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Labor income profiles are not heterogeneous:
Evidence from income growth rates

Dmytro Hryshko
Department of Economics, University of Alberta

Idiosyncratic labor incomes are typically modeled either by stochastic processes
with heterogeneous income profiles (HIPs) or restricted income profiles (RIPs).
The HIP assumes that individual labor income grows deterministically at an un-
observed rate and contains a persistent but stationary component, while the RIP
assumes that income contains a random walk, a stationary component, and no
unobserved deterministic growth-rate component. I show that if idiosyncratic la-
bor income contains a persistent component, a deterministic household-specific
trend, and a random-walk component, then all of the components can be identi-
fied in small unbalanced panels. Using data on idiosyncratic labor income growth
from the Panel Study of Income Dynamics, I find that the estimated variance of
deterministic income growth is zero, that is, the HIP model can be rejected. The
RIP model with a permanent component cannot be rejected. This result is im-
portant for an appropriate choice of modeling the heterogeneity in individual in-
comes and calibrating/estimating macromodels with incomplete insurance mar-
kets and heterogeneous agents.

Keywords. Idiosyncratic income processes, heterogeneity, labor income risk.

JEL classification. J31, D91, E21.

1. Introduction

Individuals and households face substantial amounts of idiosyncratic labor market risk.
Layoffs, health shocks, bonuses, demotions, and time-varying returns to the individual
skills valued by the labor market contribute toward fluctuating individual labor incomes.
If credit and insurance markets are not functioning perfectly, idiosyncratic labor income
risk will affect individual and aggregate welfare.

Two different approaches to modeling individual and household labor income risks
currently stand out. The first approach, which has a long-standing tradition, models
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each individual’s income as growing at the individual-specific, deterministic rate, with
the level of income affected by a stochastic component with moderate persistence. Since
each individual’s labor income profile, even in the absence of shocks, is unique, I label
this model, following Guvenen (2009), the heterogeneous income profiles (HIP) model.
The second approach models idiosyncratic labor income as the sum of a permanent
random-walk component, the shocks to which persist for the entire working lifetime
of an individual, and a mean-reverting stationary component, the shocks to which die
out quickly. Since this model abstracts from the deterministic growth-rate heterogene-
ity, I label it the restricted income profiles (RIP) model. Even though variants of the
RIP are currently a preferred choice in macromodels, there is no consensus in the la-
bor income processes literature on which income model best fits the earnings data. As
Guvenen (2007) concluded, “. . . it is fair to say that this literature has not produced an
unequivocal verdict.” This paper is a step toward finding a verdict in favor of the RIP
model.

I start with a general income model that encompasses the RIP and the HIP mod-
els. I then conduct a Monte Carlo study on small unbalanced panels to explore iden-
tification of different income processes found in the literature, obtained when certain
restrictions on this general process are imposed. Importantly, the samples utilized in
the Monte Carlo analysis replicate my empirical sample from the Panel Study of Income
Dynamics (PSID), the data set typically used in the literature, in terms of the number
of individuals, the number of person-year observations, and the cross-sectional distri-
bution of age by year. I find that if the true income process is the RIP with a permanent
random-walk component and an econometrician estimates the misspecified HIP model
instead, he will typically find statistically significant amounts of growth-rate heterogene-
ity, of magnitudes comparable with those in the literature. The results of a Monte Carlo
study confirm that the parameters of the general income process, composed of a de-
terministic growth rate, a permanent random walk, and transitory components, should
be precisely recovered using the autocovariance moments of income growth rates. This
contrasts with the concern raised recently (see, e.g., Guvenen (2009)) that the autoco-
variance moments of income growth rates are not informative enough for identifying
the growth-rate heterogeneity in small samples.1

I then proceed by estimating the model utilizing labor income data for male house-
hold heads from the PSID. I find that the estimate of the variance of the determinis-
tic growth-rate component is zero, while the variance of the shock to the random-walk
component is significant and substantial. Hence, the data utilized in this paper favor the
RIP model with a permanent random-walk component and a mean-reverting persistent
process. I also show, for a PSID-sample comprising the same individuals, that the esti-
mated growth-rate heterogeneity falls if the time dimension of the sample is increased.

1I elaborate on this point in Section 2.2.2. Briefly, the concern is about imprecision of higher-order au-
tocovariances of income growth rates in small samples used to evaluate the hypothesis of the absence of
growth-rate heterogeneity in idiosyncratic earnings. In my Monte Carlo samples, the higher-order auto-
covariances of growth rates are indeed imprecise; however, the minimum-distance procedure utilizing all
autocovariance moments recovers precise estimates of the growth-rate heterogeneity in small samples if
the income process contains deterministic growth-rate heterogeneity.
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This pattern is inconsistent with the HIP, as the distribution of the growth-rate hetero-
geneity should be the same for a fixed cross section of individuals, regardless of the time
dimension of the sample. This pattern, however, is expected if the true model contains
a random-walk component and an econometrician estimates the misspecified HIP.

The results of this paper are important as they contribute to understanding a num-
ber of issues. They speak to the economists’ choices for modeling of household con-
sumption, savings, and wealth. If the correct model for idiosyncratic labor income is
the HIP, one needs to model individuals as sequentially learning about their own labor
income profiles to jointly fit the features of consumption and income data. Guvenen
(2007) is an example of such a model that explains the profile of consumption inequal-
ity observed in U.S. microdata, and the co-movement of the life-cycle profiles of earn-
ings and consumption for households with different levels of schooling. If a substantial
variation in incomes is due to permanent and persistent shocks, as is found in this pa-
per, an appropriate model for household choices of consumption, savings, and wealth
is an incomplete markets model with uninsurable persistent and/or permanent shocks.
Castañeda, Díaz-Giménez, and Ríos-Rull (2003), utilizing such a model, explained the
U.S. wealth and earnings inequality; Scholz, Seshadri, and Khitatrakun (2006) explained
more than 80% of the 1992 cross-sectional variation of household wealth observed in
data from the Health and Retirement Study. Krebs (2003) is an example of a model where
permanent idiosyncratic risk, absent in the estimations of the HIP processes but found
to be substantial in this and some other papers,2 reduces economic growth and individ-
ual welfare. De Santis (2007) developed a model where log individual consumption is a
random walk due to permanent uninsurable idiosyncratic income shocks and showed
that such a model can potentially produce large welfare gains from eliminating business
cycles.

Further, the idiosyncratic labor income process, which best fits the data utilized in
this paper, places restrictions on the models that endogenize labor incomes. A fruit-
ful starting point can be the model in Krebs (2003), where, in equilibrium, permanent
shocks to individual human capital translate into permanent shocks to individual labor
incomes.

From a policy perspective, it also matters whether the true income process is the
HIP or the RIP. If an objective of the policymaker is to reduce consumption inequal-
ity and the true idiosyncratic income process is the HIP with a stochastic component
of moderate persistence, the policymaker may want to implement policies that subsi-
dize human capital investments by the disadvantaged; self-insurance will be a sufficient
shield against the shocks of moderate persistence. If, however, the true income process
is the RIP with substantial permanent shocks, an appropriate policy, in addition to the
above-mentioned, is to educate the public about risk-sharing instruments provided by
credit institutions, stock, and insurance markets.

This paper is also related to recent research that focuses on estimation of the growth-
rate heterogeneity and the persistence of the shocks to household incomes using data

2See, for example, Carroll and Samwick (1997), Meghir and Pistaferri (2004), and Moffitt and Gottschalk
(1995).
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on consumption and income, along with a model of household choices of consumption
under incomplete insurance markets (see Guvenen and Smith (2008)). There is a certain
advantage to using just income moments to extract that information from the data as
this approach does not require assumptions on the information households have about
the shocks or their unique growth rates, as well as the insurance markets against those
shocks.

The rest of the paper is structured as follows. In Section 2, I present a small-sample
Monte Carlo study of income processes found in the literature, and introduce the HIP
and RIP models. I estimate income processes on simulated data, and also discuss iden-
tification of the models containing a random walk and deterministic growth-rate com-
ponents when data used for estimation are in first differences. In Section 3, I describe
the empirical data I use and then present the empirical results. Section 4 concludes.

2. A Monte Carlo study

In this section, I present the income processes estimated in the literature and perform
a Monte Carlo study to explore identification of those income processes in small unbal-
anced panels.

Let the true income process be

yit = αi +βihit +pit + τit + uit�me� (1)

pit = pit−1 + ξit� (2)

τit = θ(L)εit� (3)

where yit is the idiosyncratic log income of individual i with h years of (potential) labor
market experience at time t (alternatively, hit may denote individual i’s age at time t)3; βi

is individual i’s growth rate of income; αi is individual i’s initial level of income (a fixed
effect that also picks up individual i’s levels of permanent and transitory components
at the start of his work career—pi0 and τi0, respectively); pit is the permanent stochas-
tic component of income; ξit is a mean-zero shock to the permanent component; τit is
the transitory stochastic component of income; εit is a mean-zero shock to the transi-
tory component; uit�me is a mean-zero measurement error; L is the lag operator so that
Lkxt = xt−k ∀k= 0�±1�±2� 	 	 	 ; and θ(L) is a moving average polynomial in L.

The income process outlined in equations (1)–(3) encompasses most of the income
processes estimated in the literature.4 Hause (1980), Lillard and Weiss (1979), and, more
recently, Guvenen (2009) estimated the income process that is driven by “deterministic

3Statistically, it matters little if hit stands for potential experience or age; the two are highly correlated in
the data and increase by 1 year annually. My empirical sample comprises heads of household of ages 25–64;
in the Monte Carlo simulations, I assume that households enter the labor market at age 24 and accumulate
1 year of experience when they turn 25. Thus, hit = 1 if individual i’s age at time t is 25 or if his potential
experience is 1 year.

4To account for time-varying variances and covariances, most of the studies in the literature, allow for
time-varying variances of stochastic (transitory and, if present, permanent) disturbances. This is the strat-
egy I adopt in Section 3.2.
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effects” αi and βi, an (autoregressive) AR(1) transitory component affected each period
by the transitory shock εit , and measurement error uit�me. I label this process the HIP.5

Meghir and Pistaferri (2004), Carroll (1992), and Carroll and Samwick (1997) are exam-
ples of the studies that assume the presence of a random walk and transitory compo-
nents in idiosyncratic income, but assume away (or present some evidence against) the
deterministic idiosyncratic growth-rate component. I label this process the RIP.

