−1/2)� (42)

whereG(α0�α1�β1)= limT→∞{[Dγf1(γ1�T �β0)]−1[Dβf1(γ1�T �β0) Dαf2(γ1�T � ᾱT )]}.
Using (42) and arguments analogous to those in the proof of Theorem 1, we can show

γ̂T − γ1�T = −[∇γγ�T (γ1�T )]−1∇γ�T (γ1�T )+ op(T−1/2) and

γ̃T (θ0)− γ0�T

= {−[∇γγ�T (γ0�T )
]−1

(43)

+ [∇γγ�T (γ0)
]−1
R′
T

{
RT
[∇γγ�T (γ0�T )

]−1
R′
T

}−1
RT
[∇γγ�T (γ0�T )

]−1}
× {∇γ�T (γ1�T )+ T−1/2∇γγ�T (γ0�T )G(α0�α1�β0)

[
c′ (α1 − α0)

′ ]′}
+ op

(
T−1/2)�

Let R = limT→∞RT , d(α�α1�β0� c) = V
−1/2
γ G(α�α1�β0)[c′ (α1 − α)′]′, and P = V

1/2
γ ×

R′(RVγR′)−1RV
1/2
γ . It follows from (42), (43), the twice continuous differentiability of

�T (·), and assumption (a) in Theorem 2 that

[∇γγ�T (γ1�T )
]1/2(

γ̃T (θ0)− γ̂T
)= P[d(α0�α1�β0� c)+ zT

]+ op(1)� (44)

Because P is idempotent and has rank r, (A.1) and a second-order Taylor series expan-
sion of the LR test statistic around γ̂T yield (14).

Next we prove (15). Define

Ij�T = Tk2/2
∫
Θj�T

π(θ)exp
(
�T
(
γ̃T (θ)

)− �T (γ̂T )
)
dθ (45)

for j = 5�6�7, whereGT(γ1�T � θ1�T )= −[DγfT (γ1�T � θ1�T )]−1Dθ(γ1�T � θ1�T ),

Θ5�T = {θ ∈Θ : |θj − θ0�j|< δT�j for j = 1� � � � �k
}
�

Θ6�T = {θ ∈Θ : |θj − θ0�j| ≥ δT�j�β= β0 + c̄T−1/2 for some c̄ ∈ C̄T
}
�

Θ7�T = {θ ∈Θ : |θj − θ0�j| ≥ δT�j�¬∃c̄ ∈ C̄T such that β= β0 + c̄T T−1/2}�
C̄T = {c̄ ∈ �k2 :−cminT

η ≤ c ≤ cmaxT
η}, cmax > 0, cmin > 0, and η ∈ (0�1/2). Define

Θ̄5�T = {[α′ c′
] ∈ A×�k2 : |αj − α0�j|< δT�j for j = 1� � � � �k1�

|cj|< δT�j+k1T
1/2 for j = 1� � � � �k2

}
�

Θ̄6�T = {θ ∈Θ : |θj − θ0�j| ≥ δT�j�β= β0 + c̄T−1/2 for some c̄ ∈ C̄T
}
�

Θ̄7�T = {θ ∈Θ : |θj − θ0�j| ≥ δT�j�¬∃c̄ ∈ C̄T such that β= β0 + c̄T T−1/2}�
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It follows from assumptions (a) and (b) in Proposition 2, Taylor’s theorem, a change
of variables, and (44), that I5�T equals

Tk2/2
∫
Θ5�T

π(θ)exp
(

1
2
(
γ̃T (θ)− γ̂T

)′∇γγ�T (γ̄T )(γ̃T (θ)− γ̂T
))
dθ

=
∫
Θ̄5�T

π
([
α′ c′

]′)
d
[
α′ c′

]′
(46)

× exp
{
−1

2
[
d(α0�α1�β0�0)+ zT

]′
P
[
d(α0�α1�β0�0)+ zT

]}+ op(1)�

where γ̄T is a point between γ̂T and γ̃T (θ).
Note that the arguments used to derive (44) are valid not only for a particular value of

α0 and c, but also for all α and c. The compactness of α, the continuous differentiability
of fT , and the continuity of ∇γγ�T imply that (43) holds uniformly in α ∈ A, which in
turn implies that (44) holds uniformly in α ∈ A. Thus, I6�T equals

Tk2/2
∫
Θ6�T

π(θ)exp
(

1
2
(
γ̃T (θ)− γ̂T

)′∇γγ�T (γ̄T )(γ̃T (θ)− γ̂T
))
dθ (47)

=
∫

A×C̄T
π
([
α′�β′

0
]′)

× exp
{

1
2
z′
T

[
P − PV −1/2

γ G(α�α1�β0)
(
G(α�α1�β0)

′

(48)

× V −1/2
γ PV

−1/2
γ G(α�α1�β0)

)−1
G(α�α1�β0)

′V −1/2
γ P

]
zT

}
dα

+ op(1)�

Moreover,

I7�T = Tk2/2
∫
Θ7�T

π(θ)exp
(
�T
(
γ̃T (θ)

)− �T (γ̂T ))dθ= op(1)� (49)

where the last equality follows from assumption (c) in Theorem 2.
Because

∫
Θ̄5�T

π([α′�β′
0 + T−1/2c′]′)d[α′ c′]′ = ∫

Θ5�T
π([α′�β′]′)d[α′�β′]′, it follows

from (46), (48), and (49) that the Bayes factor in favor ofH1 can be written as

Tk2/2 Bayes factor(θ0)

= Tk2/2

∫
BδT (θ0)

π(θ)dθ∫
Θ\BδT (θ0)

π(θ)dθ

I6�T + I7�T

I5�T

=
∫

A×C̄T
π(α�β0)
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× exp
(

−1
2
(
d(α�α1�β0� c)+ PzT

)′(
d(α�α1�β0� c)+ PzT

))
d
[
α′ c′

]′
/

exp
(

−1
2
(
d(α0�α1�β0�0)+ PzT

)′(
d(α0�α1�β0�0)+ PzT

))
+ op(1)�

which completes the proof of (15). �
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