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Assessing Rothstein’s critique of teacher value-added models

Josh Kinsler
Department of Economics, University of Rochester

Value-added models of teacher effectiveness yield consistent estimates of teacher
quality under the assumption that students are randomly assigned to classrooms
conditional on ability. Rothstein (2010) tested and rejected this underlying sort-
ing assumption, casting doubt on the usefulness of the value-added framework.
In this paper, I illustrate that the falsification tests employed by Rothstein perform
quite poorly in small samples and I propose an alternative testing strategy that
is less sensitive to sample size. I also show that none of the proposed falsifica-
tion tests works well when the achievement production function is misspecified.
Finally, I return to the same North Carolina sample employed by Rothstein and
retest the assumption of conditional random assignment. Once I account for the
“smallness” of the data and allow teacher inputs to persist at reasonable rates, I fail
to reject conditional random assignment.

Keywords. Teacher value-added, model testing.

JEL classification. I20, C10.

1. Introduction

Teacher quality is widely recognized as the most significant institutional determinant
of academic success. However, because teacher quality cannot be directly observed,
schools have largely relied on a set of subjective measures to estimate teacher effective-
ness. With the proliferation of standardized testing, an arguably more objective measure
of teacher performance is available, student test scores.1 The predominant methodol-
ogy for mapping student test scores into estimates of teacher effectiveness is the value-
added model (VAM).2 While there are various flavors of value-added modeling, the basic
strategy is to utilize changes in student test scores over time to isolate the value added
by each individual teacher.

Utilizing student test scores to evaluate the effectiveness of individual teachers has
been roundly criticized, both by scholars and teachers.3 At the most basic level, critics
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1Recent papers such as Harris and Sass (2010) and Jacob and Lefgren (2008) have investigated how well
subjective principal evaluations match up with teacher value-added estimates.

2Prominent examples in the literature include Rivkin, Hanushek, and Kain (2005), Aaronson, Barrow, and
Sander (2007), and Rockoff (2004).

3See, for example, Kane and Staiger (2002), Amrein-Beardsley (2008), Harris and Sass (2011), Martineau
(2006), Koedel and Betts (2010b), and Koretz (2002).
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argue that standardized tests simply cannot measure all the knowledge and skills teach-
ers impart to their students. In addition, there are concerns that value-added estimates
of teacher quality are unstable over time, and sensitive to test reliability, scaling, tim-
ing, and content selection. While these are all valid critiques, perhaps most troubling is
the fact that value-added models are typically implemented using large administrative
data on students and teachers who are not randomly assigned either within or across
schools.4 Consider a setting in which students are assigned to classrooms based on un-
observed factors that are grade relevant, such as ability or home inputs. Estimates of
teacher quality will then confound true teacher effectiveness with the distribution of
unobserved student factors in the classroom. Thus, even if a perfect test were available,
VAMs would yield biased and inconsistent estimates of teacher quality.

In a recent article, Rothstein (2010) (henceforth Rothstein) reviewed the most com-
mon VAMs and tests the sorting assumptions that are necessary for these methods to
yield causal estimates of teacher quality. Rothstein employed a novel testing strategy
that consists of investigating whether future teachers have an impact on today’s test
score conditional on all current and past observed inputs. If future teachers impact to-
day’s scores, this suggests that students are sorted into future classrooms based on vari-
ables the econometrician cannot account for and that may be grade relevant. The key
finding of the paper is that the basic assumptions underlying the most prominent VAMs
fail to hold in a sample of public-school students in North Carolina. As a result, esti-
mates of teacher effectiveness produced by any of these VAMs will be biased, tainting
any teacher personnel decisions based in part on student testing results.

However, just as the consistency of the estimated teacher effects produced by VAMs
relies on a number of assumptions, so does the accuracy of the falsification tests em-
ployed by Rothstein. In particular, the tests are developed under the assumption that
arbitrarily large samples are available, when in fact the estimates of each teacher effect
are based on just a handful of student test score observations. The rationale for employ-
ing tests that rely on large sample theory is that unless the number of students tends
to infinity as the number of teachers is held fixed, teacher effectiveness estimates are
never consistent, even if students are randomly assigned to teachers. In practice, infi-
nite amounts of data are never available and, as Rothstein pointed out, small sample
corrections need to be made to the teacher effect estimates even when the assumptions
regarding the asymptotic nature of the data are maintained. In a similar vein, I would ar-
gue that the falsification tests proposed by Rothstein also need to account for the small
sample nature of the data.

In this paper, I illustrate the small sample bias in a key falsification test proposed
by Rothstein and provide a new falsification test that is robust to small samples. The
proposed test relies on an estimation technique that allows researchers to easily incor-
porate multiple high-dimensional fixed effect parameter vectors into their models. This
methodology allows the researcher to control for student, teacher, and school effects di-
rectly. To test whether future teachers have an impact on today’s scores is then a simple

4See Clotfelter, Ladd, and Vigdor (2006) and Jackson (2009) for empirical evidence of the sorting of teach-
ers and students.
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F-test that requires estimating an unrestricted model, where future teachers are allowed
to affect current outcomes, and a restricted model, where the effect of future teachers is
constrained to zero. The F statistic can then be computed using the R2 of the two regres-
sions. I present simulation results that indicate that the proposed F-test significantly
outperforms Rothstein’s falsification test in small samples for a wide range of data gen-
erating processes.

One additional finding from the simulation exercises is that none of the proposed
falsification tests performs well when the underlying achievement production function
is misspecified. This result turns out to be critical when I reevaluate the assumption
of conditional random assignment for the same cohort of North Carolina students and
teachers initially examined by Rothstein. Two of the value-added models tested by Roth-
stein assume that teacher inputs persist indefinitely. When I apply the proposed F-test
to either of these models using the North Carolina schooling data, I continue to reject the
conditional random assignment assumption. If instead I estimate a model that allows
teacher inputs to persist at a more reasonable rate, the F-test fails to reject conditional
random assignment. Rothstein’s falsification test, however, still rejects conditional ran-
dom assignment. Thus, the reversal is a function of both the change to the underlying
production function and the alternative testing approach.

The remainder of the paper is as follows. Section 2 reviews Rothstein’s falsification
test and presents an alternative test that is likely to perform better in small samples. Sec-
tion 3 investigates the performance of each test under various sorting and sample size
assumptions, and assesses the robustness of the proposed tests to model misspecifica-
tion. Section 4 implements the proposed test using the same cohort of North Carolina
students utilized by Rothstein, and Section 5 concludes.

2. Testing the validity of VAMs

2.1 Rothstein’s approach

I begin with a brief review of the econometric model and testing approaches employed
by Rothstein. Rothstein assumed that the test score of student i at the end of grade g,
Aig, can be written as

Aig = αg +
g∑

h=1

βhgc(i�h) +μiτg +
g∑

h=1

εihφhg + νig� (1)

where βhgc is the causal effect of being in classroom c in grade h on the grade g test score,
and c(i�h) ∈ {1� 	 	 	 � Jh} indexes the classroom to which student i is assigned in grade h.
Classroom and teacher effects are synonymous since, in the empirical application, only
one cohort of students will be observed with each teacher. The effect of individual ability,
μi, is allowed to vary across grades according to τg, and εih captures all other inputs in
grade h, such as family or community inputs; νig is classical measurement error. Equa-
tion (1) is a relatively general form for an achievement production function in that past
inputs continue to impact student performance in future grades. This is true for both
past teacher inputs and all other inputs, ε. Estimation of Equation (1) is generally not



336 Josh Kinsler Quantitative Economics 3 (2012)

possible since εih is not observed. In addition, the large number of teacher and student
fixed effects would make estimation quite difficult, even if the unobserved inputs were
excluded.

As a result of these econometric difficulties, researchers typically estimate simplified
versions of Equation (1). Three of the most common specifications are a simple regres-
sion of gain scores on grade and contemporaneous classroom indicators,

VAM1: 
Aig = αg +βggc(i�g) + e1ig� (2)

a regression of score levels on classroom indicators and the lagged score,

VAM2: Aig = αg +Aig−1λ+βggc(i�g) + e2ig� (3)

and a regression that stacks the gain scores from several grades and adds student fixed
effects,

VAM3: 
Aig = αg +βggc(i�g) +μi + e3ig	 (4)

Each of the above specifications can be derived from Equation (1) by subsuming all the
inputs not explicitly accounted for, such as past classroom assignments or unobservable
inputs, into ekig.

The primary purpose of the above specifications is to produce consistent estimates
of the causal impact of individual teachers. Notice that in each of the above equations,
βggc(i�g)—the effect of the grade g teacher on the grade g test score—can be estimated di-
rectly. However, just as in any standard ordinary least squares (OLS) regression, β̂ggc(i�g)

will only have a causal interpretation under the assumption that the grade g classroom
assignment is uncorrelated with ekig. Rothstein developed a novel strategy for testing
this assumption for each of the VAM specifications.

In this paper, I focus on the test for whether VAM3 yields causal estimates of teacher
effectiveness. The consistency of the teacher quality estimates produced by VAM3 relies
on the assumption that students are sorted into classrooms based on a permanent fac-
tor, μi, that is fixed over the student’s lifetime and is observable to whomever makes the
classroom assignment. If this sorting assumption is true, all the components in e3ig—
past teachers and past and current unobserved inputs—will be uncorrelated with the
classroom assignment conditional on μi. The advantage of VAM3 relative to VAM1 is
that it allows for nonrandom teacher assignment based on permanent unobserved het-
erogeneity in student test score growth.