An early description of the income process (1)–(3) can be found in Friedman and
Kuznets (1954), who suggested that individual incomes can be represented by the sum
of permanent, quasi-permanent, and purely transitory components. However, they were
not specific on the exact models of the components. Clearly, the purely transitory com-
ponent can be modeled as a serially uncorrelated shock and the quasi-permanent com-
ponent can be modeled as an (autoregressive moving average) ARMA(p�q) process. It
is less clear what they had in mind with regard to the permanent component. While
the time-invariant permanent component can be modeled as a fixed effect, the per-
manent component that varies over the life cycle can be modeled as a random walk
or/and deterministic growth-rate heterogeneity. Muth (1960) suggested that the decom-
position of income into a random walk and a purely transitory shock is consistent with
Friedman’s ideas on the income process (Friedman (1957)). Early papers that estimated
income processes, such as Lillard and Weiss (1979) and Hause (1980), were motivated
by a simple on-the-job training hypothesis and modeled the permanent component
with the deterministic growth-rate heterogeneity. They did not provide reference to the
Friedman–Muth decomposition, but Hause (1980) discussed the random-walk alterna-
tive and found it inferior to a HIP formulation for his sample of Swedish males. Abowd
and Card (1989) and MaCurdy (1982), using higher-order autocovariances of earnings
growth rates in PSID data, rejected the growth-rate heterogeneity in earnings. Baker
(1997) and Guvenen (2009) argued that such a test has low power and suggested an
unrestricted estimation of the income process using the entire autocovariance matrix.
I further discuss these results in Section 2.2.2.

2.1 Simulation details

My ultimate goal is to determine whether the process containing random-walk, transi-
tory, and deterministic components can be identified empirically in small samples. To
this end, I conduct a Monte Carlo study. I simulate data for a number of individuals “ob-
served” for at most 30 periods using the data generating process of equations (1)–(3).
I purposefully do not create a balanced panel data set—to mimic the patterns of PSID
data, which I later use in empirical analysis. The PSID may contain at most 30 consec-
utive records on income for each head of household (from the 1968–1997 waves), but

5Note that even though, say, Guvenen (2009) did not model the permanent stochastic component of
income explicitly, he allowed a root of the autoregressive representation of τit to be 1. The studies that did
not model the permanent component explicitly found that the largest root of the stochastic component
is below unity. They interpreted this as the absence of the random-walk component in idiosyncratic labor
income, that is, as if pit = 0 for all t.
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since many heads first enter the labor market and the survey in different years, and be-
cause of attrition and nonresponse, they contribute one or more observation(s) on la-
bor income.6 In each Monte Carlo run, I replicate the PSID sample I use in my empirical
analysis in terms of the number of individuals, the number of person-year observations,
and the cross-sectional distribution of age in each year.

The details of simulations are as follows. I assume that αi and βi are mean-zero,
possibly correlated normally distributed fixed effects with which the head is endowed
when he enters the labor market. I further assume that ξit is an independent and iden-
tically distributed (i.i.d.) mean-zero shock to the permanent component of income nor-
mally distributed with variance equal to σ2

ξ ; that εit ∼ i.i.d. N(0�σ2
ε), and that uit�me ∼

i.i.d. N(0�σ2
u�me), and that τit is a moving average process of order 1, an autoregressive

process of order 1, or an ARMA(1�1) process. I use these particular representations of
the transitory component of earnings for the following reasons. First, RIP studies, such
as Abowd and Card (1989) and Meghir and Pistaferri (2004), found that the growth rate
in male earnings can be represented by a moving average process of order 2, suggesting
that the transitory component is a moving average process of order 1. Second, HIP stud-
ies, such as Lillard and Weiss (1979) and Guvenen (2009), modeled the transitory com-
ponent as an autoregressive process of order 1. The estimated AR(1) process is easy to
deal with in computational models featuring incomplete insurance markets and agents
with uninsurable earnings risk, as argued in Guvenen (2009). Third, a moving average
process of order 1 with the moving average parameter of a small magnitude is hard to
distinguish from an autoregressive process of order 1.7 Finally, ARMA(1�1) transitory
processes encompass the autocovariance structure of pure AR(1) and MA(1) processes,
and have been used, for example, in Baker (1997) and Haider (2001).

In my empirical sample, I observe the age at which each male head first enters the
sample and the number of observations he contributes toward the final sample. I restrict
my Monte Carlo samples, replicating the number of individuals (1916), the number of
person-year observations (29,753), and the age distribution in each year as observed in

6The Monte Carlo design assumes that attrition is not related to the permanent or transitory shocks, and
idiosyncratic growth rates. Fitzgerald, Gottschalk, and Moffitt (1998), using data from the PSID, found that
attrition does not substantially affect the coefficients in a regression of log labor income for male heads on
a set of observable variables, such as age, the square of age, and education, used to extract idiosyncratic
incomes. Moreover, while they found that attrition is affected by the volatility of individual incomes and
income drops, the effects were small so that they concluded that “attrition is mostly noise,” unlikely to affect
studies using dynamic measures as outcomes. Meghir and Pistaferri (2004) did not find a significant effect
of attrition on their estimates of the autoregressive conditional heteroscedasticity (ARCH) effects in the
conditional variances of permanent and transitory shocks; Lillard and Panis (1998), also using data from
the PSID, found no evidence of selective attrition for white males based on their permanent unobserved
components of income. Guided by these considerations, in my Monte Carlo simulations, I assume that
attrition is random.

7If the true transitory process is τit = (1 + θL)εit , it can be represented by an infinite order autore-
gressive process τit = θτit−1 − θ2τit−2 + θ3τit−3 − · · · + εit and approximated by τit = θτit−1 + υit , where
υit = −θ2τit−2 + θ3τit−3 − · · · + εit . Galbraith and Zinde-Walsh (1994) showed that low-order autoregressive
approximations of an MA(1) process—of order 1 up to order 3—with a moving average parameter of 0.5
and less in absolute value performs the best in terms of minimizing the mean squared error.
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my PSID sample. As in my PSID data, the simulated data sets comprise individuals who
contribute at least 9 consecutive observations on incomes toward the final sample.8

For each estimated income model, I report the results based on 100 simulated sam-
ples. The models are identified by fitting the theoretical autocovariances to the autoco-
variances in the simulated data. Estimation is performed using the minimum distance
method with the identity weighting matrix.9 I now turn to estimation results for different
simulated income processes.

2.2 Identification and results from simulated data

In this section, I present estimation results on simulated data transformed into first dif-
ferences. I first discuss identification of the processes containing a random-walk com-
ponent, a transitory component, a deterministic growth-rate component, and measure-
ment error. I present a set of autocovariance moments that can be used to recover the
model parameters in large samples. The autocovariance function for the data in first dif-
ferences can be used to identify the growth-rate heterogeneity and random-walk com-
ponents if both are present in the data. Permanent shocks contribute only to the diago-
nal elements of the autocovariance function, that is, the variances, while the growth-rate
heterogeneity contributes, in addition, toward all the off-diagonal elements of the auto-
covariance function. This information can be used to identify all the components as is
shown in detail below.

Alternatively, one can use the moments for log incomes in levels to estimate the in-
come process as was done, for example, in Baker (1997) and Guvenen (2009). In real data,
however, the results of estimations based on the moments in levels are affected by spec-
ification of initial conditions. Estimations in first differences are not likely to depend on
initial conditions as was emphasized, for example, in Meghir and Pistaferri (2004) and
MaCurdy (1982).

2.2.1 Identification In this section, I provide the intuition behind identification of in-
come processes that contain individual-specific growth rates, a permanent random
walk, and mean-reverting transitory components when the data used for estimation are
in first differences. In the next section, I show that identification carries over to small
unbalanced panels using the minimum distance method, which utilizes all the available
information in the autocovariance structure of the data. I present identification for in-
come processes with transitory components modeled as AR(1) or MA(1) processes. As
mentioned above, those are the transitory processes commonly used in the HIP and RIP
studies. Identification can be achieved for the income processes with a more general
class of transitory components modeled as ARMA(p�q) processes.

8The requirement adopted in the literature of having estimation samples with long (and often consec-
utive) spells of income observations is not necessary for identification of income processes. I use this re-
quirement to be consistent with other studies in the literature such as Meghir and Pistaferri (2004) and
Guvenen (2009).

9Altonji and Segal (1996) showed that an identity weighting matrix is the best choice for weighting the
moments when estimating models of autocovariance structures on microdata with small samples. Most of
the papers in the literature, guided by this result, utilize this weighting matrix.



184 Dmytro Hryshko Quantitative Economics 3 (2012)

Encompassing model In first differences, the process (1)–(3) is

�yit = βi + ξit + θ(L)�εit +�uit�me� (4)

where �≡ 1 −L.
First, assume that the transitory component is a moving average process of order 1,

that is, τit = (1 + θL)εit .10 The theoretical autocovariance moments, γk = E[�yit�yit−k],
of this process are

γ0 = σ2
ξ + σ2

β + (1 + (1 − θ)2 + θ2)σ2
ε + 2σ2

u�me� (5)

γ1 = σ2
β − (θ− 1)2σ2

ε − σ2
u�me� (6)

γ2 = σ2
β − θσ2

ε� (7)

γk = σ2
β� k≥ 3	 (8)

The empirical variance–covariance matrix contains T(T+1)
2 unique moments, where

T is the maximum number of income growth rates observed in the sample. The variance
of deterministic growth σ2

β can be identified from the vector of moments

E[�yit�yit+k] = σ2
β1� k = 3� 	 	 	 �T − t� t = 1� 	 	 	 �T − k� (9)

where 1 is a vector of ones of the row dimension (T−3)(T−2)
2 . Empirical analogs of the

moments γ0, γ1, and γ2 can be further used to identify the other four parameters: σ2
ε ,

σ2
ξ , σ2

u�me, and θ. The variance of permanent shocks is uniquely identified; to identify the
variances of transitory shocks and the moving average coefficient, however, one needs
to restrict the variance of measurement error. In particular, the variance of permanent
shocks can be identified from the moment

σ̂2
ξ =E

[
�yit

j=2∑
j=−2

�yit+j

]
− 5σ̂2

β�

where σ̂2
β is estimated using (9).

If τit = (1 −φL)−1εit , that is, the transitory component is an AR(1) process, the the-
oretical autocovariance moments of the income process in first differences are

γ0 = σ2
ξ + σ2

β + 2
1 +φ

σ2
ε + 2σ2

u�me� (10)

γ1 = σ2
β − 1 −φ

1 +φ
σ2
ε − σ2

u�me� (11)

γk = σ2
β −φk−1 1 −φ

1 +φ
σ2
ε� k≥ 2	 (12)

10Absent the growth-rate heterogeneity, the income process in first differences is a moving average pro-
cess of order 2. This is consistent with the results in Abowd and Card (1989) and Meghir and Pistaferri
(2004).
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Intuitively, σ2
β should be identified from higher-order autocovariances—when the

contribution of the transitory component toward the autocovariances approaches zero.
The parameters for the transitory process can be identified using the set of moments:

φ̂ = γ̂k+1−γ̂k
γ̂k−γ̂k−1

, k≥ 3, and σ̂2
ε = (γ̂k+1−γ̂k)(1+φ̂)

φ̂k−1(1−φ̂)2 , k≥ 3, where γ̂k =E[�yit�yit−k]. The variance

of growth-rate heterogeneity σ2
β can be then identified from the set of moments (12).

Empirical analogs of the first two moments, γ0 and γ1, can be further used to uniquely
identify the remaining model parameters—the variance of permanent shocks and the
variance of measurement error.

If individual incomes contain transitory components modeled as an autoregressive
moving average process, identification of the model parameters will be similar to iden-
tification of the processes containing moving average and autoregressive processes. In
particular, the variance of measurement error and the moving average parameter are
not separately identified.

Summarizing, if the income process contains individual-specific growth rates and
intercepts, a permanent random-walk component, a mean-reverting transitory compo-
nent, and measurement error, one can identify the variance of permanent shocks and
the variance of the deterministic growth-rate heterogeneity using large-sample data. It
is not clear, however, if the model parameters can be recovered using small-sample data.
For this purpose, I conduct Monte Carlo experiments, the results of which are discussed
in Section 2.2.2.

Misspecified HIP What if the true variance of the growth-rate heterogeneity is zero and
the income process contains a random-walk component, but an econometrician esti-
mates the HIP model instead?

In a time series context, the asymptotic variance of the scaled mean of a mean-zero
stationary process, limT→∞E[ 1√

T

∑T
t=1 �yt]2, will be equal to

∑∞
k=−∞ γ(k) or to the sum

of the variance and twice the sum of the nonzero autocovariances if the autocovariances
are absolutely summable.11 The moment succinctly summarizes all the information
contained in the autocovariance structure of the data. For the income model in equa-
tion (4) with σ2

β = 0 and the transitory component modeled as an MA(1), the asymptotic

variance of the (scaled) sample mean is12

lim
T→∞

E

[
1√
T

T∑
t=1

�yt

]2

= σ2
ξ 	 (13)

The empirical analog of equation (13), for a covariance-stationary process, can be
estimated from longitudinal data as 1

T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2] = σ2
ξ + 2

T [σ2
ε(1 +

θ2)+ σ2
u�me].

11See, for example, Hamilton (1994, Chap. 7) for a proof. This moment identifies the long-run variance of
{�yt}. In the context of longitudinal data, γk will be zero for k≥ min{T − 1�H − 1}, where H is the maximum
age at which an individual can be observed in the data set and T is the time dimension of the data set. In the
following, I assume that H > T ; this assumption is satisfied in the PSID data I use, where h = 1� 	 	 	 �H = 40
(h= 1 corresponds to age 25 and h = H corresponds to age 64) and T = 30 (years 1968–1997).

12In a time series context, if the transitory income component is an AR(1) or ARMA(1�1) process, the
moment condition (13) will be the same; it will also identify σ2

ξ only.
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The estimated moment will be closer to σ2
ξ for a larger time dimension of the data, T .

If, however, the random walk is ignored in estimation, the theoretical autocovariance
function is nonzero beyond order 2 and is equal to σ2

β. The moment in equation (13)

will be estimated as 1
T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + · · · + 2γT−1] = 1

T σ̂
2
β[T + 2(T −

1)+ 2(T − 2)+ · · · + 4 + 2] + 2
T [σ̂2

ε(1 + θ̂2)+ σ̂2
u�me] = Tσ̂2

β + 2
T [σ̂2

ε(1 + θ̂2)+ σ̂2
u�me], where

σ̂2
ε , σ̂2

u�me, and θ̂ differ from their true values.
The moment estimated in the data, generated by a model that contains a random

walk and no growth-rate heterogeneity, should be replicated by the true and the mis-
specified models. Equating the two moments, it follows that if the true data generating
process consists of a random walk, a persistent moving average component, and mea-
surement error, and an econometrician estimates the (misspecified) HIP instead, the
variance of the deterministic growth component will be approximately equal to

σ̂2
β ≈ 1

T
σ2
ξ 	 (14)

Major microdata sets in the United States have no more than 30 years of consecu-
tive observations on individual labor incomes. Thus, if the true variance of permanent
shocks equals 0.02 and T + 1 = 30, the variance of the deterministic growth will be es-
timated at about 0.0007—within the bounds of the typical estimates of the HIP in the
literature.

The same logic holds if the transitory stochastic component of income is an AR(1)
process. If the true income process is the RIP with a permanent random-walk com-
ponent, the empirical analog of the moment in equation (13) estimated from longitu-

dinal data is equal to 1
T [Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + · · · + 2γT−1] = σ2

ξ + 2σ2
ε

1+φ −
2
T

1−φ
1+φ

∑T−1
j=1 φj−1(T −j)+ 2

T σ
2
u�me. If the random walk is ignored and the HIP is estimated

instead, the moment will be estimated as Tσ̂2
β+ 2σ̂2

ε

1+φ̂
− 2

T
1−φ̂

1+φ̂

∑T−1
j=1 φ̂j−1(T − j)+ 2

T σ̂
2
u�me.

Thus, one should expect, for any mean-reverting transitory process, that the esti-
mated variance of growth-rate heterogeneity is inversely related to the time dimension
of the data set and directly related to the variance of permanent shocks, provided the
true income process contains a random-walk component but the estimated process is
the (misspecified) HIP.

2.2.2 Simulation results In this section, I present the results of estimations of income
processes using small-sample, simulated data transformed into first differences.

In Table 1, I list the values for the model parameters used in Monte Carlo experi-
ments.

In Table 2, I estimate the process that contains the individual-specific intercepts
and growth rates, a random-walk component, a stationary component modeled as an
ARMA(1�1) process, an AR(1) process or a moving average process of order 1, and mea-
surement error. The true values of the parameters in the models are the variance of fixed
effects, σ2

α = 0	03; the variance of the growth-rate heterogeneity, σ2
β = 0	0004; the vari-

ance of permanent shocks, σ2
ξ = 0	02; the variance of the shocks to the transitory com-

ponent, σ2
ε = 0	04; the moving average parameter, θ = 0	50 for a model with the transi-

tory component modeled as an MA(1) process; the autoregressive parameter, φ = 0	50
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Table 1. Monte Carlo simulations for the income process yit = αi +βihit +pit + τit + uit�me.

Distribution Parameter Values

Heterogeneity: αi +βihit

αi i.i.d. N(0�σ2
α) σ2

α = 0	03
βi i.i.d. N(0�σ2

β) σ2
β = 0	0004

Permanent stochastic component: pit

pit = pit−1 + ξit
ξit i.i.d. N(0�σ2

ξ) σ2
ξ = 0	02

Transitory stochastic component: τit
AR(1): τit =φτit−1 + εit
MA(1): τit = εit + θεit−1
ARMA(1�1): τit =φτit−1 + εit + θ̃εit−1
φ 0	50
θ 0	50
θ̃ −0	20
εit i.i.d. N(0�σ2

ε) σ2
ε = 0	04

Potential experience/age: hit

hit+1 = hit + 1

Measurement error/a purely transitory shock
uit�me i.i.d. N(0�σ2

u�me) σ2
u�me = 0	02

Table 2. Estimates of the HIP with a random-walk component: simulated data.a

(1) (2) (3)
ARMA(1�1) AR(1) MA(1)

Parameters/Trans. Comp. σ2
β = 0	0004, σ2

ξ = 0	02 σ2
β = 0	0004, σ2

ξ = 0	02 σ2
β = 0	0004, σ2

ξ = 0	02

Heterog. growth, σ̂2
β 0	0004 0	00039 0	0004

(0	00019) (0	00017) (0	0001)

Var. perm. shock, σ̂2
ξ 0	019 0	018 0	018

(0	004) (0	003) (0	001)

AR, φ̂ 0	472 0	501 —
(0	156) (0	065) —

MA, θ̂ −0	199 — 0	428
(0	103) — (0	013)

σ̂2
ε 0	046 0	042 0	047

(0	005) (0	003) (0	001)

σ2
u�me 0	015 0	02 0	015

— (0	003) —

Median χ2 [d.f.] 755	28 [430] 748	65 [430] 825	14 [431]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi +βihit +pit + τit + uit�me , with (1 −L)pit+1 = ξit+1 , σ2
α = 0	03, σ2

β = 0	0004, σ2
ξ = 0	02,

and σ2
u�me = 0	02. In column 1, the transitory process is modeled as τit = 1+θL

1−φL
εit , φ = 0	50, θ = −0	20. In column 2, τit = εit

1−φL
,

φ = 0	50. In column 3, τit = (1 + θL)εit , θ = 0	50. In all models, the true variance of the shocks to the transitory component is
σ2
ε = 0	04. Prior to estimation, simulated data are transformed to first differences; models are estimated by the equally weighted

minimum distance method. Standard errors are given in parentheses and are calculated as the standard deviations of the
estimates across 100 model simulations. The goodness-of-fit statistic is based on Newey (1985).
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for a model with the transitory component modeled as an AR(1) process and φ = 0	50,
θ = −0	20 for a model with the transitory component modeled as an ARMA(1�1) pro-
cess; and the variance of measurement error, σ2

u�me = 0	02.13 The chosen values for the
true parameters are within the range of the values estimated in the literature.14 An indi-
vidual with a (deterministic) growth rate 1 standard deviation above the mean will have
a 2% advantage in income every year relative to an observationally equivalent individual
whose income does not grow. A 1 standard deviation in the permanent shock translates
into a permanent change in income of about 14%, while a 1 standard deviation in the
transitory shock causes income to change by 20% in the current period. Note that when
the transitory process contains a moving average component—columns 1 and 3—the
variance of measurement error is not identified.