I concentrate on the statistical test for VAM3 for a number of reasons. First, VAM3
has been widely utilized in the literature and thus it is important to be able to accu-
rately evaluate the validity of this benchmark model.5 Second, permanent heterogeneity
in student test score growth will lead to a rejection of VAM1 if students are sorted into
classrooms based on this unobserved factor. Thus, implementing the proposed test for
VAM3 is the natural next step after a rejection of VAM1. Rothstein viewed the additional

5Boardman and Murnane (1979) initially developed VAM3. Recent papers that utilize this framework
include Rivkin, Hanushek, and Kain (2005), Harris and Sass (2011), and Jacob and Lefgren (2008).
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complexity of VAM3 as unnecessary, since test score growth in third grade is largely un-
correlated with test score growth in fifth grade for the North Carolina data utilized in
his analysis. However, the small observed correlation does not eliminate the possibility
that permanent heterogeneity in test score growth exists.6 In addition, student hetero-
geneity in test score growth may play a larger role in other settings.7 Finally, Rothstein’s
falsification test for VAM3 works particularly poorly in small samples. VAM1 and VAM2
also have the potential to perform poorly in small samples, an issue I discuss further in
Sections 2.2.1 and 3.2.

To test the strict exogeneity assumption required by VAM3, Rothstein relied on a
framework originally developed by Chamberlain (1984). Consider the projection of stu-
dent ability, μi, on the full sequence of classroom assignments in grades 1 through G,

μi = ξ1c(i�1) + · · · + ξGc(i�G) +ηi�

where ξhc is the incremental information about μi provided by the knowledge that a stu-
dent was in classroom c in grade h, conditional on all the other classroom assignments.
Assuming that teacher effects do not decay over time, substituting the above expression
into the first-differenced production function yields


Aig = 
αg +
G∑

h=1

πhgc(i�h) +ηi + e3ig� (5)

where πggc = ξgc
τg +βggc and πhgc = ξhc
τg for h �= g. While the notation can be a bit
cumbersome, the key to the equation is that under the assumption of strict exogeneity,
the effect of any teacher from grade h �= g on the grade g test score should be propor-
tional to the incremental information that the grade h teacher provides regarding μi. As
an example, if 
τg is equal to a constant for all g, the effect of the fifth grade teacher on
a student’s third and fourth grade score should be identical, since it provides the same
information in either regression. If the effect of the fifth grade teacher varies across the
third and fourth grade scores, it suggests that students are sorted into fifth grade based
on unobserved factors that affect the third and fourth grade scores differently. This is
a violation of conditional strict exogeneity, since students should be sorted into class-
rooms based on an unobserved fixed factor.

To test whether the restrictions imposed by strict exogeneity hold, Rothstein utilized
a minimum chi-square estimator, also known as an optimal minimum distance estima-

6It is quite simple to generate test score data that incoporate minimal permanent heterogeneity in test
score growth such that (i) there is essentially no correlation in test score growth over time and (ii) the pro-
posed test for VAM1 fails as a result of sorting on the unobserved heterogeneity.

7There exists considerable debate about whether standardized tests are well designed to evaluate test
score growth. See Martineau (2006) as an example. Thus, as test instruments improve, heterogeneity in
growth may become more prevalent. In addition, the recent literature on the development of cognitive and
noncognitive skills suggests that there are important dynamic complementarities in the production func-
tion. See Cunha, Heckman, and Schennach (2010) as an example. This is also consistent with permanent
heterogeneity in skill growth.
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tor. The test statistic is calculated by estimating the vector Ξh and the ratio r = 
τg

τg−1

that

minimize

D=
((

Π̂hg−1

Π̂hg

)
−

(
Ξh

Ξh ∗ r

))′
Ŵ −1

((
Π̂hg−1

Π̂hg

)
−

(
Ξh

Ξh ∗ r

))
�

where Π̂hg and Π̂hg−1 are the stacked OLS estimates of the πhg and πhg−1 from Equa-

tion (5), and Ŵ is the estimated sampling variance of (Π̂′
hg−1Π̂

′
hg)

′. Under the null hy-

pothesis of strict exogeneity, the minimized value of D is distributed χ2 with Jh − 1 de-
grees of freedom, where Jh is the number of grade h teacher effects estimated in Equa-
tion (5). Intuitively, D is a weighted measure of the distance between the effect of the
grade h = g + 1 teacher on student test scores in grades g and g − 1. Under the assump-
tions of conditional strict exogeneity, this difference should be close to zero.

Once Π̂hg−1 and Π̂hg are estimated, computing the test statistic is rather straight-
forward. However, directly estimating Equation (5) by OLS is infeasible since it contains
multiple high-dimensional fixed effect vectors. In addition, to compute D, Equation (5)
must be estimated for multiple grades to enable comparison of the effects of grade h

teachers on the test scores in the two previous grades. Rothstein’s empirical strategy,
which I follow in Section 3, is to estimate Equation (5) school-by-school, thus avoiding
the need to invert a matrix that will contain thousands of columns, one for each teacher
effect to be estimated.

The limitation of this empirical approach is that for the strategy to be valid, students
must have remained in the same school from grade g − 3 to g. This sample restriction
significantly reduces the number of observations per teacher, generating two problems
for the proposed test. First, with few observations per teacher, it is more likely that the
estimated teacher effects will be biased. In other words, even if students are randomly
assigned to fifth grade classrooms, with so few test score observations per teacher, it is
unlikely that the conditional mean of the unobserved test score shocks in grades 3 and
4 will equal zero across the fifth grade classrooms. Second, it is well known that the op-
timal minimum distance estimator performs quite poorly in small samples, potentially
exacerbating the first issue.8 Thus, the validity of the proposed test for VAM3 may be
compromised by the nature of the available data. The Monte Carlo exercises in Section 3
illustrate that this is indeed a serious problem for a sample similar in magnitude to the
one utilized by Rothstein.

2.2 Alternative falsification tests for VAM3

2.2.1 An extension of Rothstein’s approach Using the minimum chi-square estimator
to test for conditional strict exogeneity is indirect in the sense that future teachers will
have an effect on current scores only if students are sorted on unobserved ability and un-
observed ability is not accounted for in the achievement regression. Conditional strict

8For evidence regarding the poor small sample performance of the optimal minimum distance estima-
tor, see Altonji and Segal (1996), Burnside and Eichenbaum (1996), or Horowitz (1998).
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exogeneity then implies that the estimated effect of a fifth grade teacher should be iden-
tical in all previous grades. A more direct test for conditional strict exogeneity would
instead estimate student achievement gains, controlling for student ability in addition
to all past, current, and future teachers, and then examine whether future teachers have
any explanatory power.9 The novel testing strategy proposed by Rothstein of exploring
how future teachers impact current performance remains at the heart of this alternative
testing procedure.

One way to implement the direct test is simply to extend the school-by-school re-
gressions in the first step of Rothstein’s proposed test to include unobserved student
ability. These regressions remain tractable since there are a limited number of fixed ef-
fects to estimate within each school. The school level regressions then take the form


Aig = μi +
g+1∑
h=g

βhgc(i�h) + eig� (6)

where I assume that the current teacher and the one period ahead teacher enter the
gain score equation.10 I follow the literature and assume that lagged teachers do not en-
ter the gain score equation, though in practice, this assumption can be relaxed. The test
for conditional strict exogeneity then boils down to a test of whether the future teacher
effects are jointly equal to zero. However, constructing the appropriate test statistic for
the null hypothesis that future teachers have no effect is not trivial, since the test statis-
tic must combine results across numerous independent regressions. Ideally, one would
estimate a single regression with all the student and teacher effects included, and con-
struct a Wald statistic using a cluster-robust estimate of the asymptotic variance of the
estimated teacher effects. Recall that since we are examining changes in test scores, the
errors are likely to be correlated at the student level. Any shock to test scores in third
grade will affect not only the gain in third grade, but also the gain in fourth grade.

The Wald statistic for the regression combining data across all schools is given by

W = (Rβ̂)′[R ˆVar[β̂]R′]−1(Rβ̂)�

where β̂ is a k× 1 vector of student and teacher effect estimates, and R is a q× k matrix
such that Rβ̂ yields a vector comprised only of the q estimated future teacher effects.
Piecemeal estimation of the model does not affect our ability to construct the outer ma-
trices, since they are essentially just the stacked vectors of the school-by-school esti-
mates of the future teacher effects. The challenge is in generating an estimate of the
inner matrix, the inverse of the asymptotic variance of the future teacher effects.

9Rather than proposing a new testing strategy, there are methods to correct for the small sample bias in
the minimum chi-square estimator. The most common approach is to bootstrap the critical value of the test
following Hall and Horowitz (1996). However, bootstrapping is not feasible in this setting, since estimating
the test statistic D is computationally intensive.

10Note that adding a school effect here is innocuous, since it requires normalizing one of the student
effects. Consistent with the standard VAM3 model, I assume that the coefficient on unobserved student
heterogeneity is 1 for all grades.
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For a sample containing J students and a total of n test score gain observations, the
cluster-robust variance estimator, adjusted for the number of clusters and sample size,
is given by

ˆVar[β̂] =
(

J

J − 1
× n

n− k

)[
(X ′X)−1 ×

J∑
j=1

(u′
j × uj)× (X ′X)−1

]
�

where uj = ∑
g eg ∗ xg, eg are the residuals for student j across multiple grades g, and

X is an n × k matrix of dummy variables for all of the student and teacher effects. The
difficulty in generating both the asymptotic covariance matrix and its inverse is the sheer
size of X , which will necessarily contain thousands of columns, one for each teacher and
student in the sample. However, limiting the sample to those students who remain in the
same school makes it possible to generate an estimate of the asymptotic variance and
its inverse rather simply.