Regardless of the model for the transitory component, the variance of growth-rate
heterogeneity σ2

β and the variance of permanent shocks σ2
ξ are recovered without any

biases and statistically precisely by the equally weighted minimum distance method.15

In columns 1 and 3, I set the variance of measurement error to the value that equals 25%
of the variance of income growth rates.16 The ratio of the assumed to the true variance
of measurement error is about 75%. As a result, in column 1, the autoregressive persis-
tence is estimated at a value close to its true value of 0.50, while the estimated variance
of transitory shocks is somewhat larger than its true value. It is possible to identify all
the parameters when the transitory component is an autoregressive process of order 1,
which is confirmed in column 2. In column 3, the transitory component is modeled as an
MA(1) process. Since the variance of measurement error set in estimations differs from
its true value, the estimated moving average parameter is somewhat below its true value,
while the estimated variance of the shocks to the transitory process is slightly above its
true value.17 The last two rows in Table 2 report the median value of the goodness-of-fit
statistics across 100 estimations and the frequency of model rejections at the 1% signifi-
cance level. The result in the last row is quite important. The size of the χ2 test is severely
distorted: instead of rejecting the true model 1 time out of 100, the test rejects the true
model 100% of the time. It appears that the χ2 test of the model validity is not likely to
be useful in empirical applications utilizing unbalanced small-sample panel data.

13The results presented below are qualitatively similar when more or less persistent transitory processes
are chosen in simulations.

14The variance of fixed effects may seem low, but is comparable to the estimates in Guvenen (2009) and
is inconsequential for the results as my focus is on estimation in first differences. The variance of measure-
ment error implies, for example, for the income process with τit modeled as an AR(1) process, that 35% of
the variation in observed income growth rates is due to measurement error.

15I also verified that the results are robust to other choices for the variance of fixed effects. Table 3 shows
that the estimates are largely unaffected when the variance of fixed effects is set to 0.10, the value which is
more than three times larger than its value in the original simulations. It is not surprising as the fixed effects
are canceled out by first differencing and, therefore, do not effect the moments used for estimation.

16This is consistent with Meghir and Pistaferri (2004) and findings in the literature on measurement error
in longitudinal income data surveyed by Bound, Brown, and Mathiowetz (2001).

17If the variance of measurement error was set to its true value in estimations of the models in columns
1 and 3, all the model parameters would be estimated without any biases. The results are not reported for
brevity.
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Table 3. Estimates of the HIP with a random-walk component and large variance of fixed ef-
fects: simulated data.a

(1) (2) (3)
ARMA(1�1) AR(1) MA(1)

Parameters/Trans. Comp. σ2
β = 0	0004, σ2

ξ = 0	02 σ2
β = 0	0004, σ2

ξ = 0	02 σ2
β = 0	0004, σ2

ξ = 0	02

Heterog. growth, σ̂2
β 0	00037 0	0004 0	0004

(0	00015) (0	00018) (0	00013)

Var. perm. shock, σ̂2
ξ 0	019 0	018 0	019

(0	003) (0	0035) (0	002)

AR, φ̂ 0	423 0	512 —
(0	200) (0	071) —

MA, θ̂ −0	167 — 0	428
(0	143) — (0	012)

σ̂2
ε 0	045 0	041 0	047

(0	005) (0	004) (0	001)

σ2
u�me 0	015 0	019 0	015

— (0	003) —

Median χ2 [d.f.] 762	96 [430] 759	89 [430] 868	12 [431]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi +βihit +pit + τit + uit�me , with (1 −L)pit+1 = ξit+1 , σ2
α = 0	10, σ2

β = 0	0004, σ2
ξ = 0	02,

and σ2
u�me = 0	02. In column 1, the transitory process is modeled as τit = 1+θL

1−φL
εit , φ = 0	50, θ = −0	20. In column 2, τit = εit

1−φL
,

φ = 0	50. In column 3, τit = (1 + θL)εit , θ = 0	50. In all models, the true variance of the shocks to the transitory component is
σ2
ε = 0	04. Prior to estimation, simulated data are transformed to first differences; models are estimated by the equally weighted

minimum distance method. Standard errors in parentheses calculated as the standard deviations of the estimates across 100
model simulations. The goodness-of-fit statistic is based on Newey (1985).

Guvenen (2009), in a simulation exercise, showed that the tests of higher-order auto-
covariances equal to zero falsely reject the growth-rate heterogeneity even when the true
income process contains idiosyncratic growth rates. This test was previously used by
MaCurdy (1982). Table 4 confirms this result. I first create 100 samples generated in ac-
cordance with the models in Table 2, which contain deterministic idiosyncratic growth
rates, a permanent random-walk component, and a transitory stochastic process. For
each simulated sample, I calculate the empirical autocovariance function. The results in
the columns are the averages of the autocovariances of a given order across 100 simu-
lated samples; standard errors, given in parentheses, are calculated as the standard de-
viations of these estimates across 100 simulated samples. In column 1, the true process
contains an ARMA(1�1) component; in column 2, an AR(1) component; in column 3, an
MA(1) component. As can be seen from column 3, only autocovariances of orders 0, 1,
and 2 are significant. The rest are insignificant, even though the magnitude of the au-
tocovariances of orders 3 and higher are positive and some approach the true variance
of the deterministic growth-rate heterogeneity. For the model with AR(1) or ARMA(1�1)
transitory processes, the autocovariance function is significant only from order 0 to or-
der 3, inclusive, and the contribution of the transitory component toward the autoco-
variance function dissipates rather quickly. The minimum distance procedure, however,
uses the entire autocovariance function, not only the information contained in higher-
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Table 4. Autocovariances for income growth rates for income processes with growth-rate het-
erogeneity and a random-walk component: simulated data.a

(1) (2) (3)
Order τit ∼ ARMA(1�1) τit ∼ AR(1) τit ∼ MA(1)

0 0	12066 0	11338 0	1196
(0	00108) (0	0011) (0	001)

1 −0	04289 −0	03323 −0	02989
(0	00089) (0	00079) (0	00078)

2 −0	00335 −0	00639 −0	01964
(0	00084) (0	0007) (0	00079)

3 −0	00137 −0	00307 0	00038
(0	00078) (0	00067) (0	00089)

4 −0	000528 −0	00136 0	00054
(0	00096) (0	0007) (0	00092)

5 −0	00016 −0	0005 0	00037
(0	00104) (0	0009) (0	00091)

10 0	00033 0	00057 0	00055
(0	00123) (0	0011) (0	0012)

15 0	00028 0	00048 0	00036
(0	0016) (0	0016) (0	00188)

20 0	00028 0	0003 0	00034
(0	0029) (0	0031) (0	00302)

aThe true income process is yit = αi +βihit +pit + τit + uit�me , with (1 −L)pit+1 = ξit+1 , σ2
α = 0	03, σ2

β = 0	0004, σ2
ξ = 0	02,

and σ2
u�me = 0	02. In column 1, τit = 1+θL

1−φL
εit , φ = 0	50, θ = −0	20. In column 2, τit = εit

1−φL
, φ = 0	50. In column 3, the transitory

process is modeled as τit = (1 + θL)εit , θ = 0	50. The true variance of the shocks to the transitory component is σ2
ε = 0	04.

Simulated data are transformed to first differences. Autocovariances of a given order are the averages of the autocovariances in
simulated data across 100 simulations. Standard errors are given in parentheses and are calculated as the standard deviations
of the estimated autocovariances of a given order across 100 model simulations.

order autocovariances, and its sample variability to uncover correctly and precisely the
variance of the deterministic growth-rate heterogeneity—Table 2, columns 1–3. To sum-
marize, the test for detecting the random-growth component using higher-order auto-
covariances lacks power and is of little practical guidance when using small-sample un-
balanced data as is typical in the literature. The random growth component, however,
can be recovered if one estimates the model utilizing the entire autocovariance function
of income growth rates.

In Table 5, the true income process contains the individual-specific intercept, a
random-walk component, a transitory component, and measurement error. The true
variance of the random-walk shock equals 0.02, while the true variance of determinis-
tic growth-rate heterogeneity equals zero. The process is estimated as the (misspecified)
HIP containing a deterministic growth-rate component and an unrestricted ARMA(1�1)
process (column 1), AR(1) process (column 2), or MA(1) process (column 3). The vari-
ance of the shock to the transitory component is estimated at about 0.05 in columns 2
and 3, and at 0.07 in column 1, while the estimated values of the autoregressive param-
eter are substantially biased upward (columns 1 and 2). Importantly, when the random-
walk component is ignored in estimation, the long-run persistence of the process is cap-
tured instead by the variance of the deterministic growth, with the estimated value sub-
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Table 5. Estimates of the misspecified HIP: simulated data.a

(1) (2) (3)
ARMA(1�1) AR(1) MA(1)

Parameters/Trans. Comp. σ2
β = 0, σ2

ξ = 0	02 σ2
β = 0, σ2

ξ = 0	02 σ2
β = 0, σ2

ξ = 0	02

Heterog. growth, σ̂2
β 0	0005 0	00052 0	0007

(0	00009) (0	00008) (0	00009)

Var. perm. shock, σ̂2
ξ 0	00 0	00 0	00

— — —

AR, φ̂ 0	762 0	675 —
(0	044) (0	032) —

MA, θ̂ −0	261 — 0	419
(0	029) — (0	009)

σ̂2
ε 0	069 0	054 0	058

(0	001) (0	002) (0	0005)

σ2
u�me 0	015 0	024 0	015

— (0	002) —

Median χ2 [d.f.] 867	15 [431] 921	86 [431] 1488	38 [432]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi + pit + τit + uit�me , with (1 − L)pit+1 = ξit+1 , σ2
α = 0	03, σ2

ξ = 0	02, and σ2
u�me = 0	02.

In column 1, the transitory process is modeled as τit = 1+θL
1−φL

εit , φ = 0	50, θ = −0	20. In column 2, τit = εit
1−φL

, φ = 0	50. In

column 3, τit = (1 + θL)εit , θ = 0	50. In all models, the true variance of the shocks to the transitory component is σ2
ε = 0	04.

Prior to estimation, simulated data are transformed to first differences; models are estimated by the equally weighted minimum
distance method. Standard errors are given in parentheses and are calculated as the standard deviations of the estimates across
100 model simulations. The goodness-of-fit statistic is based on Newey (1985).

stantially and significantly away from its true value of zero. When the model contains
a moving average transitory process, this is the estimate one can expect given the time
series dimension of 29 periods for income growth rates (see Section 2.2.1).

Baker (1997) and Guvenen (2009) estimated models similar to those in Table 5 and
considered such specifications as nesting the random-walk and the growth-rate hetero-
geneity hypotheses. They conjectured that the unit-root hypothesis could be rejected if
the estimated autoregressive persistence φ̂ was below 1 and tightly estimated. The mod-
els of Table 5, however, do not properly encompass the income process with a random
walk, a persistent component, and growth-rate heterogeneity. If, for example, a time se-
ries is composed of a random walk and an autoregressive component with low or mod-
erate persistence φ, the resulting model with one disturbance is an ARMA(1�1) process
in first differences with autoregressive persistence φ.18 Baker (1997) estimated such a
model using PSID data and found low autoregressive persistence and significant vari-
ance of the random-growth component. The results in Table 5 indicate that such mod-
els are not proper nesting specifications, and can result in significant estimates of the
growth-rate heterogeneity and in low to moderate autoregressive persistence—as was

18If yit = pit + τit , where pit = pit−1 + ξit and τ = φτit−1 + εit , the income process can be written as
(1−φL)�yit = (1−φL)ξit +(1−L)εit = (1+θL)uit , where the moving average parameter θ and the variance
of uit depend on φ and the variances of the original shocks ξit and εit .
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Table 6. Estimates of the HIP with no random-walk component: simulated data.a

ARMA(1�1) AR(1) MA(1)
Parameters/Trans. Comp. σ2

β = 0	0004, σ2
ξ = 0 σ2

β = 0	0004, σ2
ξ = 0 σ2

β = 0	0004, σ2
ξ = 0

Heterog. growth, σ̂2
β 0	00035 0	00035 0	00035

(0	00005) (0	00006) (0	00005)

Var. perm. shock, σ̂2
ξ 0	0004 0	00029 0	00008

(0	0012) (0	0007) (0	0003)

AR, φ̂ 0	463 0	479 —
(0	135) (0	042) —

MA, θ̂ −0	225 — 0	402
(0	105) — (0	01)

σ̂2
ε 0	047 0	04 0	049

(0	002) (0	002) (0	0006)

σ2
u�me 0	013 0	02 0	013

— (0	003) —

Median χ2 [d.f.] 803	84 [430] 745	10 [430] 816	09 [431]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi + βihit + τit + uit�me , with σ2
α = 0	03, σ2

β = 0	0004, and σ2
u�me = 0	02. In the second

column, the transitory process is modeled as τit = 1+θL
1−φL

εit , φ = 0	50, θ = −0	20. In the third column, τit = εit
1−φL

, φ = 0	50. In

the last column, τit = (1+θL)εit , θ = 0	50. In all models, the true variance of the shocks to the transitory component is σ2
ε = 0	04.

Prior to estimation, simulated data are transformed to first differences; models are estimated by the equally weighted minimum
distance method. Standard errors are given in parentheses and are calculated as the standard deviations of the estimates across
100 model simulations. The goodness-of-fit statistic is based on Newey (1985).

found in Baker (1997) and Guvenen (2009)—when the true model contains a random-
walk component, a transitory component with low persistence, and no growth-rate het-
erogeneity.

Other experiments For completeness, I also considered models that contain a tran-
sitory component and idiosyncratic trends but no random-walk component, while in
estimations I allowed for a permanent random-walk component (Table 6). Briefly, in
Table 6, the variance of growth-rate heterogeneity is precisely recovered in estimations,
while the variance of permanent shocks is small in magnitude and not statistically differ-
ent from its true value of zero. This result has important implications for empirical anal-
ysis: if incomes differ over the life cycle due to deterministic growth-rate heterogeneity
and are not affected by the shocks that persist over the entire life cycle, one can expect
that the model that allows for both components will recover the true variance of growth-
rate heterogeneity and a small and imprecise variance of the random-walk shocks.

I also considered models with a random-walk component but no growth-rate het-
erogeneity, while in estimations I allowed for both components. The results are in Ta-
ble 7: while the variance of random-walk shocks is tightly estimated, the variance of
growth-rate heterogeneity is numerically small and insignificant.

Table 8 shows the estimates of misspecified RIP processes when the true income
processes contain deterministic growth-rate heterogeneity while the estimated models
contain a random-walk component and no idiosyncratic growth rates. The estimated
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Table 7. Estimates of the RIP with no growth-rate heterogeneity: simulated data.a

ARMA(1�1) AR(1) MA(1)
Parameters/Trans. Comp. σ2

β = 0, σ2
ξ = 0	02 σ2

β = 0, σ2
ξ = 0	02 σ2

β = 0, σ2
ξ = 0	02

Heterog. growth, σ̂2
β 0	00006 0	00005 0	00004

(0	0001) (0	00007) (0	00006)

Var. perm. shock, σ̂2
ξ 0	018 0	018 0	019

(0	003) (0	002) (0	001)

AR, φ̂ 0	488 0	510 —
(0	169) (0	062) —

MA, θ̂ −0	204 — 0	495
(0	117) — (0	014)

σ̂2
ε 0	047 0	041 0	04

(0	004) (0	003) (0	001)

σ2
u�me 0	015 0	02 0	013

— (0	004) —

Median χ2 [d.f.] 828	90 [430] 862	06 [430] 909	98 [431]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi +pit + τit + uit�me , with σ2
α = 0	03, σ2

ξ = 0	02, and σ2
u�me = 0	02. In the second column,

the transitory process is modeled as τit = 1+θL
1−φL

εit , φ = 0	50, θ = −0	20. In the third column, τit = εit
1−φL

, φ = 0	50. In the last

column, τit = (1 + θL)εit , θ = 0	50. In all models, the true variance of the shocks to the transitory component is σ2
ε = 0	04. Prior

to estimation, simulated data are transformed to first differences; models are estimated by the equally weighted minimum
distance method. Standard errors are given in parentheses and are calculated as the standard deviations of the estimates across
100 model simulations. The goodness-of-fit statistic is based on Newey (1985).

variance of permanent shocks is nonnegligible and significant when the transitory com-
ponent is an AR(1) or an ARMA(1�1) process—see the second and third columns—but
small and insignificant when the transitory component is an MA(1) process (last col-
umn).

The combined results of Tables 2, 5, 6, 7, and 8 highlight the importance of esti-
mating an encompassing process to guard against misspecified estimates of either the
random-walk or growth-rate heterogeneity components.

Table 9 extends the results of Table 2, allowing for estimation of the persistence of
the permanent component. As in a time series context, the estimated persistence is bi-
ased downward yet close to unity; the estimated variance of growth-rate heterogeneity is
slightly upward-biased, but still statistically significant. The results confirm that testing
for a unit root is challenging not only using short time series data, but also using small
unbalanced longitudinal data. Table 10 extends the results of Table 2, modeling the per-
manent component as an AR(1) process with persistence equal to 0.95. Relative to the
results in Table 9, the estimated persistence of the permanent component is downward-
biased; the parameters of the transitory process are estimated with less precision, and
the estimated variance of growth-rate heterogeneity is biased downward and is less pre-
cise. It appears that estimation of the income process (1)–(3) in small unbalanced sam-
ples will recover the true parameters reasonably well when the true persistence of the
permanent component is 1 or very close to unity; estimations will perform relatively
worse when the permanent component is less persistent.
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Table 8. Estimates of the misspecified RIP: simulated data.a

ARMA(1�1) AR(1) MA(1)
Parameters/Trans. Comp. σ2

β = 0	0004, σ2
ξ = 0 σ2

β = 0	0004, σ2
ξ = 0 σ2

β = 0	0004, σ2
ξ = 0

Heterog. growth, σ̂2
β 0	00 0	00 0	00

— — —

Var. perm. shock, σ̂2
ξ 0	008 0	008 0	0006

(0	001) (0	001) (0	0008)

AR, φ̂ 0	712 0	749 —
(0	049) (0	030) —

MA, θ̂ −0	283 — 0	607
(0	037) — (0	011)

σ̂2
ε 0	037 0	033 0	052

(0	002) (0	002) (0	0008)

σ2
u�me 0	015 0	02 0	013

— (0	001) —

Median χ2 [d.f.] 764	58 [431] 763	68 [431] 994	70 [432]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi + βihit + τit + uit�me , with σ2
α = 0	03, σ2

β = 0	0004, and σ2
u�me = 0	02. In the second

column, the transitory process is modeled as τit = 1+θL
1−φL

εit , φ = 0	50, θ = −0	20. In the third column, τit = εit
1−φL

, φ = 0	50. In

the last column, τit = (1+θL)εit , θ = 0	50. In all models, the true variance of the shocks to the transitory component is σ2
ε = 0	04.

Prior to estimation, simulated data are transformed to first differences; models are estimated by the equally weighted minimum
distance method. Standard errors are given in parentheses and are calculated as the standard deviations of the estimates across
100 model simulations. The goodness-of-fit statistic is based on Newey (1985).

3. Empirical results

In this section, I estimate time series processes for idiosyncratic labor incomes of male
household heads from the PSID. I first describe the data I utilize.