Because each school is self-contained, the estimated teacher and student effects are
independent across schools, implying that the asymptotic variance matrix will be block
diagonal, with each block representing a separate school. Thus, I can construct an esti-
mate of the overall asymptotic variance by combining each school-specific asymptotic
variance matrix.11 The inverse of the components related to the future teacher effects
can be constructed in a similar vein, since the inverse of a block diagonal matrix is also
a block diagonal matrix. Note that when constructing the asymptotic variance matrix at
the school level, it is necessary to adjust using the total number of clusters (J) and the
total number of observations and parameters (n and k) across all schools.

While the above approach avoids utilization of the optimal minimum distance esti-
mator, there are still concerns regarding construction of the cluster-robust Wald statistic
when the effective sample size is small. There exists ample Monte Carlo evidence to sug-
gest that robust estimators of the variance matrix perform poorly in small samples.12 In
the data Rothstein utilized for estimation, teachers have on average only 11 associated
test score observations. Thus, there is again concern that the tests based on the cluster-
robust Wald statistic will be poorly sized. Utilizing a Wald statistic based on the assump-
tion of homoskedasticity is also likely to yield poorly sized tests, since the test score gain
residuals are likely to be correlated at the student level.

Although the focus of this paper is on VAM3, it is worth pointing out that the inac-
curacy of robust variance estimators when working with small samples will also impact
Rothstein’s proposed tests for VAM1 and VAM2. Take, for example, the falsification test
for VAM1, which is built on the same idea as the test for VAM3. Conditional on the fourth
grade teacher assignment, the fifth grade teacher should have no impact on the fourth
grade gain. Implementing the test is straightforward, since VAM1 assumes that there is
no unobserved student heterogeneity. Simply regress fourth grade gains on indicators
for the fourth grade teacher and the future fifth grade teacher, and test whether the fifth

11This is quite similar to methodology employed by Rothstein when generating the variance–covariance
matrix for the estimates of the fifth grade teachers on the third and fourth grade score. See Appendix B.3 in
Rothstein (2010) for further details.

12See MacKinnon and White (1985) and Kezdi (2004) as examples.
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grade teacher effects are jointly equal to zero. The question is, which test statistic is ap-
propriate? With small samples, there is a concern that a heteroskedastic robust test will
perform poorly.13

2.2.2 Examining test score levels As Section 3 will show, the test for conditional strict
exogeneity based on the cluster-robust Wald statistic significantly outperforms the test
originally proposed by Rothstein. However, for sample sizes likely to be encountered
in practice, the test remains undersized, likely a result of the inaccuracy in the cluster-
robust estimate of the variance matrix. In this section, I propose a test that has the po-
tential to perform well regardless of sample size by eliminating the most obvious source
of heteroskedasticity: the correlation in gain score residuals at the student level.

Consider the gain score equation of VAM3, as illustrated in Equation (6). Underlying
this model of test score gains is the equation for test score levels,

Aig = τgμi +
g∑

h=1

βhgc(i�h) + εig� (7)

where I exclude the potential effect of future teachers. Notice that εig now only appears
in the grade g outcome, eliminating the most obvious source of clustering from the
model. As a result, it may now be possible to construct a falsification test for VAM3 that
relies on the assumption of homoskedasticity, avoiding the need to estimate a robust
variance matrix.14

However, it is not obvious how to estimate the parameters of Equation (7) or
the corresponding homoskedastic variance matrix. The school-by-school approach
is no longer applicable, since there now exist parameters that are common across
schools, τg.15 A direct approach is also infeasible, since there are an enormous number
of fixed effects to estimate. Arcidiacono, Foster, Goodpaster, and Kinsler (2012) demon-
strated that there is a rather simple estimation technique that can easily deal with the
computational complexity inherent in Equation (7).16 The basic idea is to estimate the

13In the online Appendix to his paper, Rothstein performed a sequence of Monte Carlo experiments
that show that VAM1 and VAM2 are in fact missized in small samples. While the bias in his Monte Carlo
exercises is mild, I find that it can be quite large if the data generating process is altered slightly. I discuss
the performance of VAM1 and VAM2 further in Section 3.2.

14Of course, it is still possible that the variance of εig varies in the population and/or that εig and εig−1

are correlated conditional on the student fixed effects. I investigate the sensitivity of the proposed test in
the next section.

15The grade-specific coefficients on student ability are not all identified. However, for the proposed levels
model to be consistent with a growth model that contains student fixed effects, the impact of student ability
must vary across grades. In practice, I capture this by normalizing τ2 = 1 and setting τg for g > 2 such that
τg − τg−1 = γ − 1, where γ is estimated within the model. This essentially assumes that student ability has
a constant effect on test score growth. This is the standard assumption in growth models that allow for
unobserved student heterogeneity.

16Similar estimation techniques have been proposed in Abowd, Creecy, and Kramarz (2002), Guimaraes
and Portugal (2010), and Kramarz, Machin, and Ouazad (2008). See Smyth (1996) for a review of common
iterative estimation methods.
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model iteratively, where each step estimates a portion of the parameters, conditional on
the current values of all the other parameters.17

To illustrate the estimation method, consider the achievement level formulation
given by Equation (7). Estimation would start with an initial guess of the parameters,
μ0
i , β0

ggc(i�g), and τ0
g, with the qth iteration consisting of the following steps:

Step 1. Update μ
q
i conditional on β

q−1
ggc(i�g) and τ

q−1
g .

Step 2. Update β
q
ggc(i�g) conditional on μ

q
i and τ

q−1
g .

Step 3. Estimate τ
q
g conditional on μ

q
i and β

q
ggc(i�g).

The updating equations for each vector of parameters are derived from the first order
conditions of the least squares problem. Precise updating equations are included in
Appendix A for the case where test scores are available for grades 2–5. At each step of
the estimation procedure, the sum of the squared residuals is minimized conditional on
the other parameter values. Iteration continues until the parameters converge, at which
point the parameters will be identical to those that would be obtained by minimizing
the least squares problem over the entire parameter space in one step.

Testing for strict exogeneity using the above technique is rather straightforward.
First, estimate Equation (7) using the iterative methodology, restricting the impact of
future teachers to zero. Then estimate an unrestricted version of Equation (7) that al-
lows future teacher effects to enter the achievement equation. The unrestricted model
is given by

Aig = τgμi +
g+1∑
h=1

βhgc(i�h) + εig	 (8)

The iterative estimation methodology remains the same, except that additional steps
need to be added so as to update the effect of the grade g + 1 teacher on the grade g

score. Finally, perform a simple test using the F statistic given by

F = (R2
u −R2

r )(n− k)

(1 −R2
u)J

� (9)

where R2
u and R2

r denote the fits of the unrestricted and restricted model, respectively,
n− k is the model degrees of freedom, and J is the number of restrictions.18

In addition to the potential for better performance in small samples, there are a
number of advantages to the testing approach utilizing the iterative estimation strat-
egy. First, the estimation sample does not need to be limited to students who remain in

17Recently, a number of canned STATA routines have been developed for estimating linear models that
contain two high-dimensional vectors of fixed effects (see McCaffrey, Lockwood, Mihaly, and Sass (2010)).
I do not pursue these methods here, since in some of the models to follow, there will be as many as four high-
dimensional fixed effect vectors, as well as interactions between the fixed effects and other parameters of
interest.

18For the proposed F-test to work well, εig must be both homoskedastic and normally distributed. The
distribution of standardized student test scores in North Carolina is well approximated by a normal distri-
bution.
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the same school. If school switching is prominent and these students tend to be sorted
differently, then excluding them can potentially bias the results of the test.19 Second, it is
much simpler to incorporate additional regressors to capture other observed student or
classroom factors that are changing over time. For example, a student’s free lunch status
might change, affecting both academic performance and sorting across classrooms. If
the effect of these observed attributes is common across schools as is typically assumed,
then estimating school-by-school is not possible.

3. Monte Carlo simulations of VAM3 falsification tests

Section 2 presents three alternative falsification tests for VAM3, a model that is only valid
under the assumption that students are randomly assigned to classrooms conditional
on unobserved student ability. The first test, originally proposed by Rothstein, utilizes
an optimal minimum distance estimator to test the restriction that future teachers have
identical effects across earlier grades when unobserved student ability is excluded. The
second test utilizes a cluster-robust Wald statistic to test the restriction that future teach-
ers have no effect conditional on unobserved student ability. There is a concern that
both tests will perform poorly when teachers are observed with only a handful of stu-
dents, a feature that is common when evaluating teacher effectiveness using student
test scores. The final statistical test considered will likely perform better in small sam-
ples; however, it requires additional assumptions. The goal of this section is to investi-
gate how well Rothstein’s test and the alternative tests proposed in the previous section
detect violations of conditional strict exogeneity under various sample sizes and sorting
assumptions.

Prior to discussing how sample size and selection vary across the simulations, it is
useful to consider what is common across the various Monte Carlo exercises. For each
simulation, I assume that student test scores and classroom assignments are available
from second grade through fifth grade. In keeping with the sample restrictions necessary
to estimate the model, students remain in the same school across the four observations.
Student test scores are determined according to the simple production function

Aigs = τgμi +
g∑

h=2

βhgc(i�h) + ρgκs + εig for g = 2�3�4�5� (10)

where κs is the school-specific contribution to test scores, which is allowed to vary by
grade.20 Because I will eventually estimate gains in student test scores, I make a num-
ber of simplifying assumptions. First, I restrict βhgc(i�h) = βhhc(i�h), requiring the effect of
being in classroom c in grade h on the grade g test score to equal the effect of being in
classroom c in grade h on the grade h test score. In other words, teacher effects persist

19Allowing for switching across schools complicates identification, since it is no longer necessary to nor-
malize one teacher effect per school grade. Thus, calculating the degrees of freedom and the number of
restrictions can be cumbersome.

20I include a school effect since Rothstein included one in his original model.
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with no decay.21 Second, I restrict τg+1 = τg + 1 and ρg+1 = ρg + 1. First-differencing the
production function outlined in Equation (10), imposing the aforementioned restric-
tions, yields


Aigs = μi +βggc(i�g) + κs + εig − εig−1 for g = 3�4�5	 (11)

While the restrictions on τ and βhgc(i�h) make data generation and estimation slightly
easier, the production function illustrated in Equation (11) is nested within the origi-
nal production function hypothesized by Rothstein. Thus, the proposed tests for strict
exogeneity should not be affected by these restrictions.

I choose the standard deviation of each of the model components in an effort to
yield results that mimic those obtained when using the estimation sample from North
Carolina. In particular, I want the estimated standard deviation of teacher quality, the fit
of the achievement regressions, and the correlations in test score gains from the Monte
Carlo experiments to be similar in magnitude to those found in the data. In that vein,
I assume that

μi ∼N(0�0	152)�

βggc(i�g) ∼N(0�0	152)�

κs ∼N(0�0	252)�

and that εig ∼ N(0�0	52) and E(εigεig′) = 0 for g′ �= g.22 I examine the robustness of the
results to these assumptions and the assumptions regarding the sorting of students to
classrooms (discussed below) at the end of Section 3 and in Appendix B.

To close the model, I need to specify how students are assigned to classrooms, since
the sorting method will determine whether the strict exogeneity test should reject or
fail to reject the null hypothesis. I consider two assignment rules: sorting on permanent
ability (μi), and sorting on ability and the lagged test score shock (μi and εig−1). In each
case, the sorting is not perfect, as there is also a random sorting shock in each period.
This ensures that there will be significant classroom switching across grades, a condition
necessary for identification. The formulas for the two sorting scenarios are, respectively,

rankig = 0	6μi + 0	15 ∗N(0�1)� (12)

rankig = 0	3μi + 0	3εig−1 + 0	5 ∗N(0�1)	 (13)

Students are then assigned to classrooms within schools according to their rank, with the
first 20 students slotted in the first class and so on. For the case where students are sorted
based on their lagged residuals, I choose the coefficient on the lagged residual such that

21It is possible to relax this restriction when using Rothstein’s original testing approach or the approach
that utilizes level equations. See Kinsler (2012) for an example of how to incorporate varying degrees of
teacher decay in the levels framework.

22Under this data generating process, the estimated adjusted standard deviation of the grade g teacher
on the grade g gain is 0.22, the adjusted R-square is 0.16, and the 1- and 2-year correlations in test score
gains are −0.30 and 0.09. The corresponding values in the North Carolina data are approximately 0.20, 0.13,
−0.35, and 0.02.
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the estimated standard deviations of the future teacher effects are similar in magnitude
to what is estimated in the actual data. For all simulations, students and teachers are
randomly assigned to schools, and teachers are randomly assigned to classrooms.23 The
first scenario, sorting students by permanent ability, clearly satisfies the strict exogeneity
assumption. However, the second sorting scenario fails the strict exogeneity assumption
since the fifth grade teacher assignment depends directly on the unobserved achieve-
ment shock in the previous grade.

I simulate student achievement outcomes and teacher assignments for each sorting
scenario described above using four different sample sizes. In all four settings, I assume
that there are 300 schools and 3 teachers per grade within each school. The crucial pa-
rameter is then the number of student observations per teacher, which will obviously
also determine the overall sample size. I set the number of observations per teacher
equal to 10, 20, 50, and 100 to illustrate how the test performs when the sample is simi-
lar in size to (i) the actual sample utilized by Rothstein, (ii) a single student cohort under
ideal conditions, (iii) multiple student cohorts, and (iv) a sample for which the mini-
mum chi-square estimator should perform as expected. Class sizes typically range be-
tween 20 and 30 students, thus under ideal conditions, meaning few missing test scores
and school switches, a researcher might have 20 observations per teacher on average.
If a researcher has access to test scores and classroom assignments across multiple co-
horts, the average number of student observations per teacher could potentially climb
close to 50.

3.1 Rothstein’s falsification test

For each simulation, I estimate a version of Equation (11) that replaces the student fixed
effects with teacher assignments for grades 3, 4, and 5. I estimate the gain score equa-
tions for grades 3 and 4 separately, and then calculate D, the statistic for testing whether
strict exogeneity holds. I then compare D to the 95th percentile of the appropriate chi-
square distribution, the critical value for a test with a significance level of 5%.24 Table 1
reports the adjusted standard deviation of the teacher effects, fit of the regression, and
rejection probability averaged across simulations. The table is split into two panels, re-
flecting the different sorting mechanisms.

As the first panel illustrates, the test for strict exogeneity based on the minimum
chi-square estimator performs extremely poorly when the null hypothesis is in fact true.
With only 10 observations per teacher, the null hypothesis is rejected in 96% of the simu-
lations. Increasing the sample size to 20 observations per teacher improves performance
significantly; however, the null hypothesis is still rejected in almost half of the simu-
lations. At a sample size of 50 students per teacher, the size of the test approaches its
asymptotic value. Finally, with 100 student observations per teacher, the rejection prob-
ability is the expected 5%. The top panel of Table 8 below contains Rothstein’s results of

23The results are in no way sensitive to these assumptions.
24The degrees of freedom is 599 for all of the sample sizes since the number of teachers does not change

across samples. For each Monte Carlo experiment, I estimate 600 future teacher effects and one parameter
that pins down the relative importance of ability across grades 3 and 4.
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Table 1. Testing for strict exogeneity using the minimum distance estimator.a

Obs. per Rejection Adj. R2 Adj. R2

Teacher Probability Adj. SD(Π̂53) Adj. SD(Π̂54) 
Ai3 
Ai4

Sorting on Time Invariant Ability ONLY
10 0	97 0	16 0	16 0	15 0	15
20 0	49 0	11 0	11 0	16 0	17
50 0	11 0	08 0	08 0	15 0	16

100 0	05 0	07 0	07 0	16 0	16

Sorting on Ability and Lagged Residual
10 0	97 0	14 0	22 0	19 0	19
20 0	47 0	10 0	19 0	20 0	20
50 0	14 0	06 0	18 0	19 0	19

100 0	05 0	04 0	18 0	20 0	20

aReported results are averages over 250 simulations for each sample size and sorting scenario. Each simulation contains
300 schools and 900 fifth grade teachers. Test scores are generated according to Equation (10), and the underlying distributions
of teacher quality and student ability are also provided in the text. For each simulation, students are assigned to classrooms
based on either their fixed ability or their fixed ability and their lagged test score residual. Only in the latter case should the test
for conditional strict exogeneity fail. The rejection probability is the proportion of the 250 simulations for which conditional
strict exogeneity is rejected using the minimum chi-square estimator as outlined in the text.

the falsification test for VAM3 using a cohort of North Carolina public school students.
Note that the model fit and adjusted standard deviations (SD) are quite similar in mag-
nitude to those reported in Table 1.

The poor performance of the minimum chi-square estimator in the first panel of Ta-
ble 1 likely stems from two sources. The first is that the estimates of the teacher effects
themselves, Π̂hg and Π̂hg−1, are inconsistent and likely extremely noisy, making it diffi-
cult to compare them with one another. The weighting matrix attempts to account for
this by weighting the estimates according to their heteroskedasticity-robust sampling
variance. However, this weighting scheme further exacerbates the problem, since it has
also been documented that the heteroskedasticity-robust variance matrix estimator of
White (1980) performs poorly in small samples.25 In fact, if I calculate Ŵ assuming that
the errors in the third and fourth grade gain score equations are homoskedastic, then the
rejection probabilities in the top panel decrease to 0.43, 0.15, 0.07, and 0.04, respectively.

Given the high rejection probability when the null hypothesis is in fact true, one
would expect the test to perform well when the null hypothesis is actually false. How-
ever, the second panel of Table 1 illustrates that this is generally not the case. For small
samples (10 observations per student), the test performs well, rejecting the null when it
is actually false in 97% of the simulations. When the sample size increases, the perfor-
mance of the test actually deteriorates.