3.1 Data

I use income and demographic data from the 1968–1997 waves of the PSID. I select
male household heads of ages 25–64.19 I further drop heads with inconsistent education
records and define two education groups. The first group comprises heads who dropped
out of high school or just finished high school. The second group includes heads who
finished some college, graduated from college, or attained a graduate degree.20

The measure of income utilized is the head’s labor income from all sources, inclu-
sive of the labor part of farm and business income. Income data in the PSID refer to the
previous calendar year; I adjust the data appropriately by the consumer price index for
all items normalized to 100 in 1982–1984. I set income observations to missing when

19Age in the PSID does not necessarily change in adjacent surveys since information can be collected at
different months of a year. Also, some individuals have inconsistent age series which, among other things,
may reflect typing errors by interviewers. I utilize information on the year of birth to construct a cleaner
measure of age for those heads who have this information in the individual file. Otherwise, I use an individ-
ual’s age at the time he first appears as a head in the survey to impute his age in other years.

20Each education group roughly comprises 50% of the sample.
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Table 9. Estimates of the HIP with random-walk component: simulated data.a

ARMA(1�1) AR(1) MA(1)
Parameters/Trans. Comp. σ2

β = 0	0004, σ2
ξ = 0	02 σ2

β = 0	0004, σ2
ξ = 0	02 σ2

β = 0	0004, σ2
ξ = 0	02

Heterog. growth, σ̂2
β 0	00056 0	0005 0	00056

(0	00027) (0	00026) (0	00024)

AR, φ̂p 0	964 0	97 0	973
(0	045) (0	044) (0	035)

Var. perm. shock, σ̂2
ξ 0	021 0	02 0	018

(0	003) (0	004) (0	002)

AR, φ̂τ 0	402 0	466 —
(0	148) (0	074) —

MA, θ̂ −0	177 — 0	428
(0	098) — (0	013)

σ̂2
ε 0	042 0	04 0	046

(0	005) (0	005) (0	001)

σ2
u�me 0	015 0	019 0	013

— (0	004) —

Median χ2 [d.f.] 752	24 [429] 746	54 [429] 874	26 [430]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi +βihit +pit + τit + uit�me , with σ2
α = 0	03, σ2

β = 0	0004, and σ2
u�me = 0	02. In the second

column, the transitory process is modeled as τit = 1+θL
1−φτL

εit , φτ = 0	50, θ = −0	20. In the third column, τit = εit
1−φτL

, φτ = 0	50.

In the last column, τit = (1 + θL)εit , θ = 0	50. pit = φppit−1 + ξit , where φp = 1 and σ2
ξ = 0	02. In all models, the true variance

of the shocks to the transitory component is σ2
ε = 0	04. Prior to estimation, simulated data are transformed to first differences;

models are estimated by the equally weighted minimum distance method. Standard errors are given in parentheses and are
calculated as the standard deviations of the estimates across 100 model simulations. The goodness-of-fit statistic is based on
Newey (1985).

the head reports being a student or self-employed and in the year subsequent to that
report. When the head reports being retired, I set his income in that year and all subse-
quent years to missing. I further drop observations for the years when the percentage
change of real labor income in adjacent years is above 500 or below −80. I then drop
observations with zero, top-coded, and missing incomes, and select the longest consec-
utive spell of positive incomes with at least 9 observations. I exclude data for house-
holds from the Survey of Economic Opportunity (SEO) subsample, which oversamples
the poor. Figure 1 plots the time profile of the variances of log labor income for differ-
ent PSID samples: the core subsample, the SEO subsample, and the sample comprising
those two subsamples. The variances in the core sample—which was representative of
the U.S. population in 1968, at the start of the survey—displayed a sharp increase in the
beginning of the 1980s. The variances for the SEO subsample follow a somewhat dif-
ferent time pattern: the variance increased in the beginning of the 1980s, but started
declining afterward. For this reason, and following most of the literature, I exclude the
SEO subsample from my empirical analysis.21 The final sample contains information for

21The pattern of the variances in the sample comprising both the SEO and core subsamples is similar to
the pattern of variances in Figure 2 of Meghir and Pistaferri (2004) for their whole sample.
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Table 10. Estimates of the RIP with growth-rate heterogeneity: simulated data.a

Parameters/Trans. Comp. ARMA(1�1) AR(1) MA(1)

Heterog. growth, σ̂2
β 0	0003 0	00026 0	00025

(0	00018) (0	0002) (0	00017)

AR, φ̂p 0	909 0	926 0	938
(0	065) (0	063) (0	04)

Var. perm. shock, σ̂2
ξ 0	024 0	023 0	019

(0	006) (0	007) (0	002)

AR, φ̂τ 0	322 0	429 —
(0	248) (0	128) —

MA, θ̂ −0	135 — 0	426
(0	184) — (0	013)

σ̂2
ε 0	040 0	04 0	046

(0	007) (0	006) (0	002)

σ2
u�me 0	015 0	017 0	015

— (0	007) —

Median χ2 [d.f.] 752	35 [429] 742	29 [429] 826	40 [430]
Rejection rate at 1% 100% 100% 100%

aThe true income process is yit = αi +βihit +pit + τit + uit�me , with σ2
α = 0	03, σ2

β = 0	0004, and σ2
u�me = 0	02. In the second

column, the transitory process is modeled as τit = 1+θL
1−φτL

εit , φτ = 0	50, θ = −0	20. In the third column, τit = εit
1−φτL

, φτ = 0	50.

In the last column, τit = (1 +θL)εit , θ = 0	50. pit =φppit−1 +ξit , where φp = 0	95 and σ2
ξ = 0	02. Prior to estimation, simulated

data are transformed to first differences; models are estimated by the equally weighted minimum distance method. Standard
errors are given in parentheses and are calculated as the standard deviations of the estimates across 100 model simulations.
The goodness-of-fit statistic is based on Newey (1985).

1916 heads with 29,753 person-year observations on labor incomes. Table 11 contains
some descriptive sample statistics for selected years of the sample.

The measure of the idiosyncratic head’s labor income growth in each year is the
head’s residual from a cross-sectional regression of the first difference in log labor in-
come on a third polynomial in age, “college” dummy, and interactions between the “col-
lege” dummy and the age polynomial.22 This regression, which specifies the determin-
istic component of incomes common to all heads, is similar to specifications adopted
in the literature and assumes that returns to the head’s experience and education are
affected by the aggregate state of the economy, that is, they differ by year.

Table 12 contains the results of the tests of the autocovariances of a given order being
zero in all time periods. One cannot reject the null that the autocovariances of orders
4 and 5 are equal to zero. However, the null that the autocovariances of order 3 and
higher or order 4 and higher are all equal to zero can be rejected. The results can be
consistent with a model containing an AR(1) or ARMA(1�1) transitory component with
a small autoregressive persistence.23

22The “college” dummy equals 1 if the head finished some college, graduated from college, or attained a
graduate degree.

23The results are somewhat different from Meghir and Pistaferri (2004), who found, for their pooled sam-
ple, that the autocovariances of orders 3 and 4 are not statistically different from zero, and a p-value of 12%
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Figure 1. The variance of log labor income by year. In panel (a), the graph depicts the variances
of log labor income for the main sample that includes heads from the core subsample only. In
panel (b), the graph depicts the variances of log labor income for a sample that includes heads
from the SEO subsample only. In panel (c), the graph depicts the variances of log labor income
for a sample that includes heads from the core and the SEO subsamples. All samples include
heads with consecutive spells of at least 9 income observations only.

3.2 Results

Table 13 contains the main results.24 The models are estimated by fitting the empirical
autocovariance function to the theoretical autocovariance function utilizing the identity
weighting matrix, that is, by the equally weighted minimum distance method.

In column 1, I estimate the HIP process, which ignores the potentially important
random-walk component in idiosyncratic labor incomes. The variance of individual-
specific growth rates is estimated at 0.0004, which is significant at the 1% level, while
the persistence of the transitory component is moderate: the autoregressive parameter
is estimated at about 0.70.25

for the test that the autocovariances of order 3 and higher are all equal to zero. Their results are based on
PSID data up to 1993 and a sample that includes the SEO subsample. If I ignore the data after 1993, my
results for the tests in Table 12 are similar to those in Table II in Meghir and Pistaferri (2004).

24Most of the studies in the literature allow for time-dependent variances of permanent and/or persis-
tent shocks. My estimates of these parameters in Table 13, columns 1–4 and 6, should be interpreted as the
unconditional variances of transitory and permanent shocks.

25The autoregressive parameter is estimated at about the same value if the transitory component is mod-
eled as an AR(1) process. I choose to report the results for a model with an ARMA(1�1) transitory compo-
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Table 11. Sample statistics for selected years.

Year

1970 1980 1990 1997

Age 40	67 41	11 39	71 44	37
(8	50) (10	83) (9	06) (7	46)

Hours 2258 2224 2270 2281
(460) (496) (498) (495)

Nonfinancial incomea 33,127 36,289 39,371 45,193
(13,851) (15,901) (24,914) (27,340)

White 0	89 0	91 0	93 0	93

Married 0	96 0	90 0	87 0	88

>12 yrs. of schooling 0	35 0	46 0	53 0	56

aNonfinancial income is the sum of head’s and wife’s real labor income from all sources, and their combined transfer income
expressed in 1982–1984 dollars. The income measure excludes head’s and wife’s Social Security income. Standard deviations
are given in parentheses.

Table 12. Test of the null hypothesis of zero autocovariance in all time periods.a

Order Test Stat. d.f. p-Value

1 506	81 28 0	00
2 57	88 27 0	00
3 45	35 26 0	01
4 23	65 25 0	54
5 23	76 24 0	48
≥3 465	96 351 0	00
≥4 425	18 325 0	00

aThe test statistic is distributed as χ2 with degrees of freedom equal to the number of (zero) restrictions (the number of
unique autocovariances of a given order in the estimated variance–covariance matrix).