The intuition for deterioration in performance is that r, the ratio of the importance

of individual ability in grade g relative to grade g − 1, 
τg

τg−1

, adjusts to improbable val-

ues, making it appear as if the restrictions implied by strict exogeneity hold. When stu-
dents are assigned to their classroom based on ability and the previous year’s transitory

25Following Davidson and MacKinnon (1993), I adjust the estimated robust variance matrix by n
n−k to

minimize the small sample biases.
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test score shock, the effect of the fifth grade teacher on the third grade score will be
very small since the fifth grade classroom assignment contains little information about
individual ability and no information about the transitory performance shock in third
grade. However, the effect of the fifth grade teacher on the fourth grade score will be
very large, since the fifth grade classroom assignment contains information about both
ability and the fourth grade transitory shock. Given that the variance of the transitory
shocks is quite high, Π̂54 will dwarf Π̂53.

The minimum chi-square estimator will account for this pattern of coefficients by
setting r to unrealistically high numbers, potentially on the order of 25 or more. This
would imply that student ability is 25 times more important in explaining 
Ai4 relative
to 
Ai3. When this occurs, it makes it appear as if the conditions necessary for strict
exogeneity hold, since the π53 are all close to zero and can be easily scaled to make them

appear similar to the π54. The problem can be ameliorated by restricting 
τg

τg−1

to take

on reasonable values. For example, if I restrict 
τg

τg−1

= 1, I reject the null hypothesis of

strict exogeneity with probability 1 when students are sorted based on their lagged test
score shock. However, overrejection will remain an issue in small samples regardless of
the restrictions imposed on r.

3.2 Extending Rothstein’s falsification test

The concern that the test for conditional strict exogeneity based on the minimum dis-
tance estimator would perform poorly in small samples appears to be valid. However, by
estimating unobserved student heterogeneity in test score gains directly, the minimum
distance estimator can be completely avoided. In this case, I estimate Equation (11)
school-by-school, adding an additional set of teacher effects for the one grade ahead
teacher. I then construct the cluster-robust Wald statistic associated with the restriction
that the future teacher effects are jointly equal to zero. Finally, I compare the test statistic
to the 95th percentile of the appropriate chi-square distribution.26

The results of the testing procedure, along with the adjusted standard deviation of
the future teacher effects, are shown in Table 2. In addition to the cluster-robust Wald
statistic, I also tested the restriction that the future teacher effects are zero using a ho-
moskedastic Wald statistic. When the null hypothesis is in fact true, both tests fail to re-
ject in all simulations. If the test were appropriately sized, it should reject approximately
5% of the time. When the null hypothesis is in fact false, both tests significantly underre-
ject in small samples. The bias in the test using the cluster-robust Wald statistic is the re-
sult of biases in the estimated variance matrix resulting from the small sample size. The
test based on the homoskedastic Wald statistic is also biased since the homoskedastic
variance matrix does not account for the correlation in residuals within students.27

26The number of restrictions in this case is 1200. There are 300 schools and 4 estimated future teacher
effects in each school. Note that one of the future teachers in third and fourth grade within each school is
not identified.

27It is possible to generate test score gains where there is no within-student correlation in residuals.
Simply replace the independent and identically distributed (i.i.d.) test score level shocks with i.i.d. test score
growth shocks. The test based on the homoskedastic Wald statistic is appropriately sized in this case. Note
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Table 2. Testing for strict exogeneity using the cluster-robust Wald statistic.a

Obs. per Rejection Prob. Rejection Prob. Adj. SD of Future
Teacher Cluster Robust Homoskedastic Teacher Effects R2

Sorting on Time Invariant Ability ONLY
10 0 0 0	07 0	40
20 0 0 0	03 0	35
50 0 0 0	02 0	30

100 0 0 0	01 0	28

Sorting on Ability and Lagged Residual
10 0	53 0	71 0	17 0	44
20 0	46 1 0	16 0	37
50 1 1 0	16 0	34

100 1 1 0	16 0	33

aReported results are averages over 250 simulations for each sample size and sorting scenario. Each simulation contains
300 schools and 900 fifth grade teachers. Test scores are generated according to Equation (10), and the underlying distributions
of teacher quality and student ability are also provided in the text. For each simulation, students are assigned to classrooms
based on either their fixed ability or their fixed ability and their lagged test score residual. Only in the latter case should the
test for conditional strict exogeneity fail. The two rejection probabilities are the proportion of the 250 simulations for which
conditional strict exogeneity is rejected using a cluster-robust and homoskedastic Wald statistic as outlined in the text.

As noted earlier, the inaccuracies in the cluster-robust variance estimator are also
likely to impact the small sample performance of Rothstein’s falsification tests for VAM1
and VAM2. In fact, Rothstein showed in an online appendix that the tests for VAM1 and
VAM2 over-reject slightly when teachers are observed with 20 students.28 However, the
degree to which the tests fail is quite sensitive to the choices made regarding the data
generating process. Take, for example, the test for VAM1. If I simply tweak the data gen-
erating process discussed at the beginning of Section 3 such that there is no student
heterogeneity in test score growth and implement Rothstein’s robust score test for VAM1
that includes controls for the current teacher, I reject the null hypothesis when it is true
25% of the time. Note that if I use the more standard heteroskedasticity-robust Wald test,
I reject close to 50% of the time.29 Thus, the choice of test statistic is crucial for making
correct inference when dealing with small effective samples. This is true when testing
VAM1, VAM2, or VAM3.

3.3 Falsification test using the underlying levels equation

Extending Rothstein’s original test to avoid using the minimum distance estimator yields
an improvement in detecting conditional strict exogeneity, particularly with few obser-
vations per teacher. However, the test is still not appropriately sized when the number
of observations per teacher is small. In this section, I examine how a test built off the
underlying levels equation performs.

that the correlation in fourth and fifth grade test score gains in Rothstein’s North Carolina data is −0.41,
suggesting that i.i.d. test score level shocks are a more accurate depiction of the true underlying production
function.

28The tests reject the null 8–9% of the time instead of the expected 5%.
29If I use a homoskedastic Wald test, I reject approximately 5% of the time.
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Rather than attempt to estimate the gain score model, I instead estimate the un-
derlying levels model given by Equation (10). However, estimating Equation (10) as it
is written is not possible without further restrictions. The grade-specific coefficients on
student ability and school inputs (τg and ρg) are not identified. However, to be consis-
tent with a growth model that contains both student and school fixed effects, the impact
of student and school heterogeneity must vary across grades. To capture this, I normal-
ize τ2 = 1 and set τg for g > 2 such that τg − τg−1 = γ − 1, where γ is estimated within
the model.30 This essentially assumes that student ability has a constant effect on test
score growth and is identical to the implicit assumption in standard test score growth
models that incorporate unobserved student heterogeneity. I restrict ρg similarly and,
for ease of estimation, also assume that the heterogeneity in the school effect across
grades follows the same pattern as that of student ability.31 In implementation, I further
assume that the second grade test score is only a function of student ability and the test
score shock.32 This is consistent with the North Carolina data since the second grade
score is actually a pre-test taken at the beginning of third grade. It is possible to include
school and teacher components for the first test score observation; however, additional
normalizations would be required.

The results of the simulations are illustrated in Table 3. The test of conditional strict
exogeneity based on the simple F statistic significantly outperforms both of the alter-
native tests.33 In the levels model, the null hypothesis that future teacher assignments

Table 3. Testing for strict exogeneity using the underlying levels model.a

Obs. per Rejection
Teacher Probability R2

u R2
r

Sorting on Time Invariant Ability ONLY
10 0	06 0	764 0	751
20 0	04 0	735 0	728
50 0	06 0	733 0	731

Sorting on Ability and Lagged Residual
10 1 0	774 0	759
20 1 0	745 0	735
50 1 0	742 0	736

aReported results are averages over 250 simulations for each sample size and sorting scenario. Each simulation contains
300 schools and 900 fifth grade teachers. Test scores are generated according to Equation (10) with γ = 2. For each simulation,
students are assigned to classrooms based on either their fixed ability or their fixed ability and their lagged test score residual.
Only in the latter case should the test for conditional strict exogeneity fail. The rejection probability is the proportion of the 250
simulations for which conditional strict exogeneity is rejected using the F-test as outlined in the text.

30In this case, γ is equal to 2 since I set τ2 = 1 and τg+1 = τg + 1 for g > 2. Note that the structure of the
τg ’s is the same across all testing permutations.

31This restriction can be relaxed in practice.
32The performance of the other tests is unaffected by this small change in the data generating process.

Results are available on request.
33Appendix B contains additional comparisons of the three tests for conditional strict exogeneity. These

additional comparisons allow for varying levels of dynamic sorting and alter the relative importance of
student ability, teacher ability, and the idiosyncratic shock for test scores. The results in Appendix B are
consistent with results obtained under the baseline data generating process.
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contain no grade relevant information is rejected approximately 5% of the time, as ex-
pected. When students are sorted into classrooms based on their lagged residual, the
test based on the F statistic constructed from the levels model rejects the null hypothe-
sis 100% of the time.

The fact that the proposed F-test works well when compared with the two other
approaches is not surprising, since in the data generating process I have assumed that
the test score residuals are both homoskedastic and normally distributed. In addition,
the tests based on the cluster-robust Wald statistic and the F statistic make additional
assumptions regarding the underlying data generating process as compared to Roth-
stein’s original test for VAM3. In particular, both tests assume that past teacher inputs
persist indefinitely and that student ability has a constant effect on test score growth.34

To investigate the sensitivity of the proposed tests to these assumptions, I alter the data
generating process in a variety of ways and reassess test performance.

Table 4 contains the results of the sensitivity analysis. The first column describes
how the data generating process (DGP) was altered, and the second and third columns
contain the rejection rate across 250 simulations using the F-test and the cluster-robust
Wald test, respectively. For all of the simulations in the sensitivity analysis I generate the
data such that we observe 10 student observations per teacher and students are sorted
into classrooms based solely on unobserved ability. Thus, if the test were correctly sized
the rejection rate should be 5%.

The first four modification rows of Table 4 explore how sensitive the tests are to the
functional specification of the levels model. In particular, the results in the first modifi-
cation row illustrate how sensitive the F statistic is to the assumption that student and

Table 4. Sensitivity of tests to persistence and homoskedasticity.a

Rejection Rates

F-Test Cluster-Robust Wald Test

Baseline 0	06 0

DGP modification
Increasing importance of student and school components 0	10 0
Differing weights on student and school component 0	07 0
Teacher inputs decay at 50% 0	11 0	02
Teacher inputs decay at 100% 0	28 0	18
Student-level heteroskedasticity 0	05 0	01
Teacher-level heteroskedasticity, balanced panel 0	05 0
Teacher-level heteroskedasticity, unbalanced panel 0	05 0
Teacher-level heteroskedasticity related to class size 0	16 0	03

aReported results are averages over 250 simulations. The baseline results are taken from the first row of results in Tables 2
and 3. The first column indicates how the DGP was altered. All simulations are executed assuming each teacher is observed with
10 students and that students are assigned to classes based solely on unobserved ability. Thus, we would expect the rejection
rate to equal 0.05.

34While Rothstein’s test for VAM3 does not impose the assumption that student ability has a constant
effect on test score growth, the results from Section 3.1 suggests that this is an assumption that should be
imposed.
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school unobserved effects have a constant impact on test score growth.35 In the sec-
ond modification row, I relax the assumption that the weights on the student and school
components vary across grades in the same manner.36 The third and fourth modifica-
tion rows contain results when I relax the assumption of no decay in past teacher inputs.
The rejection rate increases in all four cases, as now there are components in the resid-
ual that may be correlated with future teacher assignments. Aside from the scenario that
assumes teacher effects decay completely, the F-test continues to perform rather well,
with a slight tendency to overreject. The cluster-robust Wald test underrejects in all cases
except when teacher inputs decay entirely. The assumption regarding the rate at which
teacher inputs persist is clearly paramount, an issue I return to when testing VAMs using
the North Carolina data.

The final four rows of Table 4 explore how various forms of heteroskedasticity im-
pact the accuracy of the proposed tests for conditional strict exogeneity. I first consider
student-level heteroskedasticity, allowing the variance of the test score residual to vary
with student ability.37 The overall size of each test is unaffected. I then allow for het-
eroskedasticity at the teacher level in both balanced and unbalanced settings. For the
unbalanced data, I allow the number of student observations per teacher to vary but
hold the mean at 10. Again, the overall size of each test is unaffected in the basic bal-
anced and unbalanced cases.38 However, when the variance of the test score residuals
is related directly to class size, the test based on the F statistic significantly overrejects
the null hypothesis.39 As the final row of Table 4 shows, the rejection rate increases to
16%. While the overrejection is significant, the amount of heteroskedasticity is also sig-
nificant40 and it is directly related to the number of observations available per teacher.
Note that the Wald test performs better in this extreme case.

Finally, an interesting result that emerges from the Monte Carlo exercises is that the
correlation between the estimates of teacher effectiveness and the true effectiveness
measures are quite similar regardless of whether students are sorted based solely on

35Instead, I assume that the coefficients on student ability in second, third, fourth, and fifth grade are
1, 1.5, 2.5, and 4. The coefficient on the school effects in third, fourth, and fifth grade are 1, 1.5, and 2.5.
Thus I maintain the assumption that the heterogeneity in the school effect across grades follows the same
pattern as that of student ability.

36The coefficients on student ability in second, third, fourth, and fifth grade are 1, 2, 3, and 4. The coeffi-
cients on the school effects in third, fourth, and fifth grade are 1, 1.25, and 1.5.

37In the original Monte Carlo experiments, εig was normally distributed with mean 0 and variance equal
to 0	52. Here, the variance of εig is given by (0	5 ∗ (1 − μi))

2, where μi is student ability. Recall that μi ∼
N (0�0	152).

38In both cases, the variance of the test score residual is related to “current” teacher ability according to

(0	5 ∗ (1 + βggc(i�g)

2 ))2. Recall that βggc(i�g) ∼ N (0�0	152).
39The variance of εig is now given by (0	5 ∗ (1 − class size−10

22	85 ))2, where the mean class size is 10 with a
standard deviation equal to approximately 2. The overrejection is a well known result in the analysis of
variance literature. Heteroskedastic robust tests have been developed for unbalanced one- and two-way
tests; however, the achievement model considered here is a nested, three-way unbalanced model. To my
knowledge, no generalized correction is available.

40The variance of the residuals in the smallest classes is four times as large as the variance of the residuals
in the largest classes.
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ability or sorted on ability and the lagged residual.41 With 10 observations per teacher,
the correlations are 0.48 and 0.47, respectively, and with 20 observations per teacher,
the correlations are 0.61 and 0.57, respectively. Thus, the rejected models have almost
as much information about underlying teacher effectiveness as the nonrejected mod-
els. It is possible to weaken the correlations in the dynamic sorting model by ratcheting
up the amount of sorting on the lagged residual. However, an interesting by-product of
this is that both the standard deviation of future teacher effects and the fit of the model
increase drastically. In general, these numbers would not be in line with the results ob-
tained using the North Carolina sample.

4. Reassessing the validity of VAMs in North Carolina

Since Rothstein’s test for VAM3 is likely to reject regardless of the underlying data gen-
erating process, I return to the same cohort of North Carolina students to implement a
more accurate test for conditional strict exogeneity. I utilize test score and classroom as-
signment data for the cohort of North Carolina public school students who were in fifth
grade in 2001. I omit the details governing the construction of the estimation samples
since Rothstein lays out rather clearly in both the text and the appendix the steps taken
in cleaning the data. However, it is important to note that my estimation samples are
significantly larger despite following the text as precisely as possible.

Table 5 presents the summary statistics from Rothstein’s estimation samples and the
summary statistics for my estimation samples. Despite the significant sample size dif-
ferences, the summary statistics are extremely similar across the two data sets. In par-
ticular, the test score distributions appear almost identical across the two samples.

As an additional check on the similarity of the two samples, I replicate Rothstein’s
tests for VAM1 and VAM3, the results of which are shown in Tables 6 and 7. Table 6
presents both Rothstein’s results (top panel) and my results (bottom panel) for the spec-
ification outlined in VAM1. The various columns reflect estimates of the impact of the
fourth and fifth grade teachers on the fourth and fifth grade gain scores. Notice that my
estimates of the adjusted standard deviations of the teacher fixed effects and R2 mea-
sures are almost identical to Rothstein’s results.42 Similar to Rothstein, I find that fifth
grade teachers appear to have a significant impact on test score gains in fourth grade.

The results of VAM3 and the accompanying strict exogeneity test are illustrated in Ta-
ble 7. The top panel again lists Rothstein’s findings, while the bottom panel illustrates my
estimates and tests of the model. Again, the standard deviation of the estimated teacher

41Rothstein also found that the bias in the estimated teacher effects may be quite small when students
are dynamically sorted. He examined the bias in teacher estimates further in Rothstein (2009).

42For each set of estimated teacher effects, I report an unadjusted and an adjusted standard deviation.
The unadjusted measure is derived from a simple weighted variance of the teacher effect estimates, where
the weights are determined by class size. When calculating this variance, an adjustment is made for the fact
that one teacher in each school–grade combination must be normalized to zero. The adjusted standard
deviation accounts for the sampling error in each of the teacher effect estimates by subtracting the average
variance of the teacher effect estimates, again weighting by class size. See Appendix B.2 of Rothstein for
further details.
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Table 5. Summary statistics.a

Rothstein Table Replication Table

Base Restricted Base Restricted
(1) (2) (3) (4)

No. of students 60,740 23,415 64,367 29,490
No. of schools 868 598 898 684

1 fifth grade teacher 0 0 0 0
2 fifth grade teachers 207 122 199 134
3–5 fifth grade teachers 602 440 638 506
>5 fifth grade teachers 59 36 61 44

No. of fifth grade classrooms w/ valid teacher 3040 2116 3170 2447
Complete test score record: G4–5 99% 100% 100% 100%

G3–5 91% 100% 93% 100%
G2–5 80% 100% 82% 100%

Changed schools between G3 and G5 27% 0% 26% 0%
Valid teacher assignments in grade 3 78% 100% 85% 100%

grade 4 86% 100% 87% 100%
grade 5 100% 100% 100% 100%

Math scores: third grade (beginning of year) 0	14 0	20 0	10 0	16
(0	96) (0	96) (0	95) (0	96)

third grade (end of year) 0	11 0	19 0	12 0	20
(0	94) (0	91) (0	93) (0	91)

fourth grade (end of year) 0	07 0	20 0	09 0	21
(0	97) (0	93) (0	96) (0	93)

fifth grade (end of year) 0	09 0	20 0	08 0	19
(0	98) (0	94) (0	99) (0	98)

third grade gain −0	02 0	00 0	02 0	04
(0	69) (0	69) (0	69) (0	69)

fourth grade gain −0	01 0	01 −0	01 0	01
(0	58) (0	56) (0	57) (0	56)

fifth grade gain 0	01 −0	01 −0	01 −0	02
(0	55) (0	53) (0	55) (0	54)

aUnit of observation is a North Carolina public school student who attended fifth grade in 2001. Columns 1 and 2 are taken
from Table 1 in Rothstein (2010). Columns 3 and 4 are constructed by the author. Valid teachers are those identified in the
data as teaching a self-contained class for the relevant grade in the relevant year. All scores are standardized at the grade–year
level. A complete test score record indicates no missing test scores. The restricted sample includes only those students with a
complete test score record, with a valid teacher in every grade, and who remained in the same school between third and fifth
grade.

fixed effects and the R2 measures are extremely similar across the two samples. In ad-
dition, the outcomes of the strict exogeneity tests are almost identical. I easily reject the
strict exogeneity assumption for both math and reading test scores, and find ratios for
the effect of ability in grade 4 relative to grade 3 similar to Rothstein.