In column 2, I allow for a random walk and a deterministic growth-rate component
in earnings. Monte Carlo results indicated that if both these components are present, the
process should be empirically identified in small samples. In column 2, the estimate for
the variance of the individual-specific growth rates binds at zero, while the estimate of
the variance of the shock to the random-walk component equals 0.015 and is significant
at the 1% level. An autoregressive parameter of the transitory process is estimated at
about 0.37, capturing the fast decline of the empirical autocovariance function of labor
income growth rates beyond the first order. The variance of the shocks to the transitory
component, which also comprises the contribution of measurement error, is estimated
at about 0.03.

nent since its autocovariance function encompasses the autocovariance function of both AR(1) and MA(1)
transitory processes. The main result—that the variance of permanent shocks is significant and the es-
timated variance of the growth-rate heterogeneity is zero—holds for models with transitory components
modeled as MA(1) or AR(1) processes.
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Table 13. Estimates of income processes: PSID data.a

(2) (3) (4) (5) (6)
(1) Add Est. Same as col. 3 Chang. Perm./ Use Only

HIP RW Pers. Set σ2
β = 0 Trans. Var. First 10 acfs

σ̂2
β 0	0004 0	00 0	00 0	00 0	00 0	00

(0	00004) (0	00006) (0	001) — — (0	0002)

σ̂2
ξ 0	00 0	015 0	016 0	016 0	017 0	015

— (0	002) (0	002) (0	002) (0	005) (0	003)

φ̂ 0	712 0	367 0	343 0	343 0	357 0	369
(0	029) (0	115) (0	194) (0	124) (0	114) (0	138)

θ̂ −0	187 −0	091 −0	081 −0	081 −0	105 −0	092
(0	024) (0	08) (0	113) (0	087) (0	086) (0	088)

σ̂2
ε 0	046 0	028 0	027 0	027 0	027 0	028

(0	001) (0	002) (0	005) (0	002) (0	005) (0	003)

φ̂rw 0	0 1	0 0	992 0	992 1	0 1	0
— — (0	158) (0	009) — —

χ2 793	32 697	05 694	38 696	96 492	25 636	89
(d.f.) (431) (430) (429) (430) (376) (430)

aThe estimated income process is yit = αi+βihit +pit + 1+θL
1−φL

εit +uit�me , where pit+1 =φrwpit +ξit+1 and φrw denotes the

autoregressive coefficient of a more persistent autoregressive process. Models are estimated by the equally weighted minimum
distance method. The sample consists of 1916 male household heads with at least eight consecutive observations on labor
income growth. Households from the Survey of Economic Opportunity (SEO) subsample are excluded. Standard errors are
given in parentheses.

In column 3, I do not restrict the autoregressive parameter of a more persistent pro-
cess to equal 1. The results are largely similar to those in column 2, but less precise. The
estimated variance of growth-rate heterogeneity is still zero, while the autoregressive
parameter of a more persistent process is close to 1.26 Column 4 reports the results of
the same model when the variance of growth-rate heterogeneity is set to zero. The re-
sults are quantitatively similar to those in column 3, while the parameters are estimated
more precisely.

In column 5, I reestimate the model of column 4, allowing for time-varying per-
manent and transitory variances. I report the time averages of the estimated vari-
ances and the time averages of their standard errors. The results are similar to those
in columns 2–4. The full sets of transitory and permanent variances, along with their
standard errors, are presented in Table 14.

The off-diagonal elements of the empirical autocovariance matrix contain impor-
tant information for identification of the variance of the growth-rate heterogeneity.

26The results of Tables 9 and 10 indicate that the estimated persistence of the permanent component is
downward-biased in an unrestricted estimation, while the variance of growth-rate heterogeneity is some-
what upward- (downward-) biased when the permanent component is a random walk (a relatively less
persistent autoregressive process). Since the estimated persistence in column 3 of Table 13 is very close to
1 and the estimated variance of growth-rate heterogeneity binds at 0, it is, perhaps, reassuring that the in-
come process in my sample is best modeled as the sum of a random walk, a transitory component with low
persistence, and no growth-rate heterogeneity.
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Table 14. The variances of permanent and transitory shocks by year.a

Year Trans. Shock St. Err. Perm. Shock St. Err.

1969 0	01989 0	00428 0	01274b —
1970 0	01461 0	00360 0	01274b 0	00581
1971 0	02635 0	00535 0	01299 0	00348
1972 0	02337 0	00609 0	01336 0	00461
1973 0	02541 0	00536 0	02177 0	00540
1974 0	02373 0	00467 0	01961 0	00452
1975 0	03137 0	00549 0	01223 0	00425
1976 0	03649 0	00599 0	02345 0	00592
1977 0	02708 0	00466 0	01329 0	00466
1978 0	02843 0	00466 0	00647 0	00350
1979 0	02586 0	00502 0	01467 0	00476
1980 0	02350 0	00503 0	01672 0	00470
1981 0	01538 0	00545 0	02725 0	00655
1982 0	02959 0	00526 0	02854 0	00791
1983 0	02309 0	00430 0	02605 0	00463
1984 0	02623 0	00507 0	02821 0	00575
1985 0	03125 0	00516 0	02216 0	00465
1986 0	02418 0	00401 0	01732 0	00501
1987 0	02679 0	00453 0	02440 0	00487
1988 0	02768 0	00470 0	01464 0	00482
1989 0	02421 0	00489 0	02935 0	00547
1990 0	02413 0	00433 0	01979 0	00486
1991 0	02039 0	00407 0	01659 0	00432
1992 0	02066 0	00346 0	02261 0	00482
1993 0	04993 0	00662 0	00766 0	00499
1994 0	03701 0	00600 0	00499 0	00404
1995 0	03103 0	00508 0	00618 0	00468
1996 0	02568 0	00464 0	00859b 0	00496
1997 0	03090 0	00699 0	00859b —

aEstimates are from the model in Table 13, column 5.
bVariances of permanent shocks are restricted in estimation to be equal in these years.

For example, if the true income process contains a moving average process of order 1,
higher-order autocovariances will be informative for identification of the variance of the
growth-rate heterogeneity. The number of heads contributing toward the empirical au-
tocovariance γ̂k is, in general, smaller the larger is the lag length k, which separates the
head’s income observation at time t from the income observation at time t + k. Plac-
ing an equal weight on all the variances and autocovariances in estimation may bias an
estimate of the growth-rate heterogeneity toward zero if higher-order empirical autoco-
variances are very close to zero and imprecisely estimated as, indeed, is found in empir-
ical data. To take care of this concern, following Guvenen (2009), I reestimate the model
utilizing only the first 10 empirical autocovariances and all the variances in estimation—
column 6 Table 13. The main result remains unchanged: the growth-rate heterogeneity
is estimated at zero, while the variance of permanent shocks is precisely estimated at
about 0.015.
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Figure 2. The variance of shocks to labor income by year. The variances of permanent and
transitory shocks are estimated on the main sample fitting the model in Table 13, column 5. The
vertical line is drawn for the survey year 1993, when the PSID switched to the electronic data
collection method.

In Figure 2, I plot the resulting time series of the estimated variances of permanent
and transitory shocks. It appears that an increase in the variance of heads’ incomes in
the early 1980s depicted in Figure 1 was largely due to the increase in the variance of
permanent shocks during that period. The pattern of the variances of permanent shocks
in the 1980s resembles that in Meghir and Pistaferri (2004), for their pooled sample that
includes heads of household from the SEO subsample. It is also qualitatively similar to
the hump-shaped pattern of the permanent volatility of household incomes in the 1980s
reported in Blundell, Pistaferri, and Preston (2008).27

For robustness, I estimate the income process using separate samples for heads who
dropped out from or just finished high school (columns 1 and 2 in Table 15) and those
who finished some college, graduated from college or have education levels beyond col-
lege degree (columns 3 and 4 in Table 15). This roughly 50–50 split of the main sample
allows precise estimates of the model parameters.

When the random-walk component is ignored in estimation, the variance of the
deterministic growth-rate heterogeneity is substantial and statistically significant (col-
umns 1 and 3 in Table 15); the estimated AR(1) persistence of the stochastic compo-

27In 1993, the PSID switched to the electronic data collection method. Presumably, the spike of the vari-
ance of transitory shocks in 1993—see the vertical line in Figure 2—is due to this change in the data collec-
tion method. The results are qualitatively similar if I do not use the data after 1992.
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Table 15. Estimates of income processes for PSID data with the sample split by education.a

High School Grad. Some College
or Less or More

(1) (2) (3) (4)

σ̂2
β 0	0003 0	00 0	0004 0	00

(0	00006) (0	00008) (0	00007) (0	0001)

σ̂2
ξ 0	00 0	012 0	00 0	02

— (0	002) — (0	003)

φ̂ 0	588 0	335 0	848 0	385
(0	050) (0	141) (0	029) (0	209)

θ̂ −0	165 −0	073 −0	179 −0	084
(0	041) (0	099) (0	025) (0	143)

σ̂2
ε 0	048 0	035 0	044 0	020

(0	002) (0	003) (0	002) (0	003)

aThe estimated income process is yit = αi +βihit +pit + 1+θL
1−φL

εit +uit�me , where pit+1 = pit + ξit+1 . Models are estimated

by the equally weighted minimum distance method. In columns 1 and 2, the sample consists of 1011 male household heads
with at least eight consecutive observations on labor income growth whose education levels do not exceed high school. In
columns 3 and 4, the sample consists of 905 male household heads with at least eight consecutive observations on labor income
growth who finished some college or graduated from college. Households from the Survey of Economic Opportunity (SEO)
subsample are excluded. Standard errors are given in parentheses.

nent is moderate, ranging from about 0.85 for the college sample to 0.59 for high school
graduates/dropouts. Similar to the main results, in the model that includes both the
growth-rate heterogeneity and the permanent random-walk component, the estimated
variance of the growth-rate heterogeneity equals zero (columns 2 and 4). Interestingly,
the estimated variance of permanent shocks is higher for more educated heads, while
the estimated variance of the shocks to the transitory component is higher for less edu-
cated heads.

In this paper I focused on the moments in growth rates. Recently, Heathcote, Perri,
and Violante (2010) estimated the income process composed of a random walk and a
purely transitory shock, and warned of the inconsistency of the estimates that results
from using the moments of log income in levels or differences. In particular, they found
that the variance of permanent (transitory) shocks is relatively larger when one uses the
moments in differences (levels). To my knowledge, this issue has not been properly ad-
dressed in the literature yet. The inconsistency of the estimates in levels and differences
can be, for example, due to rare events and/or shocks such as job mobility that affect the
moments in differences and levels differently. Low, Meghir, and Pistaferri (2010), using a
model of consumption and employment choices, showed the importance of these rare
events for the estimated size of permanent shocks when using the moments in growth
rates. I view this issue as separate from my paper and one that deserves future research.