I now reevaluate the validity of VAM3 on the same estimation sample utilizing the
F-test proposed in Section 2.43 The results of the F-test and the adjusted standard de-
viation of the estimated teacher effects are listed in Table 8. The p-values for the test of

43Rothstein’s original approach requires that students remain in the same school and have complete test
score records for grades 2–5. These restrictions are not necessary for the F-test. However, to make direct
comparisons, I maintain these assumptions.
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Table 6. Regression of gain scores on teacher indicators, VAM1.a

Fifth Grade Fourth Grade Fifth Grade Fourth Grade
Gain Gain Gain Gain

Math Reading Math Reading Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7) (8)

Teacher Coefficients—Rothstein
Fifth grade teachers

Unadjusted SD 0	179 0	160 0	134 0	142 0	197 0	181 0	151 0	168
Adjusted SD 0	149 0	113 0	077 0	084 0	163 0	126 0	090 0	105
p-value <0	001 <0	001 0	016 0	002 <0	001 <0	001 0	035 <0	001

Fourth grade teachers
Unadjusted SD 0	188 0	181 0	220 0	193
Adjusted SD 0	150 0	125 0	182 0	140
p-value <0	001 <0	001 <0	001 <0	001

R2 0	195 0	100 0	132 0	086 0	297 0	176 0	254 0	174
Adjusted R2 0	148 0	047 0	081 0	033 0	203 0	066 0	154 0	064

Teacher Coefficients—Replication
Fifth grade teachers

Unadjusted SD 0	179 0	156 0	132 0	137 0	198 0	174 0	149 0	156
Adjusted SD 0	150 0	111 0	077 0	078 0	163 0	118 0	085 0	084
p-value <0	001 <0	001 <0	001 0	025 <0	001 <0	001 <0	001 0	03

Fourth grade teachers
Unadjusted SD 0	186 0	175 0	218 0	188
Adjusted SD 0	149 0	118 0	181 0	133
p-value <0	001 <0	001 <0	001 <0	001

R2 0	203 0	100 0	130 0	083 0	300 0	172 0	252 0	167
Adjusted R2 0	158 0	050 0	081 0	031 0	211 0	067 0	156 0	061

aUnit of observation is student gain scores in fourth and fifth grade for the cohort of North Carolina public school students
who attended fifth grade in 2001. The top panel is taken directly from Table 3 in Rothstein (2010). The bottom panel is results
produced by the author. Dependent variables are as indicated at the top of each column. Regressions include school indicators,
fifth grade teacher indicators, and (in columns 5–8) fourth grade teacher indicators, with one teacher per school per grade
excluded. The p-values are for the test of the hypothesis that all teacher coefficients equal zero, using the heteroskedasticity-
robust score test proposed by Wooldridge (2010). Standard deviations are of teacher coefficients, normalized to have mean
zero at each school and weighted by the number of students taught. Adjusted standard deviations are computed to account
for sampling error in the teacher effect estimates. The sample for columns 1–4 includes students from the base sample with
nonmissing scores in each subject in grades 3–5. Columns 5–8 exclude students without valid fourth grade teacher matches
and those who switched schools between fourth and fifth grade.

whether the future teacher effects are jointly equal to zero are well below 0.05 for both
math and reading test score gains. Implementing the alternative falsification test alone
does not alter the basic finding that students appear to be sorted into classrooms based
on unobserved, time-varying inputs.

At this point, should we simply concede on trying to measure teacher quality us-
ing observed student test scores? I think the answer is no for two reasons. First, de-
spite the statistical rejection of VAM3, the extent of the bias may still be small. As dis-
cussed in the previous section, when students were sorted based on their lag test scores,
the correlation between the estimated teacher effects and the truth was only slightly
smaller than when students were sorted based strictly on ability. So while our estimates
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Table 7. Gain score specification with student fixed effects, VAM3.a

Math Reading

Third grade Fourth grade Third grade Fourth grade
(1) (2) (3) (4)

Unrestricted Model—Rothstein
Standard deviation of teacher effects, adjusted

Fifth grade teacher 0	135 0	099 0	144 0	123
Fourth grade teacher 0	136 0	193 0	160 0	163
Third grade teacher 0	228 0	166 0	183 0	145

Fit statistics
R2 0	314 0	376 0	245 0	284
Adjusted R2 0	129 0	209 0	042 0	092

Restricted Model—Optimal Minimum Distance
Ratio, effect on G4/effect on G3 0	14 1	17
Objective function 2136 2174
95% critical value 1684 1684
p-value <0	001 <0	001

Unrestricted Model—Replication
Standard deviation of teacher effects, adjusted

Fifth grade teacher 0	127 0	098 0	133 0	113
Fourth grade teacher 0	121 0	189 0	145 0	154
Third grade teacher 0	227 0	163 0	171 0	140

Fit Statistics
R2 0	305 0	371 0	237 0	273
Adjusted R2 0	128 0	211 0	042 0	089

Restricted Model—Optimal Minimum Distance
Ratio, effect on G4/effect on G3 0	23 1	11
Objective function 2233 2178
95% critical value 1813 1813
p-value <0	001 <0	001

aUnit of observation is student gain scores in third and fourth grade for the cohort of North Carolina public school students
who attended fifth grade in 2001. The top panel is taken directly from Table 5 in Rothstein (2010). The bottom panel is results
produced by the author. Students who switched schools between third and fifth grade, who are missing test scores in third
or fourth grade (or on the third grade beginning-of-year tests), or who lack valid teacher assignments in any grade 3–5 are
excluded. Schools with only one included teacher per grade or where teacher indicators are collinear across grades are also
excluded. Unrestricted Model reports estimates from a specification with school indicators and indicators for classrooms in
grades 3, 4, and 5. Restricted Model reports optimal minimum distance estimates obtained from the coefficients from the
unrestricted models for the third and fourth grade gains, excluding the largest class in each grade in each school. The restriction
is that the fourth grade effects are a scalar multiple of the third grade effects. The weighting matrix is the inverse of the robust
sampling variance–covariance matrix for the unrestricted estimates, allowing for cross-grade covariances.

of teacher value-added may be slightly flawed, they still likely contain important infor-
mation about teacher performance.

More important is the fact that VAM3 may be misspecified. A strong assumption
implicit in VAM3 is that past teacher inputs persist in perpetuity.44 As Table 4 indicates,
if this assumption is incorrect, the proposed F-test has a tendency to overreject the null

44Recent papers, such as Kinsler (2012) and Jacob, Lefgren, and Sims (2010), found strong evidence that
teacher inputs decay quite rapidly. In fact, Rothstein also found support for this in the penultimate section
of his paper.
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Table 8. Testing for strict exogeneity in the NC sample using the F-test.a

Math Reading

Teacher Coefficients Restricted Unrestricted Restricted Unrestricted

Third grade teachers on 3rd grade scores
Unadjusted SD 0	211 0	220 0	200 0	209
Adjusted SD 0	137 0	133 0	098 0	087

Fourth grade teachers on 3rd grade scores
Unadjusted SD 0	194 0	217
Adjusted SD 0	060 0	078

Fourth grade teachers on 4th grade scores
Unadjusted SD 0	171 0	228 0	162 0	232
Adjusted SD 0	117 0	120 0	095 0	104

Fifth grade teachers on 4th grade scores
Unadjusted SD 0	163 0	172
Adjusted SD 0	077 0	081

Fifth grade teachers on 5th grade scores
Unadjusted SD 0	194 0	218 0	176 0	208
Adjusted SD 0	152 0	157 0	116 0	128

R-squared 0	864 0	871 0	831 0	839
Degrees of freedom 75,959 75,959
Restrictions 3439 3439
F statistic 1	08 1	07
p-value <0	001 0	003

aResults correspond to the estimation of a levels model of student achievement where public student test scores from
North Carolina are observed in grades 2–5. Equation (12) in the text corresponds to the restricted model, while the unrestricted
model adds fourth and fifth grade teacher assignments to the third and fourth grade level outcomes, respectively. The F-test
determines the significance of these additional regressors and provides a test of conditional strict exogeneity. The estimation
sample is identical to the sample utilized in Table 3. Students who switched schools between third and fifth grade, who are
missing test scores in third or fourth grade (or on the third grade beginning-of-year tests), or who lack valid teacher assignments
in any grade 3–5 are excluded. Schools with only one included teacher per grade or where teacher indicators are collinear across
grades are also excluded.

hypothesis. To investigate the importance of this assumption, I estimate and test the
levels production function

Aigs = μi +βggc(i�g) + κs + εig for g = 2�3�4�5� (14)

where I restrict the teacher and school effects for the second grade outcome to be zero
since the second grade score is actually a pre-test taken in third grade. I also assume that
there is no unobserved student heterogeneity in test score growth, since the estimates
from VAM3 indicate that the coefficient on μi is close to 1 across g. In contrast to the
growth specification of VAM3, however, this levels equation assumes that teacher inputs
do not persist at all.

To test whether students are randomly assigned to teachers conditional on μi, I es-
timate an unrestricted version of Equation (14) that allows the one grade ahead teacher
to enter into the grade g equation. I then test whether these effects are jointly signifi-
cant. Using the iterative methodology and accompanying F-test, I fail to reject the null
hypothesis that the future teacher effects are jointly equal to zero for both math and
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reading. The respective p-values are 0.99 and 1.00. Note that if I employ the school-by-
school approach and construct either a cluster-robust Wald statistic, a heteroskedastic
Wald statistic, or a robust score statistic, I continue to reject the null hypothesis that
the future teacher effects are jointly equal to zero. The associated p-values are all very
close to zero. If I allow the variance of εig to vary across schools but maintain the restric-
tion of homoskedasticity within schools, I am unable to reject the null hypothesis that
the future teacher effects are zero. Clearly the assumptions regarding the error structure
are paramount. Given the tendency for robust variance estimators to perform poorly in
small samples, I am partial to the results under either homoskedasticity or a very mild
form of heteroskedasticity.45

Of course, the assumption that teacher effects decay completely from one grade to
the next is also extreme. As a compromise, I also estimate the levels specification assum-
ing that teacher inputs persist at a constant geometric rate equal to 0.35.46 I again fail to
reject the null hypothesis that the future teacher effects are jointly equal to zero. The
p-values decline slightly to 0.87 and 0.99, but remain well above the 5% critical value.

5. Conclusion

Two trends in the field of education—the explosion of standardized testing and a recog-
nition of the importance of teacher quality in developing students—have recently been
married in proposals that would link teacher tenure and salary decisions directly to stu-
dent test score performance.47 There are wide-ranging criticisms of such plans, but one
fundamental issue is the extent to which teacher quality can be causally identified us-
ing student outcomes. The primary threat to identification is the fact that students and
teachers are not randomly assigned within or across schools, making it difficult to sepa-
rate teacher quality from unobserved student inputs.

In a recent article, Rothstein (2010) illustrated the difficulty in identifying teacher
effectiveness using standard value-added modeling techniques. Rothstein’s (2010) key
contribution is a methodology for testing whether the assumptions necessary for iden-
tifying causal estimates of teacher quality actually hold in the data. However, as the cur-
rent paper illustrates, the proposed tests in Rothstein (2010) perform quite poorly in
empirical settings likely to be encountered by researchers. I then develop an alternative
test that not only performs significantly better in small samples, but is also less compu-
tationally intensive. However, the improved small sample performance does come at a
cost—the assumption that test score residuals are homoskedastic.

45I perform an additional set of Monte Carlo exercises using the levels model outlined in Equation (14).
In small samples, all of the heteroskedasticity robust test statistics overreject at a high rate. When I allow
for heteroskedasticity at either the student level or the teacher level, the falsification test based on the F-
statistic mildly overrejects. Thus, if there were heteroskedasticity in the underlying data, it would make the
F-test more likely to reject. Results from the additional Monte Carlo exercises are available on request.

46This number is similar to persistent rates estimated in Kinsler (2012), Rothstein (2010), and Jacob, Lef-
gren, and Sims (2010). For details on how to estimate this model, see Kinsler (2012). Note that this produc-
tion function is similar to the approach taken by Koedel and Betts (2010a), who estimated a hybrid version
of VAM2 and VAM3, incorporating both student fixed effects and lag test scores.

47See, for example, the recent Race to the Top federal grants program.
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In practice, this last assumption cannot be easily dispensed with in small samples.
The standard cluster-robust and heteroskedasticity-robust variance estimators tend to
perform quite poorly when teachers are observed with only a handful of student test
scores. As a result, VAM falsification tests and estimates of the dispersion in teacher
quality that rely on these estimators will likely be inaccurate. Obviously, as the num-
ber of observations per teacher increase, it becomes possible to allow for more flexible
error structures. This would require either grouping test score outcomes across multiple
years or testing students in one cohort more often. Alternatively, it may be possible to
improve on the standard robust variance estimators using bootstrap methods.

Appendix A: Updating equations for levels model with student

heterogeneity in test score growth

Consider the achievement levels formulation given by

Ai2s = μi + εi2�

Ai3s = γμi +β33c(i�3) + εi3�

Ai4s = (2γ − 1)μi +β44c(i�4) +β33c(i�3) + εi4�

Ai5s = (3γ − 2)μi +β55c(i�5) +β44c(i�4) +β33c(i�3) + εi5	

This formulation is equivalent to Equation (7) under the assumption that there is no
teacher associated with the second grade score, and that τ2 = 1 and τg − τg−1 = γ− 1 for
g > 2. Estimation would start with an initial guess of the parameters μ0

i , β0
ggc(i�g), and γ0,

with the qth iteration consisting of the following steps:

Step 1. Update μ
q
i according to

μ
q
i =

(
Ai2s + γ(Ai3s −β33c(i�3))+ (2γ − 1)

(
Ai4s −

4∑
g=3

βggc(i�g)

)

+ (3γ − 2)

(
Ai5s −

5∑
g=3

βggc(i�g)

))/
(1 + γ2 + (2γ − 1)2 + (3γ − 2)2)�

where all other parameters are evaluated at their q− 1 iteration values.48

Step 2. Update β
q
ggc(i�g) according to

β
q
33c(i�3) = 1

3 ∗Nβ33c(i�3)

Nβ33c(i�3)∑
i=1

( 5∑
g=3

Aigs − (6γ − 3)μi − 2β44c(i�4) −β55c(i�5)

)
�

β
q
44c(i�4) = 1

2 ∗Nβ44c(i�4)

Nβ44c(i�4)∑
i=1

( 5∑
g=4

Aigs − (5γ − 3)μi − 2β33c(i�3) −β55c(i�5)

)
�

48I suppress the iteration notation in the formulas for ease of presentation.
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β
q
55c(i�5) = 1

Nβ55c(i�5)

Nβ55c(i�5)∑
i=1

(
Ai5s − (3γ − 2)μi −β33c(i�3) −β44c(i�4)

)
�

where Nβggc(i�g) is the number of students assigned to classroom c in grade g, μi takes on
its qth iteration value, and γ is set at its q−1 iteration value. When updating β

q
33c(i�3), the

fourth and fifth grade teacher effects are set at their q − 1 values. Then, when updating
β
q
44c(i�4), I set the fifth grade teacher effects at their q − 1 value, but use the qth iteration

value for the third grade teacher parameters. Both the third and fourth grade teacher
parameters take their qth iteration values when updating β

q
55c(i�5).

Table 9. Sorting on time invariant ability ONLY.

Rejection Rates
Ability Weight in

SD(μi) SD(βggc(i�g)) SD(εig) Sorting Formula Rothstein Wald Test F-Test

0	15 0	15 0	5 0	1 0	92 0 0	06
0	15 0	15 0	5 0	4 0	92 0 0	06
0	15 0	15 0	5 0	7 0	94 0 0	02
0	15 0	3 0	5 0	1 0	9 0 0	06
0	15 0	3 0	5 0	4 0	92 0 0	04
0	15 0	3 0	5 0	7 0	98 0	02 0	02
0	3 0	15 0	5 0	1 0	94 0 0	06
0	3 0	15 0	5 0	4 0	98 0 0	04
0	3 0	15 0	5 0	7 1 0	88 0	08
0	15 0	15 1 0	1 0	78 0 0	02
0	15 0	15 1 0	4 0	86 0 0	04
0	15 0	15 1 0	7 1 0 0	04

Table 10. Sorting on lagged residual.

Rejection Rates
Lagged Residual Weight

SD(μi) SD(βggc(i�g)) SD(εig) in Sorting Formula Rothstein Wald Test F-Test

0	15 0	15 0	5 0	1 0	95 0 0	16
0	15 0	15 0	5 0	4 0	97 1 1
0	15 0	15 0	5 0	7 0	96 1 1
0	15 0	3 0	5 0	1 0	97 0 0	16
0	15 0	3 0	5 0	4 0	98 1 1
0	15 0	3 0	5 0	7 0	95 1 1
0	3 0	15 0	5 0	1 1 0 0	12
0	3 0	15 0	5 0	4 0	99 1 1
0	3 0	15 0	5 0	7 0	96 1 1
0	15 0	15 1 0	1 0	98 0	06 0	96
0	15 0	15 1 0	4 0	98 1 1
0	15 0	15 1 0	7 0	99 1 1
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Step 3. Finally, update γq using OLS, fixing all the other parameters at their qth itera-
tion values and treating them as known. Only third, fourth, and fifth grade outcomes are
used in this regression, since γ does not appear in the second grade test score.

Appendix B: Sensitivity of VAM3 tests to sorting and scale assumptions

The results reported in Tables 9 and 10 are averages over 50 simulations. The standard
deviations and sorting assumptions utilized in the baseline framework are provided in
Section 3 of the text. All simulations are executed assuming each teacher is observed
with 10 students.
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