Discussion in Section 2.2.1 suggested that the estimated variance of the growth-rate
heterogeneity should be inversely related to the time dimension of the sample size if the
true process contains a random-walk component and the income process is estimated
as HIP. To support this result, I simulated the model of column 2 in Table 13 for samples
with different time dimension but the same group of individuals.
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Table 16. The time span of a sample and estimated growth-rate
heterogeneity: simulated data.a

(1) (2)
True: HIP True: RIP with R.W.

Time Span, T σ̂2
β σ̂2

β

10 0	00048 0	001
(0	0002) (0	0002)

15 0	00045 0	0008
(0	00009) (0	0001)

20 0	00044 0	0006
(0	00006) (0	00007)

25 0	00043 0	0005
(0	00005) (0	00007)

30 0	00043 0	00045
(0	00006) (0	00006)

aIn both columns, the estimated income process is yit = αi + βihit + 1+θL
1−φL

εit . In col-

umn 1, the true process is the same as the estimated process. In simulations, the pa-
rameters are taken from column 1 of Table 13. In column 2, the true process is yit =
αi +pit + 1+θL

1−φL
εit , where pit = pit−1 +ξit . In simulations, the parameters are taken from

column 2 of Table 13. Models are estimated by the equally weighted minimum distance
method. Standard errors are given in parentheses and are calculated as the standard de-
viations of the estimated growth-rate heterogeneity across 100 model simulations.

The estimated (misspecified) HIP model always returns nonzero and significant es-
timates of the growth-rate heterogeneity—column 2 of Table 16—which are higher for
samples with a smaller time dimension. I also performed simulations of the model in
column 1 of Table 13. The results are in column 1 of Table 16. If the true model is HIP, the
variance of growth-rate heterogeneity should not depend on the time dimension of the
sample size, as the results in column 1 suggest. If, for the same cross section of heads, an
estimate of the growth-rate heterogeneity is found to be systematically different for dif-
ferent time dimensions of the sample, this will present some additional evidence against
the hypothesis that heads’ idiosyncratic income growth rates systematically and deter-
ministically differ over the life cycle.

Figure 3 graphically presents just outlined arguments using PSID data. First, I select a
sample of 1157 PSID heads who have at least five consecutive income observations dur-
ing 1968–1977 and estimate the HIP process for idiosyncratic incomes for that sample.
This gives me the first point in the graph in Figure 3, panel (a). I then extend the time
dimension of the initial sample to 1978, keeping the cross-sectional dimension fixed,
and estimate the HIP process for that sample. I continue this procedure until I arrive at
the sample that spans the period 1969–1997 for those 1157 heads, the longest possible
period.28 The results in Figure 3 are quite telling: it appears that the estimated growth-
rate heterogeneity is larger for smaller time dimensions of the sample size, even though
the samples contain the same group of individuals and one would expect the estimated
growth-rate heterogeneity to be the same. Next, on those samples, I perform a series

28The Monte Carlo results just described replicated these samples in terms of the number of individuals,
the number of person-year observations, and the cross-sectional distribution of age by year.
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Figure 3. The variance of growth-rate heterogeneity and the time dimension of the sample, T .
In panel (a), the first point on the graph is an estimate of the variance of growth-rate heterogene-
ity for a sample of 1157 PSID heads with at least five consecutive income observations during
1968–1977; all subsequent points are the estimates of the variance of growth-rate heterogeneity
using samples that contain the same heads and income information for 1968–1978, 1968–1979,
all the way up to 1968–1997. In panel (b), the same samples are used to estimate the income pro-
cess that includes a permanent random-walk component and an ARMA(1�1) transitory process.
The estimates of the variance of permanent shocks are then divided by the time dimension of
the sample size to produce the graph in panel (c).

of estimations, assuming that the true process contains a random walk and the transi-
tory process is modeled as an ARMA(1�1) process. The results are plotted in panel (b) of
Figure 3. One could think that those are the unconditional estimates of the permanent
variance for different time dimensions: the average permanent variance will increase if
the marginal variance is higher than the average variance and vice versa. In panel (c) of
Figure 3, I divide the estimated permanent variances in the rightmost panel of Figure 3
by the time dimension of the sample utilized for their estimation. Remarkably, the series
of the estimated growth-rate heterogeneity in the leftmost graph is quite similar to the
series of the variance of permanent shocks scaled by the inverse of the time dimension
of the sample, as one would expect if the true process contains a random-walk compo-
nent and no growth-rate heterogeneity.

There is some evidence, which does not rely on estimation of income processes, in-
terpreted by some researchers as favoring income models with heterogeneous income
profiles. Haider and Solon (2006) and Böhlmark and Lindquist (2006) studied the as-
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sociation between current and lifetime income over the life cycle for U.S. and Swedish
samples, respectively. Specifically, they focused on the life-cycle variation in the slope
coefficient from the regression yia = βaVi + εia, where yia is individual i’s log income at
age a, Vi is individual i’s log lifetime income, calculated as (the log of) the annuity value
of the discounted sum of annual real incomes observed for individual i, and εia is indi-
vidual i’s regression error at age a. Haider and Solon (2006) found that βa is estimated
at about 0.20 at age 19, steadily increases afterward, equals 1 at age 34, and levels off
for the rest of the life cycle. Böhlmark and Lindquist (2006), for a much larger Swedish
sample, found that β̂a starts at about 0.20 at age 19, crosses 1 at age 34, and peaks at 1.45
at age 48. The latter authors interpreted this result as evidence favoring the presence of
heterogeneous income profiles—income is low in the beginning of the life cycle and is
well below the lifetime income (which is estimated to be time-invariant by the authors);
income then steadily grows until it exceeds the lifetime income in the later part of the life
cycle. This result is, however, also true for income processes that contain random walks
and do not have deterministic idiosyncratic trends. Using the estimates of the RIP pro-
cess in this paper, I was able to replicate, in simulations not reported here, the pattern of
β̂a’s found in Böhlmark and Lindquist (2006). The intuition behind this result is the fol-
lowing. Note that β̂a = cov(yia�Vi)

var(Vi)
. While the denominator is constant over the life cycle,

the cross-sectional covariance between current incomes and lifetime incomes will be
growing over the life cycle, since current incomes will accumulate random-walk shocks
over the life cycle and will, therefore, co-vary more strongly with lifetime incomes, which
aggregate all the permanent shocks to individual incomes over the entire life cycle.

Summarizing, for the samples utilized in this study, it appears that I can reject the
HIP model. The RIP model with a permanent random-walk component and a transitory
mean-reverting component cannot be rejected.

4. Conclusion

I estimate idiosyncratic labor income processes on simulated and empirical data. The
main results of a Monte Carlo study using unbalanced panel data are the following. It is
possible to identify a general process containing all the elements of the HIP and the RIP
models. The most important elements are the growth-rate heterogeneity and the vari-
ance of a random-walk component. For simulated data in first differences, I show that
both these elements, if present, should be recovered precisely in empirical estimations
utilizing small unbalanced samples. The results on simulated data confirm another im-
portant finding of this paper: if the true income process is the sum of a random walk and
persistent components (i.e., the RIP) and the random walk is ignored in estimation, the
misspecified HIP model recovers significant and substantial growth-rate heterogeneity
and modest persistence.

I use data for male household heads from the 1968–1997 waves of the PSID to es-
timate idiosyncratic labor income processes. I find that the estimated variance of the
deterministic growth-rate heterogeneity is zero, while the estimated variance of the per-
manent component is significant and substantial.
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The results of this paper are important for understanding a number of issues. Among
them is the choice of an appropriate model of the heterogeneity in individual and house-
hold idiosyncratic incomes used in macromodels. The process, best fitting the data uti-
lized in this paper, also places restrictions on the models that make earnings an endoge-
nous variable.

In this paper, I use only income data to identify the variances of idiosyncratic perma-
nent and transitory shocks. Perhaps more accurate estimates of the variances could be
obtained by jointly studying household choices and income data. For recent attempts at
this approach, see Blundell and Preston (1998), Hryshko (2007), and Blundell, Pistaferri,
and Preston (2008) (in the context of RIP), and Guvenen and Smith (2008) (in the context
of HIP), who utilized data on household income and consumption choices.

Appendix: Estimation details

In my Monte Carlo simulations, I am assuming that τit = 0 and pit = 0 if hit = 0, that
is, a head with no labor market experience entering the labor market at time t + 1 is
“endowed” with zero permanent and transitory components of earnings.

The theoretical autocovariance moments for a model with the transitory component
modeled as an AR(1) process are shown in equations (10)–(12). If the transitory compo-
nent is a moving average process of order 1, see the autocovariance function in the text
in equations (5)–(8). The empirical moments, taking into account that the data used in
estimations are unbalanced, are calculated as

vech

(
N∑
i=1

ỹiỹ
′
i

)/
Ntt ′�

where ỹi = (�yi2��yi3� 	 	 	 ��yiT ); N is the total number of heads in the sample; Ntt ′ is
a vector with row dimension T(T+1)

2 ; N11 is the number of heads contributing toward
estimation of the variance in period 1 (t = 1, t ′ = 1); N12 is the number of heads con-
tributing toward estimation of the first-order autocovariance between periods 1 and 2
(t = 1, t ′ = 2), and so forth. Note that if the head’s income is missing, say, in period 1,
this head’s contributions toward the variance at time 1 and all the sample autocovari-
ances involving this period are zero. The vector of data moments used in estimation is
md = vech(

∑N
i=1 ỹiỹ

′
i)/Ntt ′ ; the row dimension of md is T(T+1)

2 . The model parameters,
Θ, are recovered by minimizing a squared distance function [m(Θ)−md]′I[m(Θ)−md],
where I is an identity matrix with the row dimension T(T+1)

2 .
Standard errors of the parameters are calculated as the square roots of the diag-

onal of (G′
ΘGΘ)

−1G′
ΘV GΘ(G

′
ΘGΘ)

−1′
, where GΘ = ∂

∂Θ [m(Θ̂) − md], a vector with the

row dimension T(T+1)
2 , and the column dimension equal to the row dimension of the

vector of estimated parameters; V is equal to
∑N

i=1(mi − md)(mi − md)′/NV , where
mi = vech(ỹiỹ ′

i), and the klth element of NV is calculated as Nkl
V = Nk

tt ′N
l
tt ′ , where Nk

tt ′
is the kth element of Ntt ′ .
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